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Abstract
We develop a new dynamic multivariate model for the analysis and the forecasting of
football match results in national league competitions. The proposed dynamic model is
based on the score of the predictive observation mass function for a high-dimensional
panel of weekly match results. Our main interest is to forecast whether the match
result is a win, a loss or a draw for each team. To deliver such forecasts, the dynamic
model can be based on three different dependent variables: the pairwise count of the
number of goals, the difference between the number of goals, or the category of the
match result (win, loss, draw). The different dependent variables require different
distributional assumptions. Furthermore, different dynamic model specifications can
be considered for generating the forecasts. We empirically investigate which dependent
variable and which dynamic model specification yield the best forecasting results. In an
extensive forecasting study, we consider match results from six large European football
competitions and we validate the precision of the forecasts for a period of seven years for
each competition. We conclude that our preferred dynamic model for pairwise counts
delivers the most precise forecasts and outperforms benchmark and other competing

models.

Key words: Football, Forecasting, Score-driven models, Bivariate Poisson, Skellam,
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1 Introduction

Forecasting football match results is a highly popular activity. Amongst football supporters,
it is widespread to make a forecast of the next match result and oftentimes the individual
forecast is positively biased towards the team that one is supporting. But even the pundit
knows that forecasting a match result is a challenging task. The common way to bet on a
football match is simply to indicate whether one expects the team to win, lose, or draw its
next game. Whether the match result is a win, loss or draw depends on the difference in
the number of goals scored by the two opposing teams in a football match. There are many
determining factors of scoring a goal including the attack strength of the team, the defence
strength of the opposing team, the home ground advantage (when applicable), and specific
events taking place during the match. We consider the use of three possible observational
variables to base our forecast of the next match result in terms of win, loss, or draw. The first
variable is two-dimensional and consists of the number of goals scored by the two opposing
teams during a match. The second variable is the difference between the number of goals
scored. The third variable is simply the indicator of win, loss, or draw. The informational
content of these three consecutive variables is clearly decreasing. For each of the variable
categories, a variety of dynamic models can be considered for the forecasting of the match
result. Many contributions in the statistical literature on the modelling and forecasting of
the three variables have been made. We refer to Table B.1 in the Appendix for a schematic
overview of the main contributions. A discussion of this earlier literature is next and is
followed by a discussion of our contributions to this literature.

Most contributions in the statistical literature on the modelling and forecasting of match
results focus on the first variable where the pairwise observations of numbers of goals scored
by the opposing teams are assumed to come from a bivariate distribution. The probability
for a possible match outcome is implied by the bivariate distribution and is formally given
by P(X = z,Y = y), for z,y € Ny, where X and Y denote the number of goals scored
by the home and away team, respectively. Hence we have a probability for any match
outcome. The main interest usually focuses on forecasting the probabilities of home win,
draw, or away win; these are the toto probabilities and are given by P(X > Y), P(X =
Y), and P(X < Y), respectively. The parameters of the distribution can be expressed as
function of strengths of attack and defence of the competing teams. This procedure was
first proposed by Maher (1982) who expresses the means of the double-Poisson distribution
(product of two independent Poissons) as team-specific strengths of attack and defence.
Dixon and Coles (1997) consider the double-Poisson distribution as well and introduce a

dependence parameter for the match results 0-0, 1-0, 0-1 and 1-1. They also propose a



weighting function to down-weight likelihood contributions of observations from the more
distant past. In Crowder, Dixon, Ledford, and Robinson (2002), the model of Dixon and
Coles (1997) is formulated as a non-Gaussian state space model with time-varying strengths
of attack and defence. Then they develop approximating methods for parameter estimation
and signal extraction as they stated that an exact analysis is computationally too expensive.
A bivariate Poisson distribution is also used by Karlis and Ntzoufras (2003) who show that
the introduction of a parameter for dependence between goals scored by both teams during a
match, leads to a more accurate prediction of the outcome of a draw. Rue and Salvesen (2000)
incorporate the framework of Dixon and Coles (1997) and develop a dynamic generalized
linear model which is analysed by Markov chain Monte Carlo methods in continuous time.
Goddard (2005) explores the inclusion of covariates in a bivariate Poisson model. Koopman
and Lit (2014) show that a high-dimensional panel of weekly match results can be analysed
effectively within a non-Gaussian state space framework based on the bivariate Poisson
model with stochastically time-varying attack and defence strengths, and with some of the
above extensions. Their analysis includes the exact maximum likelihood estimation of the
parameter vector and the exact signal extraction of the time-varying attack and defence
strengths of the two teams. Detailed evidence of its forecast precision in forecasting match
results is presented. Finally, another interesting and original contribution in this category is
given by Dixon and Robinson (1998) who treat the number of scored goals by the competing
teams during a match as interacting birth processes.

The second category is the difference between goals in a match and can be regarded as
the margin of victory of a team. In this category we let Z = X —Y be the difference between
the number of scored goals X and Y, with Z € Z. By modelling Z, we consider the toto
probabilities as given by P(Z > 0), P(Z = 0), and P(Z < 0) for a home win, draw, and away
win, respectively. By modelling the difference of goals, information is lost since, for example,
the pairs (X =0,Y = 1) and (X = 2,Y = 3) produce the same values for Z. On the other
hand, a smaller number of summations is needed to obtain toto probabilities from Z when
compared to the pair (X, Y). It is not immediately clear what the overall effect of modelling
Z instead of (X,Y) would be on the forecasting of the toto probabilities. The reasoning
behind this is the accumulation of modelling error which could potentially be smaller since
a smaller number of probability components are summed compared to the first category.
A model for the difference between goals in football matches is provided by Karlis and
Ntzoufras (2009) who introduce the Skellam distribution for analysing match results. This
distribution was originally derived by Skellam (1946) as the difference of two independent

Poisson distributions. However, Karlis and Ntzoufras (2009) show that independence is not



strictly necessary and even the Poisson assumption for the pair of variables (X,Y") is not
needed. In their analysis the parameters of the Skellam distribution are kept static. Lit
(2016, Ch. 4) extends the Skellam model to allow for strengths of attack and defence that
evolve stochastically over time in a non-Gaussian state space framework.

Instead of modelling toto probabilities via the double or bivariate Poisson models or via
the Skellam models, we can also consider the modelling of the toto probabilities directly.
For this third variable category, we introduce ordered logit or ordered probit models in our
study. The modelling of match results in terms of win, loss, and draw, rather than scores or
differences in scores, leads to a more parsimonious model but also to a simpler estimation
procedure. Koning (2000) investigates the balance in competition in Dutch professional
soccer by means of an ordered probit model with static team strengths. A selection of
covariates can be introduced in the static ordered probit regression model of Goddard and
Asimakopoulos (2004) and in the static ordered logit model of Forrest and Simmons (2000).
Cattelan, Varin, and Firth (2013) propose a (semi)-dynamic Bradley-Terry model in which
team strengths are modelled by exponentially weighted moving average processes. An early
contribution is made by Fahrmeir and Tutz (1994) who introduce an ordered logit non-
Gaussian state space model that incorporates random walks for the team strengths. The
estimation of parameters for this model is carried out by the Kalman filter and recursive
posterior mode estimation methods. The dynamic cumulative link model of Knorr-Held
(2000) has been applied to German Bundesliga data for an analysis based on the extended
Kalman filter and smoother. Finally, Hvattum and Arntzen (2010) propose an ordered logit
model in which team strengths are updated over time using a so-called Elo rating system.

