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Abstract  
An emerging quantitative spatial economics literature models commuting interactions by a 
gravity equation that is mathematically equivalent to a multinomial logit model. This model is 
widely viewed as restrictive because of the independence of irrelevant alternatives (IIA) property 
that links substitution behavior in response to changes in the attractiveness of choice alternatives 
to choice probabilities in a mechanistic way. This is relevant for counterfactual analysis. In this 
paper we examine the appropriateness of the commuting model from a theoretical as well as an 
empirical point of view. We show that conventional specification tests of the multinomial logit 
model are of limited use when alternative specific constants are used, as is common in the recent 
literature, and offer no information with respect to the validity of IIA. In particular, we show that 
maximum likelihood estimation of relevant nested logit model is impossible because the crucial 
parameters are not identified. We discuss cross-nested and mixed logit as alternatives. We argue 
that a comparison between predicted and  actual changes in commuting flows in response to a 
change in the attractiveness of choice alternatives provides a more informative test for the 
validity of the multinomial logit model for commuting interaction and report the results of such a 
test – as well as others – for data referring to Copenhagen. 
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1 Introduction 
Commuting is an important source of traffic in every urban region and a main cause of 
congestion. Understanding this phenomenon is therefore crucial for urban transportation 
analyses. Commutes connect residential and work locations and are therefore crucial for the 
functioning of the urban economy. The monocentric model implies an extremely simple 
commuting pattern. The predictions of this model with respect to home-work trips were shown to 
be problematic by Hamilton (1982), see also Small & Song (1992). The introduction of market 
imperfections of the type commonly assumed in labor economics can explain apparently 
‘wasteful’ commuting (Rouwendal, 1998). Alternatively the introduction of idiosyncratic 
preferences for residential and work locations, as is standard in discrete choice models based on 
additive random utility, can deal with crisscrossing commute patterns. 

The most popular type of discrete choice model is the multinomial logit. Indeed, this model 
has been employed for modelling commuting interactions in a number of recent studies that 
analyze important issues that arise in heterogeneous urban areas with decentralized employment: 
see Ahlfeldt, Redding, Sturm, & Wolf (2016) for Berlin before, during and after the wall,  Monte, 
Redding, & Rossi-Hansberg (2015) for trade and commuting between U.S. counties, Allen, 
Arkolakis, & Li (2015) for the optimal division the stock if real estate into residences and 
workplaces in Chicago.1 Although these papers do not motivate their commuting models in the 
same way as McFadden (1974) did, using extreme value type I distributed random utilities, but 
refer to Eaton & Kortum (2002) who derive their interaction equation from Fréchet distributed 
utilities, they are formally equivalent to McFadden’s multinomial logit model.2 

In this emerging quantitative spatial economics literature (reviewed by Redding & Rossi-
Hansberg, 2017) combinations of residential and work locations are considered as the choice 
alternatives while the population of commuters is considered as homogeneous: their preferences 
are assumed to identical except for the values of the iid idiosyncratic parts. The utility of these 
combinations is usually specified (possibly after a logarithmic transformation) as the sum of four 
terms corresponding to (i) the utility of living in a particular location, (ii) the utility of working in 
a particular location, (iii) the friction between the two locations caused by the distance that has to 
be bridged by commuting and (iv) a random term that reflects the idiosyncratic preferences of the 
worker for the choice alternative. The latter covers considerations that are difficult or impossible 
to measure such as the desire to live with one’s relatives or where one has grown up. The 
description suggests immediately that such idiosyncratic preferences may be common to different 
choice alternatives. It seems reasonable that individual-specific preferences for a particular 
residential location affect all choice alternatives with this specific residential location (recall that 
the alternatives are pairs of residential and work locations). And there is a similar argument for 
work locations. However, McFadden's (1974) conditional multinomial logit model is built on the 
assumption that the idiosyncratic utilities of the choice alternatives are independently distributed. 
Indeed, much of the later development of discrete choice models, that turned to less restrictive 
structures like nested, cross-nested and mixed logit, has been driven by the desire to relax this 
restrictive assumption. 

A significant innovation in the use of the multinomial logit model, introduced by Berry, 
Levinsohn, & Pakes (1995) (BLP), is the use of an alternative-specific error term, commonly 

                                                 
1 See Redding & Rossi-Hansberg (2017) for a review of the broader literature. 
2 We discuss this in some detail in the Appendix. 
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denoted as ߦ, that reflects the impact of unobserved characteristics on utility. In the first stage of 
the estimation procedure this term is absorbed in an alternative-specific constant, while in a 
second stage it acts as the error term in a linear decomposition of that constant. In the absence of 
alternative-specific constants it is possible that predicted choice probabilities differ from the 
observed choice frequencies that would be expected on the basis of sampling error, the only 
source of the discrepancy if the model is correctly specified. 

Rouwendal (2017) has recently shown that the use of alternative-specific constants for all 
alternatives  has important implications for the application of conventional specification tests for 
the multinomial logit model as proposed by Hausman & McFadden (1984) and others with a 
single type of commuters. Estimation of the model on subsets of the alternatives always leads to 
identical estimates of the alternative-specific constants which means that this is useless as a test 
for IIA. Moreover, the additional parameters that embody the difference between multinomial 
logit and a nested logit model  are not identified. The first-order conditions for maximum 
likelihood estimation of these parameters turn out to be automatically satisfied when the first-
order conditions for the alternative-specific constant hold. This result holds in fact for any GEV 
model one may attempt to use to relax the restrictive characteristics of the multinomial logit, for 
instance a cross nested logit. Also, if one formulates a mixed logit model by attaching a random 
error term to all choice alternatives, a similar result holds if that additional random term is an 
additive function of standardized random variables that is linear in the parameters. All this 
suggests strongly that without explicit information about heterogeneity of the actors, for instance 
related to their characteristics, introduction of alternative-specific constants implies that the MNL 
is essentially the only relevant  model.    

These results do not directly apply to the MNL model for commuting that we consider here. 
The reason is that this model does not have alternative-specific constants for all alternatives. That 
is, there are alternative-specific constants for all residential  and employment locations, but not 
for all combinations of such locations. We will, nevertheless, show that the additional parameters 
introduced by the obvious generalizations of the multinomial logit model for commuting to 
nested logit are not identified. However, estimation of the model on subsets gives useful 
information about the appropriateness of the chosen specification compared to one in which there 
are alternative-specific constants for all alternatives. GEV models that differ from nested logit – 
for instance, cross-nested logit models - can be estimated  using the same set of alternative-
specific constants as in the MNL version of the commuting model. 
 
2 Specification of discrete choice models for commuting 
    
2.1 Introduction 
In this section we discuss the specification of discrete choice models for commuting interactions 
in the framework of additive random utility models. The discussion refers throughout to a single 
type of commuters,3 that is to a population of actors with the same deterministic parts of the 
utilities attached to choice alternatives and idiosyncratic utilities that are random draws from a 
given distribution. 

