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Abstract

Forecasting volatility models typically rely on either daily or high frequency (HF) data

and the choice between these two categories is not obvious. In particular, the latter al-

lows to treat volatility as observable but they suffer from many limitations. HF data

feature microstructure problem, such as the discreteness of the data, the properties of the

trading mechanism and the existence of bid-ask spread. Moreover, these data are not

always available and, even if they are, the asset’s liquidity may be not sufficient to al-

low for frequent transactions. This paper considers different variants of these two family

forecasting-volatility models, comparing their performance (in terms of Value at Risk,

VaR) under the assumptions of jumps in prices and leverage effects for volatility. Find-

ings suggest that daily-data models are preferred to HF-data models at 5% and 1% VaR

level. Specifically, independently from the data frequency, allowing for jumps in price

(or providing fat-tails) and leverage effects translates in more accurate VaR measure.
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1 Introduction

Modeling and forecasting volatility of asset returns are crucial for many applications,

such as asset pricing model, risk management theory and portfolio allocation decisions. An

earlier literature, including Engle (1982) and Bollerslev (1986) among others, has developed

models of asset volatility dynamics in discrete time, known as heteroscedastic volatility mod-

els, i.e. ARCH-GARCH. Thanks to the availability of high frequency (HF) data, a new strand

of literature has originated a new class of models based on the Realized Volatility (RV) es-

timator, therefore introducing a non-parametric measure of return volatility (see Andersen

et al., 001a, Barndorff-Nielsen, 2002 and Andersen et al., 2012). As thw main innovation,

RV models provides an ex-post observation of volatility, at odds with the standard ARCH-

GARCH approach, that treats volatility as a latent variable. Although forecasting-volatility

models based on HF data are getting more and more popular in the literature, the choice

between HF-data and daily-data models is yet not obvious, in particular from an applied

standpoint. In particular, the former still suffer from various limitations, that can be ad-

dressed only at the cost of a heavy manipulation of the original data.

One of the main issues is the presence of the market microstructure noise, which prevents

from getting a perfect estimate (at the limit) of the returns’ variance (see Hansen and Lunde,

2006 and Aı̈t-Sahalia et al., 2005, 2011). The market microstructure noise may originate from

different sources, including the discreteness of the data, the properties of the trading mech-

anisms and the existence of a bid-ask spread. Regardless of the source, when return from

assets are measured based on their transaction prices over very tiny time intervals, these

measures are likely to be heavily affected by the noise and therefore brings little information

on the volatility of the price process. Since the level of volatility is proportional to the time

interval between two successive observations, as the time interval increases, the incidence of

the noise remains constant, whereas the information about the ”true” value of the volatility

increases. Therefore, there is a trade-off between high frequency and accuracy, which has led

authors to identify an optimal sampling frequency of 5 minutes1.

1Since the best remedy for market microstructure noise depends on the properties of the noise, if data sampled
at higher frequency, e.g. tick-by-tick, are used the noise term needs to be modeled and, as far as I know, there
is no unified framework about how to deal with it. Aı̈t-Sahalia et al. (2005) define a new estimator, Two Scales
Realized Volatility (TSRV), which takes advantages of the rich information of tick-by-tick data and corrects the
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HF data also features another inconvenient: they are not always available and, even if they

are, the asset may be not liquid enough to be frequently traded. On the contrary, daily data

are relatively simple to record and collect and are commonly easy-to-get.

This paper sheds light on the choice between HF-data and daily data models, by assessing

the economic value of the two family models, based on a comparison of their performance

in forecasting asset volatility. Following the risk management perspective, I use value at risk

(VaR) as the econometric metric of volatility forecastability, as suggested by Christoffersen

and Diebold (2000).

VaR is defined as the quantile of the conditional portfolio distribution, and is therefore quite

intuitive as a measure: indeed, it is the most popular quantitative measure of the market

risk associated with a portfolio of assets, and is generally adopted by banks and required by

regulators all over the world2.

In running the comparison between HF-data and daily data models, this paper introduces

two key assumptions. Firstly, the data generating process for asset prices features discon-

tinuities in its trajectories, jumps3. Secondly, volatility (i.e. the standard deviation of asset

return) reacts differently to changes in asset return which have the same magnitude, but dif-

ferent sign, leverage effect. These two assumptions represent the main novelty of this paper

since none of the previous studies on the economic value of different forecasting-volatility

models has investigated the matter under both jumps in price and leverage effect combined

effects of microstructure noise on volatility estimation. The authors, instead of sampling over a longer time
horizon and discarding observations, make use of all data and model the noise as an ”observation error”. But
the microstructure noise modeling goes beyond the scope of this work.

2Banks often construct VaR from historical simulation (HS-VaR): VaR is the percentile of the portfolio distribu-
tion obtained using historical asset prices and today weights. This procedure is characterized by a slow reaction
to market conditions and for the inability to derive the term structure of VaR. The VaR term structure explains
how risk measures vary across different investment horizons. In HS-VaR, for example, if T-day 1% VaR is calcu-
lated, the 1-day 1% VaR is simply scaled by

√
T. This relation is valid only if daily returns are i.i.d. realizations

of a Normal distribution. We know that is not the case since returns present leptokurtosis and asymmetry. The
main limit of HS-VaR is the substitution of the conditional return distribution with the unconditional counter-
part. Risk Metrics and GARCH models represent improvements over HS-VaR measure. Both of them provide
an explicit assumption about the DGP and the conditional variance but they have also important differences. In
addition to the estimation method: GARCH conditional volatility is estimated by maximizing the log-likelihood
function while the parameters used in Risk Metrics are chosen in an ad hoc fashion, they differ for the possibility
to account for the term structure of VaR. This is because GARCH process allows for mean reversion in volatility
while Risk Metrics does not, reproducing a flat term structure for VaR.

