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Abstract 
 

Recent research shows that efforts to limit climate change should focus on reducing 

emissions of carbon dioxide over other greenhouse gases or air pollutants. Many 

countries are paying substantial attention to carbon emissions to improve air quality 

and public health. The largest source of carbon emissions from human activities in 

some countries in Europe and elsewhere is from burning fossil fuels for electricity, 

heat, and transportation. The price of fuel influences carbon emissions, but the price 

of carbon emissions can also influence the price of fuel. Owing to the importance of 

carbon emissions and their connection to fossil fuels, and the possibility of Granger 

(1980) causality in spot and futures prices, returns and volatility of carbon emissions, 

it is not surprising that crude oil and coal have recently become a very important 

research topic. For the USA, daily spot and futures prices are available for crude oil 

and coal, but there are no daily spot or futures prices for carbon emissions. For the 

EU, there are no daily spot prices for coal or carbon emissions, but there are daily 

futures prices for crude oil, coal and carbon emissions. For this reason, daily prices 

will be used to analyse Granger causality and volatility spillovers in spot and futures 

prices of carbon emissions, crude oil, and coal. A likelihood ratio test is developed to 

test the multivariate conditional volatility Diagonal BEKK model, which has valid 

regularity conditions and asymptotic properties, against the alternative Full BEKK 

model, which has valid regularity conditions and asymptotic properties under the null 

hypothesis of zero off-diagonal elements. Dynamic hedging strategies using optimal 

hedge ratios will be suggested to analyse market fluctuations in the spot and futures 

returns and volatility of carbon emissions, crude oil and coal prices. 

 

Keywords: Carbon emissions, Fossil fuels, Crude oil, Coal, Low carbon targets, 
Green energy, Spot and futures prices, Granger causality and volatility spillovers, 
Likelihood ration test, Diagonal BEKK, Full BEKK, Dynamic hedging. 

JEL: C58, L71, O13, P28, Q42. 
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1. Introduction 

 

Recent research shows that efforts to limit climate change should focus on reducing 

emissions of carbon dioxide over other greenhouse gases or air pollutants. Many 

countries are paying substantially greater attention to carbon emissions to improve air 

quality and public health. Carbon emissions trading programs have been established at 

the international, regional, national, and sub-national levels (see Figure 1). 

 

      [Insert Figure 1 here] 

 

As can be seen from Figure 1, in a scenario of ‘no carbon dioxide mitigation’, global 

temperatures would be predicted to rise by over five degrees Celsius by 2100, but 

cutting emissions of methane, HFCs and black carbon would reduce this rise to 

around one degree Celsius. The results suggest that carbon dioxide should certainly 

remain central to greenhouse gas emission cuts. 

 

[Insert Figure 2 here] 

 

Figure 2 shows that projects and regions such as the CDM (Clean Development 

Mechanism), RGGI (Regional Greenhouse Gas Initiative), and EU, countries like 

New Zealand, Australia and South Korea, the State of California in the USA, and the 

Province of Quebec inn Canada, have passed and implemented programs to mitigate 

carbon emissions. 

 

The programs have operated in phases, with a pilot phase from 2005 to 2007 covering 

the power sector and certain heavy industries, a second phase from 2008 to 2012 

expanding coverage slightly, and a third phase for 2013–2020 that adds a significant 

range of industrial activities. 
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The largest source of carbon emissions from human activities in some countries in 

Europe and elsewhere is from burning fossil fuels for electricity, heat, and 

transportation. The price of fuel influences carbon emissions, but the price of carbon 

emissions can also influence the price of fuel. 

 

Owing to the importance of carbon emissions and their connection to fossil fuels, and 

the possibility of Granger (1980) causality in spot and futures prices, returns and 

volatility of carbon emissions, it is not surprising that crude oil and coal have recently 

become a very important public policy issue, and hence also a significant research 

topic. 

 

The plan of the remainder of the paper is as follows. Section 2 discusses the spot and 

futures data for carbon emissions, coal and oil that will be used in the empirical 

analysis for the EU and USA. Section 3 discusses methodological issues, including 

univariate and multivariate conditional volatility models, Granger causality, volatility 

spillovers, and optimal hedge ratios. Section 4 analyses causality in returns and 

volatility, as well as an interesting and novel application of the likelihood ratio test of 

the Diagonal BEKK model against the alternative of a Full BEKK model. Section 5 

provides some concluding remarks. 

 

2. Data 

 

The length of the sample period for the empirical analysis was dictated by the 

availability of data on carbon, coal and crude oil spot and futures prices in the EU and 

USA. The carbon emission trading market of the EU has the longest trading period for 

futures prices, but not for spot prices. The USA is the leader in developing a wide 
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range of financial derivatives, such as futures prices, for financial, energy and 

commodities, but not for carbon emissions, where only spot prices are available. 

 

Data for EU carbon emission, crude oil and coal futures are available from 1 April 

2008 to 20 May 2017, and these will be analyzed in the paper. Coal spot price in the 

EU is available on a weekly basis. The spot prices of carbon emission and crude oil 

have a high correlation with the corresponding futures prices. The volume of trades in 

the spot market of carbon emissions is much smaller than in the futures market, as 

shown in Figure 3.  

 

[Insert Figure 3 here] 

 

Data for crude oil are available prior to 2000. However, the data for the spot prices of 

coal and carbon emission start from 2006/7/17 and 2008/4/1, respectively. Therefore, 

the data in the empirical analysis for the European Union starts from the latest date for 

crude oil, coal and carbon emissions, namely 2008/4/1. 

 

Data for carbon, coal and oil spot prices from 2016/1/5 to 2017/5/20 for the USA will 

also be analyzed in the paper, but data for futures prices of carbon emission are not 

available for the USA. Spot prices for coal and crude oil start prior to 2000. However, 

data for carbon emission start from 2016/1/5. Consequently, the spot price data in the 

empirical analysis for the USA starts from the latest date for oil, coal and carbon 

emissions, namely 2016/1/5.   

 

The transaction markets and units for the variables are different. EU carbon futures is 

the Intercontinental Exchange EU allowance, which is traded in the ICE-ICE Futures 

Europe Commodities market, and is expressed in Euros per metric ton. EU coal 

futures is ICE Rotterdam Monthly Coal Futures Contract, and is traded in the ICE-
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ICE Futures Europe Commodities market. EU oil futures is the current pipeline export 

quality Brent blend, as supplied at Sullom Voe, is traded in the ICE-ICE Futures 

Europe Commodities market, and is expressed in USDs per bbl.  

 

Carbon spot prices in the USA is given as the United States Carbon Dioxide RGGI 

Allowance, and is expressed in USDs per Allowance. Coal spot prices are given as the 

Dow Jones US Total Market Coal Index, which is expressed in USD. Oil spot returns 

are given as the West Texas Intermediate Cushing Crude Oil, which is expressed in 

USDs per bbl. All of the currency units are transformed to USD in the empirical 

analysis. 

