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Abstract 

 

One of the most widely-used multivariate conditional volatility models is the dynamic 

conditional correlation (or DCC) specification. However, the underlying stochastic process to 

derive DCC has not yet been established, which has made problematic the derivation of 

asymptotic properties of the Quasi-Maximum Likelihood Estimators (QMLE). To date, the 

statistical properties of the QMLE of the DCC parameters have purportedly been derived under 

highly restrictive and unverifiable regularity conditions. The paper shows that the DCC model 

can be obtained from a vector random coefficient moving average process, and derives the 

stationarity and invertibility conditions of the DCC model. The derivation of DCC from a vector 

random coefficient moving average process raises three important issues, as follows: (i) 

demonstrates that DCC is, in fact, a dynamic conditional covariance model of the returns shocks 

rather than a dynamic conditional correlation model; (ii)  provides the motivation, which is 

presently missing, for standardization of the conditional covariance model to obtain the 

conditional correlation model; and (iii) shows that the appropriate ARCH or GARCH model for 

DCC is based on the standardized shocks rather than the returns shocks. The derivation of the 

regularity conditions, especially stationarity and invertibility, should subsequently lead to a solid 

statistical foundation for the estimates of the DCC parameters. Several new results are also 

derived for univariate models, including a novel conditional volatility model expressed in terms 

of standardized shocks rather than returns shocks, as well as the associated stationarity and 

invertibility conditions. 

 

Keywords: Dynamic conditional correlation, dynamic conditional covariance, vector random 

coefficient moving average, stationarity, invertibility, asymptotic properties. 

 

JEL classifications: C22, C52, C58, G32. 
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1. Introduction 

 

Among multivariate conditional volatility models, the dynamic conditional correlation (or DCC) 

specification of Engle (2002) is one of the most widely used in practice. Both multivariate 

conditional correlations and the associated conditional covariance models, are very useful for 

determining optimal hedging strategies, volatility spillovers and causality in volatility among 

financial commodities. These issues are especially important in energy finance, where the 

relationships among fossil fuels, such as oil, coal and gas, and carbon emissions, are crucial for 

public and private policy making (see, for example, Chang and McAleer (2017), Chang, 

McAleer and Tansuchat (2011),  and Chang, McAleer and Wang (2017)). 

 

The two alternative models that have been used widely for estimating and forecasting 

multivariate conditional correlations and conditional covariances have been based on: (i) the 

diagonal and full BEKK models of Baba et al. (1985) and Engle and Kroner (1995), which have 

been derived from an m-dimensional vector random coefficient autoregressive process (see 

McAleer et al. (2008) and section 2 below)); and (ii) the DCC model, which was presented 

without an underlying stochastic specification in Engle (2002).  

 

The basic DCC modelling approach has been as follows: (i) estimate the univariate conditional 

variances using the GARCH(1,1) model of Bollerslev (1986), which are based on the returns 

shocks; and (ii) estimate what is purported to be the conditional correlation matrix of the 

standardized residuals. The first step is entirely arbitrary as the conditional variances could just 

as easily be based on the standardized residuals themselves, as will be shown in Section 4 below. 

 

A similar comment applies to the varying conditional correlation model of Tse and Tsui (2002), 

where the first stage is based on a standard GARCH(1,1) model using returns shocks. The 

second stage is slightly different from the DCC formulation as the conditional correlations are 

defined appropriately. However, no regularity conditions are presented, and hence no statistical 

properties are given. 
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The DCC model has been analyzed critically in a number of papers as its underlying stochastic 

process has not yet been established, which has made problematic the derivation of the 

asymptotic properties of the Quasi-Maximum Likelihood Estimators (QMLE). To date, the 

statistical properties of the QMLE of the DCC parameters have been derived under highly 

restrictive and unverifiable regularity conditions, which in essence amounts to proof by 

assumption. 

 

This paper shows that the DCC specification can be obtained from a vector random coefficient 

moving average process, and derives the conditions for stationarity and invertibility of the DCC 

model. The derivation of regularity conditions should subsequently lead to a solid statistical 

foundation for the estimates of the DCC parameters. 