3A continuous price process is a restrictive assumption since it is not possible to distinguish between the
dynamic originated from the two sources of variability, i.e. continuous and discontinuous movements with
consequences on the return generating process
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together. Giot and Laurent (2004) compare the performance of a daily ARCH-type model

with the performance of a model based on the daily RV in a VaR framework. The authors

find that VaR specification based on RV does not really improve the performance of a VaR

model estimated using daily returns. This paper underlines an important issue: in economics

applications, it is important to recognize and take into account the key features of the empir-

ical data in order to choose a valid data generating process. Clements et al. (2008) evaluate

quantile forecasts focusing exclusively on models based on RV in order to understand if the

results presented for stock returns can be carried over exchange rates. According to the re-

sults in Clements et al. (2008) the distributional assumption for expected future returns is

needed for computing quantile, irrespective of the frequency of data used. Brownlees and

Gallo (2010) forecast VaR using different volatility measures based on ultra-high-frequency

data using a two-step VaR prediction procedure. They find that using ultra-high-frequency

observations, VaR predictive ability is considerably improved upon relative to a baseline

GARCH but not so relative to the range. The reason is related to the microstructure noise is-

sue which arises when ultra high-frequency data are used. Indeed I want to contribute to the

existing literature focusing on the measurement and the efficient use of the information em-

bedded in HF data with respect to the information content of daily observations. Assuming

both jumps and leverage effects in the returns dynamics for both data categories, I provide a

more balanced comparison than in the previous work.

In the choice of the model to use for the comparison, I consider the GARJI model of Maheu

and McCurdy (2004), as the baseline for the daily data models. The latter is a mixed-GARCH

jump model which allows for asymmetric responses to past innovations in asset returns: the

news impact (resulting in jump innovations) may have a feedback effect on the expected

volatility, in addition to the feedback effect associated with the normal error term. For the

case of HF data, I consider models in which Realized Volatility (RV) is decomposed into con-

tinuous and discontinuous volatility components. The continuous component is captured by

means of the bi-power variation (BV), introduced by Barndorff-Nielsen and Shephard (2004),

whereas the discontinuous component (JV) is obtained as the difference between RV and BV
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at given point in time4. In Andersen et al. (2007), JV is obtained considering only jumps that

are found to be significative, and neglecting the others5. Corsi et al. (2010) consider instead

all jumps, stressing the importance to correct the positive bias in BV due to jumps classi-

fied as consecutive. In this paper, I consider both these approaches and make a comparison

among them, finding evidence in favor of jump identification strategy of Corsi et al. (2010)

when the leverage effect is introduced. To account for the leverage effect, I introduce in this

class of models the heterogeneous structure proposed by Corsi and Renó (2009).

Throughout this paper, the GARJI-VaR measures are obtained by following Chiu et al. (2005),

that is, by adjusting for skewness and fat tails in the specification of the conditional distri-

bution of returns6. The HF-VaR measures, instead, are computed by assuming a conditional

Gaussian distribution for asset returns: as shown in Andersen et al. (2010), returns standard-

ized for the square root of RV are indeed approximatively Normal7.

In order to assess the model’s capability to forecast future volatility, I implement a backtest-

ing procedure based on both the Christoffersen (1998) test and the Kupiec (1995) test. In

addition to comparing the economic value of daily data and HF-data models, the analysis

performed in this paper sheds light on three other issues. The first is represented by the eco-

nomic value per se, i.e. out of the comparison, of the class of forecasting volatility models

adopting HF-data. This is done by considering different specifications of this family mod-

els. I first run a comparison among them (based on their forecasting performances); then,

I compare some of them with their variant, obtained by using the Range estimator (RA) of

Parkinson (1980). The choice of this particular benchmark is motivated by the fact that the

RA estimator is likely to deliver a measure of volatility which lies in the middle of the mea-

4As shown in Andersen et al. (2002), Andersen et al. (2007), RV is a consistent estimator for the quadratic
variation, whereas BV represents a consistent estimator of the continuous volatility component, i.e. the so-called
integrated volatility, in the presence of jumping prices.

5The authors with significant jumps refer to large value of RVt − BVt while small positive values are treated
both as part of continuous sample path variation or as measurement errors.

6The computation of VaR measure requires, in addition to the conditional volatility dynamics, the specifica-
tion of the conditional distribution of returns.VaR is a conditional risk measure so an assumption on the condi-
tional distribution of returns is needed. Conditional normality is an acceptable assumption (returns standardized
by their conditional volatility could be approximately Gaussian even if the unconditional returns are not Gaus-
sian) only if the volatility model is able to fatten conditionally Gaussian tails enough to match the unconditional
distribution. If this is not the case another conditional distributional assumption is necessary.

7This result is confirmed by the standardized returns of the sample used in this paper. See Section 2.
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sure obtained from HF estimators and that obtained from daily data models8. My findings

suggest that HF-data models which explicitly provide both jumps and leverage factors stand

out from the others in term of forecasting capability.

The second by-product of my analysis is a quantitative assessment of the importance of the

explicit jump component in the conditional distribution of asset returns 9. This point is ad-

dressed in both the family models considered in this paper. Hence, I first compare the fore-

casting volatility performances of each HF-data model with and without a decomposition of

the RV into the continuous and the discontinuous component. Then, I run a similar analysis

for the case of the daily data models, considering the GARCH-t model, as well as the Beta-t

model10 proposed by Harvey and Luati (2014). According to my analysis, introducing an

explicit, persistent jump component in the conditional return dynamics (together with an

asymmetric response to bad and good news into conditional volatility dynamics) may help

to forecast the ex-post volatility dynamics and obtain more accurate VaR measures, at least

at the VaR level required by Basel accords (1%). For HF-data models, accounting for jumping

prices does not seem to improve significantly the accuracy of the estimates.

The last issue of my analysis is related to the importance of leverage effect in forecasting

volatility. The findings in this paper recommend the explicit introduction of a factor that

generates the asymmetric volatility response to price movements in the forecasting model.

The rest of the paper is organized as follows. Section 2 summarizes the volatility measures

and the forecasting models based on both HF and daily data. Section 3 and Section 4 show,

respectively, the backtesting methods used to evaluate forecasting models accuracy and the

empirical results. Section 5 concludes.

8The RA estimator exploits information on the highest and the lowest price recorded in a given day for a
particular asset. In this respect, it requires information on the intra-day activity (going beyond the simple closing
price of the asset), but without relying on further information, that might be not readily available).

9The presence of a jump component is justified both at theoretical and empirical level. From a theoretical
perspective, an explicit discontinuous volatility-component allows to have information on the market response
to outside news, which is key for many applications. From an empirical standpoint, instead, it is very difficult
to distinguish power-type tails from exponential-type tails, given that is not clear to what extent the return
distribution is heavily tailed. In this regard, the jump component of a jump-diffusion model may be interpreted
as the market response to outside news: when good or bad news arrive at a given point in time, the asset price
changes according to the jump size (and the jump sign) and an extreme sources of variation is added to the
idiosyncratic component.