We consider workers who choose a combination of a residential location ݅, ݅ ൌ 1…  and a ܫ
work location ݆, ݆ ൌ 1…  The utility they attach to such combinations is the sum of a .ܬ
deterministic part ݒ௜௝ and a random part ߝ௜௝: 

                                                 
3 This is the setting that has thus far been used in quantitative spatial economics models, see Redding & Rossi-
Hansberg (2017) 
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௜௝ݑ ൌ ௜௝ݒ ൅  ௜௝.           (1)ߝ
We specify the deterministic part as: 
௜௝ݒ ൌ ௜ݎݒ ൅ ݒ ௝݁ ൅  ௜௝           (2)ݐ
The first term ݎݒ௜ represents the utility of living in location ݅, which depends on the housing price 
and amenities. The second term ݒ ௝݁ is the utility of working at location ݆, which depends on the 
wage and amenities. The third term, ݐ௜௝, refers to the match of both and depends on commuting 
costs. The first term is common to all alternatives that have ݅ as the residential location, the 
second term to all alternatives that have ݆ as the residential location. This is the specification that 
is common in the emerging quantitative spatial economics literature referred to in the 
introduction. Sometimes parts of the terms ݎݒ௜ or ݒ ௝݁ are specified by reference to other studies, 
and then the remaining parts  of these terms are estimated as alternative specific constants 
through equalizing the observed frequencies of living or working in a particular location to those 
implied by the model. For instance, Ahlfeldt et al. (2016) use this procedure to identify the 
impact of the Berlin wall, and through this, accessibility to jobs and people on the attractiveness 
of zones for residential and employment purposes.   

It seems reasonable to specify the random parts of the utilities  similar to the deterministic 
parts, that is, as: 
௜௝ߝ ൌ ௜ߠߩ ൅ ௝߮ߪ ൅ ߬߱௜௝          (3) 
In this equation ߠ௜, ߮௝ and ߱௜௝ are random variables and ߪ ,ߩ and ߬ are parameters. The random 
variables refer to idiosyncratic preferences with respect to, respectively, the residential location, 
the work location and the combinations of both. We assume throughout this paper that the ߱௜௝’s 
are standard IID extreme value type I distributed. This implies that the multinomial logit model 
(MNL) will result if ߩ ൌ ߪ ൌ 0. Choice probabilities then are: 

௜௝ߨ ൌ
௘ೡ೔ೕ/ഓ

∑ ∑ ൫௘ೡ೔ᇲೕᇲ൯
భ/ഓ

ೕᇲ೔ᇲ

           (4) 

The term ߠ௜ refers to idiosyncratic preferences for residential location ݅. Such preferences may, 
for instance, be related to one’s place of birth, to locations where  relatives live or that are known 
from experience. It seems a priori very likely that such preferences exist. The important point to 
note is that they are incompatible with the MNL (4). Similarly, it can easily be argued that there 
may exist idiosyncratic preferences that are related to specific employment locations and cause 
correlation between ߝ௜௝’s that share such a location. Again, the implication would be that MNL is 
inappropriate. This discussion strongly suggests that ߩ and ߪ can be positive. In the next 
subsections we will consider if and to what extent existing discrete choice models are able to 
reflect the proposed specification (3). 
 
2.2 Nested logit models 
The nested logit model was developed as an alternative to MNL that enables a researcher to avoid 
the IIA property. Since it has the MNL as a special case, its estimation  has also been proposed as 
a way to test the appropriateness of the MNL. 

Two nested logit models are especially relevant: (i) the one that one nests the work 
locations in the residential locations, and (ii) the one that nests the residential locations in the 
work locations. A researcher has to choose between these two, which means that with this 
discrete choice model  either ߩ or ߪ in (3) has to be set equal to 0 a priori. This is a clear 
drawback of the nested logit It means that it can address at most half of the restrictiveness of the 
MNL. 
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If the first variant is chosen, residential locations are at the top of the utility tree, and ߪ is 

set equal to 0. We can then rewrite the random part of the utilities as: ߝ௜௝ ൌ ߩ ቀߠ௜ ൅
ఛ

ఘ
߱௜௝ቁ. One 

may think about this term as the combination of a random draw from the distribution of ߠ௜ for 
each residential location and a random draw of ߱௜௝ for each combination of residential and work 
locations. For a given actor, the value of ߠ௜ is this common to all choice alternatives with the 
same residential location ݅.    

 The nested logit model requires that ߠ௜ ൅
ఛ

ఘ
߱௜௝ is also standard extreme value type I 

distributed and that 0 ൏ ߬ ⁄ߩ ൑ 1. This implies that he random variable ߠ௜ must have the 
particular distribution for which this is true. This suggests immediately that the distribution of  ߠ௜ 
depends on the value of the parameter 

ఛ

ఘ
, which is somewhat peculiar. There does not appear to be 

any reason why someone’s idiosyncratic preferences for a particular residential location are 
related to idiosyncratic preferences for commutes starting from that location in this specific way. 
Cardell (1997) studied the distribution of ߠ௜ and presents an analytical formulation for its density 
function ݂ഓ

ഐ
:  

ఛ݂ ఘ⁄ ሺݔሻ ൌ ଵ

ఛ ఘ⁄
∑ ሺെ1ሻ௡ ௘ష೙ೣ

௡!୻ቀିഓ
ഐ
௡ቁ

ஶ
௡ୀ଴          (5)  

Since the Γ-function is not defined for non-negative integers, this implies that the density of ߠ௜ is 
not defined for any rational 

ఛ

ఘ
. This complicates the use of this formula. Moreover, Cardell (1997) 

shows that the distribution function of ߠ௜ never has a closed-form representation.  
We conclude that the nested logit model fits in the framework of (3), but in a somewhat 

unintuitive way, even if one accepts that the random parts of the utilities are only correlated when 
the choice alternatives share the residential location.  

The implied choice probabilities are: 

௜௝ߨ ൌ
௘ೡ೔ೕ/ഓ

∑ ௘ೡ೔ೕᇲ/ഓೕᇲ

ቄ∑ ௘ೡ೔ೕᇲ/ഓೕᇲ ቅ
ഓ/ഐ

∑ ቄ∑ ௘ೡ೔ೕᇲ/ഓೕᇲ ቅ
ഓ/ഐ

೔ᇲ

 .        (6) 

In this equation ߨ௜௝ denotes the probability that the combination of residential location ݅ and work 
location ݆ will be chosen. The multinomial logit is the special case in which ߩ ൌ ߬. Estimation of 
the model should reveal the value of 

ఛ

ఘ
. If it differs significantly from 1, the nested logit is 

rejected by the data. However, Appendix B shows that when the deterministic parts of the utilities 
are specified as in (2), the likelihood function becomes flat with respect to 

ఛ

ఘ
 if the first-order 

conditions for the alternative-specific constants are satisfied. Hence this nested logit model 
cannot tell us anything about the possible restrictiveness of the MNL.   

Similar conclusions hold for the alternative nested logit structure.  
        
2.3 Cross-nested logit 
The cross-nested logit model is a generalization of the nested logit models discussed in the 
previous section that has both of them as special cases. It allows simultaneously for correlations 
between the idiosyncratic utilities of alternatives with the same residential location as well as 
between the idiosyncratic utilities of alternatives with the same work location. 

