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Abstract

The purpose of the paper is to explore the relative biases in the estimation of the
Full BEKK model as compared with the Diagonal BEKK model, which is used
as a theoretical and empirical benchmark. Chang and McAleer [4] show that
univariate GARCH is not a special case of multivariate GARCH, speci�cally,
the Full BEKK model, and demonstrate that Full BEKK which, in practice, is
estimated almost exclusively, has no underlying stochastic process, regularity
conditions, or asymptotic properties. Diagonal BEKK (DBEKK) does not suf-
fer from these limitations, and hence provides a suitable benchmark. We use
simulated �nancial returns series to contrast estimates of the conditional vari-
ances and covariances from DBEKK and BEKK. The results of non-parametric
tests suggest evidence of considerable bias in the Full BEKK estimates. The
results of quantile regression analysis show there is a systematic relationship
between the two sets of estimates as we move across the quantiles. Estimates
of conditional variances from Full BEKK, relative to those from DBEKK, are
lower in the left tail and higher in the right tail.

Keywords: DBEKK, BEKK, Regularity Conditions, Asymptotic Properties,
Non-Parametric, Bias, Qantile regression.
JEL: C13, C21, C58.

1. Introduction

Conditional volatility models are the most widely estimated univariate and

multivariate models of time-varying volatility (or dynamic risk) applied to �-

nancial data, in the high frequency data domains that are measured in days,
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hours and minutes. The stochastic processes, regularity conditions and asymp-

totic properties of these popular univariate conditional volatility models, such

as GARCH (see Engle [7], Bollerslev [3] and GJR (see [8]) are well established

in the literature. Nevertheless, McAleer and Hafner [11] raised caveats about

the existence of the stochastic process and statistical properties underlying ex-

ponential GARCH (EGARCH) (see Nelson [15, 16]).

The situation with respect to multivariate conditional volatility models is

considerably di�erent. For example, the Full BEKK model, (see Baba et al.

[1], and Engle and Kroner [6]) is problematic regarding the existence of its un-

derlying stochastic processes, regularity conditions, and asymptotic properties.

These properties have either not yet been established, or are simply assumed

rather than derived. These conditions and properties are essential for the ex-

istence of the likelihood function, and hence valid statistical analysis of the

empirical estimates.

The focus of this paper is to explore the potential and empirical biases that

may exist in the estimation of the multivariate Full BEKK model, as referenced

in the RATS statistical software.

We use three simulated sets of daily returns derived from ten years of daily

data, from 5 March 2007 to 3 March 2017, for Google, IBM and Microsoft.

The original adjusted return series were downloaded from Yahoo Finance. The

random simulations, created in R, are done in blocks, including �ve lags so as to

preserve autocorrelations and ARCH e�ects. We use the estimated coe�cients

of the conditional variances and conditional covariances derived from Diagonal

BEKK (DBEKK), which has appropriate regularity conditions and statistical

properties, as the benchmark.

McAleer et al. [10] showed that the QMLE of the parameters of DBEKK

models are consistent and asymptotically normal, so that standard statistical

inference for testing hypotheses is valid. These are compared with estimates

of the same coe�cients using the Full BEKK model. Non-parametric tests

reveal statistically signi�cant bias in the Full BEKK coe�cient estimates for

the conditional variances and covariances.

The paper is divided into four sections. The introductory section is followed

by Section 2, which describes the data sets, their statistical characteristics, and

the models and empirical methods used. Section 3 presents the empirical results,

and Section 4 provides some concluding remarks.
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2. Data and Research Method

2.1. Data

The original data series comprised ten years of daily price-adjusted data,

from 5 March 2007 to 3 March 2017, for Google, IBM and Microsoft, which were

downloaded from Yahoo Finance. Descriptive statistics for the three original

series, each comprising 2,518 observations, are shown in Table 1. The statistics

show that the three series display characteristics that are typical of �nancial

return series, displaying skewness and excess kurtosis. Plots of the original

sample of daily adjusted returns are shown in Figure 1. The QQ plots of the

series shown in Figure 2 reveal that they have fat tails and do not conform to a

normal distribution.

The three original series are stationary, as con�rmed by the Augmented
Dickey-Fuller tests using constant and trend, and also display signi�cant ARCH
e�ects. The results of these tests are shown in Table 2.

Table 1: Descriptive Statistics for Daily Adjusted-return Series

STATISTIC IBM GOOGLE MICROSOFT

MEAN 0.000355292 0.000526422 0.000432804
MEDIAN 0.000505522 0.000267708 0.000221015

S.D. 0.0141556 0.0186157 0.0177392
SKEWNESS -0.185381 0.608522 0.184534
KURTOSIS 5.36075 11.9078 9.48851

Table 2: Base Series Unit Root and ARCH Tests
STATISTIC IBM GOOGLE MICROSOFT

ADF test with constant -28.8918 -10.0804 -29.7647
ADF test with constant and trend -28.8934 -10.1019 -29.7852

ARCH TEST alpha(0) 0.000145 0.000257 0.000210
ARCH TEST alpha(1) 0.290848 0.337997 0.373119

Note: All tests are signi�cant at the 1% level.
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Figure 1: Plots of Return Series
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Figure 2: QQ plots of Return Series