10Beta-t model, belongs to the general class of Dynamic Conditional Score (DCS) model. They are also known
as Generalized Autoregressive Score (GAS) model proposed by Creal et al. (2013).
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2 Volatility Measures and Forecasts

2.1 Estimates of volatility with High Frequency Data

The RV measure is an estimator for the total quadratic variation, namely, it converges

in probability, as the sampling frequency increases, to the continuous volatility component

if there are no jumps. Instead, it converges to the sum of continuous and discontinuous

volatility components if at least one jump occurs. As explained in Andersen et al. (2012),

it is possible to use the daily RV measures, the ex-post volatility observations, to construct

the ex-ante volatility forecasts. This is possible simply by using standard ARMA time series

tools but it is important to take into account the difference with GARCH-type forecasting.

The fundamental difference is that in the former case the risk manager treats volatility as

observed while in the latter framework volatility is inferred from past returns conditional on

a specific model. The idea behind the RV is the following: even if prices are not available

on continuous basis, prices are recorded at higher frequency than daily. Using these squared

returns a daily RV could easily be computed. In this way the ex-post volatility is considered

as observable at each point in time.

More precisely, the RV on day t based on returns at the ∆ intraday frequency is

RVt(∆) ≡
N(∆)

∑
j=1

r2
t,j

where rt,j = pt−1+j∆− pt−1+(j−1)∆ and pt−1+j∆ is the log-price at the end of the jth interval on

day t and N(∆) is the number of the observations available at day t recorded at ∆ frequency.

In the absence of microstructure noise, as ∆→ 0 the RV estimator approaches the integrated

variance of the underlying continuous-time stochastic volatility process on day t:

RVt −→p IVt where IVt =
∫ t

t−1
σ2(τ) dτ

Furthermore, in this paper I assume that the the underlying price process is characterized

by discontinuities. Indeed, the previous convergence is not valid but the RV estimators ap-

proaches in probability to the sum of the integrated volatility and the variation due to jumps
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that occurred on day t:

RVt −→p

∫ t

t−1
σ2(τ) dτ +

ζt

∑
j=1

J2
t,j

If jumps (Jt,j) are absent, the second term vanishes and the realized volatility consistently

estimates the integrated volatility. A nonparametric estimate of the continuous volatility

component is obtained by using the bipower variation (BV) measures:

BVt ≡
π

2
N(∆)

N(∆)− 1

N(∆)−1

∑
j=1

|rt,j||rt,j+1| (1)

Furthermore, the contribution to the total return variation stemming from the jump compo-

nent (JVt) is consistently estimated by

RVt − BVt −→p

ζt

∑
j=1

J2
t,j

Considering the suggestion of Barndorff-Nielsen and Shephard (2004) the empirical mea-

surements are truncated at zero in order to ensure that all of the daily estimates are nonneg-

ative:

JVt = max{RVt − BVt, 0} (2)

According to Andersen et al. (2007), this truncation reduces the problem of measurement

error with fixed sampling frequency but it captures a large number of nonzero small positive

values in the jump component series. These small positive values can be treated both as part

of the continuous sample path variation process or as measurement errors

In order to identify statistically significant jumps, i.e. large values of RVt − BVt, the authors

suggest the use of the following statistic:

Zt =
log(RVt)− log(BVt)√

N(∆)−1(µ−4
1 + 2µ−2

1 − 5)TQtBV−2
t

−→d N(0, 1) (3)
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where µ1 =
√

2/π. In the denominator appears the realized tripower variation (TQ) that is

the estimator of the integrated quarticity as required for a standard deviation notion of scale:

TQt = N(∆)µ−3
4/3

N(∆)

∑
j=3
|rt,j|4/3|rt,j+1|4/3|rt,j+2|4/3

where µ4/3 = 22/3Γ(7/6)Γ(1/2). The significant jumps and the continuos component are

identified and estimated respectively as:

JVt = 1{Zt>Φα}(RVt − BVt)

CVt = RVt − JVt = 1{Zt≤Φα}RVt − 1{Zt>Φα}BVt

(4)

where 1 is the indicator function and Φα is the α quantile of a Standard Normal cumulative

distribution function.

Corsi et al. (2010) show that the nonparametric estimator BV can be strongly biased in finite

sample because of the presence of consecutive jumps and they define a new nonparamet-

ric estimator, called Threshold Bipower Variation (TBV). In particular, TBV corrects for the

positive bias of BV in the case of consecutive jumps:

TBVt = µ−2
1

N(∆)

∑
j=2
|rt,j||rt,j+1)|1{|rt,j|2<θj}1{|rt,j+1||2<θj+1}

where θ is strictly positive random threshold function equal to V̂tc2
θ , V̂t is an auxiliary esti-

mator and c2
θ is a scale-free constant that allows to change the threshold. The jump detection

test presented by Corsi et al. (2010) is the following:

C-Tz = N(∆)−1/2 (RVt − TBVt)RV−1
t√

(π2

4 + π − 5)max{1, TTriPVt
TBV2

t
}
−→d N(0, 1) (5)

where TTriPV is a quarticity estimator which is obtained by multiplying the TBV by µ−3
4/3.

Also in this case the jumps and the continuos component are identified and estimated re-

spectively as:

JVt = 1{C-Tzt>Φα}(RVt − TBVt)

CVt = RVt − JVt = 1{C-Tzt≤Φα}RVt − 1{C-Tzt>Φα}TBVt

(6)
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The other measure chosen in this work is the Range volatility (RA) presented by Parkinson

(1980):

RAt =
1

4 log 2
(log(Ht)− log(Lt))

2 (7)

This estimator is constructed by taking the highest price (H) and the lowest price (L) for each

day as summary of the intraday activity, i.e. the full path process. Its major empirical ad-

vantage is that for many assets these informations are ready available. Alizadeh et al. (2002),

it is affected by a much lower measurement error than the RV estimator, it is more robust to

microstructure noise in a stochastic volatility framework and it allows to extract efficiently

latent volatility. On the one hand, the RA estimator contains informations comparable to

those embedded in RV. On the other hand, RA is easy to compute also for those assets that

are not frequently traded. Indeed, this estimator has advantages typical of both HF data and

daily observations.