Our research contributes to the literature in a number of ways. First, we develop a new
dynamic multivariate model for the analysis and forecasting of football match results for
each of the three variable categories. The dynamic extensions of the static models are based
on the class of score-driven models where the time-varying coefficients are updated as an
autoregressive process. The autoregressive updating of the time-varying parameter is driven
by the score of the conditional observation probability density function, see Creal, Koopman,
and Lucas (2013) for a discussion of this approach. Three features of this class of models
are particularly attractive in our context: (i) The score-driven models are observation driven
which means that the likelihood is available in closed form. This allows for a fast estimation
process despite the high-dimensional model challenges due to the large number of teams that
participate in an European football competition over a number of years. The computationally
more demanding Kalman filter is not required for estimation and forecasting; (ii) The filtered

estimates of the time-varying parameters in a score-driven model are locally optimal in



a Kullback-Leibler sense, see Blasques, Koopman, and Lucas (2015); (iii) The forecasting
performance of the score-driven models is comparable to their parameter-driven counterparts,
see Koopman, Lucas, and Scharth (2016). Second, we determine which of the three variable
categories leads to the most accurate forecasts in an extensive empirical study. Third,
we also investigate, as part of our empirical study, whether dynamic models with time-
varying parameters show better forecasting performance when compared to models with
static parameters. We further verify whether the dynamic extension of the static model is
best achieved by formulating a time-varying parameter model or by weighting the likelihood
contributions over time as proposed in Dixon and Coles (1997).

We have constructed time series panels of match results from six European competitions:
the English Premier League, the German Bundesliga, the Spanish Primera Division, the
French Ligue 1, the Italian Serie A, and the Dutch Eredivisie. We have collected 17 seasons
of match results ranging from 1999-2000 to 2015-2016, for which the first 10 seasons are
used for parameter estimations and the last 7 seasons for the forecasting study. The size of
our forecasting study allows us to draw strong conclusions with respect to the forecasting
performances of the considered models. We use the rank probability score as a loss function
and explain why this is the most suitable loss function for this exercise. The losses are
evaluated by the Diebold and Mariano (1995) statistic to test for equal predictive accuracy.

The remainder of this research report is organized as follows. We introduce the statistical
modelling framework in Section 2 where the specific details of the score-driven football
models are discussed in Section 3. We discuss the design of our extended forecasting study,
including a data description, present our empirical findings and discuss various aspects of
our analyses in Section 4. Section 5 concludes. An Appendix provides additional figures,
tables, and technical details including the score functions of the various distributions that

are considered.

2 The distributions for the three variable categories

For the three variable categories, we develop three different modelling frameworks. First we
consider the different observational characteristics and propose their corresponding discrete

mass functions. Their dynamic extensions are developed and discussed in Section 3.

2.1 Bivariate Poisson distribution

The outcome of a football match is simply determined by the number of goals scored and

conceded by a team. The outcome can be considered as a pair of counts (X,Y’) where X is



the number of goals scored by the home team and Y by the away team. We may assume that
the pair of counts (X,Y) is generated by a bivariate Poisson distribution with intensities
A, A2 > 0 for (X,Y) and with the covariance between (X,Y’) denoted by A3 > 0. The

probability mass function of the bivariate Poisson distribution is given by

= min(x,y)
pep(X =2, Y =y A1, Ag, A3) = e_(’\1+>‘2+/\3)ﬁ )‘_g Zy TN (Y Az \F (1)
) ) 3 3 x! y' = k k )\1 )\2 )

see Kocherlakota and Kocherlakota (1992) and Johnson, Kotz, and Balakrishnan (1997) for

more information. It can be shown that
EBP(X) = Vaer(X) = )\1—|—>\3, EBP(Y) = Vaer(Y) = )\2+)\3, COVBP(X, Y) = )\3, (2)

where E,, Var, and Cov, denotes expectation, variance and covariance, respectively, with
respect to density p. For A3 = 0 the bivariate Poisson distribution reduces to the double
Poisson distribution. The covariance is a “shared component” in the intensities: a higher A3
leads typically to a higher number of equal observations (X = Y’) which for a football match
is a draw.

In the context of modelling match results in football, we follow the framework developed
by Maher (1982); it has become the standard in the statistics literature on sports modelling.
We therefore specify the intensities A; and Ay as functions of the latent strengths of attack «
and defence [ of the two opposing teams, and the home ground advantage effect 6. Suppose
home team i welcomes away team j for a football match. Then intensity A;;;, associated
with the number of home goals X in this match of team ¢ versus team j, and intensity Aa;,

associated with the corresponding number of away goals Y, can be specified as

Ai,ij = exp(d + o — Bj), Aoij = exp(a; — ), (3)

with «,, and (3, being the attack and defence strengths, respectively, of team m = 7, j and
1 # j. The home ground advantage 6 can also be made team-specific but we restrict this
effect to be equal for all teams.

Assume we have a data set of football match results in a competition of N teams, for a
number of yearly football seasons, and which have taken place in a total of T" weekends (and
mid-weeks) or football rounds. The data vectors with match results for round ¢ are ordered
consecutively over time, t = 1,...,T. Hence we have a time series panel. The outcome of
a match between home team 7 and away team j is recorded by the number of home goals

xi;; and the number of away goals y,j;, for 4,5 = 1,..., N, with ¢ # j, and t = 1,...,T.



We notice that for each round ¢ in the competition, we have N/2 matches with N/2 home
teams and N/2 away teams. For this data set and with the assumption that the match result
(X,Y) is independently generated by the bivariate Poisson model described above, we can

specify the log-likelihood function as

T NJ/2
Lpp(Ypp) = Z ZlOgPBP(%’jt,yzjt; Alijs A2,ijs A3), i=i(t), Jj=7,1),
t=1 i=1
where 7 is a function of ¢, since it represents the home team in round ¢, and where j is a
function of ¢ and ¢, since it represents the opponent of the home team 7 in round ¢, that is
i =1i(t) and j = j(i,t). Given the specifications of the intensities in (3), the parameter vector
1Ypp consists of attack and defence strengths «,, and f,,, respectively, for m = 1,..., N,
together with the home ground advantage ¢ and the static covariance \3. Hence the number
of unknown coefficients is 2(N + 1). The maximum likelihood estimate of ¥pp is obtained
via the numerical maximisation of the log-likelihood function Lgp(¢gp) with respect to gp.
The maximisation typically relies on gradient-based methods such as the Newton-Raphson
method. Although the parameter vector is typically of a high-dimension, the gradients (score
function and information matrix) have closed-form expressions. For further details of exact
maximum likelihood estimation and alternative estimation methods for the bivariate Poisson
distribution, we refer to Holgate (1964), Gourieroux, Monfort, and Trognon (1984), Karlis
and Ntzoufras (2003), and Kocherlakota and Kocherlakota (2001).
Once the parameter vector ¢gp is estimated for the bivariate Poisson distribution, the
probabilities of a win, draw, and loss for the home team ¢ against the away team j in a

football match are given by

P(Xy; > Yi) = Z Z pep(2,Y; 5\1,2'3', 5\2,2'3', 5\3)7

z=1 0<y<z

P(X;; =Y,) = Z peP(Z,Y; ;\1,13‘7;\2,13‘,;\3), (4)
r=y=0

P<Xz'j < Y;j) = Z ZPBP(% Y; 5\1,1';', 5\2,1';', 5\3)7
z=0 y>z

respectively, where 5\;“] and 5\3 are the maximum likelihood estimates of coefficients Ay ;;
and A3, respectively, for k = 1,2. The estimate A3 is directly obtained from the maximum
likelihood estimate of 1)gp while the estimates S\kyij, for k = 1,2, are constructed from it using

(3). In practice, the infinite upper bound is replaced by 25 which gives sufficient accuracy.