The cross-nested logit is a GEV model with generator function: 

ሻݕሺܩ ൌ ∑ߙ ቄ∑ ൫ݕ௜௝൯
ఋ/ఛభ

௝ ቅ
ఛభ/ఋ

௜ ൅ ሺ1 െ ∑ሻߙ ቄ∑ ൫ݕ௜௝൯
ఋ/ఛమ

௜ ቅ
ఛమ/ఋ

௝ .    (7) 
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which is a weighted average of generator functions that lead to the two types of nested logit 
models discussed in the previous subsection. The choice probabilities are: 

௜௝ߨ ൌ
ఈ௘ೡ೔ೕ/ഃ൜∑ ൫ఈ௘ೡ೔ೕᇲ൯

భ/ഓభ
ೕᇲ ൠ

ഓభ/ഃషభ
ାሺଵିఈሻ௘ೡ೔ೕ/ഃ൜∑ ቀሺଵିఈሻ௘ೡ೔ᇲೕቁ

భ/ഓమ
೔ᇲ ൠ

ഓమ/ഃషభ

∑ ൜∑ ൫ఈ௘ೡ೔ᇲೕᇲ൯
భ/ഓభ

ೕᇲ ൠ
ഓభ/ഃ

೔ᇲ ା∑ ൜∑ ቀሺଵିఈሻ௘ೡ೔ᇲೕᇲቁ
భ/ഓమ

೔ᇲ ൠ
ഓమ/ഃ

ೕᇲ

    (8) 

If ߙ equals 1 the nested logit model with the residential locations at the top of the decision tree 
results, if it equals 0 the nested logit model with the work locations at the top of the decision tree 
results.4 
 Abbe et al. (2007) have shown that the model (10) results from maximization of an 
additive random utility function if the random parts of the utilities are defined as: 

௜௝ߝ ൌ ߜ max ቄln ߙ ൅ߠ௜ ൅
ఛభ
ఋ
߱௜௝, lnሺ1 െ ሻߙ ൅ ߮௝ ൅

ఛమ
ఋ
߱′௜௝ቅ     (9) 

In this equation ߙ is a deterministic weight, 0 ൑ ߙ ൑ 1. The random parts of the utilities are thus 

either  ߜ ቀߠ௜ ൅
ఛభ
ఋ
߱௜௝ቁ or ߜ ቀ߮௝ ൅

ఛమ
ఋ
߱′௜௝ቁ. The random variables ߱௜௝ and ߱′௜௝ are independent 

standard extreme value type I distributed random variables. As in the (non-cross-)nested logit 

models, the random variables defined by the expressions in parentheses, ቀߠ௜ ൅
ఛభ
ఋ
߱௜௝ቁ and 

ቀ߮௝ ൅
ఛమ
ఋ
߱′௜௝ቁ, must also be standard extreme value type I distributed. Moreover, 

ఛభ
ఋ

 and 
ఛమ
ఋ

 should 

be positive and at most equal to 1.  
 The specification of the random parts of the utilities in the cross-nested logit model thus 
differs from that in (3). The parameters for  ߠ௜ and ߮௝ are now restricted to be equal, whereas the 
parameter for ߱௜௝ is now allowed to take on two different values, that in fact refer to two different 
random variables that are identically and independently extreme value type I distributed. 
The generalization of the two types of nested logit models that the cross-nested logit realizes thus 
appears to be the result of a specification of the random parts of the utilities that differs 
substantially from (3). To allow the ‘logsum coefficients’ of the two types of nested logit models 
to be different in the cross-nested logit model the parameters associated with ߱௜௝ and ߱′௜௝ must 
be allowed to differ. Although this gives the impression that the cross nested logit generalizes the 
two types of nested logits, the underlying model structure is different and the generalization is 
thus more apparent than real. Moreover, the peculiar properties of the random parts of the utilities 
that we found in the two types of nested logit models are also present here. 

We conclude that the cross nested logit model is an attractive alternative to the two types 
of nested logit models because it allows for correlation of the random parts of the utilities along 
the two lines we desired, but that it does so in a way that is not covered by (3).   
 
2.4 Mixed logit 
The last specification that we consider is the mixed logit model. With this model we neither 
‘integrate out’ the ߠ௜ and  ߮௝ analytically, nor assume them away. Instead, we keep them in the 
model and integrate out only the ߱௜௝’s analytically, starting from (3), which leads to a 
multinomial logit model with choice probabilities: 

௜௝ߨ ൌ
௘ሺೡ೔ೕశഐ೔ഇ೔శ഑ೕകೕሻ/ഓ

∑ ∑ ௘ሺೡ೔ᇲೕᇲశഐ೔ᇲഇ೔ᇲశ഑ೕᇲകೕᇲሻ/ഓೕᇲ೔ᇲ
         (10) 

                                                 
4 It is not difficult to verify that the choice probability in (11) can be rewritten as a weighted average of the choice 
probabilities associated with the two types of nested logit models discussed above.   
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In these choice probabilities the random variables ߠ௜ and  ߮௝ are still present. We can integrate 
them out numerically if we choose a parametric distribution for these variables and estimate the 
model by simulation. 

One possibility would be to choose the distribution of ߠ௜ and  ߮௝ as those shown by 
Cardell (1997) which would make the mixed logit nesting the two types of nested logit models 
discussed in 2.2 in a way that differs from the cross-nested logit and fits better in the structure 
suggested by (3). However, this is unattractive. As we have seen, these distributions depend on 
the parameters to be estimated (that is, on the values of 

ఛ

ఘ
 and 

ఛ

ఙ
) and that there is no closed form 

representation of their distribution functions. Apart from the practical difficulties associated with 
these aspects, there is the more fundamental point that this specification seems implausible. 

With a specification of the distributions of ߠ௜ and  ߮௝ that is independent of the values of 
the coefficients associated with them, the mixed logit model represents the structure defined by 
(3) exactly and without imposing additional restrictions. In fact it is the only model discussed 
here that does so. 

The result of Rouwendal (2017) for mixed logit models does not hold in the current 
model, because we have only introduced alternative-specific constants for origins and 
destinations, and not for all commuting flows. See the discussion in Appendix C. Hence there is 
no reason to expect that the parameters of a  mixed logit model as specified in (10) cannot be 
estimated. 
 
2.5 Conclusion 
The results of this section are not entirely positive. The nested and cross-nested logit models are 
based on specifications of the idiosyncratic utilities that lack plausibility. Moreover, the 
parameters of the nested logit model that embody the deviation from MNL are not identified 
when alternative-specific constants for residential and employment locations are present. The 
mixed logit model appears to be the best candidate for a useful generalization of the MNL. 
However, it should be noted that the results of Rouwendal (2017) imply that introduction of a full 
set of alternative-specific constants would make it impossible to estimate any of the models just 
mentioned. If we find that estimation of the model on subsets of alternatives leads to different 
parameter values, or that estimation of a  mixed logit model of the type discussed above improves 
the likelihood of the model, this cannot be interpreted as evidence against the IIA property. It 
only shows that the specification of the deterministic part of the utility function in (2) is unable to 
approximate the alternative specific constants that would be estimated if we would have specified 
the deterministic part of the utility function instead as  ݒ௜௝ ൌ ,௜௝ܿݏܽ ݅ ൌ 1… ,ܫ ݆ ൌ 1…  .ܬ
 
3 Testing the MNL model for commuting 
In this section we consider specification tests for the MNL model for commuting. The first is 
estamation of the model on a subset of alternatives as proposed in Hausman and McFadden 
(1984). The second test exploits variation over time in the attractiveness of alternatives to 
compare the actual changes in commuting flows with those predicted by the model. This test is at 
the heart of the potentially restrictive IIA property: the substitution behavior that occurs in 
response to changes in the deterministic utilities.     
 