2.2 Forecasting volatility using High Frequency Data

In the literature, there is no consensus if jumps help to forecast volatility. In this sense,

this work can be useful in order to understand if allowing for an explicit jump component

is important to forecast volatility, independently of the sampling frequency of the price pro-

cess. Moreover, if different sampling frequencies (daily and 5-minutes) are considered then

a discrimination between the two kinds of data used, can be done.

For all forecasting models that I am going to describe in this section, I define a log spec-

ification both for inducing normality and for ensuring positivity of volatility forecasts 11.

The natural starting point in forecasting volatility is to use an Autoregressive (AR) specifica-

tion12. The first model for both RV and RA is the AR model. In particular, an AR(8) model

is identified for both RV measure and for Range estimator13. The AR specification is easy

to implement but it does not capture the volatility long-range dependence due to the slowly

11Volatility forecasts at each time is obtained by applying the exponential transformation.
12It is also possible to use an ARMA model to forecast volatility in order to consider some measurement errors

since the empirical sampling is not done in continuous time.
13The identification procedure for the order of both AR models is done by exploiting the sample autocorre-

lation and the sample partial autocorrelation function, by running both AIC and BIC information criteria and
significance of single parameters. Then I check the properties of the residuals: they are normal and the Ljung
Box test does not reject the null of no autocorrelation at any significance level.
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decaying autocorrelation of returns. As an alternative, it is possible to use the Heterogenous

Autoregressive model proposed by Corsi (2009). This model can be seen as an approxima-

tion of long memory model with an important advantage: it is easier to implement than

the pure long-memory model (see Andersen et al., 2007, Corsi and Renó, 2009). Indeed, the

second forecasting model for both volatility measures is the Heterogeneous Autoregressive

model (HAR). The aggregate measures for the daily, weekly and monthly realized volatility

are computed as sum of past realized volatilities over different horizons:

RV(N)
t =

1
N

RVt + · · ·+ RVt−N+1 (8)

where N is typically equal to 1, 5 or 22 according to if the time scale is daily, weekly or

monthly.

Then, HAR-RV becomes:

log RVt+h = β0 + β1 log RVt+h−1 + β2 log RV(5)
t+h−1 + β3 log RV(22)

t+h−1 + εt (9)

where εt is IID zero mean and finite variance noise 14

Moreover, as suggested in Corsi and Renó (2009), the heterogeneous structure applies

also to leverage effect. As a consequence, volatility forecasts are obtained by considering

asymmetric responses of realized volatility to previous daily, weekly and monthly negative

returns. The past aggregated negative returns are constructed as:

l(N)
t =

1
N
(rt + · · ·+ rt−N+1)1{(rt+···+rt−N+1)<0} (10)

Then the L-HAR model is defined as:

log RVt+h =β0 + β1 log RVt+h−1 + β2 log RV(5)
t+h−1 + β3 log RV(22)

t+h−1+

β4lt+h−1 + β5l(5)t+h−1 + β6l(22)
t+h−1 + εt

(11)

The explanatory variables of the HAR-RV model can be decomposed into continuous and

14Corsi and Renó (2009) model the dynamic of the latent quadratic variation, call it σ̃t. Suppose that V̂t is
a generic unbiased estimator of σ̃t and log(σ̃t) = log(V̂t) + ωt where ωt is a zero mean and finite variance
measurement error. Then εt is independent from ωt.
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jump components, in this way the forecasting model obtained is:

log RVt+h =β0 + β1 log CVt+h−1 + β2 log CV(5)
t+h−1 + β3 log CV(22)

t+h−1+

β4 log (1 + JVt+h−1) + β5 log (1 + JV(5)
t+h−1) + β6 log (1 + JV(22)

t+h−1) + εt

(12)

Depending on how the jump component is detected three different forecasted realized volatil-

ity are obtained. First, the HAR-Jumps is obtained according to (2) and for the continuous

component to (1). Second, the HAR-CV-JV model is obtained following Andersen et al.

(2007), namely according to (4). The last model, HAR-C-J is defined according to (6) follow-

ing the estimation strategy presented in Corsi and Renó (2009).

If a cascade leverage structure is considered as in (10) then the forecasting volatility model

becomes:

log RVt+h =β0 + β1 log CVt+h−1 + β2 log CV(5)
t+h−1 + β3 log CV(22)

t+h−1+

β4 log (1 + JVt+h−1) + β5 log (1 + JV(5)
t+h−1) + β6 log (1 + JV(22)

t+h−1)+

β7lt+h−1 + β8l(5)t+h−1 + β9l(22)
t+h−1 + εt

(13)

As before, according to the estimators used for the volatility components, I obtain the LHAR-

Jumps, LHAR-CV-JV and LHAR-C-J models.

In order to asses the forecast ability of the RA, I extend the idea of the heterogeneity in the

time horizons of investors in the financial markets and I define two different forecasting

models, in addition to the AR(8) model:

log RAt+h =β0 + β1 log RAt+h−1 + β2 log RA(5)
t+h−1 + β3 log RA(22)

t+h−1 + εt (14)

called Range-HAR and

log RAt+h =β0 + β1 log RAt+h−1 + β2 log RA(5)
t+h−1 + β3 log RA(22)

t+h−1+

β4lt+h−1 + β5l(5)t+h−1 + β6l(22)
t+h−1 + εt

(15)

called Range-L-HAR.
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2.3 Forecasting volatility using daily data

The first specification for the continuous volatility component is the GARJI model:

Rt = µ + σtzt +
Nt

∑
i=1

X(i)
t (16)

λt = λ0 + ρλt−1 + γξt−1 (17)

σ2
t = γ + g(Λ,Ft−1)ε

2
t−1 + βσ2

t−1 (18)

g(Λ,Ft−1) = exp(α + αjE(Nt|Ft−1) (19)

+ 1{εt−1<0}[αa + αa,jE(Nt|Ft−1)])

where εt = ε1,t + ε2,t = σtzt + ∑Nt
i=1 X(i)

t , zt ∼ N (0, 1), Nt ∼ Poisson(λt), X(j)
t ∼ N (µ, ω2)

and ξt−1 = E[Nt−1|Ft−1)− λt−1.