2.2. Research Models, Simulations and Tests

2.2.1. Univariate conditional volatility models

Chang and McAleer [4] show that Full BEKK has no underlying stochastic

process, regularity conditions, or asymptotic properties. They point out that,

in the development of GARCH, the conditional mean of �nancial returns for
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commodity i, in a �nancial portfolio of m assets, can be developed as follows:

yit = E(yit | It−1) + εit, 1 = 1, 2, ....,m. (1)

In equation (1) above, the returns, yit, represent the log di�erence of �nancial

asset prices, It−1 is the information set for all prices at time t− 1, E(yit | It−1)

is the conditional expected returns, and εit is a conditionally heteroscedastic

error term. The conditional volatility speci�cations are based on the stochastic

speci�cation presumed to underlie the return shocks, εit. Chang and McAleer

[4] consider the random coe�cient autoregressive process underlying the returns

shocks εit, as shown below:

εit = φitεit−1 + ηit, (2)

where φit ∼ iid(0, αi), αi > 0, ηit ∼ iid(0, ωi), ωki > 0, ηit = εkit/
√
hit is

the standardised residual, and hit is the conditional volatility of asset i. Tsay
[17] suggested the following formulation for the conditional volatility of asset i
as an ARCH process:

E(ε2it | It−1) ≡ hit = ωi + αiε
2
it−1, i = 1, 2, ....,m, m > 1. (3)

A lagged dependent variable, hit−1, is typically added to equation (3) to
improve the empirical �t:

E(ε2it | It−1) = ωi + αiε
2
it−1 + βihit−1, βi ∈ (−1, 1). (4)

The speci�cation in equation (2) suggests that αi and ωi should be positive

because they are the unconditional variances of two di�erent stochastic pro-

cesses. Equation (4) is a GARCH(1,1) model for asset i (see Bollerslev [3]).

The stability condition requires that βi ∈ (−1, 1). Given that the stochastic

process in equation (2) follows a random coe�cient autoregressive process, un-

der normality (non-normality) of the random errors, the maximum likelihood

estimators (quasi-maximum likelihood estimators, QMLE) of the parameters

will be consistent and asymptotically normal.
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2.2.2. Multivariate conditional volatility models

The multivariate extension of the univariate ARCH and GARCH models is

given in Baba et al. [1] and Engle and Kroner [6]. The relationship between the

returns shocks and the standardised residuals, in the multivariate case, can be

written as ηit = εit/
√
hit.

The multivariate extension of equation (1) can remain unchanged by assum-

ing that the three components are now m × 1 vectors, where m is the number

of �nancial assets. Chang and McAleer [4] consider a vector random coe�cient

autoregressive process of order one as:

εt = φtεt−1 + ηt, (5)

where εt and ηt are m × 1 vectors, φt is an m ×m matrix of random coef-
�cients, φt ∼ iid, (0, A), A is positive de�nite, ηt ∼ iid, (0, C), where C is an
m×m matrix.

In the case where A is a diagonal matrix, with aii > 0 for all i = 1, ....,m,

and | bij |< 1| for all j = 1, ....,m, so that A has dimension m×m, McAleer et

al. [10] showed that the multivariate extension of GARCH(1,1) from equation

(5) is given as the Diagonal BEKK model, namely:

Qt = CC
′
+Aεt−1ε

′

t−1A
′
+BQt−1B

′
, (6)

where A and B are both diagonal matrices. It is essential for the matrix
multiplication of εt−1ε

′

t−1 by A that A is diagonal and positive de�nite, given
that the former is anm×m matrix. If this is not the case, equation (6) could not
be derived from the vector random coe�cient autoregressive process in equation
(5).

It was shown in McALeer et al. [10] that the QMLE of the parameters

of the DBEKK model are consistent and asymptotically normal, so that stan-

dard statistical inference for testing hypotheses is valid. However, Chang and

McAleer [4] demonstrate that this is not the case for the Full BEKK model.

They consider element i of equation (5), which can be written as:

εit =
m∑
j=1

φijtεijt−1 + ηit, i = 1, 2, ....,m, m > 1, (7)

which is not equivalent to equation (2) unless φijt = 0, ∀ j 6= i.
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Chang and McAleer [4] point out that equation (7) is not a random coe�-

cient autoregressive process because of the presence of another m − 1 random

coe�cients. Furthermore, equation (7) is not invertible because the random pro-

cesses cannot be connected to the data, which requires m equations, as shown

in equation (5). This means that the stochastic process underlying univari-

ate ARCH is not a special case of that underlying multivariate ARCH, unless

φijt = 0∀ j 6= i.

As a result, Chang and McAleer [4] suggest that in the case of a Full BEKK

model, where there are no restrictions on the o�-diagonal elements in φt, and

hence no restrictions in the o�-diagonal elements in A, it is not possible for uni-

variate ARCH to be a special case of its multivariate counterpart, Full BEKK.

This suggests that Full BEKK does not exist, except by assumption.

Given the above result, plus the fact that Full BEKK is frequently estimated

in practice and is incorporated in many commercial econometric statistical pack-

ages, the focus in this paper is to explore whether there is any evidence of bias

in the coe�cients estimated in Full BEKK, as compared with DBEKK. We use

DBEKK as a benchmark because the mathematical and statistical conditions

of DBEKK have been established.

We conduct simulations generating �nancial return series and use them as

inputs to estimate both DBEKK and Full BEKK, from which we can compare

the estimates of the conditional variances and covariances. The null hypothesis

is that the two sets of estimates should not di�er systematically. The method

of generating the simulated �nancial return series is discussed below.