3.1 Estimating the model on subsets 
Hausman & McFadden (1984) have considered a comparison of the coefficients estimated on (i) 
all observations and (ii) a subset of the observations in which choices referring to a limited 
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number of alternatives are left out. For instance, one could leave out some residential locations or 
some employment locations (or both). One would then compare the estimated coefficients that 
are common to the unrestricted and restricted model, following the recipe of these authors. 
 Since the terms ݐ௜௝ in (2) are restricted by a functional form assumption, for instance by 
linking them to an indicator of the distance between residential location ݅ and employment 
location ݆, the commuting model is a restricted version of a  model with a full set of alternative-
specific constants. The specification test can thus be considered as referring to the 
appropriateness of the chosen specification of ݐ௜௝. 
 To formalize this a bit, we introduce the notation ܽܿݏ௜௝ for the unbiased estimate of the 
deterministic parts of the utilities when the full set of alternative-specific constants is introduced. 
After estimating the  ܽܿݏ௜௝’s we can specify them further as suggested in (2): 
௜௝ܿݏܽ ൌ ௜ݎݒ ൅ ݒ ௝݁ ൅ ൫݀௜௝൯ݐ ൅  ௜௝,         (11)ߦ
where ݐ൫݀௜௝൯ is a parametric specification of the ‘friction’ associated with the geographical 
separation of residential and work locations which is assumed to be a function of a distance 
measure, and  ߦ௜௝ is an error term. To make things concrete, in the empirical work that we report 

below we assume a linear specification in travel time by car, ݀௜௝
௖௔௥, and by public transport, ݀௜௝

௣௧:   

൫݀௜௝൯ݐ ൌ ௜௝݀ߙ
௖௔௥ ൅ ௜௝݀ߚ

௣௧.          (12) 

The deterministic utilities of the residential and employment locations ݎݒ௜ and ݒ ௝݁ can, of course, 
be functions of characteristics of these locations – some of them potentially unobserved – but we 
will not delve into that issue. We only observe that, once (2) is accepted, one can estimate them 
non-parametrically as constants referring to residential and employment locations, respectively. 
The only issue that remains is the specification of ݐ൫݀௜௝൯. If that term is specified correctly, one 
the  ߦ௜௝’s would be identically equal to 0 for all combinations of residential and employment 
locations and there would be no difference between the model based on a full set of alternative-
specific constants and one that specifies the deterministic utilities as    
௜௝ݒ ൌ ௜ݎݒ ൅ ݒ ௝݁ ൅  ൫݀௜௝൯             (13)ݐ
However, if  ݐ൫݀௜௝൯ is not correctly specified the ߦ௜௝’s will not all be equal to zero. Moreover, the 
estimated values of ݎݒ௜ and ݒ ௝݁ may become biased. 
Re-estimating the model on a subset of alternatives may then result in different values of some 
ݒ ,௜’sݎݒ ௝݁’s or of the parameters of ݐ൫݀௜௝൯. 
 The discussion just given is based on two-step estimation of the model, but when 
maximum likelihood (ML) estimation of a logit model based on specification (13) is used, the 
issues are similar. The ML estimates of the deterministic utilities of the residential and 
employment locations are such that the predicted probability that a particular residential or 
employment location is chosen, is identically equal to the observed relative frequency that it is 
chosen. Misspecification of ݐ൫݀௜௝൯ thus implies the possibility that re-estimation of the model on 
a subset of choice alternatives results in different values of some or all of these deterministic 
utilities or of the parameters of  ݐ൫݀௜௝൯. 
 Using the Hausman-McFadden specification test based on re-estimation of the model on 
subsets of choice alternatives thus provides useful information about the appropriateness of the 
choice specification for distance friction, although it is uninformative about the validity of IIA. 
 
3.4 Estimating the model for two periods and compare the predicted results    
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The MNL for commuting flows plays a crucial role in the computation of counterfactuals in 
quantitative economic geography models. The reactions of workers to changes in the 
attractiveness of particular residential or work locations determine the new equilibrium. It is well 
known that in the logit model these reactions are determined in a mechanistic way by the choice 
probabilities. In the commuting model considered here, with deterministic utilities as in (2) and 
choice probabilities determined as in (4) we have: 
డగ೔ೕ
డ௩௥ೖ

ൌ ሺ݅ܫ௜௝ߨ ൌ ݇ሻ െ  ௞∗          (14)ߨ௜௝ߨ
డగ೔ೕ
డ௩௘೗

ൌ ሺ݆ܫ௜௝ߨ ൌ ݈ሻ െ  ௟         (15)∗ߨ௜௝ߨ

where  ߨ௞∗ ൌ ∑ ௞௝௝ߨ   and ߨ∗௟ ൌ ∑ ௜௟௜ߨ  and the coefficient ߬ has been suppressed because it is in 
practice absorbed in the estimates for ݎݒ௜ and ݒ ௝݁. The important point is that the substitution 
behavior is linked to the choice frequencies in (14) and (15) in a mechanistic way that leaves no 
role for the estimated parameters.   
With data on commuting flows in two different periods, say ݐ and ߬, we can test the validity of 
the predictions of the MNL in the following way:  
1 Estimate the MNL for a given metropolitan area in two time periods. We thus estimate all 
coefficients of the model separately for the two periods. 
2 We use the estimated models to derive predictions of the change in the commuting flows 
between each origin and destination. There will, of course, only be predicted changes if there are 
changes in the estimated deterministic utilities of some residential or work locations, or in the 
coefficients of the distance function ݐሺ. ሻ.  The predicted changes are compared with the observed 
changes in the commuting flows.  

If the predictions and realizations are close, we cannot reject the model. If they are 
different, we should.5 This test will be especially meaningful if the estimated models for both 
periods fit the data closely, and therefore it is important to check this first, using for instance the 
Hausman-McFadden methodology discussed in 3.1.  
    
4 Data and results 
 
4.1 Data 
The data we use are flows of commuters in the Greater Copenhagen Area which consist of 20 
municipalities. We know the residential and work locations of these commuters and treat them as 
a single type. That is, we do not distinguish them on the basis of age education or any other 
characteristic. This corresponds to current practice in quantitative economic geography models. 
 The table on the next page gives an example of the matrix of commuting flows for the 
year 2008. We have them also for the years 2009-2013. Moreover, we have travel times by car 
and public transport for commutes between the  20 municipalities.  
 
4.2 Estimating the model on subsets 

                                                 
5 We do not yet have a fully developed methodology for the test, but the idea is clear and the comparison relatively 
easy to make. 
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Table 4.1 Commuting flows in the Greater Copenhagen Area in 2008  
Work 

Res  101  147  151  153  155  157  159  161  163  165  167  169  173  175  183  185  187  190  230  240  Total 

101  172822  23845  4145  3713  2473  13121  8030  2099  2707  2531  7657  4374  6742  5024  2119  8215  1642  4098  6588  3510  285455 

147  14651  10820  445  466  154  967  815  279  317  301  1020  459  559  886  180  532  184  389  544  357  34325 

151  6345  1302  8468  552  108  885  1367  531  1343  565  708  1007  820  754  334  362  261  1368  778  2926  30784 

153  4175  778  493  4230  110  353  473  792  271  660  1063  948  281  689  504  321  489  242  299  431  17602 

155  710  0  0  0  1556  0  0  0  0  0  0  0  0  0  0  357  0  0  0  0  2623 

157  9868  1575  533  268  103  10259  2318  184  409  189  437  281  1837  416  127  300  119  644  1380  434  31681 

159  6637  1178  1061  326  0  1386  8930  312  1122  288  557  447  1300  577  199  252  155  1053  806  857  27443 

161  3241  693  588  1102  0  435  528  2844  341  1226  605  1031  348  612  394  252  404  291  287  402  15624 

163  3131  535  1327  261  0  453  1210  327  3772  259  316  365  382  493  138  117  119  489  358  788  14840 

165  3026  560  536  733  0  303  423  742  258  4148  598  1209  258  526  351  250  493  203  207  450  15274 

167  5719  1014  332  960  139  380  432  402  197  375  7688  669  260  878  458  432  318  205  224  371  21453 

169  4000  772  585  614  0  383  456  447  247  881  669  8742  332  477  696  316  334  321  282  560  21114 

173  6542  1200  618  235  0  1914  2575  218  499  177  381  300  8316  374  139  208  124  772  2145  482  27219 

175  3428  600  404  632  0  252  410  437  286  365  856  414  198  4767  161  196  158  166  180  294  14204 

183  1056  166  110  283  0  0  116  121  0  175  311  519  0  113  3030  0  195  0  0  0  6195 