 

The endogenous variables used in the empirical analysis are daily returns, where the 

rate of return is obtained as the first difference in the natural logarithm of the relevant 

daily price data. The mnemonics EUcarbonfr, EUcoalfr, EUoilfr  denote, respectively, 

the future returns of carbon emission, coal and oil in the European Union. Similarly, 

the mnemonics UScarbonsr   UScoalsr, USoilsr  denote, respectively, the spot returns 

for carbon emission, coal and oil in the USA.  

 

The variable sources and definitions are given in Table 1, with respect to the futures 

returns for the EU and spot returns for the USA, as well as their transactions markets, 

and descriptions of the data.   

 

[Insert Table 1 here] 

 

For the USA, daily spot and futures prices are available for crude oil and coal, but 

there are no daily spot or futures prices for carbon emissions. For the EU, there are no 

daily spot prices for coal or carbon emissions, but there are daily futures prices for 

crude oil, coal and carbon emissions.  
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For this reason, daily futures prices will be used to analyse Granger causality and 

volatility spillovers in spot and futures prices of carbon emissions, crude oil, and coal. 

This will be based on the Lagrange multiplier test of univariate causality in variance 

(strictly, causality in conditional volatility) of Hafner and Herwartz (2006), and more 

recently, Chang and McAleer (2017). An extension to multivariate tests of causality in 

conditional volatility will be a focus of the paper. A likelihood ratio test is developed 

to test the multivariate conditional volatility Diagonal BEKK model, which has valid 

regularity conditions and asymptotic properties, against the alternative Full BEKK 

model, which has valid regularity conditions and asymptotic properties only under the 

null hypothesis of zero off-diagonal elements. Dynamic hedging strategies using 

optimal hedge ratios will be suggested to analyse market fluctuations in the spot and 

futures returns and volatility of carbon emissions, crude oil and coal prices. 

 

The descriptive statistics for the endogenous returns of the variables are given in 

Table 2. The highest standard deviation for the EU over the sample period is for 

carbon futures, followed by oil and coal futures. Similarly, the highest standard 

deviation for the US market is for coal spot returns, followed by carbon emission spot 

returns.  

 

[Insert Table 2 here] 

 

The returns have different degrees of skewness. The futures and spot returns of oil in 

the EU and US markets, and coal spot returns in the USA are skewed to the left, 

indicating that these series have longer left tails (extreme losses) than right tails 

(extreme gains). However, other returns are all skewed to the right, especially carbon 

emission spot return in the USA, for which the value of the skewness is high, 

indicating these series have more extreme gains than extreme losses.  
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These stylized facts should be of interest to participants in commodity markets. All of 

the price distributions have kurtosis that is significantly higher than 3, implying that 

higher probabilities of extreme market movements in either direction (gains or losses) 

occur in these futures markets, with greater frequency in practice than would be 

expected under the normal distribution.  

 

In the EU market, the highest kurtosis is for coal futures, followed by carbon futures 

and oil futures. For the US market, the highest kurtosis is for carbon spot, followed by 

coal spot. The Jarque-Bera Lagrange multiplier statistic for normality confirm the 

non-normal distributions for all the returns series. 

 

2. Methodology 

 

Although financial returns are almost certainly stationary, the empirical analysis will 

commence with tests of unit roots based on ADF, DF-GLS and KPSS. This will be 

followed by an analysis and estimation of univariate GARCH and multivariate 

diagonal BEKK models (see Baba et al. (1985), Engle and Kroner (1995)), from 

which the conditional covariances will be used for testing co-volatility spillovers, that 

is, Granger causality in conditional volatility. 

 

Despite the empirical applications of a wide range of conditional volatility models in 

numerous papers in empirical finance, there are theoretical problems associated with 

virtually all of them. The CCC (Bollerslev (1990)), VARMA-GARCH (Ling and 

McAlkeer (2003)), and its asymmetric counterpart, VARMA-AGARCH McAleer et 

al. (2009)), models have static conditional covariances and correlations, which means 

that accommodating volatility spillovers is not possible.
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Apart from the diagonal version, the multivariate BEKK model of conditional 

covariances has been shown to have no regularity conditions, and hence no statistical 

properties (see McAleer et al. (2008) and the discussion below for further details). 

Therefore, spillovers can be considered only for the special case of diagonal BEKK. 

The multivariate DCC model of (purported) conditional correlations has been shown 

to have no regularity conditions, and hence no statistical properties (see Hafner and 

McAleer (2014) for further details). 

 

The analysis of univariate and multivariate conditional volatility models below is a 

summary of what has been presented in the literature (see, for example, Caporin and 

McAleer (2012)), although a comprehensive discussion of the Full and Diagonal 

BEKK models is not available in any published source. In particular, application of 

the likelihood ratio test of the Diagonal BEKK model as the mull hypothesis against 

the alternative hypothesis of a Full BEKK model does not seem to have been 

considered in the literature. 

 

The first step in estimating multivariate models is to obtain the standardized residuals 

from the conditional mean returns shocks. For this reason, the most widely-used 

univariate conditional volatility model, namely GARCH, will be presented briefly, 

followed by the two most widely estimated multivariate conditional covariance 

models, namely the Diagonal and Full BEKK models. 

 

2.1  Univariate Conditional Volatility 

 

Consider the conditional mean of financial returns, as follows: 

 

𝑦𝑡 = 𝐸(𝑦𝑡|𝐼𝑡−1) + 𝜀𝑡,         (1) 
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where the financial returns,  𝑦𝑡 = Δ𝑙𝑙𝑙𝑃𝑡 , represent the log-difference in financial 

commodity or agricultural prices, 𝑃𝑡, 𝐼𝑡−1 is the information set at time t-1, and 𝜀𝑡 is a 

conditionally heteroskedastic error term, or returns shock. In order to derive 

conditional volatility specifications, it is necessary to specify the stochastic processes 

underlying the returns shocks, 𝜀𝑡. The most popular univariate conditional volatility 

model, GARCH model, is discussed below. 

 

Now consider the random coefficient AR(1) process underlying the return shocks, 𝜀𝑡: 

 

    𝜀𝑡 = 𝜙𝑡𝜀𝑡−1 + 𝜂𝑡     (2) 

 

where 

𝜙𝑡~𝑖𝑖𝑖(0,𝛼), 𝛼 ≥ 0, 

𝜂𝑡~𝑖𝑖𝑖(0,𝜔), 𝜔 ≥ 0, 

𝜂𝑡 = 𝜀𝑡/�ℎ𝑡 is the standardized residual, with ℎ𝑡 defined below. 