2.2.3. Simulated return series

We use the three �nancial return series for Google, IBM, and Microsoft, and

draw on code from several packages in the R library to randomly sample the

original time series in blocks of �ve lags to ensure that we retain the autocor-

relation structures to maintain the presence of ARCH e�ects. The timeSeries,

boot and meboot packages prove to be of interest.

Plots of the simulated series based on the three stocks are shown in Figure 3,

and the descriptive statistics of the simulated �nancial return series are shown

in Table 3. The simulations have similar characteristics to the base series. IBM

has the lowest excess kurtosis of the set of simulations, as would be expected,

given that the IBM original return series had relatively low kurtosis in relation

to the other two series.
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Figure 3: Simulated time series of returns



2.3 Tests and optimisation prodedures 10

Table 3: Descriptive Statistics of the Simulated Series

Median Mean St. Dev Skewness Ex. Kurtosis

Google Sim 1 0.000123242 0.000434784 0.0185023 0.387022 10.1534

Google Sim 2 0.000105152 0.000944741 0.0200021 1.68098 15.8985

Google Sim 3 0.000167354 0.000493751 0.0185772 0.354081 12.2140

IBM Sim 1 0.000312301 0.000332920 0.0139928 -0.308625 3.76076

IBM Sim 2 0.00103512 0.000972290 0.0136369 0.101544 4.52981

IBM Sim 3 0.000422372 0.000472666 0.0140378 -0.0305346 6.05965

Microsoft Sim 1 0.000339290 0.000732968 0.0186249 0.797044 10.8807

Microsoft Sim 2 0.000336076 0.000118718 0.0172592 -0.185154 9.83281

Microsoft Sim 3 7.86705e-005 0.000284365 0.0195287 0.312275 11.3979

Augmented Dickey Fuller tests con�rmed that all the simulated series are

stationary, and all displayed highly signi�cant ARCH e�ects.

The simulated series have fat tails and are not Gaussian, as the QQplots for

the �rst set of simulations of the three series, as shown in Figure 4 reveal.

Figure 4: QQplots of Series 1 of the Simulations

2.3. Tests and optimisation prodedures

Empirical estimation of the DBEKK and Full BEKK models was based on

the Estima RATS (version Pro 9) econometric software (https://www.estima.com/).
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In the empirical analysis which follows, we report the results of �tting the mul-

tivariate GARCH models, DBEKK and Full BEKK, to the simulated �nancial

return series. This type of estimation procedure involves seeking a solution to

an unconstrained minimization problem:

min

θ
f(x, θ), (8)

where x are the data and θ is a vector of models to be chosen to minimise the

objective function f(x, θ). In the case of GARCH models, this will be a nega-

tive log-likelihood function. Typically, no closed-form expression for f(x, θ) is

available or for its partial derivatives, and so the solution minimisation process

is usually achieved by the use of numerical methods. Christensen et al. [5] ob-

serve that there are two broad approaches to the construction of a minimisition

algorithm, namely methods that rely on function values, or algorithms that use

the derivatives of the function.

If we use an algorithm based on gradients to minimise f(x, θ), then we are

assuming that all �rst and second derivatives exist. The gradient vector, G(θ),

and the Hessian matrix, H(θ), of the function, f(x, θ), can be de�ned as:

G(θ) =
δf(x, θ)

δθ
, H(θ) =

δ2f(x, θ)

δθδθ′ . (9)

The minima of the objective function occur at parameter values where the gradi-

ent is zero and the associated Hessian matrix is positive de�nite. The estimator,

θ̂, of the parameter vector, θ, should satisfy the condition:

G(θ̂) = 0. (10)

We can start with a guess, θ̂k, which is assumed to be near the optimal value θ

at which a minumum is attained. A Taylor series expansion of G(θ̂) about θ̂k is

given as:

G(θ̂) = G(θ̂k + (θ̂ − θ̂k)) = G(θ̂k) +H(θ̂k)(θ̂ − θ̂k) + 0(θ̂ − θ̂k)2.

If we replace G(θ̂) in equation (10) by the previous expression (9), and ignore
all terms of order two and above, it follows that:

θ̂ ≈ θ̂k −H(θ̂k)
−1G(θ̂k).
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Using this result, the next guess for θ̂ is:

ˆθk+1 = θ̂k −H(θ̂k)
−1G(θ̂k). (11)

This is referred to as a 'full Newton step' which would be taken close to the loca-

tion of the minimum. However, further away from the minimum, this step may

not be guaranteed to reduce the value of the function, so the usual convention

is to use a smaller step:

ˆθk+1 = θ̂k − αkH(θ̂k)
−1G(θ̂k), (12)

where αk is chosen to control the step size and to ensure that the function is

reduced at each iteration.

All gradient-based algorithms employ the general iterative scheme set out

in equation (12), and di�er only in their approximation of the Hessian matrix

at each iteration. Christensen et al. [5] point out that a Newton-Raphson

procedure computes the Hessian matrix directly, the Method of Scoring uses the

Information matrix (negative of the value of the Hessian matrix), and the BHHH

algorithm (Berndt et al. [2]) approximates the Hessian by the outer product of

the gradient vector. BHHH provides an approximation of the Hessian matrix

that is guaranteed to be positive de�nite, and so is a popular choice in many

econometric software packages.