 

The derivation of DCC from a vector random coefficient moving average process raises three 

important issues: (i) demonstrates that DCC is, in fact, a dynamic conditional covariance model 

of the returns shocks rather than a dynamic conditional correlation model; (ii)  provides the 

motivation, which is presently missing, for standardization of the conditional covariance model 

to obtain the conditional correlation model; and (iii) shows that the appropriate ARCH or 

GARCH model for DCC is based on the standardized shocks rather than the returns shocks.  

 

The remainder of the paper is organized as follows. In Section 2, the standard ARCH model is 

derived from a random coefficient autoregressive process to provide a background for the 

remainder of the paper. The multivariate counterpart of ARCH is derived from a vector random 

coefficient autoregressive process, which will explain intuitively how the univariate results of 

Marek on a random coefficient moving average process can be extended to an m-dimensional 

vector counterpart. In Section 3, the DCC model is presented and discussed. Section 4 presents 

and discusses a new vector random coefficient moving average process that will be used as an 

underlying stochastic process in order to derive DCC. Several new results are derived for the 

associated univariate models, including a novel conditional volatility model expressed in terms 

of standardized shocks rather than returns shocks, as well as the associated stationarity and 

invertibility conditions. In section 5, DCC is demonstrated to be derived from the vector random 
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coefficient moving average process. The conditions for stationarity and invertibility of DCC are 

derived in Section 6. Some concluding comments are given in Section 7. 

 

 

2. Random Coefficient Autoregressive Process 

 

This section presents the underlying stochastic autoregressive processes for univariate and 

multivariate GARCH processes, as compared with the multivariate moving average process for 

the multivariate DCC process in the following section. Consider the following random 

coefficient autoregressive process of order one: 

 

tttt   1           (1)  

 

where 

 

t  ~ iid ),0(  , 

 

t  ~ iid ),0(  , independent of  t . 

 

The ARCH(1) model of Engle (1982) can be derived as (see Tsay (1987)): 

 

2

11

2 )|(   tttt IEh  .        (2)  

 

where th  is conditional volatility, and 1tI  is the information set at time t-1. The use of an 

infinite lag length for the random coefficient autoregressive process leads to the GARCH model 

of Bollerslev (1986).  

 

The diagonal and full BEKK models of Baba et al. (1985) and Engle and Kroner (1995), though 

not the Hadamard BEKK and full BEKK models, can be derived from a vector random 
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coefficient autoregressive process (see McAleer et al. (2008)). As the statistical properties of 

vector random coefficient autoregressive processes are well known, the statistical properties of 

the parameter estimates of the ARCH, GARCH, and diagonal BEKK models are straightforward 

to establish. 

 

 

3. DCC Specification 

 

This section presents the DCC model, as given in Engle (2002), which does not have an 

underlying stochastic specification that leads to its derivation. Let the conditional mean of 

financial returns be given as: 

 

tttt IyEy   )|( 1           (3) 

 

where )'( ...,,1 mttt yyy  , ity  = itPlog  represents the log-difference in stock prices ( itP ), i = 

1,…,m, 1tI  is the information set at time t-1, and t  is conditionally heteroskedastic. Without 

distinguishing between dynamic conditional covariances and dynamic conditional correlations, 

Engle (2002) presented the DCC specification as: 

 

1

'

11)1(   tttt QQQ          (4)  

 

where Q  is assumed to be positive definite with unit elements along the main diagonal, the 

scalar parameters are assumed to satisfy the stability condition,   < 1, the standardized 

shocks, )'( ...,,1 mttt   , which are not necessarily iid, are given as ititit h/   , and tD  is 

a diagonal matrix with typical element ith , i = 1,…,m. If m is the number of financial assets, 

the multivariate definition of the relationship between t  
and t  

is now given as ttt D  .
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Define the conditional covariance matrix of t  as tQ . As the 1m
 
vector, t , is assumed to be 

iid for all m elements, the conditional correlation matrix of t  
is given by t . Therefore, the 

conditional expectation of the covariance matrix of t is defined as: 

 

 tttt DDQ  .            (5)  

 

Equivalently, the conditional correlation matrix, t , can be defined as: 

 

11  tttt DQD .          (6) 

 

Equation (5) is useful if a model of t  is available for purposes of estimating tQ , whereas 

equation (6) is useful if a model of tQ  is available for purposes of estimating t . 