 

Tsay (1987) derived the ARCH (1) model of Engle (1982) from equation (2) as: 

 

ℎ𝑡 ≡ 𝐸(𝜀𝑡2|𝐼𝑡−1) = 𝜔 + 𝛼𝜀𝑡−12     (3) 

 

where ℎ𝑡 represents conditional volatility, and 𝐼𝑡−1 is the information set available at 

time t-1. A lagged dependent variable, ℎ𝑡−1 , is typically added to equation (3) to 

improve the sample fit: 

 

ℎ𝑡 ≡ 𝐸(𝜀𝑡2|𝐼𝑡−1) = 𝜔 + 𝛼𝜀𝑡−12 + 𝛽ℎ𝑡−1.    (4) 

 

From the specification of equation (2), it is clear that both 𝜔 and 𝛼 should be positive 

as they are the unconditional variances of two different stochastic processes. 



12 
 

 

Given the non-normality of the returns shocks, the Quasi-Maximum Likelihood 

Estimators (QMLE) of the parameters have been shown to be consistent and 

asymptotically normal in several papers. For example, Ling and McAleer (2003) 

showed that the QMLE for a generalized ARCH(p,q) (or GARCH(p,q)) is consistent 

if the second moment is finite. A sufficient condition for the QMLE of GARCH(1,1) 

in equation (4) to be consistent and asymptotically normal is 𝛼 + 𝛽 < 1.  

 

In general, the proofs of the asymptotic properties follow from the fact that GARCH 

can be derived from a random coefficient autoregressive process. McAleer et al. 

(2008) give a general proof of asymptotic normality for multivariate models that are 

based on proving that the regularity conditions satisfy the conditions given in 

Jeantheau (1998) for consistency, and the conditions given in Theorem 4.1.3 in 

Amemiya (1985) for asymptotic normality.  

 

2.2  Multivariate Conditional Volatility 

 

The multivariate extension of the univariate ARCH and GARCH models is given in 

Baba et al. (1985) and Engle and Kroner (1995). In order to establish volatility 

spillovers in a multivariate framework, it is useful to define the multivariate extension 

of the relationship between the returns shocks and the standardized residuals, that is, 

𝜂𝑡 = 𝜀𝑡/�ℎ𝑡.  

 

The multivariate extension of equation (1), namely 𝑦𝑡 = 𝐸(𝑦𝑡|𝐼𝑡−1) + 𝜀𝑡, can remain 

unchanged by assuming that the three components are now 𝑚 × 1 vectors, where 𝑚 is 

the number of financial assets. The multivariate definition of the relationship between 

𝜀𝑡 and 𝜂𝑡 is given as:  
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     𝜀𝑡 = 𝐷𝑡
1/2𝜂𝑡,     (5) 

 

where 𝐷𝑡 = 𝑑𝑑𝑑𝑑(ℎ1𝑡, ℎ2𝑡, … ,ℎ𝑚𝑚)  is a diagonal matrix comprising the univariate 

conditional volatilities. 

 

Define the conditional covariance matrix of 𝜀𝑡 as 𝑄𝑡 . As the 𝑚 × 1  vector, 𝜂𝑡 , is 

assumed to be iid for all 𝑚 elements, the conditional correlation matrix of 𝜀𝑡, which is 

equivalent to the conditional correlation matrix of 𝜂𝑡, is given by 𝛤𝑡. Therefore, the 

conditional expectation of (5) is defined as: 

 

    𝑄𝑡 = 𝐷𝑡
1/2𝛤𝑡𝐷𝑡

1/2.     (6) 

 

Equivalently, the conditional correlation matrix, 𝛤𝑡, can be defined as: 

 

    𝛤𝑡 = 𝐷𝑡
−1/2𝑄𝑡𝐷𝑡

−1/2.     (7) 

 

Equation (6) is useful if a model of 𝛤𝑡  is available for purposes of estimating 𝑄𝑡 , 

whereas (7) is useful if a model of 𝑄𝑡 is available for purposes of estimating 𝛤𝑡. 

 

Equation (6) is convenient for a discussion of volatility spillover effects, while both 

equations (6) and (7) are instructive for a discussion of asymptotic properties. As the 

elements of 𝐷𝑡 are consistent and asymptotically normal, the consistency of 𝑄𝑡 in (6) 

depends on consistent estimation of 𝛤𝑡, whereas the consistency of 𝛤𝑡 in (7) depends 

on consistent estimation of 𝑄𝑡 . As both 𝑄𝑡  and 𝛤𝑡  are products of matrices, with 

inverses in (7), neither the QMLE of 𝑄𝑡 nor 𝛤𝑡 will be asymptotically normal based on 

the definitions given in equations (6) and (7). 
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2.3  Diagonal BEKK 

 

The Diagonal BEKK model can be derived from a vector random coefficient 

autoregressive process of order one, which is the multivariate extension of the 

univariate process given in equation (2):   

  

    𝜀𝑡 = 𝛷𝑡𝜀𝑡−1 + 𝜂𝑡,     (8) 

 

where 

𝜀𝑡 and 𝜂𝑡 are 𝑚 × 1 vectors,  

𝛷𝑡 is an 𝑚 × 𝑚 matrix of random coefficients,   

𝛷𝑡~𝑖𝑖𝑖(0,𝐴), A is positive definite,  

𝜂𝑡~𝑖𝑖𝑖(0,𝐶), C is an 𝑚 × 𝑚 matrix. 

 

Vectorization of a full matrix A to vec A can have dimension as high as 𝑚2 × 𝑚2, 

whereas vectorization of a symmetric matrix A to vech A can have a smaller 

dimension of 𝑚(𝑚 + 1)/2 × 𝑚(𝑚 + 1)/2.  

 

In a case where A is a diagonal matrix, with 𝑎𝑖𝑖 > 0 for all i = 1,…,m and |𝑏𝑗𝑗| < 1 for 

all j = 1,…,m, so that A has dimension 𝑚 × 𝑚, McAleer et al. (2008) showed that the 

multivariate extension of GARCH(1,1) from equation (8) is given as the Diagonal 

BEKK model, namely:  

 

𝑄𝑡 = 𝐶𝐶′ + 𝐴𝜀𝑡−1𝜀𝑡−1′ 𝐴′ + 𝐵𝑄𝑡−1𝐵′,   (9) 

 

where A and B are both diagonal matrices, though the last term in equation (9) need 

not come from an underlying stochastic process. The diagonality of the positive 

definite matrix A is essential for matrix multiplication as 𝜀𝑡−1𝜀𝑡−1′  is an 𝑚 × 𝑚 
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matrix; otherwise equation (9) could not be derived from the vector random 

coefficient autoregressive process in equation (8). 