As explained in Maheu and McCurdy (2004), the last equation allows for the introduction of

a differential impact if past news are deemed good or bad. If past news are business as usual,

in the sense that no jumps occurred, and are positive, then the impact on current volatility

will be exp(α)ε2
t−1. If no jump takes place but news are bad, the volatility impact becomes

exp(α + αa)ε2
t−1. If a jump takes place, with good news, the impact is exp(α + αj)ε

2
t−1. If a

jump takes place, with bad news, then the impact becomes exp(α + αj + αa + αa,j)ε
2
t−1.

The arrival rate of jumps is assumed to follow a non homogeneous Poisson process while

jump size is described by a Normal distribution. In this way, the single impact of extraor-

dinary news on volatility is identified through the combination of parameters in g(Λ,Ft−1).

The idea of the authors is the following: the conditional variance of returns is a combination

of a smoothly evolving continuous-state GARCH component and a discrete jump compo-

nent. In addition previous realization of both innovations, ε1,t and ε2,t affect expected volatil-

ity through the GARCH component of the conditional variance. This feedback is important

because once return innovations are realized, there may be strategic or liquidity tradings

related to the propagation of the news which are further sources of volatility clustering15.

With this model it is possible to allow for several asymmetric responses to past returns in-

15A source of jumps to price can be important and unusual news, such as earnings surprise (result as an
extreme movement in price) while less extreme movements in price can be due to typical news events, such as
liquidity trading and strategic trading.
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novations and then obtain a richer characterization of volatility dynamics, especially with

respect to events in the tail of the distribution (jumps).

In particular E[Nt−1|Ft−1) is the ex-post assessment of the expected number of jumps that

occurred from t − 2 to t − 1 and it is equal to ∑∞
j=0 jP(Nt−1 = j|Ft−1). Therefore ξt−1 is

the change in the econometrician’s conditional forecast on Nt−1 as the information set is

updated, it is the difference between the expected value and the actual one. As shown by

Maheu and McCurdy (2004) this expression may be inferred using Bayes’ formula:

P(Nt = j|Ft−1) =
f (Rt|Nt = j,Ft−1)P(Nt = j|Ft−1)

f (Rt|Ft−1)
for j = 0, 1, 2, . . . (20)

Indeed, conditional on knowing λt, σt, and the number of jumps that took place over a time

interval, Nt = j, the density of Rt in terms of observable is Normal:

f (Rt|Ft−1) =
∞

∑
j=0

f (Rt|Nt = j,Ft−1)× P(Nt = j|Ft−1) (21)

where

f (Rt|Nt = j,Ft−1) =
1√

2π(σ2
t + jδ2)

exp
(
− (Rt − µ + θλt − θ j)2

2(σ2
t + jδ2)

)
(22)

Naturally the likelihood function is defined starting from (22), where θ̃ is the vector of the

parameters of interest, i.e. θ̃ = (γ, ρ, θ, δ2, α, αj, αa, αaj, ω, β, λ0, µ):

L(Rt|Nt = j,Ft−1; θ̃) =
T

∏
t=1

f (Rt|Nt = j,Ft−1) (23)

and the log-likelihood is:

l(Rt|Nt = j,Ft−1; θ̃) =
T

∑
t=1

log f (Rt|Nt = j,Ft−1) (24)

The maximum number of jumps in each day in the filter (20) is set equal to 10. This is be-

casue, as suggested in Maheu and McCurdy (2004), the conditional Poisson distribution has

almost zero probability in the tails for values of Nt ≥ 10.

In order to isolate the role of jumps, I estimate a nested version of the GARJI model, i.e. ARJI,

which is obtained by imposing αj = αa = αa,j = 0.
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In addition, I consider the GARCH-t model and Beta-t-GARCH model for conditional volatil-

ity. The aim is to understand if the ARJI model can provide a better fit to the empirical dis-

tribution of the data and a better quantile forecast with respect to volatility specifications

based on fat tails, such as t-Student. In particular, Beta-t-GARCH presents a more sophisti-

cated volatility specification with respect to GARCH-t model. The former consists of an ob-

servation driven model based on the idea that the specification of the conditional volatility

as a linear combination of squared observations is taken for granted but, as a consequence,

it responds too much to extreme observations and the effect is slow to dissipate. Harvey

and Luati (2014) define a class of models (DCS) in which the observations are generated by

a conditional heavy-tailed distribution with time-varying scale parameters and where the

dynamics are driven by the score of the conditional distribution. In this way, Beta-t-GARCH

counts the innovation outliers but also the additive outliers.

3 Computing and comparing VaR forecasts

The VaR is defined as the 100α% quantile of the distribution of returns. The probability

that the return of a portfolio over a t holding period will fall below the VaR is equal to 100α%.

The predicted VaRs are based on the predicted volatility and they depend on the assumption

on the conditional density of daily returns. The one day-ahead VaR prediction at time t + 1

conditional on the information set at time t is:

V̂aRt+1|t =
√

σ̂2
t+1|tF

−1
t (α) (25)

In (25) σ̂2
t+1|t is the returns variance, estimated in both parametric and non-parametric mod-

els, F−1
t (α) is the inverse of the cumulative distribution of daily returns while α indicates the

degree of significance level. In the case of HF data σ̂2
t+1|t is equal to R̂Vt or R̂At estimated

as explained in the section 2.2 while for GARJI model the returns variance is not simply the

modified GARCH dynamic but it also consist of the variance due to jumps (Hung et al.,

2008):

V̂aRt+1|t =
√

σ̂2
t+1|t + (θ̂2

t + δ̂2
t )λ̂t F̃−1

t (α) (26)

15



where F̃−1
t (α) = F−1

t (α) + 1
6 ((F−1

t (α))2 − 1)Sk(Rt|tFt−1) and Sk(Rt|tFt−1) is the conditional

return skewness computed after estimating the model. Once obtained VaR forecasts, I assess

the relative performance of the models through the violation16 rate and the quality of the

estimates by applying backtesting methods17.