2.2 Skellam distribution

The win, loss or draw of a football match is determined by the difference between the numbers
of goals scored and conceded by a team. The difference between the numbers of home goals
X and away goals Y can be regarded as the margin of the victory of a team. We can assume
this difference of the counts Z = X — Y to be distributed by the Skellam distribution with

intensities A4, A\5. The probability mass function of the Skellam distribution is given by
psi(Z = 2; A, As) = e~ M tAs) (>\4//\5)Z/2 I.(24/ A s), (5)

where 1./(-) is the modified Bessel function of order |z|. The mean and variance of Z are
given by
ESk(Z) = )\4 — >\5, VarSk(Z) = /\4 + )\5. (6)

We refer to the original work of Skellam (1946) and Irwin (1937) for the derivation of the
Skellam distribution based on the difference of two independent Poisson distributions. Alzaid
and Omair (2010) presented higher moments and several other interesting properties of
the Skellam distribution. Karlis and Ntzoufras (2009) showed that the underlying Poisson
assumption is not strictly necessary and that the Skellam distribution can also be considered
by itself as a distribution defined on integers. The Skellam distribution can alternatively be
formulated directly in terms of location and scale parameters which enables the modelling
of the mean and variance explicitly; see Koopman, Lit, and Lucas (2017) who adopted this
formulation to extract stochastic volatility from discrete price changes in financial markets.

When modelling football match results in terms of their victory margins, we can also
incorporate the framework of Maher (1982) for the Skellam distribution. The intensity A4
is associated with the number of home goals and intensity A5 with the number of away
goals. Hence the specifications for A;;; and Ay;; in (3) can apply similarly to Ay;; and
Asij, respectively, for home team ¢ and away team j. Assume we have a similar data set as
described above but now we only record the goal difference for a match of home team ¢ versus
away team j in round ¢, this is z;;; = x;j — vi¢. For this data set and with the assumption
that the margin of victory Z of a match is independently generated by the Skellam model
as described above, we can specify the log-likelihood function as

T NJ/2
Lo(si) = Y > logpsilzijii Migs Asig), i =1i(t), j=j(i,1),

t=1 =1

where the functions i(¢) and j(i,t) are described above. The parameter vector gy is of



dimension 2N +1 which is one less than 1)gp since A3z is not present in the Skellam distribution.
When estimating g, the same issues arise for its maximum likelihood estimation as with
estimating 1gp.

Once the maximum likelihood estimate of g, for the Skellam model is obtained, the
probabilities of a win, draw, and loss for the football match of home team i against away
team 7 are given by

P(Z;; >0) = ZPSk(Z; 5\4,1']', 5\5,1']')7

z=1

P(Zij = 0) = psic(0; Aaij, As i), (7)
-1
P(Z; <0)= > psc(2; Aaij Asij),
respectively, where 5\;“] is the maximum likelihood estimate of Ay ,;;, for k = 4,5, and can
be constructed from equation (3) and the maximum likelihood estimate of ¢g. In practice,

the infinite upper bound is replaced by 25 which gives sufficient accuracy.

2.3 Ordered probit models

The win, loss or draw of a football match can also be considered as an observed variable that
we then model directly. In this case the observed categorical variable C' is simply determined
by C' = 2 for a home win X > Y (or Z > 0), C =1 for adraw X =Y (or Z = 0), and
C' = 0 for a home loss X <Y (or Z < 0). The margin of victory is not measured. The
variable C' can also be interpreted as the credit points for a win, draw or loss of a match,
although in all our considered football competitions, the credit for a win is 3 points rather
than 2. In an ordered probit model, we assume that an unobserved stochastic variable C*

determines the category C' probabilistically, with C* given by the equation
C* =X+ n, n~ N(07 0727)7 (8)

where \g is an unknown constant that indicates the strength of the home team relative to the
away team, and where 7 is a random variable generated by a normal variable with mean zero
and variance ag. For the ordered probit model, we assume that the variable C' is generated

conditional on C* via the equations

2 if C* < K1,
C= 1 if ri<C*< K2, (9)
0 if C" > kg,



2
n

see, for example, Greene (2012) for a textbook treatment of ordered probit models and

where the cutoff points k1 and k9, and the variance o- are treated as unknown parameters;
also for a more general treatment with more categories . Given the construction with the
unobserved variable C* and the random variable 7, we cannot jointly identify the three
parameters uniquely. Therefore, we constrain the scale of n and set 0% = 1. An alternative
is to set k1 to zero and choose 0727 freely, together with k. For an ordered probit model with
categorical observations C' € {2,1,0} and O’% = 1, the probability density function is given
by

(I)(/'il — )\6) lf C = 2,
pOP(C € {27 17 0}7 )\67 K1, K'Z) = (I)(HQ - )\6) — q)(/il — )\6) lf C = 1, (10)
1-@(/12—)\6) if 0207

where ®(-) is the standard normal cumulative density function (cdf). To ensure that the
probabilities are all positive, we further restrict the parameters by k; < k.

Given the limited amount of information in the category variable of a win, loss or draw
of a football match, the framework of Maher (1982) cannot be incorporated in an ordered
probit model. It is also the design of the ordered probit model that does not allow the
separation of the strength of a team in attack and defence strengths. Since the relative
strength of the home team is represented by A\¢ and since it determines the probability of
category C € {2,1,0}, we have

Aeij = Vi — Vj» (11)

where 7, is the total strength or capability of team m.

Assume we have a similar data panel of match results as described above but now with
only a record of the match result as a win, loss or draw, for home team 7 versus away team
J in round ¢, that is ¢;;; € {2,1,0}. For this data set and with the assumption that the
category variable C' € {0, 1,2} is independently generated by the ordered probit model as

described above, we can specify the log-likelihood function as

T NJ/2
‘COP(’QDOP) = Z Z longP(cijt; )\6,ij7 K1, '%2)7 1= Z(t)a ] = ](Z7 t)a
t=1 i=1
where the functions i(t) and j(i,t) are described above. Given the specification (11), the
parameter vector op consists of strengths ~,,, for m = 1,..., N, together with the cutoff
constants k1 and ko. Hence the number of unknown coefficients is N + 2. The maximum
likelihood estimation can be carried out by a gradient-based optimisation method applied

to Lop(1op) with respect to ¥op; analytical expressions are available for the gradients and

10



facilitate fast computation. To let kK1 < kg, the coefficient ko from parameter vector Yop
can be replaced by k3 with ko = k1 + exp(k3). We notice that the home ground advantage
0 is implicitly accounted for by the cutoff parameters x; and ko because they are uniquely
associated with the probabilities of home and away wins, respectively. In effect, the difference
between their absolute values is the home ground advantage.

Given the maximum likelihood estimate of ©¥op for the ordered probit model, we can
evaluate the probabilities of a win, draw, and loss of home team ¢ against away team j which

are given by

3
Q

i 1) = q)(I%Q - 5‘6,2']') - CI)(/%I - 5\6,2']')7 (12)

respectively, where ®(-) is the standard normal cdf, 5\67” and A are the maximum likelihood
estimates of A\g;; and kj, respectively, for k = 1,2; the estimates 5\67” can be constructed

from (11) and the maximum likelihood estimate of ¥op.

3 Score-driven time-varying parameters

The treatment of football match results using the three observational variables discussed in
Section 2 is relatively straightforward. This is partly due to the assumptions that matches
and the efforts by the teams in each round of the competition are treated as independent
events. However, it is not realistic to assume that the numbers of goals scored by a team
in a series of matches are treated as an independent events. The strength of a football
team is likely to be partly related to the performance of the team in recent matches. The
attack and defence strengths of teams change also over time when the compositions of teams
evolve through the years. Several dynamic extensions of the static models described above
are considered in the statistics and econometrics literature. We consider a selection of such
existing methods in Section 3.4 for comparisons.