 

2.4 Full, Triangular and Hadamard BEKK 

 

The full BEKK model in Baba et al. (1985) and Engle and Kroner (1995), who do not 

derive the model from an underlying stochastic process, is presented as: 

  

   𝑄𝑡 = 𝐶𝐶′ + 𝐴𝜀𝑡−1𝜀𝑡−1′ 𝐴′ + 𝐵𝑄𝑡−1𝐵′,             (10) 

 

except that A and (possibly) B in equation (10) are now both full matrices, rather than 

the diagonal matrices that were derived in equation (9) using the stochastic process in 

equation (8). The full BEKK model can be replaced by the triangular or Hadamard 

(element-by-element multiplication) BEKK models, with similar problems of 

identification and (lack of) existence.  

 

A fundamental technical problem is that the full, triangular and Hadamard BEKK 

models cannot be derived from any known underlying stochastic processes, which 

means there are no regularity conditions (except by assumption) for checking the 

internal consistency of the alternative models, and consequently no valid asymptotic 

properties of the QMLE of the associated parameters (except by assumption).  

 

Moreover, as the number of parameters in a full BEKK model can be as much as 

3m(m+1)/2, the “curse of dimensionality” will be likely to arise, which means that 

convergence of the estimation algorithm can become problematic and less reliable 

when there is a large number of parameters to be estimated.  
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As a matter of empirical fact, estimation of the full BEKK can be problematic even 

when m is as low as 5 financial assets. Such computational difficulties do not arise for 

the Diagonal BEKK model. Convergence of the estimation algorithm is more likely 

when the number of commodities is less than 4, though this is nevertheless 

problematic in terms of interpretation.  

 

Therefore, in the empirical analysis, in order to investigate volatility spillover effects, 

the solution is to use the Diagonal BEKK model for estimation. A likelihood ratio test 

is developed to test the multivariate conditional volatility Diagonal BEKK model in 

equation (9) (where A and B are both diagonal matrices), which has valid regularity 

conditions and asymptotic properties, against the alternative Full BEKK model in 

equation (10) (where A and B in are now both full matrices), which has valid 

regularity conditions and asymptotic properties only under the null hypothesis of zero 

off-diagonal elements. The likelihood ratio test of the null Diagonal BEKK model 

against the alternative of the Full BEKK model does not yet seem to have been 

presented in the literature. 

 

2.5  Granger Causality, Volatility Spillovers, and Optimal Hedge Ratios 

 

McAleer et al. (2008) showed that the QMLE of the parameters of the Diagonal 

BEKK model were consistent and asymptotically normal, so that standard statistical 

inference on testing hypotheses is valid. Moreover, as 𝑄𝑡  in (9) can be estimated 

consistently, 𝛤𝑡 in equation (7) can also be estimated consistently. 

 

The Diagonal BEKK model is given as equation (9), where the matrices A and B are 

given as: 
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𝐴 = �
𝑎11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑎𝑚𝑚

�， 𝐵 = �
𝑏11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑏𝑚𝑚

�   (11) 

 

The Diagonal BEKK model permits a test of Co-volatility Spillover effects, which is 

the effect of a shock in commodity j at t-1 on the subsequent co-volatility between j 

and another commodity at t. Given the Diagonal BEKK model, as expressed in 

equations (9) and (10), the subsequent co-volatility must only be between 

commodities j and i at time t. 

 

Chang et al. (2015) define Full and Partial Volatility and Covolatility Spillovers in the 

context of Diagonal and Full BEKK models. Volatility spillovers are defined as the 

delayed effect of a returns shock in one asset on the subsequent volatility or 

covolatility in another asset. Therefore, a model relating tQ  to returns shocks is 

essential, and this will be addressed in the following sub-section. Spillovers can be 

defined in terms of full volatility spillovers and full covolatility spillovers, as well as 

partial covolatility spillovers, as follows, for mkji ,...,1,, = : 

 

(1) Full volatility spillovers: 1/ −∂∂ ktiitQ ε , ik ≠ ;      (12)  

 

(2) Full covolatility spillovers: 1/ −∂∂ ktijtQ ε , jikji ,, ≠≠ ;    (13) 

 

(3) Partial covolatility spillovers: 1/ −∂∂ ktijtQ ε , jorieitherkji =≠ , .   (14) 

 

Full volatility spillovers occur when the returns shock from financial asset k affects 

the volatility of a different financial asset i. 
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Full covolatility spillovers occur when the returns shock from financial asset k affects 

the covolatility between two different financial assets, i and j. 

  

Partial covolatility spillovers occur when the returns shock from financial asset k 

affects the covolatility between two financial assets, i and j, one of which can be asset 

k 

 

When 2=m , only spillovers (1) and (3) are possible as full covolatility spillovers 

depend on the existence of a third financial asset.  

 

This leads to the definition of a Co-volatility Spillover Effect as: 

 
𝜕𝐻𝑖𝑖,𝑡

𝜕𝜀𝑗,𝑡−1
=  𝑎𝑖𝑖 × 𝑎𝑗𝑗 × 𝜀𝑖,𝑡−1, i≠j. 

 

As 𝑎𝑖𝑖 > 0 for all 𝑖,  a test of the co-volatility spillover effect is given as a test of the 

null hypothesis:  

 

𝐻0:𝑎𝑖𝑖𝑎𝑗𝑗  = 0, 

 

which is a test of the significance of the estimate of 𝑎𝑖𝑖𝑎𝑗𝑗  in the following co-

volatility spillover effect, as 𝜀𝑖,𝑡−1 ≠ 0:  

 
𝜕𝐻𝑖𝑖,𝑡

𝜕𝜀𝑗,𝑡−1
=  𝑎𝑖𝑖𝑎𝑗𝑗𝜀𝑖,𝑡−1, i≠j. 

 

If 𝐻0 is rejected against the alternative hypothesis, 𝐻1:𝑎𝑖𝑖𝑎𝑗𝑗  ≠ 0, there is a spillover 

from the returns shock of commodity j at t-1 to the co-volatility between commodities 

i and j at t that depends only on the returns shock of commodity i at t-1. It should be 
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emphasized that the returns shock of commodity j at t-1 does not affect the co-

volatility spillover of commodity j on the co-volatility between commodities i and j at 

t. Moreover, spillovers can and do vary for each observation t-1, so that the empirical 

results average co-volatility spillovers will be presented, based on the average return 

shocks over the sample period. 