185  8223  844  196  298  1337  463  296  166  124  147  540  292  226  257  177  7555  121  153  209  202  21826 

187  535  0  0  205  0  0  0  0  0  215  115  163  0  0  199  0  1092  0  0  0  2524 

190  1684  289  703  0  0  219  527  0  243  0  108  123  267  131  0  0  0  5507  460  716  10977 

230  4006  799  350  139  0  1047  827  136  216  101  240  193  1682  204  0  120  0  1011  8392  464  19927 

240  936  163  709  0  0  0  171  0  116  0  0  130  0  103  0  0  0  237  0  5843  8408 

Total  260735  47133  21603  15017  5980  32820  29904  10037  12468  12603  23869  21666  23808  17281  9206  19785  6208  17149  23139  19087  629498 



10 
 

Hausman & McFadden (1984) suggested to test the specification of MNL by a comparison of the 
coefficients estimated on (i) all observations and (ii) a subset of the observations in which choices 
referring to a limited number of alternatives are left out. As discussed above, this test gives 
potentially useful information about the appropriateness of the specification of the function 
 ൫݀௜௝൯ that represents the impact of the spatial separation of the residential and employmentݐ
locations. One would then compare the estimated coefficients that are common to the unrestricted 
and restricted model, following the recipe of these authors.  

In the first column of Table 4.1 we present the estimates of the unrestricted MNL model. 
Both travel time coefficients have the expected negative sign. Moreover, they are estimated quite 
precisely. Model [2] shows the estimates when we re-estimate the model after deletion of the 
central municipality, i.e. City of Copenhagen. Thus we re-estimate the model on the commuting 
flows for the subset of households that have residence or job location (or both) outside the City of 
Copenhagen. If the MNL is specified correctly, the estimated coefficients should remain 
approximately the same assuming that the unrestricted model is true. Specification error could be 
related to the fact that home-work trips that start or end in the central municipality take place 
under more congested traffic conditions and are therefore experienced as more stressful, at given 
travel times. The table shows that coefficients for travel times increase in absolute values by 11% 
and 24% for travel time with car and travel time with public transport, respectively, which seems 
to be at odds with the alternative hypothesis just discussed. The Hausman and McFadden (1984) 
test value is ܶ ൌ 172. Under the null hypothesis ܶ is distributed as ߯ଶ with 2 degrees of freedom. 
We reject the MNL specification at beyond the 99 percent critical level.  

In the last two columns of Table 4.1 we report two additional Hausman and McFadden 
tests where we have, in model [3] eliminated one suburban municipality (Egedal), and in model 
[4] three neighboring suburban municipalities (Egedal, Furesø and Rudersdal). We find now 
negative test values for both model [3] and model [4]. Hausman and McFadden (1984) report that 
they often found negative ܶ statistics due to the lack of positive semidefiniteness in finite sample 
applications. Moreover, they show that replacement by the alternative covariance matrix always 
leads to a small positive number but they found this alternative statistics to be far away from any 
reasonable critical values for a ߯ଶ test (McFadden, 1984, pp. 1226).6 Therefore, we cannot use 
the Hausman and McFadden test to accept or reject the MNL specification. However, since the  

  
Table 4.1. MNL estimates on subsets of choice alternatives 
 [1] [2] [3] [4] 
 Unrestricted 

estimate 
Restricted 
estimate 1 

Restricted 
estimate 2 

Restricted 
estimate 3 

Travel time with car (minutes) -0.1277 
(0.0004) 

-0.1416 
(0.0008) 

-0.1358 
(0.0005) 

-0.1428 
(0.0006) 

Travel time with public transport 
(minutes) 

-0.0225 
(0.0002) 

-0.0279 
(0.0003) 

-0.0196 
(0.0003) 

-0.0209 
(0.0004) 

Log likelihood -2,582,066 -1,222,917 -2,436,585 -2,090,784 
H&M (1984) test statistic  172.070 <0 <0 
Number of obs. 619,484 241,117 598,898 547,968 
Notes: Standard errors are in parentheses. Restricted estimate 1 is without core municipality (Copenhagen), restricted 
estimate 2 excludes Egedal municipality, and restricted estimate 3 excludes three municipalities: Furesø, Rudersdal 
and Egendal. 

                                                 
6 Small & Hsiao (1985) also report the computation difficulties when the covariance matrix is almost singular.  
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first specification tests lead to rejection of the MNL specification, we may conclude that the 
MNL specification of the impact of spatial separation on the commuting flows is likely incorrect. 
 
4.3 Predicted and actual changes in commuting flows 
As argued in the previous section, we regard the comparison of actual and predicted changes in 
commuting flows in which the attractiveness of one or more residential or employment locations 
change as the best test for the adequateness of the MNL as a model for commuting behavior. The 
reason is that the potentially unrealistic implications of the model for substitution behavior have 
immediate implications for the computation of counterfactuals in quantitative economic 
geography models that use gravity equations for commuting interactions. 
 We estimated the MNL (4) with deterministic utilities as in (2) and the friction of distance 
as specified in (13) and estimated it for the years 2008-2013. At the moment of submitting this 
paper for UEA 2017 we have not yet finished the analysis. We can only show some preliminary 
results. The two maps on the next page show the changes in employment commuting inflows and 
residential commuting outflows for the 20 Copenhagen municipalities between 2008 and 2009. 
We also have them for 2009-2010…2012-2013. The formulation of the MNL, with a separate 
constant representing the attractiveness of every residential and employment location in each 
year, ensures that the  models will exactly predict the total numbers of commutes originating 
from any residential location or ending in any employment location. The changes in the predicted 
total flows thus corresponds to changes in the numbers of jobs and residences. The maps suggest 
that between the years 2008 and 2009 most of the action was in the employment locations, which 
is possibly related to the volatile economic developments at the time. The pictures for the other 
years are different. 
 The fact that the estimated models predict the total number of commutes ending in a 
particular employment zone exactly, implies that on average the predicted change in commuting 
flows ending up in a particular employment zone will be exactly equal to the observed change in 
the commuting flows ending in that zone. And that a similar statement holds for flow originating 
from a particular residential location. This leaves open the possibility of potentially substantial 
and systematic discrepancies for specific commuting flows. For instance, if there is correlation 
between the idiosyncratic utilities of commutes that end up in the same employment location (as 
in a nested logit model with the employment locations first in the utility branch), then a change in 
the attractiveness of a particular residential location will result in fewer job changes than would 
be predicted by the MNL and we would see a systematic pattern in the differences between the 
predicted and actual changes in commuting flows. This is just one possibility, there exist many 
other and it is the purpose of this exercise to investigate these discrepancies and evaluate their 
significance. We are currently working on this issue.         
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Figure 1 Changes in total commuting flows into and from municipalities 
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5 A revealed preference approach to the commuting model 
In this section we briefly describe another way of approaching specification (2) of the 
deterministic part of the utility function. We can adopt the two-stage approach familiar from 
BLP. With a single type of commuters, the first stage would imply estimation of a full set of 
alternative-specific constants ܽܿݏ௜௝, ݅ ൌ 1… ,ܫ ݆ ൌ 1…  In the second stage they are the .ܬ
dependent variable in (11). Suppose that we have information about the distance or travel time 
between each pair ሺ݅, ݆ሻ, denoted as ݀௜௝ and that we know that ݐ௜௝ is an increasing function, ݐ, of  
݀௜௝: 
݀௜௝ ൐ ݀௞௟ 	⇔ 	 ௜௝ݐ ൌ ൫݀௜௝൯ݐ ൐ ሺ݀௞௟ሻݐ ൌ  ௞௟        (16)ݐ
The this implies a number of inequalities for the  ܽܿݏ௜௝’s that can be used to investigate the 
function ݐሺ݀ሻ. In particular, it may be possible to choose the alternative-specific constants ݎݒ௜ and 
ݒ ௝݁ in such a way that the (weighted) number of violations of (16) is minimized. The values of 
the alternative-specific constants then imply those of ݐ൫݀௜௝൯ for each commute. 
  