The estimation process used in this paper, is BHHH, but there are sev-

eral caveats. Christensen et al. [5] note that the treatment of constraints on

parameters, choice of starting values, speci�cation of termination criteria, and

analytical versus numerical gradients, can materially alter the �nal output of a

minimisation algorithm. A subsequent comment on this paper by McCullough

[12] suggests that default options for a nonlinear solver are not likely to produce

a correct answer, and that the answer produced by a nonlinear solver is not

necessarily correct.

McCullough and Vinod [14] question the baseline accuracy of many com-

monly used econometric software packages, and note that there is often a trade-

o� between computational speed and statistical accuracy. McCullough and

Renfro [13] explore the interaction between benchmarks, software standards,

and econometric theory, using the GARCH model as a case study, and caution

against the uncritical use of standard econometric packages.

Despite these various issues, the paper adopts a consistent framework in

the estimation methods to compare DBEKK with Full BEKK. We rely on the
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estimation procedures in RATS and the BHHH algorithm to �t the two models,

which are then used to predict the daily condition variances and covariances

generated. We then use quantile regression to analyse the two sets of estimates

using the DBEKK estimates as the baseline benchmark.

2.4. Quantile Regression

Quantile Regression is modelled as an extension of classical OLS (Koenker

and Bassett [9]). In Quantile Regression, the conditional mean as estimated

by OLS is extended to similar estimation of an ensemble of models of various

conditional quantile functions for a data distribution. Therefore, Quantile Re-

gression can quantify the conditional distribution of (Y |X) better. The central

special case is the median regression estimator that minimises a sum of absolute

errors.

Estimates of the remaining conditional quantile functions are obtained by

minimizing an asymmetrically weighted sum of absolute errors, where the weights

are functions of the quantiles of interest. This makes Quantile Regression a ro-

bust technique, even in the presence of outliers. Taken together, the ensemble

of estimated conditional quantile functions of (Y |X) o�ers a much more com-

plete view of the e�ect of covariates on the location, scale and shape of the

distribution of the response variable.

For parametric estimation in Quantile Regression, quantiles as proposed by

Koenker and Bassett [9] can be de�ned through an optimisation problem. In or-

der to solve an OLS regression problem, a sample mean is de�ned as the solution

of the problem of minimising the sum of squared residuals, in the same way the

median quantile (0.5%) in Quantile Regression is de�ned through minimising

the sum of absolute residuals. The symmetrical piecewise linear absolute value

function assures the same number of observations above and below the median

of the distribution.

The other quantile values can be obtained by minimizing a sum of asym-

metrically weighted absolute residuals, giving di�erent weights to positive and

negative residuals. Solving the following:

minξεR
∑

ρτ (yi − ξ), (13)

where ρτ () is the tilted absolute value function, which gives the τth sample

quantile with a solution. Taking the directional derivatives of the objective
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function with respect to ξ (from left to right) shows that this problem yields

the sample quantile as its solution.

After de�ning the unconditional quantiles as an optimisation problem, it

is easy to de�ne the conditional quantiles similarly. Taking the least squares

regression model as a base to proceed, for a random sample, y1, y2, . . . , yn,

solving:

minµεR

n∑
i=1

(yi − µ)2, (14)

gives the sample mean as an estimate of the unconditional population mean, EY .

Replacing the scalar, µ, by a parametric function, µ(x, β), and then solving:

minµεRp

n∑
i=1

(yi − µ(xi, β))2, (15)

gives an estimate of the conditional expectation function, E(Y|x).

Proceeding in the same way for Quantile Regression, in order to obtain an

estimate of the conditional median function, the scalar, ξ, in the �rst equation is

replaced by the parametric function, ξ(xt, β), and τ is set to 1/2 . The estimates

of the other conditional quantile functions are obtained by replacing absolute

values by ρτ (), and solving:

minµεRp

∑
ρτ (yi − ξ(xi, β)). (16)

The resulting minimization problem, when ξ(x, β) is formulated as a linear

function of parameters, can be solved e�ciently by linear programming methods.

We use quantile regression to compare the relative behaviour of the conditional

variances across the quantiles, as predicted by the two models.

3. Empirical Results

We estimated both DBEKK and Full BEKK using the simulated �nancial

return series. The estimates from DBEKK are used as the benchmark, given

that it has established statistical regularity conditions. We decided to keep the

comparison tests as simple as possible, and �rst estimated a two-variable version

of the DBEKK and Full BEKK models using the the three sets of simulated

return series in pairs. This was then followed by a single three-variable set of



15

estimates, to verify that the same pattern of results exists. The null hypothesis is

that Diagonal and Full BEKK are equivalent when the o�-diagonal coe�cients

in Full BEKK are zero, so the asymptotic tests are statistically valid. We

proceeded by estimating the coe�cients for the conditional variances and the

conditional covariances for the two models, and then used non-parametric sign

tests on the di�erences between the two sets of estimates.

The estimates of the constants, ARCH e�ects and conditional variances for

the two models are shown in Table 4. DBEKK and Full BEKK �tted to the

pairs of simulated series were highly signi�cant (bearing in mind that asymptotic

theory is not valid for the QMLE of Full BEKK), and all but three pairs of the

�fty-four coe�cients estimated in the models, and presented in Table 4, were

signi�cant at the 1% level. (The insigni�cant coe�cients are marked with an

asterisk (*) in Table 4.) The coe�cients of the conditional covariances are shown

in Table 5. The majority of these estimates are insigni�cant, so we concentrated

our analysis on the conditional variances.