We contribute however by developing an effective and computationally fast approach to
the dynamic modelling of attack and defence strengths of football teams. These developments
are presented in Section 3.1 where a short review is given of score-driven time series models
and in Section 3.2 where the details of its implementation are presented for the models of
Section 2. The initialization of the dynamic processes are discussed in Section 3.3. In Section
4 we present the empirical results from European football league competitions; they include

excellent forecasting results for our proposed dynamic extensions.
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3.1 Score-driven time series models: a short review

We consider the class of score-driven models of Creal et al. (2013) to capture the dynamic
behavior of a parameter or a selection of parameters. We treat the case of a panel of time
series variables for which y; represents the corresponding vector of observations at time ¢.
We assume that the data are generated from a distribution with density function p (y;;¢) for
which the density functions discussed in Section 2 are examples. The observation vector y;
can include the pairs of counts for the number of goals of both teams, the differences between
the number of goals in a match, or the indicator of a win, loss or draw. A part of the static
model parameters in ¢ is assumed to be time-varying and is collected in the time-varying
parameter vector f;. The remaining static parameters are collected in the parameter vector
(Ch

In this framework, the score-driven model is based on the predictive density function

that is treated as the observation density and is given by

yth(yt|ftaE;¢*)’ tzla"'vTa (13>

where JF; represents the information set available at time ¢, consisting of lagged observations
{Yt-1,Yt—2,...} and past time-varying parameter vectors {f;_1, fi—_2,...}. The score-driven

updating mechanism for the time-varying parameter f; is given by
ftr1 =w+ Bfi + Asy, (14)

where w is a vector of unknown constants, matrices A and B are unknown coefficient matrices,

and s; is the scaled score vector as defined by

_ 0log p(yel fr, F; %)

St:St'vt, Vt (9f )
t

St :S(fm]:t;w*)a (15)

with S(-) being a matrix function to scale the score vector. A score-driven model updates
the factor f;,; in the direction of the steepest increase of the log-density at time ¢ given the
current parameter f; and the data history F;. Under correct model specification, the score
vectors are a martingale sequence since E;_1(s;) = 0 where E;_; denotes the expectation
with respect to p(y| fi, Fi; ¥*).

The scaling matrix is regularly chosen to be a function of the variance of the score to
take into account the curvature of the log-density at time ¢ as summarized by the Fisher
information matrix Zy,—1 = E¢—; [V,V}]. When it is intricate or impossible to obtain the

Fisher matrix analytically, we can take S; as the unity matrix. The score-driven updating of
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parameters has a theoretical foundation since the estimates of the time-varying parameter
are optimal in a Kullback-Leibler sense, see Blasques et al. (2015), and it is therefore not a
heuristic method.

A nice feature of the score-driven time series model is the availability of the likelihood

function in closed form. In particular, the log-likelihood function is given by

T
L) = logp (yilf, Fis "),
t=7

for some given parameter value for ¢*, where integer 7 > 0 is set for initialisation purposes,
see the discussion below. The time series observations y; are all given, for ¢t = 1,...,T,
and the time-varying parameter values f; are evaluated recursively as in (14), for some
initial value f; and for a given value ¥*. These simple and fast computations also lead to a
much faster optimization of the likelihood compared to the parameter driven counterparts.
In particular, when compared to the simulation-based methods that are required for the
log-likelihood evaluation for non-Gaussian state space models; see Section 3.4 for further
discussions. The aspect of simple and fast computations becomes especially important when
we consider the high-dimensional time series panels that we have in mind for the modelling
of match results in football competitions. Finally, Koopman et al. (2016) have shown that
the forecasting performance of score-driven models is similar or highly competitive to their
parameter-driven counterparts, including the state space formulations. Their study however
has only considered univariate models whereas in our study we investigate the forecasting
performance of multivariate score-driven models.

The predictive density p (y|fi, Fi;1*) is conditional on the time-varying parameter at
time ¢ and the data history F; € {ys—1,%r—2,---, fi_1, fi—2,-..}. We notice the reliance of
the recursion (14) on past data since the scaled score s; is clearly a function of y;. Hence
fi is a function of {y;_1,4—2,...}. The dynamic extensions of the models in Section 2 are
achieved simply by substituting a static parameter by a time-varying parameter. There is
no direct involvement of lagged y;’s in the density functions of Section 2 and hence we can
drop F; from the conditional set to obtain p (y;|f:; ¢*). This is still a predictive density and
it represents one of the densities in Section 2, that is p (+| f;; ¢¥*) has the same functional form
as pm(+;¥am) with M € {BP, Sk, OP}.

3.2 Score-driven models for football match results

Next we adopt the score-driven time-varying parameter framework for the three densities

discussed in Section 2. We consider the time-variation for a selection of parameters in
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and provide details for its implementation for modelling football match results. We obtain a
flexible and effective framework for the time series analysis and forecasting of football match

results in large competitions and over many seasons of a competition.

Bivariate Poisson distribution

The modelling of football match results via the observation pair (x;;, yij¢), where x;;; and
i+ are the numbers of goals by the home team ¢ and the away team j, respectively, in round
t, can be based on the bivariate Poisson distribution ppp(X = i1, Y = Yiji; Aij, A2ij, A3)
and using the approach of Maher (1982) as reflected in the specifications (3). The dynamic
model allows us to let the strengths of the teams in attack and defence be time-varying.
In particular, we replace a; and f; in (3) by a; and [y, respectively. We then obtain the
2N x 1 time-varying parameter f; which contains «;; and S for all N teams active in a

competition, that is

ft:(alta"'actNtaﬁltw">ﬁNt),7 tzl,,T (16)

The home ground advantage é and the covariance A3 in ¥gp can remain constant over time:
they can be treated as static parameters and are placed in * of the score-driven model.
The implication of this dynamic extension is that the intensities A;;; can now be treated as
time-varying intensities that we denote by Ay ;jt = Aiij(fi), for k = 1,2, where Ay ;;() refers
to the functions in (3).

The time-varying updating equation for f; is provided by (14). However, it is more
efficient to carry out the updating at round ¢ for each match result. We assume that the
observation pair (z;,y;:) is generated by the bivariate Poisson and we select a subset of f;

that is relevant for this match, that is
fijt = (Oéz't, Qjt, Bit,ﬁjt)/ = Mijfh (17)

where M;; is the 4 X 2N selection matrix of Os and 1s, and is implicitly defined. We update

the selected time-varying parameters as in (14). It reduces to the updating
Jijir1 = wij + Bij fije + AijSije, (18)

with 4 x 1 vector of constants w;; = M;;w, 4 x 4 coefficient matrices A;; = M;;A M{j and
B;; = M;;B M]

YR
with the gradient with respect to 4 x 1 vector f;;;. This updating is then repeated for all

and with the 4 x 1 scaled score vector s;;; which is defined as (15) but
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N/2 matches in each round ¢ and hence the full vector f; is effectively updated. Given the
update f;11, we can make predictions for the match results for the next round ¢ 4+ 1 in the
competition. In particular, we can forecast the probabilities of a win, draw, and loss as
described at the end of Section 2.1.

The dimension of vector f; is as high as 2N. We may therefore want to specify the
2N x 2N coefficient matrices A and B in a parsimonious manner. In our empirical study,

we specify them as

A—

0 CLQ'IN 0 bg']N

a-Iy 0 ] 5

by-Iy 0 ]

such that the attack strengths («) rely on updating coefficients a; and b; and the defence
strengths () rely on updating coefficients ay and by. The coefficient matrices A;; and B;;
are then defined similarly but for N = 2. In this specification, the coefficient matrices
A and B do not have team specific characteristics and there are no spillover effects in
the dynamic specifications between the teams. Such specifications can be considered in a
straightforward manner because all unknown elements of A and B are placed in ¢*. Finally,
the specification of the scaled score s;;; = Sijr - Vyjr in (18) for the bivariate Poisson is
provided in Appendix A.2, at least for the derivation of V,j. Since the derivation of the
Fisher matrix is intricate, we set the scaling to the unity matrix, that is S;;; = I,. The

parameter vector ¥* is given by
¢* = (a17a27b1ab2)A3)5)/7 (19>

and is estimated by maximum likelihood. The estimation of w;; is discussed in section 3.3.
A team plays only once in each round ¢. Hence the maximum number of matches at time
t is N/2. When every team plays according to schedule, a season consists of 7' = 2(N — 1)
rounds in a competition. In practice, however, some football matches are postponed due to
bad weather conditions and other external events. These matches are then played later at
a convenient time. For this purpose, additional rounds are inserted in the calendar of the
competition. A small set of matches are scheduled for such additional rounds. If a team
does not play in round ¢, its score is set to zero and the updating for the strengths of attack

and defence reduces to

Omt+1 = W + blamta Bm,t—l—l = Wny + b2/3mt7
respectively, for any team m that does not play in round ¢.