6 Conclusion 
In this paper we have considered the MNL as a model for commuting interactions in metropolitan 
regions. We used a specification in which the deterministic part of the utility attached 
combinations of residential and work locations is specified as the sum of two constants, 
representing the utilities of the residential and the work locations, respectively, and a term that 
reflects the friction of distance. The potential restrictiveness of the MNL results from the fact that  
it seems plausible that the random part of the utility is specified similarly, which suggests 
correlation between the random parts of utilities of alternatives sharing the residential or 
employment location. The MNL rules out such correlation because of its IIA property. 

We considered several alternatives and found that the nested logit model, which is the 
obvious candidate for a more general model, is indistinguishable from the MNL with the chosen 
specification of the deterministic utilities. The cross nested logit can be estimated, but does not 
have a particularly attractive specification for the purpose of modelling commuting choices. The 
best alternative appears to be the mixed logit model. 

A fundamental limitation of all the models considered here is that they can never do better 
than a multinomial logit model with a full set of alternative specific constants.   

            
 
 
 
Appendix 
A The equivalence of the Eaton-Kurtum discrete choice model and MNL. 
The key observation is that if ܺ is Frechet (EV type II) distributed, ln ܺ is Gumbel (EV type I) 
distributed 
 
B The indeterminateness of the logsum parameter in the nested logit models. 
We show that the logsum coefficient is not identified in the nested logit version of the commuting 
model discussed in the main text when using maximum likelihood estimation. Recall that the 
choice probabilities are given by (7), which we rewrite here as: 

௜௝ߨ ൌ ݁௩೔ೕ/ఛ൛∑ ݁௩೔ೕᇲ/ఛ௝ᇱ ൟ
ഓ
ഐ
ିଵ

∑ ൛∑ ݁௩೔ೕᇲ/ఛ௝ᇱ ൟ
ഓ
ഐ

௜ᇱൗ   
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while the deterministic part of the utility is given by (12). The loglikelihood L is the sum of the 
logarithm of the appropriate choice probabilities over all observations: 
ܮ ൌ ∑ ∑ ݊௜௝ ln 	௜௝ߨ

௃
௝ୀଵ

ூ
௜ୀଵ   

			ൌ ∑ ∑ ݊௜௝ ቌ
௩೔ೕ
ఛ
൅ ቀఛ

ఘ
െ 1ቁ ln∑ ݁

ೡ
೔ೕᇲ

ഓ௝ᇲ െ ln∑ ቊ∑ ݁
ೡ
೔ೕᇲ

ഓ௝ᇲ ቋ

ഓ
ഐ

௜ᇲ ቍ	௃
௝ୀଵ

ூ
௜ୀଵ   

			ൌ ∑ ∑ ݊௜௝
௩೔ೕ
ఛ
	൅ ቀఛ

ఘ
െ 1ቁ∑ ݊௜∗ln∑ ݁

ೡ
೔ೕᇲ

ഓ௝ᇲ
ூ
௜ୀଵ 	െ n	ln∑ ቊ∑ ݁

ೡ
೔ೕᇲ

ഓ௝ᇲ ቋ

ഓ
ഐ

௜ᇲ
௃
௝ୀଵ

ூ
௜ୀଵ  , 

where ݊௜௝ is the number of workers commuting from residential location ݅ to work location ݆, ݊௜∗ 
is the number of workers residing in ݅ (݊௜∗ ൌ ∑ ݊௜௝௜ ) and ݊ is the total number of workers. 

We cannot identify ߩ and ߬ separately, but only the ‘logsum’ parameter 
ఛ

ఘ
. We simplify the 

notation a bit by defining ߣ ൌ ఛ

ఘ
. All alternative-specific constants and the travel time parameter 

are estimated relative to ߩ and to avoid notational clutter, we proceed as if ߩ ൌ 1.7 Using these 
conventions, we rewrite the loglikelihood as: 

ܮ ൌ ∑ ∑ ݊௜௝
௩೔ೕ
ఒ
	൅ ሺߣ െ 1ሻ∑ ݊௜∗ln∑ ݁௩೔ೕᇲ/ఒ௝ᇲ

ூ
௜ୀଵ 	െ n	ln∑ ൛∑ ݁௩೔ᇲೕᇲ/ഊ௝ᇲ ൟ

ఒ
௜ᇲ

௃
௝ୀଵ

ூ
௜ୀଵ .  

Note also that we have to choose reference residential and work locations for which we set the 
alternative-specific constants equal to zero. Choosing location 1 as such, we estimate: ܫ െ 1 
alternative-specific constants for residential location ݎݒ௜, ݅ ൌ 2… ܬ ,ܫ െ 1 alternative-specific 
constants for work locations ݒ ௝݁, ݆ ൌ 2…  and the logsum parameter ߛ the travel time parameter ,ܬ
 .ߣ
We now consider the first derivatives of the  logs of the choice probabilities, which we rewrite as: 

ln ௜௝ߨ ൌ
௩೔ೕ
ఒ
൅ ሺߣ െ 1ሻ ln∑ ݁௩೔ೕᇲ/ఒ௝ᇲ െ ln∑ ቄ∑ ݁௩೔ᇲೕᇲ/ఒ௝ᇲ ቅ

ఒ

௜ᇲ : 

 
డ ୪୬గ೔ೕ
డ௩௥ೖ

ൌ ௜ୀ௞ߜ ቀ
ଵ

ఒ
൅ ఒିଵ

ఒ
∑ ௝ᇱ|௜௝ᇲߨ ቁ െ   ∗௞ߨ

௜ୀ௞ߜ =            െ  ௜∗.           (B.1)ߨ
 
Here ߜ௜ୀ௞ ൌ 1 if ݅ ൌ ݇ and 0 otherwise, ߨ௝ᇱ|௜ is the probability of choosing work location ݆ 
conditional on the choice of residential location ݅, and ߨ௜∗ is the probability that residential 
location ݅ will be chosen (ߨ௜∗ ൌ ∑ ௜௝௝ߨ ). The simplification in the second line follows because 
∑ ௝ᇱ|௜௝ᇲߨ ൌ 1. 
 