We then undertook a set of non-parametric sign tests on the values of the

estimated coe�cients, reported in Table 4. We ran the tests in a number of

di�erent formats, both on the full set of coe�cients reported in Table 4, and the

full set minus the three pairs of insigni�cant estimates. The results of the sign

tests are reported in Tables 6 and 7, which suggest that there are no signi�cant

di�erences in the values of the coe�cients for the constants, ARCH e�ects and

the conditional variances estimated for the two variables. However, these tests

treat the coe�cients in isolation, and regard them as being independent, which

is not the case when they are incorporated into a DBEKK or Full BEKK model.



1
6

Table 4: Variable Coe�cient Estimates for DBEKK and Full BEKK
DBEKK Full BEKK

C(1,1) C(2,2) A(1) A(2) B(1) B(2) C(1,1) C(2,2) A(1,1) A(1,2) A(2,1) A(2,2) B(1,1) B(2,2)

IBMVI, GOOGV1 0.00893 0.01681 0.3773 0.46698 0.67011 0.01026* 0.00894 0.01681 0.37976 0.02095* 0.00392* 0.46380 0.66628 0.01287*

IBMV2, GOOGV2 0.00739 0.01747 0.32571 -0.59969 0.77078 0.02727* 0.00746 0.01570 0.30726 0.13081 -0.01782* 0.59406 0.77047 -0.36849

IBMV3, GOOGV3 0.008325 0.01185 0.47073 0.32044 0.65976 0.70551 0.01269* 0.00002* 0.46101 -0.04771* 0.01276* 0.18860 0.67095 0.81205

GOOGV1, MSV1 0.013884 0.01253 0.36731 0.47581 0.056591 0.58379 0.01665 0.01116 0.43057 0.07513 -0.10471 0.43840 0.10125* 0.646048

GOOGV2, MSV2 0.01651 0.011449 -0.47029 0.53336 -0.39279 0.53336 0.01366 0.00003 0.041332 0.07426 0.09744* 0.76597 0.84413 0.32680

GOOGV3, MSV3 0.00835 0.011846 0.47073 0.32044 0.65976 0.70551 0.00752 -0.01070 0.44772 0.06484* 0.02899* 0.30716 0.70504 0.73385

IBMV1, MSV1 0.00906 0.00906 0.35582 0.55170 0.67042 0.49239 0.00909 0.01282 0.36532 0.06623 -0.03269* 0.53945 0.66093 0.48406

IBMV2, MSV2 0.00760 0.01170 0.32290 0.57413 0.76189 0.48309 0.00738 0.01145 0.31417 0.07554 -0.03147 0.52961 0.76531 0.50461

IBMV3, MSV3 0.00830 0.01263 0.421447 0.52233 0.69487 0.585204 0.00797 0.01253 0.42744 -0.06357 0.01946* 0.53773 0.69503 0.56645

NB: All the estimated coe�cients are signi�cant at the 1% level except those indicated by *.
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Table 5: Conditional Covariance Estimates for DBEKK and Full BEKK
DBEKK Full BEKK

C(2,1) C(2,1) A(1,2) A(2,1) B(1,2) B(2,1)

IBMVI, GOOGV1 -0.00011* -0.00052* 0.02095* 0.00392* 0.02271* -0.04056*

IBMV2, GOOGV2 0.00153 0.00003* 0.13081 -0.01782* 0.04062* 0.05223*

IBMV3, GOOGV3 0.00043* 0.02107* -0.04771* 0.01276* 0.10412* -0.28249*

GOOGV1, MSV1 -0.00024* -0.00168 0.07513 -0.10471 -0.16666 0.13603

GOOGV2, MSV2 -0.00019* -0.01597* 0.07426* 0.09744 0.34576* -0.33889

GOOGV3, MSV3 0.00043* 0.00337* -0.05325* 0.00331* 0.09699* -0.12799*

IBMV1, MSV1 0.00019* 0.00226 0.06623 -0.03270* -0.20763 0.04362*

IBMV2, MSV2 -0.00005* -0.00018* 0.07555 -0.03148 -0.08764* 0.09885

IBMV3, MSV3 0.000208* -0.00223* -0.06358 0.01947 -0.02675* -0.09230
NB: All the estimated coe�cients are signi�cant at the 1% level except those indicated by *.
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Table 6: Sign Tests of the Di�erences in Estimates for DBEKK and FULL BEKK: All Coef-
�cients

Sign Test for di�erence between DBEKK and BEKK

Number of di�erences n = 53
Number of cases DBEKK>BEKK: W=28 (52.83%)

Under the null hypothesis of no di�erence, W follows Bin(543, 0.5)
Probability (W <= 28) = 0.708434
Probability (W >= 28) = 0.391923

Sign Test for di�erence between DBEKK and BEKK, Wilcoxon Signed-Rank Test

Number of di�erences n = 53
Null hypothesis: median di�erence is zero

W+ =739, W- = 745
(0 di�erences: 1, non-zero ties: 0)

Expected value = 742
Variance = 13488.5
Z = -0.0215257

P(Z < -0.0215257) = 0.491413
Two-tailed p-value = 0.982826

Table 7: Sign Tests of Di�erences in Estimates for DBEKK and FULL BEKK: Signi�cant
Coe�cients