 

Granger (1980) causality is based on the following vector AR (VAR) models: 

 

𝑥(𝑡) = 𝑎0 + 𝑎1𝑥(𝑡 − 1) +⋯+ 𝑎𝑚𝑥(𝑡 − 𝑚) + 𝑏1𝑦(𝑡 − 1) +⋯+ 𝑏𝑛𝑦(𝑡 − 𝑛) + 𝑢(𝑡),         (15) 

𝑦(𝑡) = 𝑐0 + 𝑐1𝑦(𝑡 − 1) + ⋯+ 𝑐𝑛𝑦(𝑡 − 𝑛) + 𝑑1𝑥(𝑡 − 1) + ⋯+ 𝑑𝑚𝑥(𝑡 − 𝑚) + 𝑣(𝑡) .          (16) 

 

The null hypothesis of Granger non-causality of 𝑦(𝑡 − 1) on 𝑥(𝑡) is based on testing: 

 

 H0:  𝑏𝑖 = 0 for all i=1,⋯,n 

 

in equation (12), while the null hypothesis of Granger non-causality of 𝑥(𝑡) on 

𝑦(𝑡 − 1) is based on testing:  

 

H0:  𝑑𝑖 = 0 for all i=1,⋯,m  

 

in equation (13).  

 

For the multivariate conditional mean returns equation: 

 

𝑦𝑖𝑖 = 𝐸(𝑦𝑖𝑖|𝐼𝑡−1) + 𝜀𝑖𝑖 ,  𝑖 = 1,2,⋯ ,𝑚,        (17) 

 

the bivariate random coefficient autoregressive process for 𝜀𝑖𝑖 is given as: 
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𝜀𝑖𝑖 = φ𝑖𝑖𝜀𝑖𝑖−1 + φ𝑗𝑗𝜀𝑗𝑗−1 + η𝑖𝑖, i≠ 𝑗,         (18) 

 

where 

φ𝑖𝑖~𝑖𝑖𝑖(0,𝛼𝑖),  𝛼𝑖 ≥ 0, 

φ𝑗𝑗~𝑖𝑖𝑖(0,𝛼𝑗),  𝛼𝑗 ≥ 0, 

η𝑖𝑖~𝑖𝑖𝑖(0,𝜔𝑖),  𝜔𝑖 ≥ 0 , 

η𝑖𝑖 = 𝜀𝑖𝑖/�ℎ𝑖𝑖 is the standardized residual, 

ℎ𝑖𝑖 is the conditional volatility obtained by setting φ𝑗𝑗 = 0 in bivariate equation (15): 

 

𝜀𝑖𝑖 = φ𝑖𝑖𝜀𝑖𝑖−1 + η𝑖𝑖, 

 

𝐸(𝜀𝑖𝑖2 �𝐼𝑡−1) ≡ ℎ𝑖𝑖 = 𝜔𝑖 + 𝛼𝑖𝜀𝑖𝑖−12 . 

 

Adding another commodity, as in the bivariate equation (15), gives:   

 

𝜀𝑖𝑖 = φ𝑖𝑖𝜀𝑖𝑖−1 + φ𝑗𝑗𝜀𝑗𝑗−1 + η𝑖𝑖, i ≠ 𝑗, 

 

𝐸(𝜀𝑖𝑖2 �𝐼𝑡−1) ≡ ℎ𝑖𝑖 = 𝜔𝑖 + 𝛼𝑖𝜀𝑖𝑖−12 + 𝛼𝑗𝜀𝑗𝑗−12 , 

 

while adding first-order lags of ℎ𝑖𝑖 and ℎ𝑗𝑗  gives: 

 

ℎ𝑖𝑖 = 𝜔𝑖 + 𝛼𝑖𝜀𝑖𝑖−12 + 𝛼𝑗𝜀𝑗𝑗−12 + 𝛽𝑖ℎ𝑖𝑖−1 + 𝛽𝑗ℎ𝑗𝑗−1, 

 

where  
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𝛼𝑖 ≥ 0, 𝛼𝑗 ≥  0, 𝛽𝑖∈ (−1, 1), 𝛽𝑗 ∈ (−1, 1 ).  

 

The null hypothesis of non-causality in volatility is given as a test of: 

 

 𝐻0: 𝛼𝑗=𝛽𝑗=0.   

 

Based on the empirical results, dynamic hedging strategies using optimal hedge ratios 

will be suggested to analyse market fluctuations in the spot and futures returns and 

volatility of carbon emissions, crude oil and coal prices.  

 

Using the hedge ratio: 𝑅𝐻,𝑡 = 𝑅𝑆,𝑡 − 𝛾𝑡𝑅𝐹,𝑡 and its variance, namely: 

 

𝑣𝑣𝑣�𝑅𝐻,𝑡�𝛺𝑡−1� = 𝑣𝑣𝑣�𝑅𝑆,𝑡�𝛺𝑡−1� − 2𝛾𝑡𝑐𝑐𝑐�𝑅𝑆,𝑡,𝑅𝐹,𝑡�𝛺𝑡−1� + 𝛾𝑡2 𝑣𝑣𝑣�𝑅𝐹,𝑡�𝛺𝑡−1�, 

 

the optimal hedge ratio is given as: 

 

 𝛾𝑡|𝛺𝑡−1 = 𝑐𝑐𝑐�𝑅𝑆,𝑡,𝑅𝐹,𝑡�𝛺𝑡−1�/𝑣𝑣𝑣�𝑅𝐹,𝑡�𝛺𝑡−1�. 

 

An extension of the recent research on realized matrix-exponential stochastic 

volatility with asymmetry, long memory and spillovers, in Asai, Chang and McAleer 

(2017), to multivariate conditional volatility models, especially the use of the matrix-

exponential transformation to ensure a positive definite covariance matrix, will enable 

a significant extension of the univariate Granger causality tests to be extended to 

multivariate Granger causality tests. This would be a novel extension of the paper. 

 

3. Unit Root Tests 
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In order to evaluate the characteristics of the data, we investigate whether shocks to a 

series are temporary or permanent in nature. We will use the ADF test (Dickey and 

Fuller, 1979, 1982; Said and Dickey, 1984), DF-GLS test (Elliott et al., 1996), and 

KPSS test (Kwiatkowski et al., 1992) to test for unit roots in the individual returns 

series. The ADF and DF-GLS tests are designed to test for the null hypothesis of a 

unit root, while the KPSS test is used for the null hypothesis of stationarity.  

 

In Table 3, based on the ADF test results, the large negative values in all cases 

indicate rejection of the null hypothesis of unit roots at the 1% level. Based on the 

KPSS test, the small positive values in all cases do not reject the null hypothesis of 

stationary at the 1% level. For the DF-GLS test, the futures returns of carbon 

emissions and of coal in the EU, and the spot returns of carbon emissions in the USA, 

reject the null hypothesis of unit roots at the 1% level. However, the results of the coal 

and oil spot returns do not reject the null hypothesis. It should be noted that, for the 

USA, a relatively small sample size of 310 observations is used.  