A violation occurs when a realized return is greater than the estimated ones (VaR). The vi-

olation rate is defined as the total number of violations divided by the total number of one

period-forecasts18The tests used in this paper are the Unconditional Coverage (LUC) and

Conditional Coverage (LCC) tests suggested respectively by Kupiec (1995) and Christoffersen

(1998). The LUCand LCC are the most popular tests among practitioners and academics. This

is because they are very simple to implement and because they are incorporated in the Basel

accords requirements 19. These two motivations represent also the reason why both tests

are used also in the academic literature. The LUC and the LCCtests assess the adequacy of the

model by considering the number of VaR exceptions, i.e. days when returns exceed VaR esti-

mates. If the number of exceptions is less than the selected significance level would indicate,

the system overestimates risk; on the contrary too many exceptions signal underestimation

of risk. In particular, the first test examines whether the frequency of exceptions over some

specified time interval is in line with the selected significance level. A good VaR model pro-

duces not only the “correct” amount of exceptions but also exceptions that are independent

each other and, in turn, not clustered over time. The test of conditional coverage takes into

account for the number of exceptions and when the exceptions occur.

The tick loss function considered is defined as Binary loss function (BLF) which counts the

number of exceptions, that are verified when the loss is larger than the forecasted VaR:

16In the testing literature exception is used instead of violation because the former is referred, as I explain later,
to a loss function. The loss function changes according to the test applied and the motivation behind the testing
strategies.

17The backtesting tests give the possibility to interpret the results and then the quality of the forecasting model
choose in inferential terms.

18As well explained in Gençay et al. (2003) atq th quantile, the model predictions are expected to underpredict
the realized return α = (1− q) percent of the time. A high number of exceptions implies that the model exces-
sively underestimates the realized return. If the exception ratio at the q th quantile is greater than α percent, this
implies excessive underprediction of the realized return. If the number of exceptions is less than α percent at the
q th quantile, there is excessive overprediction of the realized return by the underlying model.

19See Nieto and Ruiz, 2016 for a review on VaR forecasting and evaluation through backtesting.
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BLFt+1 =


1 if Rt+1 < V̂aRt+1|t

0 if Rt+1 ≥ V̂aRt+1|t

(27)

where V̂aRt+1|t is the estimated VaR at time t that refers to the period t + 1.

The Likelihood Ratio test of unconditional coverage tests the null hypothesis that the true

probability of occurrence of an exception over a given period is equal to α:

H0 : p = α

H1 : p 6= α

where p̂ = n0
n1+n0

is the unconditional coverage (the empirical coverage rate) or the failure

rate and n0 and n1 denote, respectively, the number of exceptions observed in the sample

size and the number of non-exceptions.

The unconditional test statistic is given by:

LRUC = −2 log
(
(1− α)n1 αn0

(1− p̂)n1 p̂n0

)
∼ χ2(1) (28)

So, under the null hypothesis the significance level used to forecast VaRs and the empirical

coverage rate are equal. The test of conditional coverage proposed by Christoffersen (1998)

is an extended version of the previous one taking into consideration whether the probability

of an exception on any day depends on the exception occurrence in the previous day. The

loss function in constructed as in (27) and the log-likelihood testing framework is as in (28)

including a separate statistic for the independence of exceptions. Define the number of days

when outcome j occurs given that outcome i occurred on the previous day as nij and the

probability of observing an exception conditional on outcome i of the previous day as πi.

Summarizing:

π0 =
n01

n00 + n01
π1 =

n11

n10 + n11
π =

n01 + n11

n00 + n01 + n10 + n11
(29)
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The independence test statistic is given by:

LRIND = −2 log
(

(1− π)n00+n10 πn01+n11

(1− π0)n00 πn01
0 (1− π1)n10 πn11

1

)
(30)

Under the null hypothesis the first two probabilities in (29) are equal, i.e. the exceptions do

not occur in cluster. Summing the statistics (28) and (30) the conditional coverage statistic

is obtained, i.e. LRCC = LRUC + LRIND and it is distributed as a χ2 with two degrees of

freedom since two is the number of possible outcomes in the sequence in (27). In order

to avoid the possibility that the models considered passing the joint test but fail either the

coverage or the independence test I choose to run LRCC and also its decomposition in LRUC

and LRIND.

4 Data and Empirical results

4.1 Data

In order to assess the informational content of HF and daily data, I use S&P 500 index

from 5 Jan.1996 to 30 Dec.2005 for both samples.

The total number of trading days is equal to 2516 which coincides with the number of

daily returns. In the top panel of Figure 1 the level of the S&P 500 index is presented.

The corresponding daily returns are displayed in the bottom panel of Figure 1. Given the

literature on the effects of microstructure noise of estimates of RV and the forecast perfor-

mance of RV models based on different sampling frequency, I use 5-minutes data for a total

of 197, 689 observations. I compute 5-minutes intraday returns as the log-difference of the

closing prices in two subsequent periods of time. The daily returns are computed taking the

last closing prices in each trading day. The range volatility at each date is calculated as scaled

log difference between the highest and the lowest price in a trading day. Table 1 reports the

descriptive statistics of S&P 500 index for RAt, RVt and its decomposition in BVt and JVt.

In particular JVt is computed as max{RVt − BVt, 0}20. A number of interesting features are

founded. Firstly, returns exhibit negative asymmetry and leptokurtosis. As shown in Ander-

20The summary statistics of the continuous and disontinuous components computed according to Andersen
et al. (2007) and Corsi et al. (2010) are not reported because are very similar to those presented in Table 1.
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Figure 1: Top: daily S&P 500 index from 5 Jan.1996 to 30 Dec.2005. The horizontal axis
corresponds to time while the vertical axis displays the value of the index. Bottom: daily
S&P 500 percentage returns calculated by rt = log(pt/pt−1), where pt is the value of the
index at time t.

Table 1: Summary Statistics. The rows report the sample mean, standard deviation, skewn-
wss, kurtosis, sample minimum and maximum for the daily returns (Rt), the standardized
daily returns (Rt/

√
RVt) the daily realized volatility (RVt), the daily bipower variation (BVt),

the daily jump component (JVt) and the daily range estimator (RAt). Returns are expressed
in percentage.

Rt Rt/
√

RVt RVt BVt JVt RAt

Mean 0.0279 0.1378 0.8250 7.93E-05 3.15E-06 9.70E-05
St. Dev. 1.1520 1.3138 1.0097 9.85E-05 1.00E-05 1.52E-04
Skewness -0.0951 0.253 4.8721 4.8786 19.9283 7.1671
Kurtosis 5.9165 2.8505 39.1013 39.3401 659.3967 84.1687
Min -7.1127 -3.6092 0.0281 0.0281 0 0.0206
Max 5.3080 4.7161 11.890 11.890 3.6200 25.931

sen et al. (2007) the daily returns standardized with respect to the square root of the ex-post

realized volatility are closed to Gaussian. In fact its mean and asymmetry are close to zero,
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its variance is close to one while its kurtosis is near to 3. This result is clear from Figure 2

in which the empirical density distribution is plotted with the normal density distribution

for Rt/
√

RVt. Moreover if I compare RVt and BVt the latter is less noisy than the former,

considering the role of jumps. Finally, jump process does not show any Gaussian feature 21.