Sign Test for di�erence between DBEKK and BEKK

Number of di�erences n = 48
Number of cases DBEKK>BEKK: W=26 (54.17%)

Under the null hypothesis of no di�erence, W follows Bin(48, 0.5)
Probability (W <= 26) = 0.76456
Probability (W >= 26) = 0.332733

Sign Test for di�erence between DBEKK and BEKK, Wilcoxon Signed-Rank Test

Number of di�erences n = 48
Null hypothesis: median di�erence is zero

W+ =618, W- = 606
(0 di�erences: 1, non-zero ties: 0)

Expected value = 612
Variance = 10106
Z = 0.0547108

P(Z <0.0547108) = 0.478184
Two-tailed p-value = 0.956369
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Table 8: Sign Tests of Di�erences in the Predicted Conditional Variances of DBEKK and
FULL BEKK

Security Number of di�erences Z score Probability

IBMV1/GOOGV1 2518 (IBMV1CV) z = 8.66177 P(Z > 8.66177) = 0

IBMV1/GOOGV1 2518(GOOGV1CV) z = 8.66177 P(Z > 8.66177) = 0

IBMV2/GOOGV2 2518(IBMV2CV) z = -70.7228 P(Z < -70.7228) = 0

IBMV2/GOOGV2 2518(GOOGV2CV) z = -17.8438 P(Z < -17.8438) = 1.61378e-071

IBMV3/GOOGV3 2518(IBMV3CV) z = -178.968 P(Z < -178.968) = 0

IBMV3/GOOGV3 2518(GOOGV3CV) z = -178.682 P(Z < -178.682) = 0

IBMV1/MSV1 2518(IBMV1CV) z = 10.0413 P(Z > 10.0413) = 0

IBMV1/MSV1 2518(MSV1CV) z = 21.2183 P(Z > 21.2183) = 0

IBMV2/MSV2 2518(IBMV2CV) z = 27.6135 P(Z > 27.6135) = 0

IBMV2/MSV2 2518(MSV2CV) z = 9.78013 P(Z > 9.78013) = 0

IBMV3/MSV3 2518(IBMV3CV) z = 25.524 P(Z > 25.524) = 0

IBMV3/MSV3 2518(MCV3CV) z = 41.8977 P(Z > 41.8977) = 0

GOOGV1/MSV1 2518(GOOGV1CV) z = 4.39668 P(Z > 4.39668) = 5.49587e-006

GOOGV1/MSV1 2518(MSV1CV) z = -21.4004 P(Z < -21.4004) = 6.62768e-102

GOOGV2/MSV2 2518(GOOGV1CV) z = -169.726 P(Z < -169.726) = 0

GOOGV2/MSV2 2518(MSV2CV) z = -178.718 P(Z < -178.718) = 0

GOOGV3/MSV3 2518(GOOGV3CV) z = 36.0083 P(Z > 36.0083) = 0

GOOGV3/MSV3 2518(MSV3CV) z = -17.9135 P(Z < -17.9135) = 4.62876e-072

DBEKK and Full BEKK are multivariate GARCH models which are used for
forecasting conditional volatility. The crucial issue for purposes of risk manage-
ment is how the forecasts of conditional volatility derived from the two models
are compared. These are vital components for assessing risk, and might be
used to compute the Value-at-Risk (VaR) of a portfolio of �nancial assets, for
example.

The simulated �nancial return samples for the nine variables contain ten
years of daily data, or 2581 data points. We �lter these through the DBEKK
and Full BEKK models, and obtain corresponding estimates of the conditional
variance projections, for each simulated security, from the two models. These
forecasts of the conditional variances are then compared using non-parametric
sign tests. The results for each simulated security are shown in Table 8.

The sign tests in Table 8 are based on the null hypothesis that the median
di�erence in the conditional variances produced by the two models, DBEKK
and Full BEKK, for the simulated securities, is zero. The null hypothesis is
strongly rejected in all cases, and the di�erences are highly signi�cant. We
also ran sign tests, not reported, based on the null hypothesis that there was
no di�erence in the conditional variances predicted by the two models. These
results also strongly rejected the null hypothesis in all cases.

While it is valuable to know that the two models produce di�erent predic-
tions of the conditional variances, it is also of interest to determine if there
are systematic di�erences in the predictions of the conditional variances. We
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Table 9: Quantile Regression of Predicted Conditional Variances for Full BEKK