 

[Insert Table 3 here] 

 

4. Granger Causality and Spillovers in Returns and Volatilities 

 

Table 4 reports the results for the Granger (1980) causality and spillover tests in 

returns and volatilities. There is no evidence of bidirectional Granger causality 

between carbon and coal futures for the EU. However, oil futures in the EU has a 

causal effect on carbon emissions futures in the EU. For the USA, carbon emissions 

spot has a causal effect on coal spot as well as on oil spot. 

 

[Insert Table 4 here] 
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Estimates of the DBEKK and Full BEKK models for EU Carbon, Coal, and Oil 

Futures returns are given in Table 5. The estimates of the weighting coefficients, 

A(1,1), are similar for the two models, but the estimates of the weighting coefficients 

A(2,2) and A(3,3) are different for the two models. Similar comments apply to the 

estimates of the matrix stability coefficients, B(1,1), B(2,2), and B(3,43), 

respectively. 

 

Given the differences in two of the three weighting coefficients in A in Table 5, it is 

not particularly surprising that the likelihood ratio test in Table 6 of the null 

hypothesis, DBEKK, against the alternative hypothesis, Full BEKK, leads to rejection 

of the null hypothesis that the off-diagonal elements of A are zero. The calculated 

chi-squared statistic with 6 degrees of freedom, at 34.42, is greater than the critical 

value of 16.81 at the 1% level. Therefore, DNBEKK is rejected, but Full BEKK is not 

appropriate as it is valid only under the null hypothesis of zero off-diagonal 

coefficients for the weighting matrix A. In short, the Diagonal BEKK model is 

rejected, but the full BEKK model is not an appropriate replacement. 

 

[Insert Tables 5 and 6 here] 

 

Estimates of the DBEKK and Full BEKK models for US Carbon, Coal, and Oil Spot 

returns are given in Table 7. The estimates of the three weighting coefficients, A(1,1), 

A(2,2) and A(3,3), are reasonably similar for the two models, as are the estimates of 

the stability coefficients B(1,1) and B(2,2), though the estimates of B(3,3) are 

different for the two models.  

 

In view of the similarities in the estimates of the three weighting coefficients in A in 

Table 7, the likelihood ratio test in Table 8 of the null hypothesis, DBEKK, against 

the alternative hypothesis, Full BEKK, leads to a less strong rejection of the null 
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hypothesis that the off-diagonal elements of A are zero, as compared with the 

outcome in Table 6. The calculated chi-squared statistic with 6 degrees of freedom, at 

22.18, is greater than the critical value of 16.81 at the 1% level. Therefore, DNBEKK 

is rejected but, as in the previous case, Full BEKK is not appropriate as it is valid 

only under the null hypothesis of zero off-diagonal coefficients for the weighting 

matrix A. In short, the Diagonal BEKK model is rejected, but the full BEKK model is 

not an appropriate replacement. 

 

[Insert Tables 7 and 8 here] 

 

In light of the discussion based on equations (14), partial co-volatility spillovers with 

DBEKK are presented in Table 9. Based on the estimates of the weighting matrix A, 

6 of the 8 partial co-volatility spillovers are negative, which means that a shock in one 

of carbon emission, coal or oil will have a one-period delayed negative impact on the 

conditional correlation between itself and one of the other two commodities. Two of 

the 8 partial co-volatility spillovers are positive, so an opposite effect will be 

observed. 

 

[Insert Table 9 here] 

 

Given the discussion based on equations (12) – (13), full co-volatility spillovers with 

DBEKK are presented in Table 10. Based on the estimates of the weighting matrix A, 

2 of the 6 full co-volatility spillovers are negative, which means that a shock in one of 

carbon emission, coal or oil will have a one-period delayed negative impact on the 

conditional correlation between two of the other commodities. Two of the 6 full co-

volatility spillovers are positive, so an opposite effect will be observed, while 2 of the 

6 full co-volatility spillovers are zero, in which case there will be no spillovers. The 

results for full co-volatility spillovers in Table 10 are not as clear or helpful as in the 
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case of the partial co-volatility spillovers in Table 9, as the estimates of the off-

diagonal elements in the weighting matrix A are not especially large. 

 

[Insert Table 10 here] 

 

The unconditional and conditional volatility of carbon, coal, and oil futures returns for 

the EU are shown in Figure 4, while the unconditional and conditional volatility of 

carbon, coal, and oil spot returns for the USA are shown in Figure 5. Both figures 

show there is a significant difference between the conditional and unconditional 

volatilities. 

 

[Insert Figures 4 and 5 here] 

 

The conditional co-volatility correlations for carbon, coal, and oil futures returns for 

the EU are shown in Figure 6, while the conditional co-volatility correlations for 

carbon, coal, and oil spot returns for the USA are shown in Figure 7. Both figures 

show there are substantial differences in the correlations of conditional co-volatility 

across the two markets and time periods for carbon, coal, and oil futures returns. 

 

[Insert Figures 6 and 7 here] 

 

The optimal hedge ratios for carbon, coal, and oil futures returns for the EU, and 

optimal hedge ratios for carbon, coal, and oil spot returns for the USA, are given in 

Figures 8 and 9, respectively. The hedge ratios show how the covariances in returns 

between two assets changes relative to the variance of the hedging instrument. Both 

figures show there is substantial variation in the optimal hedge ratios, so that the 

futures and spot prices of carbon emissions, coal and oil should be considered 
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contemporaneously and simultaneously in a portfolio that links the prices, returns and 

volatilities of carbon emissions to the use of fossil fuels. 

 

[Insert Figures 8 and 9 here] 

 

Finally, Figure 10 shows the optimal hedge ratios for carbon futures returns for the 

EU and both coal and oil spot returns for the USA. In all case, the optimal hedge 

rations vary substantially, which suggests that it would be sensible to use both 

markets to hedge carbon emission futures returns in the EU against both coal and oil 

spot price returns in the USA. 

 

5. Concluding Remarks  

 

The paper discussed recent research that showed efforts to limit climate change have 

been focusing on the reduction of carbon dioxide emissions over other greenhouse 

gases or air pollutants. Many countries have paid great attention to carbon emissions 

in order to improve air quality and public health. The largest source of carbon 

emissions from human activities in many countries in Europe and around the world 

has been from burning fossil fuels. The prices of both fuel and carbon emissions can 

and do have simultaneous and contemporaneous effects on each other.  

 

Owing to the importance of carbon emissions and their interconnection to the prices, 

financial returns and associated volatilities of fossil fuels, and the possibility of 

Granger causality in spot and futures prices, returns and volatility of carbon 

emissions, it is not surprising that crude oil and coal, and their interactions with 

carbon emission prices, returns and volatility, have recently become very important 

for public policy and an associated research topic.  
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For the USA, daily spot and futures prices are available for crude oil and coal, but 

there are no daily spot or futures prices for carbon emissions. For the EU, there are no 

daily spot prices for coal or carbon emissions, but there are daily futures prices for 

crude oil, coal and carbon emissions. For this reason, daily prices were used to 

analyse Granger causality and volatility spillovers in spot and futures prices of carbon 

emissions, crude oil, and coal.  