 

In view of equations (5) and (6), as the matrix in equation (4) does not satisfy the definition of a 

correlation matrix, Engle (2002) uses the following standardization: 

 

2/12/1 ))(())((  tttt QdiagQQdiagR         (7) 

 

There is no clear explanation given in Engle (2002) for the standardization in equation (7) or, 

more recently, in Aielli (2013), especially as it does not satisfy the definition of a correlation 

matrix, as given in equation (6). The standardization in equation (7) might make sense if the 

matrix tQ  were the conditional covariance matrix of t  or , though this is not made clear. It 

is worth noting that the unconditional covariance matrix of t  is not analytically tractable.  

 

Despite the title of the paper, Aielli (2013) also does not provide any stationarity conditions for 

the DCC model, and does not mention invertibility. Indeed, in the literature on DCC, it is not 

clear whether equation (4) refers to a conditional covariance or a conditional correlation matrix, 

although the latter is presumed. Some caveats regarding DCC are given in Caporin and McAleer 

(2013). 

t
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4. Vector Random Coefficient Moving Average Process 

 

The random coefficient moving average process will be presented in its original univariate form 

in section 4.1, as in Marek (2005), with an extension to its multivariate counterpart in section 4.2, 

in order to derive the univariate and multivariate conditional volatility models, respectively. 

 

4.1 Univariate process 

 

In an interesting paper, Marek (2005) proposed a linear moving average model with random 

coefficients (RCMA), and established the conditions for stationarity and invertibility. In this 

section, we extend the univariate results of Marek (2005) using an m-dimensional vector random 

coefficient moving average process of order p, which is used as an underlying stochastic process 

to derive the DCC model, and prove the stationarity and invertibility conditions. Several new 

results are also derived for the associated univariate models, including a novel conditional 

volatility model expressed in terms of standardized shocks rather than returns shocks, as well as 

the associated stationarity and invertibility conditions. 

 

Consider a univariate random coefficient moving average process given by: 

 

tttt   1            (8)  

 

where t ~  iid ),0(  . The sequence  t  is supposed to be independent of ,...,, 11  ttt  , which 

is called the Future Independence Condition, with a mean zero and variance  . It is also 

assumed to be measurable with respect to tI , where  tI  is the information set generated by the 

random variable, { ,...1, tt  }. Furthermore, it is assumed that the process { t } is stationary and 

invertible, such that tt I . For further details, see Marek (2005). 
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Without the measurability assumption on  t  it would be difficult to obtain results on the 

invertibility of the model. However, an important special case of the model arises when  t  is 

iid, that is, not measurable with respect to tI , in which case the conditional and unconditional 

expectations of t  are zero, and the conditional variance of t  is given by: 

 

2

11

2 )|(   tttt IEh           (9) 

 

which differs from the ARCH(1) model in equation (2) in that the returns shock is replaced by 

the standardized shock. This is a new result in the conditional volatility literature.  

 

As t  ~ iid ),0(  , the unconditional variance of t  is given as: 

 

)1()( thE . 

 

The use of an infinite lag length for the random coefficient moving average process in equation 

(8), with appropriate restrictions on t , would lead to a generalized ARCH model that differs 

from the GARCH model of Bollerslev (1986) as it would replace the returns shock with a 

standardized shock. 

 

The univariate ARCH(1) model in equation (9) is contained in the family of GARCH models 

proposed by Hentschel (1995), and the augmented GARCH model class of Duan (1997). 

 

It can be shown from the results in Marek (2005) that a sufficient condition for stationarity is that 

the vector sequence )',( 1 tttt   is stationary. Moreover, by Lemma 2.1 of Marek (2005), a 

new sufficient condition for invertibility is that: 

 

  0log tE  .          (10) 
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The stationarity of  and the invertibility condition in equation (10) are new 

results for the univariate ARCH(1) model given in equation (9), as well as its direct extension to 

GARCH models.  

 

4.2 Multivariate process 

 

Extending the analysis given above to the multivariate case and to a vector random coefficient 

moving average (RCMA) model of order p, we can derive a special case of DCC(p,q), namely 

DCC(p,0), as follows: 

 

t

p

j

jtjtt  




1

          (11) 

 

where  and  are both 1m  vectors and jt , j = 1,…,p are random mm  matrices, 

independent of ,...,, 11  ttt  . Under Assumption 1, it is possible to derive the conditional 

covariance matrix of  in equation (11): 

 

Assumption 1:  

 

(i) tE ( 0)| 1 tI , '( ttE   )| 1tI . 