15



Skellam distribution

When the football match result is modelled in terms of the observed margin of victory,
Zijt = Tyt — Yije, we can opt for the Skellam distribution in Section 2.2 with a similar
dynamic extension as for the bivariate Poisson distribution. The probability mass function
of the Skellam distribution is given by (5); also see Koopman et al. (2017) for a discussion
of its implementation in a dynamic setting. The time-varying parameter f; has the same
composition as in (16) and hence we consider the Skellam pmf psx (Z = 2;ji; Aaije, Asi5¢e) Where
Meijt = Mkij(ft), for k= 4,5, where A\ ;;() refers to the corresponding functions in (3). The
updating of f; can take place for each match separately using (18) where f;;; is defined in
(17). The derivation of the score s;;; for the Skellam density is presented in Appendix A.3.
We set the scaling equal to the unity matrix, that is S;;; = Is. The parameter vector ¢* is

given by ¢* = (a1, ay, b1, b, ) and is estimated by maximum likelihood.

Ordered probit

When we record the data simply by win, loss or draw of a football match, that is we observe
cijit € {2,1,0}, we can model the data by the ordered logit model of Section 2.3 with a
dynamic extension for the overall strength (or capability) of the team. Given that we cannot
separate the strength in defence and attack, we have a more parsimonious model. The

strengths are made time-varying by replacing v; by v;; and place them in the N x 1 vector
fi- We have

fi= (), t=1,...,T.

As a result, the coefficient \¢;; has also become time-varying, we define Ag ;v = vt — Vjt
and it indicates the difference in strength between the home team ¢ and away team j for
their football match in round ¢. This is our dynamic version of the ordered logit model for
football match results of Koning (2000). The cutoff points k1 and ke (which also represent
the home ground advantage) remain static coefficients.

The updating of the time-varying team capabilities f; can also be done for each match
result separately as implied by (18) but now f;;; is simply the 2x 1 vector (v, v;)’, with 2x 1
constant vector w;; = (w;,w;) and 2 x 2 coefficient matrices A;; = a;-I and B;; = by-I5. The
derivation of the 2 x 1 score vector s;;; for the ordered probit pmf is provided in Appendix
A.4. We set the scaling equal to the unity matrix, that is S;;; = I;. The parameter vector

is given by ¢* = {ay, b1, k1, K2} and is estimated by maximum likelihood.
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3.3 Initialization of the panel

The updating equation for the time-varying parameter vector f; requires an initial value f;.
Given the high-dimensional f; for our high-dimensional panel of time series, this is not a
straightforward task. Next we describe several ways of initializing the updating equation
for f; and we discuss their pros and cons. In our empirical study we consider the match
results for a series of consecutive competitions. Since almost all football competitions have
a promotion and relegation system, there is a considerable set of teams that do not play at
the start of the data set and only become active at a later stage. The teams that are not
present in the first competition, are excluded from the initialization at time ¢ = 1 but will
receive a separate treatment; see below.

To illustrate the challenge of initialization, consider Figures B.1 and B.2 which display the
numbers of goals scored and conceded, respectively, in the German Bundesliga competitions
from 2000-01 to 2015-16. In this Bundesliga panel, there is a considerable number of teams
that do not play for all years of our sample and a several number of teams only play one
season. We discuss our initialization method for the dynamic bivariate Poisson model. The
initialization for the Skellam and ordered probit models can be done in a similar fashion.

For the teams that play in the first year of the data set (and possibly for many more
years), we consider two strategies. First, the elements of the 2V x 1 vector f; are estimated
as part of 1)* and the constant vector w can be set to the unconditional mean of the score
driven update function; we have w = f; ® (1 — diagonal(B)) where ® denotes point-wise
multiplication and where 1 is a vector of ones. A clear disadvantage of including f; in ¥*
is the large increase of its dimension. For the bivariate Poisson model, we need to add
2N additional parameters which need to be estimated, in addition to the parameters in
equation (19). For the relatively small length of the time series dimension, the estimation of
f1 increases the uncertainty in the parameter space while forecast precision may suffer from
this. Our second initialization strategy takes out the data from the first year of competition
and is used to obtain static estimates of the strengths of attack and defence; see, for example,
Maher (1982) in which a regression method is used. Then, f; can be set equal to the static
estimates of the strengths of attack and defence. The parameters in the static regression
are not identified, but this can be elevated by restricting the strengths of attack to sum to
zero, that is Zfil a; = 0. Once we have an estimate for fi, vector w can be determined as
suggested above. This solution comes at the cost of a shorter data sample of one year.

We also consider two different treatments for football teams that enter the panel at a
later point in time due to promotion. First, in case of the second initialization method (that

is regression with the zero sum restriction for the attack strengths), we can expect that the
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strength of a top team is typically larger than zero while the strength of a poor team is
smaller than zero. We introduce index 7 that indicates the first round of a new competition
in which a new team enters the panel. The elements of f, that correspond to the new team
are simply set to zero, the middle point between a top and a poor team, because we do not
know much about this new team. This strategy appears reasonable. In our second treatment
of newly promoted teams, the elements of f. are given values such that the average attack
strength of all teams at time 7 — 1, denoted by @,_1, equals @,. Same procedure can be
applied to defence strengths: at round 7, we choose the defence strengths of newly promoted
teams such that 3,_; = (.. Since relegated teams have typically a low strength, the newly
promoted teams are initialized with low strengths as well. This can be an undesirable feature
of this method.

Finally, when football teams relegate during one competition but get promoted in a future
competition, we emphasize that the updating continues also for "missing” observations.
When such teams re-enter the competition, their strengths have probably reverted to their

long-term mean which is reasonable.

3.4 Other dynamic extensions
Parameter-driven state space model

An alternative dynamic extension of the three discrete models in Section 2 is obtained by
formulating a non-Gaussian state space model where the observation density function is
specified conditional on a stochastically time-varying vector ft, consisting of attack and

defence strengths which are treated as latent dynamic variables, that is

yth(yt|ﬁa¢*>7 ft—i—l :w‘i‘BJEt"'AT]t’ ntNN(OJI)J (20)

for t = 1,...,T, where ¥*, w, A and B play similar roles as those for the score-driven
model discussed in Section 3.1, but they can have different values and will lead to different
forecast functions. The key difference is that f; in (14) is a function of past observations
Yi—1, Y2, - - ., while ft in (20) is a stochastic unobserved dynamic process. We notice that
p(ye | fe: Y*) represents one of the densities pa(+; 1) from Section 2, for M € {BP, Sk, OP}.

The partially non-Gaussian state space model (20) has been treated by Koopman and
Lit (2014) in the context of modelling football match results with an application to the
English Premier League. In particular, they consider the pair of counts (X,Y) and assume
it is generated by the bivariate Poisson distribution with probability density function (1).
The intensities of the distribution are specified as in (3) with the strengths of attack («) and
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defence (f) in ft For the evaluation of the log-likelihood function, we need to integrate out all
latent dynamic variables numerically using efficient simulation methods. This treatment of
non-Gaussian observations in the context of the state space model (20) can also be considered
for the dynamic Skellam model with stochastically time-varying strengths; see the treatment
in Lit (2016, Ch. 4). Fahrmeir and Tutz (1994) and Knorr-Held (2000) have adopted a similar

state space model for analyzing categorical football match outcomes of win, draw and loss.