 

A likelihood ratio test was developed to test the multivariate conditional volatility 

Diagonal BEKK model, which has valid regularity conditions and asymptotic 

properties, against the alternative Full BEKK model, which has valid regularity 

conditions and asymptotic properties under the null hypothesis of zero off-diagonal 

elements. In short, Full BEKK has no desirable mathematical or statistical properties, 

except either under the null hypothesis of zero off-diagonal elements of the weighting 

matrix, or simply by assumption.  

 

Dynamic hedging strategies using optimal hedge ratios were suggested to analyse 

market fluctuations in the spot and futures returns and volatility of carbon emissions, 

crude oil and coal prices. It was suggested that the futures and spot prices of carbon 

emissions, coal and oil should be considered contemporaneously and simultaneously 

in a portfolio that links the prices, returns and volatilities of carbon emissions to the 

use of fossil fuels, and that it would be sensible to use both markets to hedge carbon 

emission futures returns in the EU against both coal and oil spot price returns in the 

USA. 
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Table 1 

Data Sources and Definitions 

Variable 
name 

Definitions Transaction market Description 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐟𝐟   EU carbon futures return 
 

ICE-ICE Futures 
Europe Commodities 

ICE EUA Futures Contract   
EUR/MT 

𝐄𝐄𝐄𝐄𝐄𝐄𝐟𝐟 EU coal futures return ICE-ICE Futures 
Europe Commodities 

ICE Rotterdam Monthly Coal Futures 
Contract        
USD/MT 

𝐄𝐄𝐄𝐄𝐄𝐟𝐟 EU oil futures return ICE-ICE Futures 
Europe Commodities 

Current pipeline export quality  
Brent blend as supplied at Sullom Voe 
USD/bbl 

𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐬𝐬 US carbon spot return over the counter United States Carbon Dioxide RGGI          
Allowance 
USD/Allowance 

𝐔𝐔𝐔𝐔𝐔𝐔𝐬𝐬 US coal spot return over the counter Dow Jones US Total Market Coal Index 
USD 

𝐔𝐔𝐔𝐔𝐔𝐬𝐬 US oil spot return over the counter West Texas Intermediate Cushing Crude  
Oil USD/bbl 

Note: ICE is the Intercontinental Exchange; EUA is the EU allowance; MT is metric ton; RGGI (Regional Greenhouse Gas  
Initiative) is a CO2 cap-and-trade emissions trading program comprised of ten New England and Mid-Atlantic States that will  
commence in 2009 and aims to reduce emissions from the power sector. RGGI will be the first government mandated CO2  
emissions trading program in USA
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Table 2 

Descriptive Statistics 

2 April 2008 – 19 May 2017 for EU  

6 January 2016 – 19 May 2017 for USA 
Variable Mean Median     Max    Min    SD  Skewness  Kurtosis  Jarque-Bera 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐟𝐟 -0.078 -0.038 24.561 -42.457 3.349 -0.708 17.624 21434.2 

𝐄𝐄𝐄𝐄𝐄𝐄𝐟𝐟 -0.022  0 17.419 -22.859 1.599 -1.268 44.924 175155.8 

𝐄𝐄𝐄𝐄𝐄𝐟𝐟 -0.026 -0.015 12.707 -10.946 2.246 0.054 6.522 1232.8 

𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐬𝐬 -0.248 0 13.937 -36.446 2.986 -5.236 66.269 61346.8 

𝐔𝐔𝐔𝐔𝐔𝐔𝐬𝐬 0.177 0.104 17.458 -14.183 4.041 0.047 5.343 81.99 

𝐔𝐔𝐔𝐔𝐔𝐬𝐬 0.094 0.037 11.621 -8.763 2.712 0.431 4.690 53.69 

 

 

 

 

 

 

 

 

  



30 
 

 

 

 

Table 3  

Unit Root Tests 

2 April 2008 – 19 May 2017 for EU 

6 January 2016 – 19 May 2017 for USA 
Variables ADF DF-GLS KPSS 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐟𝐟 -37.79* -3.09* 0.05* 
𝐄𝐄𝐄𝐄𝐄𝐄𝐟𝐟 -35.48* -10.34* 0.12* 

𝐄𝐄𝐄𝐄𝐄𝐟𝐟 -51.97* -1.53 0.10* 
 𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐬𝐬 -10.64* -1.46 0.06* 

 𝐔𝐔𝐔𝐔𝐔𝐔𝐬𝐬 -19.30* -0.43 0.18* 
 𝐔𝐔𝐔𝐔𝐔𝐬𝐬 -20.96* -0.78 0.07* 

  Notes: * denotes the null hypothesis of a unit root is rejected at 1%. 
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Table 4 

Granger Causality Test for Returns 

2 April 2008 – 19 May 2017 for EU  

6 January 2016 – 19 May 2017 for USA 

Variables Lags Outcome  Null hypothesis 

  A does not cause B B does not cause A 

A B   F-test p-value F-test p-value 
EUcarbonfr  EUcoalfr 1   EUcarbon  ← EUcoalfr 0.6190 0.4315 5.7112 0.0169 

EUcarbonfr EUoilfr 1   EUcarbonfr ← EUoilfr 0.2337 0.6289 4.1837 0.0409 

    UScarbonsr  UScoalsr 1   UScarbonsr → UScoalsr 4.6809 0.0312 0.9142 0.3397 

   UScarbonsr         USoilsr 1   UScarbonsr → USoilsr 5.1310 0.0241 0.0075 0.9313 
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Table 5 

          DBEKK and Full BEKK for EU Carbon, Coal, and Oil Futures 

2 April 2008 – 19 May 2017 

DBEKK C A B 
CARBONfr 0.379*** 

(0.055) 
0.024** 
(0.010) 

0.128*** 
(0.024) 

0.311*** 
(0.025) 

  0.947*** 
(0.009) 

  

COALfr  0.088*** 
(0.010) 

0.022 
(0.075) 

 0.118*** 
(0.007) 

  0.991*** 
(0.001) 

 

OILfr   0.000 
(0.077) 

  -0.205*** 
(0.013) 

  -0.977*** 
(0.003) 

Full BEKK C A B 

   CARBONfr 0.435*** 
(0.055) 

-0.067* 
(0.038) 

0.077 
(0.072) 

0.331*** 
(0.023) 

-0.014*** 
(0.004) 

0.007 
(0.006) 

0.936*** 
(0.009) 

0.009 
(0.007) 

-0.005 
(0.010) 

COALfr  0.000 
(0.068) 

0.000 
(0.103) 

0.037 
(0.029) 

-0.086*** 
(0.011) 

0.120*** 
(0.017) 