 
డ ୪୬గ೔ೕ
డ௩௘೗

ൌ
ఋೕస೗
ఒ
൅ ఒିଵ

ఒ
௟|௜ߨ െ ∑ ௟|௜ᇱ௜ᇲߨ∗௜ᇱߨ   

												ൌ ଵ

ఒ
൫ߜ௝ୀ௟ ൅ ሺߣ െ 1ሻߨ௟|௜ െ ∑ߣ ௟|௜ᇱ௜ᇲߨ∗௜ᇱߨ ൯       (B.2) 

 
  

 
డ ୪୬గ೔ೕ
డఊ

ൌ
௧௧೔ೕ
ఒ
൅ ሺߣ െ 1ሻ∑ ௝ᇱ|௜௝ᇲߨ

௧௧೔ೕᇲ
ఒ
െ ∑ ∗௜ᇱߨ ∑ ௜ᇱ௝ᇱ௝ᇲ௜ᇲݐݐ௝ᇱ|௜ᇱߨ   

                                                 
7 One may keep in mind that the alternative-specific constants and the travel time parameter are estimated after 
dividing them by the (unknown) value of ߩ, which may differ from 1.  
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													ൌ ଵ

ఒ
൫ݐݐ௜௝ ൅ ሺߣ െ 1ሻ∑ ௝ᇱ|௜௝ᇲߨ ௜௝ᇱݐݐ െ ߣ ∑ ∗௜ᇱߨ ∑ ௜ᇱ௝ᇱ௝ᇲ௜ᇲݐݐ௝ᇱ|௜ᇱߨ ൯    (B.3) 

 
డ ୪୬గ೔ೕ
డఒ

ൌ െ
௩೔ೕ
ఒమ
൅ ൅ሺߣ െ 1ሻ∑ ௝ᇱ|௜௝ᇲߨ ቀെ

௩೔ೕ
ఒమ
ቁ െ ∑ ∗௜ᇱߨ ቈln∑ ݁

ೡ
೔ೕᇲ

ഊ௝ᇲ ൅ ∑ߣ ௝ᇱ|௜ᇱߨ ቀെ
௩೔ೕ
ఒమ
ቁ௝ᇲ ቉௜ᇲ   

												ൌ 	 ቀെ ଵ

ఒమ
ቁ ൫ݒ௜௝ ൅ ௜ݏଶ݈ߣ ൅ ሺߣ െ 1ሻ∑ ௝ᇱ|௜௝ᇲߨ ௜௝ᇱݒ ൅ ଶߣ ∑ ௜ᇱݏ݈∗௜ᇱߨ െ௜ᇲ ߣ ∑ ∗௜ᇱߨ ∑ ௜ᇱ௝ᇱ௝ᇲ௜ᇲݒ௝ᇱ|௜ᇱߨ ൯  

(B.4) 

where ݈ݏ௜ ൌ ln∑ ݁
ೡ
೔ೕᇲ

ഊ௝ᇲ , the logsum associated with residential location ݅. 
Using these results, we find: 
 

ቀ డ௅

డ௩௥ೖ
ൌ 0 ⟹ቁ݊௞∗ െ ∗௞ߨ	݊ ൌ 0.         (B.5) 

 

ቀ డ௅

డ௩௘೗
ൌ 0 ⟹ቁ݊∗௟ ൅ ሺߣ െ 1ሻ∑ ݊௜∗௜ ௟|௜ߨ െ ∑ߣ݊ ௟|௜௜ߨ∗௜ߨ ൌ 0.     (B.6) 

 

ቀడ௅
డఊ
ൌ 0 ⟹ቁ ଵ

ఒ
൫∑ ∑ ݊௜௝ݐݐ௜௝௝௜ ൅ ሺߣ െ 1ሻ∑ ݊௜ ∑ ௝ᇱ|௜௝ᇲߨ ௜௝ᇲݐݐ െ௜ ߣ݊ ∑ ∗௜ᇲߨ ∑ ௜ᇲ௝ᇲ௝ᇲ௜ᇲݐݐ௝ᇱ|௜ᇲᇱߨ ൯ ൌ 0  

(B.7)  
 

ቀడ௅
డఒ
0 ⟹ቁ		ቀെ ଵ

ఒమ
ቁ ൛∑ ∑ ݊௜௝ݒ௜௝௝௜ ൅ ଶߣ ∑ ݊௜∗݈ݏ௜௜ ൅ ሺߣ െ 1ሻ∑ ݊௜∗ ∑ ௝ᇱ|௜௝ᇲߨ ௜௝ᇱ௜ݒ ൅

ଶ݊ߣ																																																																							 ∑ ௜ᇱݏ݈∗௜ᇱߨ െ௜ᇲ ݊ߣ ∑ ∗௜ᇱߨ ∑ ௜ᇱ௝ᇱ௝ᇲ௜ᇲݒ௝ᇱ|௜ᇱߨ ൟ ൌ 0  (B.8) 
 
We will show that the expression in curly brackets in (B.8) is identically 0 if (B.5), (B.6) and 
(B.7) hold. We do so as follows: 

i) (B5) implies ߨ௞∗ ൌ ݊௞∗/݊. This result will be used repeatedly in what follows. Hence 
∑ ݊௜∗݈ݏ௜௜ ൌ ݊∑ ௜ᇱ௜ᇲݏ݈∗௜ᇱߨ . Hence the two terms with the logsums cancel out. 

ii) For the same reason: ∑ ݊݅∗ ∑ ′݆݅|′݆ߨ ݅′݆݅ݒ ൌ ݊∑ ∗݅ߨ ∑ ′݆݅|′݆ߨ ݅′݆݅ݒ . Hence the terms with a ߣ in 

front of them cancel out.   
These simplifications allow us to rewrite the expression in curly brackets in (B.8) as: 
∑ ∑ ݊௜௝ݒ௜௝௝௜ െ ∑ ݊௜∗ ∑ ௝ᇱ|௜௝ᇲߨ ௜௝ᇱ௜ݒ         
After substitution of the deterministic part of the utility function, this can be rewritten as: 
൫∑ ∑ ݊௜௝ݎݒ௜௝௜ െ ∑ ݊௜∗ ∑ ௝ᇱ|௜௝ᇲߨ ௜௜ݎݒ ൯ ൅ ൫∑ ∑ ݊௜௝ݒ ௝݁௝௜ െ ∑ ݊௜∗ ∑ ௝ᇱ|௜௝ᇲߨ ݒ ௝݁ᇱ௜ ൯ ൅
∑൫ߛ																																																																																		 ∑ ݊௜௝ݐݐ௜௝௝௜ െ ∑ ݊௜∗ ∑ ௝ᇱ|௜௝ᇲߨ ௜௝ᇱ௜ݐݐ ൯  (B.9) 
We now show that each term in parentheses equals 0: 

iii) ∑ ∑ ݊௜௝ݎݒ௜௝௜ ൌ ∑ ݊௜∗௜ ∑ ௜ andݎݒ ݊݅∗ ∑ ′݆݅|′݆ߨ ݅ݎݒ ൌ ∑ ݊݅∗݅ ݅݅ݎݒ . Hence the first term equals 0. 
iv) ∑ ݊௜∗௜ ௟|௜ߨ ൌ ݊∑ ௜∗௜ߨ ௟|௜. It follows thus from (B.6) that ݊∗௟ߨ ൌ ∑ ݊௜∗௜  ௟|௜. After someߨ

rearrangement of the second term of the second expression in curly brackets, we can 
substitute this result in it. We then find that this second term equals ∑ ݊∗௝௝ ݒ ௝݁. This is 
identical to the first term. Hence the second term in parentheses must also be equal to 0.   

v) ∑ ݊௜∗ ∑ ௝ᇱ|௜௝ᇲߨ ௜௝ᇲ௜ݐݐ ൌ ݊∑ ∗௜ߨ ∑ ௝ᇱ|௜௝ᇲߨ ௜௝ᇲ௜ݐݐ . Hence we can simplify (B.7) to the third term, 
which must thus be equal to 0. 