(ii) The random coefficient matrices jt  have the following properties: For all j=1,…,p, 

t=1,…,T, it is assumed that: jtE ( )| 1tI = 0, '( ,, mnjtkljtE  ')| ,,1 mnjkljt AAI  , for 

appropriate matrices kljA , and mnjA ,  that form the conditional covariance matrix of 

jt , and '( ,, mniskljtE  0)| 1 tI , ,ji  and/or .ts   

 

This is similar to Proposition 1 of McAleer et al. (2008) in that the conditional covariance matrix 

is given by 

)',( 1 tttt 

t t

t
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')|'( '

1

1 jjtjt

p

j

jtttt AAIEH 



    

 

)())((
1














 



vecAAIHvecE j

p

j

jmt . 

 

This approach can easily be extended to include autoregressive terms. For example, in a model 

analogous to GARCH(p,q), namely: 

 

 
 

 
p

i

j

q

j

jtjiititit BHBAAH
1 1

' ''  

 

where the parameter matrices jB  are such that the maximum eigenvalue of j

q

j

j BB



1

 is smaller 

than one in modulus, it follows that: 

 

)())((
1

1

1




























 







vecAAIBBIHvecE j

p

j

jmj

q

j

jmt . 

 

The derivation given above shows that, as compared with the standard DCC formulation, which 

is not based on an underlying stochastic process that leads to its derivation, the formulation given 

above permits straightforward computation of the unconditional variances and covariances via 

the derived models in equations .  

 

It should also be noted that in Aielli’s (2013) variation of the standard DCC model, it is possible 

to calculate the unconditional expectation of the tQ  matrix, as in equation (4), but this is not 

equal to the unconditional covariance matrix of t  , which is analytically intractable. This is an 

additional advantage of using the vector random coefficient moving average process given in the 

above equations, as will be shown explicitly in the following section 
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5. One Line Derivation of DCC 

 

In this section, the DCC model will be derived from a vector random coefficient moving average 

process as the underlying stochastic process. If jt  in equation (11) is given as: 

 

mjtjt I  , with ),0(~ jjt iid  ,    j = 1, …, p,  

 

where jt  is a scalar random variable, then the conditional covariance matrix can be shown to be: 

 




 
p

j

jtjtjtttt IEH
1

'

1

' )|(  .       (12) 

 

The DCC model in equation (4) is obtained by letting p  in equations (11) and (12), setting 

1 j

j  , and standardizing tH  in equation (12) to obtain a conditional correlation matrix.  

For the case p = 1 in equation (12), the appropriate univariate conditional volatility model is 

given in the new model in equation (9), which uses the standardized shocks, rather than standard 

ARCH in equation (2), which uses the returns shocks. 

 

The derivation of DCC in equation (12) from a vector random coefficient moving average 

process is important as it: (i) demonstrates that DCC is, in fact, a dynamic conditional covariance 

model of the returns shocks rather than a dynamic conditional correlation model; (ii) provides the 

motivation, which is presently missing, for standardization of the conditional covariance model 

to obtain the conditional correlation model; and (iii) shows that the appropriate ARCH or 

GARCH model for DCC is be based on the standardized shocks rather than the returns shocks. 

 

It is worth noting that the derivation of the DCC model using the underlying vector random 

coefficient moving average process is not argued to be unique as the latter has not been shown to 

be a necessary condition. However, to date there has been no derivation of the DCC model from 

an underlying stochastic process that leads to its derivation. 
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6. Derivation of Stationarity and Invertibility of DCC 

 

The formulation of DCC given in the previous section is more natural than the standard 

treatment as it can be derived from an underlying stochastic process which leads to its derivation, 

and can be also analyzed in terms of mathematical and statistical properties, such as stationarity, 

invertibility, and existence of moments.  

 

This section derives the stationarity and invertibility conditions for the DCC model in Theorem 1, 

based on Assumption 2: 

 

Assumption 2.   pmE kt loglog          (13)  

 

where t  is the Frobenius norm, and t  is given by: 

 



















 



01...0

....