Figure 2: Standardized log-returns distribution of the S&P 500 index.The standard normal
distribution (solid line) is compared with the standardized log-returns distribution (dashed
line).

Figure 3 shows the plot of RVt, BVt, JVt and RAt estimators. It is evident that RVt, BVt

and JVt follow a similar pattern and the latter tends to be higher when RVt is higher. JVt

exhibits a relatively small degree of persistence as consequence of the clustering effect. Not

surprisingly, RAt follows the same pattern of RVt since both of them are ex-post volatility

measures.

4.1.1 Estimation results based on daily data

Table 2, provides parameter estimates for both the GARJI and ARJI model applied to the

S&P500. The parameter estimates are presented separating the diffusion component from

21In particular, jumps computed according to (6) exhibit a higher mean with respect to those computed ac-
cording to (4), given that the former exploits the possibility of consecutive jumps.
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Figure 3: Top: RVt computed using 5- minutes data from 5 Jan.1996 to 30 Dec.2005. Sec-
ond: BVt computed using 5- minutes data from 5 Jan.1996 to 30 Dec.2005. Third: JVt =
max{RVt − BVt, 0} is computed using 5- minutes data from 5 Jan.1996 to 30 Dec.2005. Bot-
tom: Range estimator computed using daily data from 5 Jan.1996 to 30 Dec.2005. Time is on
the horizontal axis.
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the jump component. First, both parameters ρ and γ are significantly different from zero.

The former represents the persistence of the arrival process of jumps that is quite high for

both models implying the presence of jump clustering. The latter, γ, measures the change in

the conditional forecast of the number of jumps due to the last day information. The signifi-

cance of these two parameters suggests that the arrival process of jumps can deviate from its

unconditional mean. The implied unconditional jump intensity is 0.8727 while the average

variance due to jumps is equal to 0.5516: the index is volatile. This result is confirmed by

the average proportion of conditional variance explained by jumps which is equal to 0.3068,

jumps explained almost the 23% of the total returns variance. Moreover the jump size mean θ

is negative for both model and the most interesting feature is that it affects conditional skew-

ness and conditional kurtosis. The sign of θ indicates that large negative return realizations

due to jumps are associated with an immediate increase in the variance explaining the con-

temporaneous leverage effect: when jumps are realized they tend to have a negative effect on

returns. In particular the average conditional skewness is equal to−0.2766 while the average

conditional kurtosis is equal to 3.2814. Furthermore the feedback coefficient g(Λ,Ft−1) tends

to be smaller when at least one jump occurs because the total innovation is larger after jumps

. Considering the first column of Table 2, the feedback coefficient associated with good news

and no jump is equal to 0.0005 and it increases if one jump occurs, i.e. 0.0010. If no jumps

occur and if news are bad the coefficient is equal to 0.0411; it is equal to 0.0348 in case of bad

news if one jump occurs. These results provide evidence for the asymmetric effect of good

and bad news and they show that the asymmetry associated to bad news is more important

in the absence of jumps, namely for normal innovations. In fact the difference between the

coefficient estimates for both good and bad news in the case of no jumps and one jump are

quite similar. This means that news associated with jump innovations is incorporated more

quickly into current prices. The second column of Table 2 presents the estimated parameters

for the model with αj = αa = αa,j = 0. With this specification and through the LR test it

is possible to understand if the asymmetric effect of good versus bad news is statistically

significant: the asymmetric news effect is statistically significant.
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Table 2: GARJI and ARJI models estimates. ARJI model is obtained assuming αj = αa =
αa,j = 0. Standard errors are in parenthesis.

Process Parameters S&P 500

GARJI ARJI
Diffusion

µ 0.0106 (1.9839) 0.0153 (2.1142)
ω 0.0036 (0.0005) 0.0034 (0.0005)
α -7.7048 (0.4332) -4.7623 (0.3063)
αj 0.8096 (0.7538) -
αa 4.5131 (0.4213) -
αa,j -0.9776 (0.7204) -
β 0.9696 (0.0002) 0.9787 (0.0000)

Jump
λ0 0.0211 (0.0039) 0.0229 (0.0052)
ρ 0.9758 (0.0025) 0.9757 (0.0030)
γ 0.5262 (0.0501) 0.4792 (0.0641)
θ -0.9895 (0.3985) -0.9793 (0.4501)
δ2 0.0005 (0.0000) 0.0000 (0.0000)

Log-likelihood -3570.8 -3574.4

4.1.2 Estimation results based on high frequency data

All the estimates presented in Table 3, Table 4 and Table 5 are computed employing the

OLS method over the entire sample period, i.e. from 5 Jan. 1996 to 30 Dec. 2005, for the

S&P500 index. Table 3 and Table 4 show the results for the models presented in Section 2.2

for models based on RV, its decomposition in BV and JV and the cascade structure for the

leverage effect.

The coefficients of the continuous component expressed as daily, weekly and monthly

measures, respectively β1,β2 and β3 are significants in all models. Moreover, jump compo-

nents appear to be fundamental to forecast one step ahead volatility; the predictive power is

larger for those specifications that allow for RV decomposed in its continuous and discontin-

uous components, regardless the identified method used for jump magnitude. Furthermore,

the estimates for the aggregate leverage variables are negatives (as expected) and signifi-

cant. Moreover, the predictive power increases adding the cascade structure for the leverage

23



Table 3: Estimation of models based on high frequency data: AR(8), HAR, L-HAR, HARC-
Jumps, LHARC-Jumps. The coefficients refer to models presented in the Section 2.2. Stan-
dard errors are in parenthesis.