Weighting likelihood method

The dynamic extensions of our models aim to increase the role of past observations in the
modelling and forecasting of match results. To achieve this without considering a dynamic
extension of the static models in Section 2, we can allow recent observations to be more
influential than observations in the more remote past by a direct weighting method, see
Dixon and Coles (1997) in the context of football match results. This direct method defines
the log-likelihood function as

T N/2
LY (W) =D o) ZlOgPM('; Ym), (21)

for M € {BP,Sk,OP} and where ¢(t) is a non-increasing weighting function of index ¢
and where the density pp() represents one of the densities in Section 2. A typical example
of a weighting function is ¢(t) = exp(—&t) which allows data contributions from the more
distant past to be down weighted in entering the log-likelihood function. Although this
method is relatively simple by construction, the unknown parameter £ cannot be estimated
by maximum likelihood because E% (V) — 0 as & — oo, for any data set. Instead, we can
choose ¢ such that, for example, the sum of squared prediction errors is minimized. The
empirical evidence in Dixon and Coles (1997) suggests that more precise forecasts can be
obtained using this approach, when compared to standard maximum likelihood estimation

of the parameters in the static model.

4 Forecasting football match results in Europe

Our empirical study is a basic and straightforward exercise: we forecast all match results
in the next round of a football competition, for all rounds in seven yearly competitions and
for six European football competitions. In this design of our study we almost make 15,000
probabilistic forecasts for the football toto results which are the match results in terms of

win, loss and draw for the home team. These probability forecasts are based on a particular
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model. We consider all three static models from Section 2 (using the three different variable
categories) and their various dynamic extensions as discussed in Section 3. This forecasting
study is of an exceptional magnitude and hence it allows us to draw strong conclusions
concerning which model performs best in forecasting. The forecast precision measurements

are based on the average rank probability score statistics.

4.1 Data description

We forecast the football toto results for six European football competitions: The English
Premier League, German Bundesliga, Spanish Primera Divisién, Italian Serie A, France
Ligue 1, and the Dutch Eredivisie. For each competition, the total data set consist of
17 seasons of football match results. We have partitioned the data set into the in-sample
seasons 1999-2009 which is used for initial parameter estimation, and the out-of-sample
seasons 2009-2016 which is used for our forecasting study. After each football season, the
poorest performing team(s) will be relegated and new teams will be promoted into the
competition. Hence the total number of teams in the data set increases with every season
since the relegated teams remain in the panel as they can re-appear in future seasons. The
number of relegated teams differs per competition and per season. We refer to Table 1 for
some descriptive statistics of the six football competitions. The data used in our empirical

study can be found at http://www.football-data.co.uk.

4.2 Estimated strengths from score-driven model

To empirically illustrate our proposed score-driven model as a dynamic extension of our
models for football match results, we present in Figure 1 the time-varying estimates of the
attack, defence and total strengths of the two major rival teams in the Spanish Primera
divisiéon: Barcelona and Real Madrid. We present the estimated strengths for the dynamic
bivariate Poisson model; the implementation details for filtering and parameter estimation
are discussed in Section (3.2). The graphs in Figure 1 are all based on the values of f; as
defined in (16) and recursively evaluated by (14) where w, A and B are replaced by their
maximum likelihood estimates. The estimated toto probabilities are computed as in (4) but
with the underlying parameters replaced by their estimates. Since the strengths are time-
varying (« and (3 are in f;), these probability computations are done repeatedly, each time
before a new football round starts.

The estimated strengths of attack and defence for Barcelona and Real Madrid, as obtained

from the dynamic Bivariate Poisson model, reveal that in the 16 seasons from 2000 onwards,
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Table 1
Descriptive statistics of six football competitions

The table reports in-sample and out-of-sample characteristics of the six football competitions that are con-
sidered in the forecasting study. The column ‘# Teams’ denote the number of teams that are active in one
season of the respective competition. For the Italian Serie A, the in-sample data set has 5x18 and 5x20
teams in a season. For the French Ligue 1, the in-sample data set has 3x18 and 7x20 teams in a season.
Column titles Mean(-) and Var(-) denote the sample mean and sample variance of the home (H) and away
(A) goals.

Competition # Teams # Matches Mean(H) Mean(A) Var(H) Var(A)
In-sample 1999-2009

English Premier League 20 3800 1.503 1.092 1.649 1.181
German Bundesliga 18 3060 1.673 1.185 1.781 1.274
Spanish Primera divisién 20 3800 1.533 1.116 1.566 1.169
Italian Serie A 18/20 3430 1.505 1.089 1.434 1.109
French Ligue 1 18/20 3578 1.382 0.913 1.381 0.960
Dutch Eredivisie 18 3060 1.766 1.242 2.195 1.478
Out-of-sample 2009-2016

English Premier League 20 2660 1.573 1.171 1.752 1.312
German Bundesliga 18 2142 1.617 1.281 1.804 1.462
Spanish Primera division 20 2660 1.627 1.121 1.947 1.343
Italian Serie A 20 2660 1.496 1.120 1.497 1.174
French Ligue 1 20 2660 1.420 1.050 1.409 1.151
Dutch Eredivisie 18 2142 1.789 1.325 1.956 1.558

the attack strengths have been competitive and steadily increasing for both teams while the
defence strength of Barcelona has been overall stronger since 2004 and has become even
more stronger in the more recent years. The overall superior strength of Barcelona over
Real Madrid since 2004 has been small but nevertheless clearly visible. This conclusion is
also supported by the probabilities of a Barcelona win compared to a Real Madrid win.
However, here we find that, since 2008 rather than 2004, the probability for a Barcelona win
is persistently close to 0.5 while the Real Madrid win probability is closer to 0.35 during the
last 7 seasons of the sample. We notice that the strengths and the probabilities are displayed
for each match in the sample, hence the strengths of both teams are not exclusively presented
for the Barcelona against Real Madrid (and vice versa) matches. To focus more on those
two matches in each season, we have indicated in each plot when such a key match took
place and whether it was a win, a draw or a loss for Barcelona. During the 16 seasons in our
sample, the rivals have played 32 times against each other: 14 wins for Barcelona, 8 draws
and 10 wins for Real Madrid. The home ground advantage effect is not accounted for in
these plots in order to have more precise comparisons.

Similar graphs as in Figure 1 can be presented for the dynamic extension of the Skellam

model while only the total strengths can be presented for the dynamic ordered probit model
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since the separation into attack and defence strengths cannot be identified in the latter
framework. The total strengths and the toto probability estimates for the dynamic extensions
of the Skellam and ordered probit models are presented in Figure B.3 of Appendix B. When
we compare these results amongst the three score-driven models, the paths of the estimated
total strengths are clearly different although the main patterns appear to be similar. Hence
the question of which model is best in forecasting the toto outcome is relevant and of interest.
We have presented the results for the two rival teams from the Spanish Primera divisién,
but, for completeness, we present similar figures to Figure 1 with panels of attack, defence
and overall strengths and a panel of toto probabilities, for the two main rival teams in
the other national football league competitions; see Figures B.4-B.8 in Appendix B. These
results merely illustrate that the estimated attack, defence and overall strengths are truly
time-varying. It is interesting to view the strength increases in the last years of our sample
by teams such as Dortmund, Juventus, and Paris SG but also the more recent strength

decreases of Manchester United.

4.3 Forecasting: design of study and precision measurement

We produce probability forecasts for the toto outcomes of the next round of matches in
six national league competitions and based on nine model categories as described in the
introduction and summarised in Table B.1 of Appendix B. For a description of the static
models we refer to, for example, Maher (1982), Karlis and Ntzoufras (2003), and Koning
(2000) and for a description of the semi-dynamic models we refer to Dixon and Coles (1997).
The details of our dynamic extension based on score-driven models are discussed in Section
3. The probability forecasts for the toto results are computed as implied by (4), (7), and
(12), where the strengths of attack and defence (or overall) are either treated as static or as
time-varying.