0.274*** 
(0.036)) 

0.737*** 
(0.015) 

 1.110*** 
(0.023) 

OILfr   -0.000 
(0.101) 

-0.104*** 
(0.026) 

-0.032** 
(0.013) 

-0.168*** 
(0.010) 

-0189*** 
(0.024) 

-0.052*** 
(0.011) 

0.054*** 
(0.015) 

 Notes :   1. A = �
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

�, B = �
𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

�,  C = �
𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
𝑐31 𝑐32 𝑐33

� 

2. Standard errors are in parentheses, ** denotes significant at 1%, * denotes significant at 5%. 
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Table 6 

LR Test of DBEKK and Full BEKK for EU Futures 

2 April 2008 – 19 May 2017 
 
Log-likelihood for DBEKK                                                        -14,815.88 
 
Log-likelihood for Full BEKK                                                     -14,798.72                          

LR test statistic with 6 df                                                                34.32 
 
Critical value at 1% with 6 df                                                         16.81 
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Table 7  

DBEKK and Full BEKK for US Carbon, Coal, and Oil Spot 

6 January 2016 – 19 May 2017  

   DBEKK C A B 
CARBONsr 0.854*** 

(0.105) 
-0.276 
(0.294) 

0.129 
(0.332) 

0.707*** 
(0.073) 

  0.757*** 
(0.038) 

  

COALsr  0.256 
(0.314) 

0.299* 
(0.154) 

 -0.199*** 
(0.034) 

  0.972*** 
(0.008) 

 

OILsr   0.000 
(1.029) 

  -0.222*** 
(0.0035) 

  -0.964*** 
(0.010) 

Full BEKK C A B 

CARBONsr 0.772*** 
(0.092) 

0.119 
(0.606) 

0.685*** 
(0.178) 

0.632*** 
(0.054) 

-0.023 
(0.089) 

-0.077 
(0.064) 

0.791*** 
(0.025) 

0.004 
(0.112) 

-0.034  
(0.063) 

COALsr  0.000 
(0.528) 

0.000 
(0.715) 

0.002 
(0.033) 

-0.320*** 
(0.058) 

0.036 
(0.041) 

-0.042 
(0.046) 

0.900*** 
(0.056) 

0.578***  
(0.044) 

OILsr   0.000 
(0.721) 

-0.028 
(0.049) 

-0.072 
(0.092) 

-0.252*** 
(0.060) 

0.010 
(0.080) 

-1.267*** 
(0.074) 

0.140* 
(0.082) 

Notes :   1. A = �
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

�, B = �
𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

�,  C = �
𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
𝑐31 𝑐32 𝑐33

� 

2. Standard errors are in parentheses, ** denotes significant at 1%, * denotes significant at 5%.  
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Table 8 

LR Test of DBEKK and Full BEKK for US Spot 

6 January 2016 – 19 May 2017  
 
Log-likelihood for DBEKK                                                        -2,499.27                                             
 
Log-likelihood for Full BEKK                                                     -2,488.18                          

LR test statistic with 6 df                                                                22.18 
 
Critical value at 1%  with 6 df                                                        16.81 
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Table 9 

Partial Co-volatility Spillovers with DBEKK for EU and USA 

2 April 2008 – 19 May 2017 for EU  

6 January 2016 – 19 May 2017 for USA 

Market 
 

(
∂Hij,t

∂εk,t−1
) 

 
Average Co-volatility Spillovers 

 

EU 

 j=k=coalfr,   i=carbonfr       -0.001    =     -0.030*0.311*0.118 
 j=k=carbonfr,  i=coalfr        0.001     =      0.026*0.311*0.118 
 j=k=oilfr,    i=carbonfr        0.002     =     -0.030*0.311*-0.205 
 j=k=carbonfr, i=oilfr          0.001     =     -0.023*0.311*-0.205 

 

USA 

 j=k=coalsr,    i=carbonsr          0.020     =     -0.140*0.707*-0.199 
 j=k=carbonsr,  i=coalsr        -0.002     =      0.012*0.707*-0.199 
 j=k=oilsr,      i=carbonsr                    0.022     =     -0.140*0.707*-0.222 
 j=k=carbonsr,  i=oilsr                                                  0.003     =      -0.022*0.707*-0.222 

Note:  Co-volatility Spillovers:  ∂Hij,t
∂εk,t−1

= aiiajjεi,t−1. 
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                      Table 10 

Full Co-volatility Spillovers with Full BEKK for EU and USA 

2 April 2008 – 19 May 2017 for EU  

6 January 2016 – 19 May 2017 for USA  

Market 
 

(
∂Hij,t

∂εk,t−1
) 

Co-volatility 
Spillovers 

 
EU 

 j=coalfr,   i=carbonfr k=oilfr -0.001 
 j=oilfr,    i=carbonfr k=coalfr,   0 
 j=coalfr, i=oilfr k=carbonfr 0.001 

 
USA 

 j=coalsr,    i=carbonsr k=oilsr -0.002 
 j=oilsr,      i=carbonsr k=coalsr           0.004 
 j=coalsr,  i=oilsr k=carbonsr 0 

Note:  Co-volatility Spillovers:  ∂Hij,t
∂εk,t−1

= aiiajkεi,t−1 + aijajkεj,t−1 + aikajiεi,t−1 + aikajjεj,t−1 + 2aikajkεk,t−1. 
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Figure 1 

Global Mean Temperatures 

With and Without Carbon Dioxide Mitigation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Rogelj et al. (2014). 
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Figure 2  

Implementation of Programs to Mitigate Carbon Emissions 
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Figure 3 

Carbon Futures and Spot Volumes for EU  

10 December 2012 – 19 May 2017 
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Figure 4 

    Unconditional and Conditional Volatility of Carbon, Coal, Oil Futures for EU 

2 April 2008 - 19 May 2017  
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Figure 5 

Unconditional and Conditional Volatility of Carbon, Coal, Oil Spot for USA 

  6 January 2016 – 19 May 2017 
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                                                            Figure 6 

        Conditional Co-volatility and Correlation for Carbon, Coal, Oil Futures for EU 

2 April 2008 - 18 May 2017  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 



44 
 

               

 

 

Figure 7 

Conditional Co-volatility and Correlation for Carbon, Coal, Oil Spot for USA 

6 January 2016 – 18 May 2017 
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Figure 8 

         Optimal Hedge Ratios for Carbon, Coal, Oil Futures for EU 

       2 April 2008 - 19 May 2017  
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Figure 9  

Optimal Hedge Ratios for Carbon, Coal, Oil Spot for USA 

6 January 2016 – 18 May 2017 
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Figure 10 

Optimal Hedge Ratios for Carbon Futures of EU and Coal, Oil Spot of USA 

2 April 2008 - 18 May 2017  
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