0...01

...21 pttt

t



 

 

 

Theorem 1. A sufficient condition for stationarity is that the vector sequence: 

 

'

11 ),...,,( ptpttttt    

 

is stationary. Furthermore, under Assumption 2, the vector random coefficient moving average 

process, t , is invertible. 
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Proof: The proof of stationarity is similar to that given above for the univariate random 

coefficient moving average process. For invertibility, note that:  

 





p

j

jtjttt

1

  

 

which can be written as: 

 

tttt  ~~~
1    

 

where  

 

'

11 ),...,,(~
 ptttt    and  

'

11 ),...,,(~
 ptttt  . 

 

Hence, 

 

nt

n

k

kt

n

j

jt

j

k

ktt 















 


















    ~~~

1

0

1

0 1

1 . 

 

Now let: 

 

 






 









n

j

jt

j

k

kt

n

t

0 1

1

)( ~~  . 

 

Consider 

 

nt

n

k

kt

n

tt
pmnpmn







 







   ~1

log
1~~1

log
1 1

1
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nt

n

k

kt
pmnpmn







   ~
1

log
11

log
1 1

1

 

 

ntkt

n

k pmnpmn




  ~
1

log
11

log
1

1

 

 

0
1

log
..

 ktsa
pm

E  

 

as pmE kt  log , by assumption. This implies that 0
..


sa

n

tt   and, hence, t  is 

asymptotically measurable with respect to { ...,, 21  tt   }, and t  is invertible.         

 

The derivation of the sufficient conditions for stationarity and invertibility of the DCC model in 

Theorem 1 makes it more viable and understandable in practice, and contributes toward a 

statistical analysis of the model for practical purposes, as discussed in Section 1.  

 

Note that a sufficient condition for equation (13) is that: 

 





p

j

jt mE
1

2

           (14) 

 

as    ktkt
pm

E
pm

E  
1

log
1

log  

 





p

j

jt mp
pm

E
1

2

)1(
1

log   

 





p

j

jt pp
pm

E
1

2

/)1(
1

log   
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p

j

jt ppE
pm 1

2

/)1(
1

log   

 

0 . 

 

The condition given in equation (14) may be easier to check in practice than the condition given 

in equation (13). The simplicity and convenience of equation (13) may be important for the 

practical implementation of the DCC model. 

 

For the special case mjtjt I  , with ),0(~ jjt iid  ,    j = 1, …, p,  discussed in Section 5 

above, the condition in equation (14) simplifies to the well-known condition on the long-run 

persistence to returns shocks, namely: 

 

1
11

2 


p

j

j

p

j

jtE  .  

 

 

7. Conclusion 

 

The paper was concerned with one of the most widely-used multivariate conditional volatility 

models, namely the dynamic conditional correlation (or DCC) specification. As the underlying 

stochastic process to derive the DCC model has not yet been established, this has made 

problematic the derivation of the asymptotic properties of the Quasi-Maximum Likelihood 

Estimators (QMLE). To date, the statistical properties of the QMLE of the DCC parameters have 

been derived under highly restrictive and unverifiable regularity conditions, in short, proof by 

assumption. 

 

The paper showed that the DCC specification could be obtained from a vector random 

coefficient moving average process, and derived the sufficient stationarity and invertibility 
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conditions of the DCC model. The derivation of the regularity conditions should eventually lead 

to a solid foundation for the statistical analysis of the QMLE estimates of the DCC parameters. 

 

Several new results were also derived for univariate models, including a novel conditional 

volatility model that was derived from an underlying univariate random coefficient moving 

average process, and was given in terms of standardized shocks rather than returns shocks, as 

well as the associated stationarity and invertibility conditions.  

 

The derivation of DCC from the underlying vector random coefficient moving average process 

demonstrated that DCC is, in fact, a dynamic conditional covariance model of the standardized 

shocks rather than a dynamic conditional correlation model based on returns shocks, as presumed 

in Engle (2002). Moreover, the derivation of the DCC model provided the motivation, which is 

presently missing, for standardizing the conditional covariance model to obtain the conditional 

correlation model. The standardization of the estimated DCC models in practice does not satisfy 

the definition of a correlation matrix, which has always been problematic in interpreting the 

DCC model (see, for example, Caporin and McAleer (2013)). 

 

The derivation of the DCC model also showed that the appropriate ARCH or GARCH model for 

DCC is based on the standardized shocks rather than the returns shocks. The derivation of 

regularity conditions should subsequently lead to a solid statistical foundation for the QMLE of 

the appropriate univariate specifications that underlie the DCC model. 
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