Before we compute the forecasts for round ¢ 4 1, all static parameters (whether in v
or in ©*) are re-estimated using all data up to time ¢. The first forecasts are for the toto
probabilities of all matches in the first round of the football season 2009-2010 and are based
on the parameter estimates from the data panel of the previous ten seasons 1999-2009.
These computations are repeated for each model, dynamic extension and method. In case of
the score driven model, we recursively evaluate f; and at the end of the estimation sample
we obtain f;1; from which, together with the static parameter estimates, the probability
forecasts can be computed. Given the realised match results and their forecasts, we can
evaluate a loss function to measure the forecast precision; see the details below. For the

next round of football matches and its forecasts, we re-estimate the parameter vector after
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Figure 1
Estimated strengths for Barcelona and Real Madrid
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The estimated attack, defence and total strengths from the score-driven dynamic extension of the bivariate
Poisson model for the two top teams in the Spanish Primera divisién: Barcelona (solid/red) and Real Madrid
(dotted/blue). All panels: a dot on top of the panel represents a win for Barcelona, dot at the bottom is a
win for Real Madrid, and a draw is represented by a dot in the middle of the panel. Top left panel: time
series plot of extracted strengths of attack. Top right panel: time series plot of extracted strengths of defence.
Bottom left panel: sum of extracted strengths of attack and defence. Bottom right panel: probability of toto
results from the dynamic Bivariate Poisson model: Barcelona win (solid/red), Real Madrid win (dotted /blue)
and draw (dashed/black). In these graphs, the home ground advantage is not taken into account, that is §
is set to zero in (3), to be able to better compare the two teams between each other.

including the football match results of the most recent round in our data set. Hence we have
an expanding estimation sample, to ensure that we can utilize as much data for estimation.
The procedure for our forecasting study is therefore simple, after each round of matches:
re-estimation of the static parameters, filtering of the time-varying parameters (if any),
and forecasting of the toto probabilities in the next round. We repeat these steps for each
round in the seven consecutive football seasons and for each of the six European football
competitions.

Given the forecasted probabilities for a win, loss and draw of the match and the realised
toto result, for each match in a round, we can measure the precision of our forecasts for
this round as follows. For example, assume that we have two rival models that produce

probability forecasts for the toto outcome of a football match: Model I has P(win) = 0.50,
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P(draw) = 0.40, and P(loss) = 0.10; Model I has P(win) = 0.50, P(draw) = 0.30, and
P(loss) = 0.20. The outcome of the match is a home win. If we opt for the log-loss function,
we would have log(0.50) as the loss for this match for both models, while the assigned
probabilities to the other possible outcomes P(draw) and P(away) are ignored. The rank
probability score (RPS) is a loss function that accounts for the other probabilities as well;
see Epstein (1969) and, for an application to football match results, see Constantinou and

Fenton (2012). For the toto forecasts, the RPS statistic is given by

3

RPS =05 (cdfri — cdfy ). (22)

k=1

where cdfy and cdf, . are the cumulative density functions of the forecast and realised
outcome, respectively. In our example, we have RPS; = [(0.5—1)2+(0.9—1)2+(1—-1)?]/2 =
0.13 and RPS;; = [(0.5—1)?4+(0.8—1)?+(1—1)?]/2 = .145 for Models I and II, respectively.
Hence the probability forecasts from Model I have been more precise. We average the RPS
statistic over all football matches in a round and we take this average as our loss function.
To facilitate model comparisons, we collect the value of this loss function, for each round,
in a loss vector and use it to compute the Diebold Mariano (DM) test statistic for equal
predictive accuracy; see Diebold and Mariano (1995). The DM statistic is asymptotically
distributed as a standard normal random variable and hence rejects the null hypothesis of
equal predictive accuracy at the 5% level of significance if the DM test statistic is smaller
than —1.96 (the benchmark model performs significantly worse) or larger than 1.96 (the
benchmark model performs significantly better). Finally, we also report the ARPS which is
defined as the average of the RPS statistic over all rounds in the football season, and over
all seven years in our out-of-sample data set (it is simply the average of the values in the

loss vector).

4.4 Results of forecasting study

In Tables 2 and 3 we present the ARPS and the DM statistics for our three static models,
their dynamic extensions and different initialization methods. We report these results for the
six European football competitions and represent a summary of our findings. Given that for
each competition we have made £2,500 forecasts on average, we may regard our forecasting
study as impressive. From the reported results, we learn that our dynamic extension, based
on the score-driven model with f; being estimated using the first season of the in-sample data
set, is the best performing forecasting strategy for all six European football competitions.

It is only for the Spanish Primera divisiéon that a constrained version of our model with
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bl = by = 1 (leading to a random walk updating for the time-varying parameter f;) is the
best performing in forecasting.

Our score-driven dynamic extensions outperform the static model and the semi-dynamic
model extension in forecast precision significantly, in almost all cases. The Dutch Eredivisie is
the exception: the outperformance is not strongly significant. We also learn that estimating
f1 as part of ¥* brings too much uncertainty in the parameter space as the associated
forecasts are significantly worse almost in all cases. The best strategy for initialization, that
is setting a value for fi, appears to be obtained by estimating the static model using the
first season in the sample.

Tables 2 and 3 provide convincing evidence that the bivariate Poisson is the preferred
distribution with the Skellam distribution in second place. These two models are almost
always preferred when compared to the ordered probit model. The Dutch Eredivisie is the
only exception where the dynamic ordered probit model is preferred in terms of forecast
precision. However the superiority of the ordered probit model is never significant when
compared to the other dynamic models. We may conclude that the condensation of data has
a negative impact on forecast precision: we loose information when data is recorded in a more
condensed manner. The counts of number of goals for both teams in a football match contain
more information than the difference of these two counts, and even much more so than the
sign of the difference (and zero). However, we could also have opted for another bivariate
distribution than the Poisson. For example, we could have opted for the bivariate negative
Binomial distribution; see Famoye (2010) for all relevant details. Its dynamic extension can
be implemented in a similar way as for the Poisson but the scaled score function for updating
the time-varying parameters will be different. However, the reported data descriptives in
Table 1 do not give much evidence of over-dispersion in the number of goals scored, perhaps
there is only some evidence for the Dutch Eredivisie competition. Although we do not report
these results, we have produced the forecasting results for the bivariate negative Binomial
model but we have not found any improvements when compared to the Poisson model.

Koopman et al. (2016) have argued that the forecasting performance of univariate score-
driven models is comparable to their parameter-driven (state space model) counterparts. In
our study we have confirmed this conclusion but now for a class of multivariate score-driven
and state space models. In terms of forecast precision, the score-driven model produces a
lower forecast loss than the dynamic state space model; in some instances we even report
a significant improvement. Finally, we also report the number of seconds of computer-time
needed for maximizing the log-likelihood function for a single model. The differences in

computing-time for parameter estimation is noteworthy: estimation requires < 10 seconds

25



for the score-driven model and approximately one hour for the state space model. The score-
driven models clearly outperform the state space model, both in terms of forecast precision

and computer-time.

5 Conclusion

We have developed a multivariate score-driven model to analyse a high-dimensional panel of
football match results. The score-driven methodology is applied to three classes of models.
In the first class, a match result is treated as a pairwise observation which is assumed to
come from the bivariate Poisson distribution. The second class of models assumes that the
difference between the number of goals, or the margin of victory of a team, is generated
by the Skellam distribution. In the third class of models, the possibility of a win, draw, or
loss of a match is modelled by an ordered probit model. These different model classes with
their different variables require somewhat different statistical treatments but they can be
extended with time-varying parameters using the same score-driven framework. All three
approaches are able to forecast toto probabilities for football matches in a national league
competition. In a large-scale forecasting study we have investigated which of the three
model classes performs best in forecasting the toto probabilities in the next round of the
competition. For this purpose, we have used a large panel match results from six European
football competitions over a range of seasons. The results of the forecasting study show
that our score-driven football models outperform a range of benchmark models in forecast
precision but also in computing time. The dynamic bivariate Poisson model turns out to be
the best performing model in forecasting overall while the ordered probit model does almost
never produce a more precise forecast. We may conclude that the subsequent merging of
data (from two counts, to the difference in counts, on to the sign of the difference) leads to
a decrease of forecasting performance. It reduces the informational content in data which is

key for signal extraction.
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Appendices

A First derivatives of probability mass functions

For notational simplicity, throughout this appendix the subscripts that denote time ¢ and

teams 7, 7 are suppressed for intensities and observations.