Security
Quantile slope coe�cients

0.05 0.25 0.50 0.75 0.95

IBMV1/GOOGV1(IBMCV) 0.970853 0.995444 1.00706 1.01274 1.02605

IBMV1/GOOGV1(GOOGCV) 0.952430 0.974888 0.987685 0.998475 1.01715

IBMV2/GOOGV2(IBMV2CV) 0.862003 0.894723 0.913300 0.930500 0.966278

IBMV2/GOOGV2(GOOGV2CV) 0.860421 0.962226 0.993431 1.02805 1.15073

IBMV3/GOOGV3(IBMV3CV)1 0.328928 0.328928 0.416581 0.462995 0.532234

IBMV3/GOOGV3(GOOGV3CD) 0.922288 0.956421 0.985430 1.01335 1.01855

IBMV1/MSV1(IBMV1CV) 0.949942 1.01037 1.03986 1.06483 1.12862

IBMV1/MSV1 0.854267 0.931472 0.959137 0.989454 1.00981

IBMV2/MSV2(IBMV2CV) 0.861948 0.951856 0.987461 1.03175 1.13855

IBMV2/MSV2(MSV2CDV) -49.6363 -5.29685 -1.97048 9.20840 18.2802

IBMV3/MSV3(IBMV3CV) 1.00633 1.05196 1.07648 1.09911 1.15981

IBMV3/MSV3(MSV3CV) 0.940177 0.998115 1.03939 1.06727 1.12067

GOOGV1/MSV1(GOOGV1CV) 0.0831902 0.660919 1.22251 1.36371 1.52337

GOOGV1/MSV1(MSV1CV) 0.753483 0.837598 0.900926 1.06852 1.20022

GOOGV2/MSV2(GOOGV2CV)1 0.00744599 0.00762628 0.00729433 0.0188172 -0.0147150

GOOGV2/MSV2(MSV2CV) 0.977758 1.58318 1.92646 2.03505 2.17220

GOOGV3/MSV3(GOOGV3CV)2 0.911108 0.921100 0.954618 1.03009 1.09428

GOOGV3/MSV3(MSV3CV) 0.867499 0.917009 0.955980 0.988218 1.01098
Notes: All the slope coe�cients across the quantiles estimated using robust errors are signi�cant at
the 1% level
1.Problems with convergence encountered in Full BEKK model.
2. Estimation of the Full BEKK model in this case failed to converge using BHHH, so we switched
to BFGS

explore this issue by means of quantile regression. The advantage of quantile
regression is that we can explore the relationship between the two sets of pre-
dictions from DBEKK and Full BEKK at particular quantiles. We regress the
predicted conditional variances from the Full BEKK model on the correspond-
ing predictions from DBEKK for each of the simulated securities, in the pairs
of securities modelled. We treat the predictions of conditional variances from
the Full BEKK model as the dependent variable. The results of these quantile
regressions are shown in Table 9.

Table 9 reveals a distinct pattern of an increase in the slope coe�cients as
we move across the quantiles from the lowest 0.05 quantile to the highest 0.95
quantile. The most extreme case is the prediction of the conditional variances
for the relationship between IBMV2 and MSV2. In the 0.05 quantile, the con-
ditional variance prediction by Full BEKK is 50 times lower than for DBEKK,
and in the 0.095 quantile, it is 18 times higher (though there were convergence
issues encountered in Full BEKK estimation in this case). Even so, the di�er-
ence across these two extreme quantiles usually varies by between 10 and 20
percent. This is still very large if we intend to use the models to predict a
portfolio VAR.
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If we use the predictions of DBEKK as the benchmark, then application of
the Full BEKK model to the same data set may underestimate risk in the lowest
quantile and overestimate risk in the highest quantile. In the 18 examples, 7 of
the total estimates suggest risk in the 0.05 quantile will be lower by 10 percent
or more when estimated by Full BEKK, as opposed to DBEKK. Similarly, in
9 of the total cases, the estimate of risk in the 0.095 quantile is 10 per cent or
more, when estimated by Full BEKK, as compared with DBEKK. Thus, there
are considerable discrepancies in the predictions of conditional volatility based
on these applications of the two models.

These discrepancies in the regression slope coe�cients are apparent in Fig-
ures 5 and 6, which present graphs of the estimated slope coe�cients across the
quantiles for the pairs of simulated securities considered. The quantile regres-
sion bounds estimated at the 0.95 level are shown around the quantile slope
estimates in each �gure. The horizontal lines, in the centre of the �gures, show
the ordinary least squares regression slopes for the regressions of conditional
variances for each security, regressed on the conditional variances for the same
security, when considered in the same pairwise estimates produced by DBEKK.
The ordinary least squares slope coe�cients are not very informative, and merely
suggest whether the predicted conditional variances from Full BEKK are rel-
atively above or below those from DBEKK. There is considerable variation in
the �gures, but most of them are slightly below one.

The quantile regression analyses are much more informative. The lines in
Figures 5 and 6 link the slope coe�cients estimated at the 0.05, 0.25, 0.50, 0.75,
and 0.95 quantiles, when the predictions of the conditional variances from Full
BEKK are regressed on those from DBEKK. In all cases, bar one, shown in
Figures 5 and 6, the estimates at the lowest 0.05 quantile reveal a relationship
between the two sets of estimates that is markedly di�erent from that suggested
by ordinary least squares, which captures the average relationship. The re-
lationship is markedly di�erent, at this quantile, frequently by ten to twenty
percent.

Another startling feature is that all the slopes depicted in Figures 5 and 6
are strongly positive, in that the estimated slope coe�cients all increase, with
one exception, from the lowest to the highest quantile. Thus, the conditional
variances estimated from the Full BEKK model are much higher, at the 0.95
quantile, often by 20 per cent or more, than the conditional variance estimated
by the DBEKK model.

These results have strong implications if we try use the two multivariate
models to estimate portfolio risk. The analysis reported in the paper, on these
simulated �nancial return series, suggests that the use of the Full BEKK model
will underestimate conditional variances in the left-hand tail of the portfolio
return distribution, relative to DBEKK, and overestimate it in the right-hand
tail of the distribution.