Since all three terms in (B.9) are zero, the expression in curly brackets in (B.8) must be equal to 0 
as well. 
The derivations for the other type of nested logit model are completely analogous.  
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C The determinateness of the parameters for the random term the mixed logit model. 
We start from (11) and write the loglikelihood that the combination ሺ݅, ݆ሻ is chosen as: 

݈݈௜௝ ൌ ln ቀ׬ ׬ ఝఏࣂሻ࣐࣐݀݀,ࣂሻ݃ሺ࣐,ࣂ௜௝ሺߨ ቁ	        (C.1) 

with ߨ௜௝ሺࣂ,࣐ሻ ൌ
௘ሺೡ೔ೕశഐ೔ഇ೔శ഑ೕകೕሻ/ഓ

∑ ∑ ௘ሺೡ೔ᇲೕᇲశഐ೔ᇲഇ೔ᇲశ഑ೕᇲകೕᇲሻ/ഓೕᇲ೔ᇲ
 as in (11). The first derivatives with respect to ݎݒ௞ and 

 :௞ areߩ
డ௟௟೔ೕ
డ௩௥ೖ

ൌ ଵ

௉௥೔ೕ
ቄ׬ ׬ ሺ݅ܫൣ ൌ ݇ሻߨ௜௝ሺࣂ,࣐ሻ െ ఝఏࣂሻ࣐࣐݀݀,ࣂሻ൧݃ሺ࣐,ࣂ௞∗ሺߨሻ࣐,ࣂ௜௝ሺߨ ቅ  

									ൌ ሺ݅ܫ ൌ ݇ሻ െ ଵ

௉௥೔ೕ
ቄ׬ ׬ ఝఏࣂሻ࣐࣐݀݀,ࣂሻ൧݃ሺ࣐,ࣂ௞∗ሺߨሻ࣐,ࣂ௜௝ሺߨൣ ቅ   (C.2) 

where ܲݎ௜௝ ൌ ׬ ׬ ఝఏࣂሻ࣐࣐݀݀,ࣂሻ݃ሺ࣐,ࣂ௜௝ሺߨ  and ߨ௞∗ሺࣂ,࣐ሻ ൌ ∑ ሻ௝࣐,ࣂ௞௝ሺߨ , and: 

 
డ௟௟೔ೕ
డఘೖ

ൌ ଵ

௉௥೔ೕ
ቄ׬ ׬ ሺ݅ܫൣ ൌ ݇ሻߨ௜௝ሺࣂ,࣐ሻ െ ఝఏࣂሻ࣐࣐݀݀,ࣂ௞݃ሺߠሻ൧࣐,ࣂ௞∗ሺߨሻ࣐,ࣂ௜௝ሺߨ ቅ  

								ൌ ଵ

௉௥೔ೕ
ቄ׬ ׬ ሺ݅ܫ ൌ ݇ሻߨ௜௝ሺࣂ,࣐ሻߠ௞݃ሺࣂ,࣐ሻ࣐݀݀ࣂఝఏ ቅ െ	  

   
ଵ

௉௥೔ೕ
ቄ׬ ׬ ఝఏࣂሻ࣐࣐݀݀,ࣂ௞݃ሺߠሻ࣐,ࣂ௞∗ሺߨሻ࣐,ࣂ௜௝ሺߨ ቅ   (C.3) 

For the likelihood of the whole sample, ܮܮ ൌ ∑ ∑ ݈݈௜௝௝௜  this gives: 
 
డ௅௅

డ௩௥ೖ
ൌ ௜݂∗ െ ∑ ∑

௙೔ೕ
௉௥೔ೕ

ቄ׬ ׬ ఝఏࣂሻ࣐࣐݀݀,ࣂሻ݃ሺ࣐,ࣂ௞∗ሺߨሻ࣐,ࣂ௜௝ሺߨ ቅ௝ 	௜     (C.4) 

 
డ௅௅೔ೕ
డఘೖ

ൌ ∑
௙ೖೕ
௉௥ೖೕ

௝ ቄ׬ ׬ ఝఏࣂሻ࣐࣐݀݀,ࣂ௞݃ሺߠሻ࣐,ࣂ௞௝ሺߨ ቅ െ  

 

   ∑ ∑
௙೔ೕ
௉௥೔ೕ

ቄ׬ ׬ ఝఏࣂሻ࣐࣐݀݀,ࣂ௞݃ሺߠሻ࣐,ࣂ௞∗ሺߨሻ࣐,ࣂ௜௝ሺߨ ቅ௝௜   (C.5) 

 
where ௜݂௝ is the number of commuters from ݅ to ݆.Rouwendal (2017) dhows that if we could set 
the alternative-specific constants8 so that:  ܲݎ௜௝ ൌ ௜݂௝ ⁄ܨ , where ܨ ൌ ∑ ∑ ௜݂௝௝௜  is the total number 
of commuters – which is in general not the case – it can be shown that (C.4) and (C.5) are 
identically equal to zero. This works as follows After substitution of the condition in (C.4), we 
can rewrite this equation as:  
డ௅௅

డ௩௥ೖ
ൌ ௜݂∗ െ ܨ ቄ׬ ׬ ൫∑ ∑ ሻ௝௜࣐,ࣂ௜௝ሺߨ ൯ߨ௞∗ሺࣂ,࣐ሻ݃ሺࣂ,࣐ሻ࣐݀݀ࣂఝఏ ቅ    (C.6) 

Which is equal to 0, since ∑ ∑ ሻ௝௜࣐,ࣂ௜௝ሺߨ ൌ 1.  
Substitution in (C.5) gives: 
డ௅௅೔ೕ
డఘೖ

ൌ ܨ ׬ ׬ ఝఏࣂሻ࣐࣐݀݀,ࣂ௞݃ሺߠሻ࣐,ࣂ௞∗ሺߨ െ  

ܨ    ׬ ׬ ൫∑ ∑ ሻ௝௜࣐,ࣂ௜௝ሺߨ ൯ߨ௞∗ሺࣂ,࣐ሻߠ௞݃ሺࣂ,࣐ሻ࣐݀݀ࣂఝఏ    (C.7) 

which is identically 0.   

                                                 
8 Not only the ݎݒ௜’s, but also the ݒ ௝݁’s could be used for that purpose. However, there are ܫ ൅  ,such constants ܬ
whereas we have ܬܫ chouice alternatives. 
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If the condition is violated, the equations do not simplify and the result does not hold.  
 
References  
Ahlfeldt, G. M., Redding, S. J., Sturm, D. M., & Wolf, N. (2016). The economics of density: 

Evidence from the Berlin wall. Econometrica, 83(6), 1217–2189. 
Allen, T., Arkolakis, C., & Li, X. (2015). Optimal city structure. Working Paper. 
Berry, S., Levinsohn, J., & Pakes, A. (1995). Automobile prices in market equilibrium. 

Econometrica, 63(4), 841–890. 
Eaton, J., & Kortum, S. (2002). Technology, geography, and trade. Econometrica, 70(5), 1741–

1779. http://doi.org/10.1111/1468-0262.00352 
Hamilton, B. W. (1982). Wasteful commuting. Journal of Political Economy, 90(5), 1035–1053. 

http://doi.org/10.1086/261665 
Hausman, J. A., & McFadden, D. (1984). Specification tests for the multinomial logit model. 

Econometrica. http://doi.org/10.2307/1910997 
McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In Frontiers in 

Econometrics (pp. 105–142). 
Monte, F., Redding, S., & Rossi-Hansberg, E. (2015). Commuting, migration, and local 

employment elasticities. NBER Working Paper, 21706, 1–57. 
Redding, S. J., & Rossi-Hansberg, E. (2017). Quantitative spatial economics. Annual Review of 

Economics, 9, 1–47. 
Rouwendal, J. (1998). Search theory, spatial labor markets, and commuting. Journal of Urban 

Economics, 43(1), 1–22. 
Rouwendal, J. (2017). Specification tests for the multinomial logit model revisited. 
Small, K. A., & Hsiao, C. (1985). Multinomial logit specification tests. International Economic 

Reviewc Review, 26(3), 619–627. http://doi.org/10.2307/2526707 
Small, K. A., & Song, S. (1992). “ Wasteful ” Commuting : A Resolution. Journal of Political 

Economy, 100(4), 888–898. http://doi.org/10.1086/261844 
 
 
 
 