A.1 Double Poisson distribution

A pair of counts (X, Y") which is assumed to be distributed by the double Poisson distribution

with intensities A1, Ao > 0 has probability mass function

—A1 )\ —A2\¥Y
AT em 2

p(xayv ftaw*) = ‘ (A1>

x! y!

The mean and variance of the marginals are E(X) = Var(X) = A and E(Y) = Var(Y) = Xs.
If the intensities are functions of latent strengths of attack and defence as in (3), the first
derivative of the double Poisson distribution with respect to fi;; = (ut, @i, Bit, Bjt)/ is given

by the 4 x 1 score vector

0 log p(x, yl fe, Fr, ™)

Vit =
" 0 fiji

= (x—)\l,y—/\g,/\g—y, )\1 —J])/. (A2>

A.2 Bivariate Poisson distribution

The first derivative of the bivariate Poisson mass function in (1) with respect to f;j;; is

* T—A 7U(f 71:0*)
v 9 log p(yijel fo. Fo, ¥°) [ y—da—v(fiv) (A.3)
ijt — af T Ae—yHU(fewr) |0 ‘
ijt M —z+U(f,290")

where U(fy,v*) = S(1, f;,4*)/S(0, fi,v*) with

min(x,y) )\3 k
o E (o) oo
=0

We notice that S(1, fi,¥*) = 0 when A3 = 0 and S(0, f;,¥*) = 1 when min(z,y) = 0 so that
function U( f;, 1*) is properly defined for all A3 > 0, see also the online appendix of Koopman

and Lit (2014). Finally we observe that for A3 = 0 the score vector of the bivariate Poisson

distribution reduces to the score vector of the double Poisson distribution in equation (A.2).
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A.3 Skellam distribution

The first derivative of the Skellam mass function in (5) with respect to f;j: = (v, ojt, Bit, Bjt)'

is given by the 4 x 1 score vector

V. _ 0 log p(yije| fr, Fr, ") _ —A; +W(fz,¢*) (A.4)
1yt — 8f~ - Xo =W(fe,g*) | '
gt —z+A1 =W (fe,0*)

where W(fi,1*) is defined as

]z+1(2 A z’jt/\2)
v A g X y .
e L2V )

A.4 Ordered probit distribution

The first derivative of p(C; f;,1*) with respect to fi;: = (i, vj¢) is given by the 2 x 1 score

vector
( B(r2—X6,i5¢)
1-®(k2—Xe,ijt) . o
< _¢(H22_>\66,ijjtt) ) it ' = 2’
d(k1—X6,i5¢) —P(Kk2—N6,ijt)
9 log p(yije| fi, Fi; ") B(ra—\ '-]-t)—cb(m_,\ ’ -J.t) .
Vije = O fin - ¢(Hz—>\zzijt)—¢(m—As,’z‘;t) ifC=1, (A.5)
K D (rk2—N6,i5t) —P(K1—N6,i5t)
—9(k1—X6,i5t)
D(r1—N6,i5t) . o
< o1 Ne.ose) ) it C=0,
\ D(k1—N6,i5t)

where ¢(+) is the standard normal pdf.
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B More Tables and Figures

Table B.1

Main contributions to the football literature

The main contributions in the literature on modelling football match results are organized into nine cate-
gories. The three columns are for the dynamic extension of the model: 'Static’ means no dynamics at all,
"Dynamic’ means fully dynamic and ’Semi-dynamic’ refers to the method of weighted maximum likelihood

estimation. The three rows are for the type of observation in which the match result is measured: a pairwise

observation ('Goals’), a difference between the number of goals (‘Difference’), or a category variable ("Toto’).

Although it is not the main focus or contribution of this paper, we address the empty square in the middle of

this table by considering weighted maximum likelihood estimation for the parameters in the static Skellam

model. Our main contribution is for the last column as we propose an alternative dynamic extension to the

three observation densities.

Goals

Difference

Toto

Static

Semi-dynamic

Dynamic

Maher (1982)

Karlis and Ntzoufras (2003)
Goddard (2005)

Dixon and Robinson (1998)

Dixon and Coles (1997)

Crowder et al. (2002)
Rue and Salvesen (2000)
Koopman and Lit (2014)

Karlis and Ntzoufras (2009)

Lit (2016, Ch. 4)

Goddard et al. (2004)
Forrest and Simmons (2000)
Koning (2000)

Cattelan et al. (2013)

Fahrmeir and Tutz (1994)
Knorr-Held (2000)
Hvattum and Arntzen (2010)
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Figure B.3
Extracted strengths of Barcelona and Real Madrid :
Skellam and ordered probit models
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All panels: a dot on top of the panel represents a win for Barcelona, dot at the bottom is a win for Real
Madrid, and a draw is represented by a dot in the middle of the panel. Top left panel: sum of extracted
strengths of attack and defence from dynamic Skellam model. Top right panel: probability of toto results
from the dynamic Skellam model. Bottom left panel: sum of extracted strengths of attack and defence from
the dynamic ordered probit model. Bottom right panel: probability of toto results from the dynamic ordered
probit model.
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Figure B.4
Extracted strengths of Manchester United and Liverpool
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All panels: a dot on top of the panel represents a win for Manchester United, dot at the bottom is a win for
Liverpool, and a draw is represented by a dot in the middle of the panel. Top left panel: time series plot of
extracted strengths of attack. Top right panel: time series plot of extracted strengths of defence. Bottom
left panel: sum of extracted strengths of attack and defence. Bottom right panel: probability of toto results

from the dynamic Bivariate Poisson model.

Figure B.5
Extracted strengths of Dortmund and Schalke 04
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All panels: a dot on top of the panel represents a win for Dortmund, dot at the bottom is a win for Schalke
04, and a draw is represented by a dot in the middle of the panel. Top left panel: time series plot of extracted
strengths of attack. Top right panel: time series plot of extracted strengths of defence. Bottom left panel:
sum of extracted strengths of attack and defence. Bottom right panel: probability of toto results from the

dynamic Bivariate Poisson model.
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Figure B.6
Extracted strengths of Juventus and Inter Milan
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All panels: a dot on top of the panel represents a win for Juventus, dot at the bottom is a win for Inter
Milan, and a draw is represented by a dot in the middle of the panel. Top left panel: time series plot of
extracted strengths of attack. Top right panel: time series plot of extracted strengths of defence. Bottom
left panel: sum of extracted strengths of attack and defence. Bottom right panel: probability of toto results

from the dynamic Bivariate Poisson model.

Figure B.7
Extracted strengths of Paris SG and Marseille
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All panels: a dot on top of the panel represents a win for Paris SG, dot at the bottom is a win for Marseille,
and a draw is represented by a dot in the middle of the panel. Top left panel: time series plot of extracted
strengths of attack. Top right panel: time series plot of extracted strengths of defence. Bottom left panel:
sum of extracted strengths of attack and defence. Bottom right panel: probability of toto results from the
dynamic Bivariate Poisson model.
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Figure B.8
Extracted strengths of Ajax and Feyenoord
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All panels: a dot on top of the panel represents a win for Ajax, dot at the bottom is a win for Feyenoord,
and a draw is represented by a dot in the middle of the panel. Top left panel: time series plot of extracted
strengths of attack. Top right panel: time series plot of extracted strengths of defence. Bottom left panel:
sum of extracted strengths of attack and defence. Bottom right panel: probability of toto results from the
dynamic Bivariate Poisson model.
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