These results are subject to certain caveats. We have estimated the models
using the Estima RATS econometric package, and used the default settings
when �tting the models. We have not changed any of the tolerances in the
algorithms used to �t the models, or changed the settings for the initialization
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Figure 5: Quantile Regression Slope Coe�cients of Conditional Variances from Full BEKK
Regressed on DBEKK Estimates (�rst 10 pairs)
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Figure 6: Quantile Regression Slope Coe�cients of Conditional Variances from Full BEKK
Regressed on DBEKK Estimates (remaining pairs)
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Table 10: Variable Coe�cient Estimates for DBEKK and Full BEKK: GOOGV1, IBMV1,
MSV1

Coe�cients DBEKK Full BEKK

C(1,1) 0.01226 0.02926
C(2,1) -0.00029* -0.00119*
C(2,2) 0.01312 0.00083*
C(3,1) -0.000001* 0.00364*
C(3,2) 0.00011* 0.00785*
C(3,3) 0.00902 0.00747*
A(1) 0.28346 0.47788
A(2) 0.48530 0.48004
A(3) 0.34639 0.36256
B(1) 0.69899 0.28255*
B(2) 0.54312 0.80864
B(3) 0.67893 0.78892
A(1,2) - 0.26978
A(1,3) - 0.02999*
A(2,1) - -0.03014*
A(2,3) - -0.01886*
A(3,1) - 0.11740*
A(3,2) - 0.17046*
B(1,2) - -0.42607*
B(1,3) - -0.09707*
B(2,1) - 0.00375*
B(2,3) - 0.01354*
B(3,1) - -0.15853*
B(3,2) - -0.16545*

NB: All the coe�cients are signi�cant at the 1% level except those indicated by *.

of the algorithms used to commence the models. We have also instructed the
program to use the BHHH optimization procedure to �t the models. All the
models have been �tted using a Gaussian distribution, and the estimates would
be di�erent if we used a t-distribution. (We also did some analysis using the
t-distribution, which are not reported in the paper, that revealed a virtually
identical pattern of relationships across the quantiles, to those reported in the
paper). The intention was to use a consistent approach to the �tting of the
models, and then to explore the consistency of the results.

We also estimated DBEKK and Full BEKK using three variables jointly,
namely GOOGV1, IBMV1, and MSV1, to check that similar behaviour was
displayed when we used a trivariate estimation procedure. The results are shown
in Table 10.

It is evident from Table 10 that many of the additional terms included in
the Full BEKK model are not statistically signi�cant (bearing in mind that
asymptotic theory is not valid for the QMLE of Full BEKK), at least in this
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Table 11: Quantile Regression Results, Predicted Conditional Variances from Full BEKK as
the dependent variable: GOOGV1, MSV1, IBMV1

Security
Quantile

0.05 0.25 0.5 0.75 0.95
GOOGV1 Conditional Variance 0.178998 0.656654 1.97967 2.69374 2.95327
MSV1 Conditional Variance 0.651730 0.973131 1.13849 1.81488 2.62494
IBMV1 Conditional Variance 1.03471 1.15279 1.28522 1.42100 1.71742

NB: All the coe�cients are signi�cant at the 1% level

Figure 7: Quantile regression slope coe�cient estimates of conditional variance from Full
BEKK regressed on DBEKK estimates for GOOGV1, MSV1, IBMV1.

simulated data set . We also ran a quantile regression analysis of the condi-
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tional variances produced by Full BEKK, regressed on the conditional variances

produced by DBEKK, using these three securities. The results are shown in

Table 11. Plots of the quantile regression slope coe�cients are shown in Figure

7.

It can be seen in Table 11 and from Figure 7, that the same pattern of

results emerges when we estimate DBEKK and Full BEKK using three securities

jointly, as in the previous case with pairs of securities. The conditional variance

estimates for Full BEKK, relative to DBEKK, are comparatively lower in the

0.05 quantile, increase across the quantiles, and are relatively higher in the 0.95

quantile.

We used the DBEKK model as a benchmark, given that the mathematical

and statistical properties of this model have been established. The results,

using this benchmark suggest that there is an observable and relative bias in

the predictions of the conditional variances from the Full BEKKmodel. This has

serious practical implications about the use of Full BEKK for risk management

and modelling purposes.

4. Conclusion

This paper explored the relative biases in the estimation of the Full BEKK

model, as compared with the Diagonal BEKK model, which is used as an empir-

ical benchmark. Chang and McAleer [4] showed that univariate GARCH is not

a special case of multivariate GARCH, speci�cally the Full BEKK model, and

demonstrate that Full BEKK which, in practice, is estimated almost exclusively

in the literature, has no underlying stochastic process, regularity conditions, or

asymptotic properties. Diagonal BEKK (DBEKK) does not su�er from these

limitations, and hence provides a suitable benchmark.

We used simulated �nancial returns series to contrast the estimates of the

conditional variances from DBEKK and Full BEKK. The results of the non-

parametric tests on their values shows evidence of considerable bias in the Full

BEKK estimates relative to those of DBEKK. The results of quantile regression

analysis showed there was a systematic relationship between the two sets of

estimates as we moved across the quantiles. Estimates of conditional variances

from Full BEKK, relative to those from DBEKK, are lower in the left tail and

higher in the right tail. The phenomenon appears to be all-pervasive in estimates

reported in the simulated �nancial return series. This result has serious practical
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implications for the use of Full BEKK as a risk management tool.
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