Parameter AR(8) HAR L-HAR HARC-Jumps LHARC-Jumps

β0 -0,0615 (0,0130) -0,1086 (0,0125) -0,3916 (0,0474) -0,0670 (0,0260) -0,3658 (0,0552)
β1 0,3877 (0,0195) 0,4020 (0,0189) 0,2763 (0,0199) 0,4047 (0,0189) 0,2799 (0,0199)
β2 0,1670 (0,0211) 0,3537 (0,0317) 0,3257 (0,0336) 0,3452 (0,0318) 0,3218 (0,0335)
β3 0,0693 (0,0212) 0,1735 (0,0314) 0,2029 (0,0372) 0,1691 (0,0331) 0,1891 (0,0387)
β4 0,0902 (0,0213) - - -0,2374 (0,0152) -0,0886 (0,1554) 0,0009 (0,1477)
β5 0,0831 (0,0213) - - -0,1962 (0,0422) -0,0828 (0,3146) -0,1692 (0,2987)
β6 0,0332 (0,0213) - - -0,0840 (0,0907) 0,1147 (0,6055) 0,4391 (0,5776)
β7 0,0567 (0,0210) - - - - - - -0,2349 (0,0152)
β8 0,0316 (0,0195) - - - - - - -0,1914 (0,0422)
β9 - - - - - - - - -0,0862 (0,0911)

Obs. 2494 2494 2494 2494 2494
R2 0,6463 0,6444 0,6744 0,6459 0,6752
Adj. R2 0,6452 0,6439 0,6736 0,6450 0,6740

regressors.

This finding confirms the different reaction of daily volatility to negative returns. The

estimates of the forecasting models based on the Range estimator are reported in Table 5.

The coefficients of the HAR specification are statistically significant; these results imply a

heterogeneous structure also for RA volatility measure. The highest predictive power is

recorded for the L-HAR model. Indeed also, in this case, the heterogenous structure in the

leverage effect has an important role in predicting future volatility.

4.2 VaR accuracy results

To assess the model’s capability of predicting future volatility, I report the results of the

Kupiec (1995) and the Christoffersen (1998) tests described in the Section 3. Both tests ad-

dress the accuracy of VaR models and their results interpretation give insights into volatility

models usefulness to risk managers and supervisory authorities. The tests are computed for

both models based on HF data and on daily data. In evaluating models performance, the

available sample is divided into two subsamples. The in-sample period is equal to 1677 ob-
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Table 4: Estimation of models based on high frequency data: HAR-CV-JV,LHAR-CV-JV,
HAR-C-J, LHAR-C-J. The coefficients refer to models presented in the Section 2.2. Standard
errors are in parenthesis.

Parameter HAR-CV-JV LHAR-CV-JV HAR-C-J LHAR-C-J

β0 -0,0666 (0,0244) -0,3671 (0,0549) -0,0482 (0,0182) -0,3225 (0,0512)
β1 0,4040 (0,0188) 0,2792 (0,0198) 0,4085 (0,0185) 0,2906 (0,0195)
β2 0,3450 (0,0317) 0,3219 (0,0334) 0,3115 (0,0310) 0,2942 (0,0327)
β3 0,1711 (0,0327) 0,1902 (0,0385) 0,1942 (0,0313) 0,2153 (0,0371)
β4 -0,0938 (0,1545) 0,0059 (0,1468) -0,1345 (0,1004) -0,1242 (0,0954)
β5 -0,0676 (0,3115) -0,1511 (0,2958) 0,4000 (0,1733) 0,2607 (0,1649)
β6 0,0435 (0,5948) 0,4172 (0,5686) -0,4836 (0,2960) -0,2292 (0,2827)
β7 - - -0,2351 (0,0152) - - -0,2310 (0,0151)
β8 - - -0,1909 (0,0422) - - -0,1888 (0,0419)
β9 - - -0,0869 (0,0913) - - -0,0604 (0,0908)

Obs. 2494 2494 2494 2494
R2 0,6458 0,6752 0,6497 0,6781
Adj. R2 0,6450 0,6740 0,6489 0,6769

Table 5: Estimation of models based on Range estimator: AR(8), HAR, L-HAR. The coeffi-
cients refer to models presented in Section 2.2. Standard errors are in parenthesis.

Parameter AR(8) HAR L-HAR

β0 -0,0937 (0,0212) -0,2694 (0,0194) -0,8699 (0,0724)
β1 0,1094 (0,0204) 0,0993 (0,0205) -0,0455 (0,0224)
β2 0,2054 (0,0205) 0,4580 (0,0422) 0,2970 (0,0484)
β3 0,1212 (0,0209) 0,3255 (0,0463) 0,3486 (0,0566)
β4 0,0918 (0,0209) - - -0,3069 (0,0260)
β5 0,1002 (0,0209) - - -0,4060 (0,0707)
β6 0,0791 (0,0209) - - -0,4148 (0,1479)
β7 0,0573 (0,0205) - - - -
β8 0,0938 (0,0204) - - - -
β9 - - - - - -

Obs. 2494 2494 2494
R2̂ 0,3964 0,3914 0,4337
Adj. R2̂ 0,3945 0,3907 0,4323
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servations, around 2/3 of the total sample, while the out-of-sample period is around 1/3 of

the total sample, equal to 839 observations. A rolling window procedure is used to imple-

ment the backtesting procedure and, in turn, to choose among different specifications. After

estimating the alternative VaR models, the one-day-ahead VaR estimate is computing using

the in-sample period. Then the in-sample period is moved forward by one period and the

estimation is run again. This procedure is repeated step by step for the remaining 839 days,

until the end of the sample. For both tests the expected number of exceedances is chosen

equal to 5% and 1% level22. Table 6 and Table 7 shows the VaR accuracy results at both 5%

and 1% level, respectively, for all models presented in Section 2.2 and Section 2.3. The eco-

nomic value per se of the HF-data forecasting models is assessed looking at the first part of

Table 6 and Table 7: All models that allow for explicit jumps and leverage components do

not reject the null at 1% while LHAR-C-J (jumps specified according to Corsi et al., 2010) is

the only model that does not reject the null conditional coverage at both αs level. In fact, for

this model, the average number of violations for the VaR at 5% level is the closest to the true

probability of occurrence of an exception over one day.

Instead, looking at the accuracy of daily data models, GARCH-t and Beta-t-GARCH do not

reject the null of conditional coverage at 5%, while all models pass the LCC test at 1% level.

Comparing this last result with the accuracy of the LHAR-C-J model, both GARCH-t and

Beta-t-GARCH provide an average number of violations closer to the theoretical one. AR(8)

provides accurate VaR measures if the Range estimator is used to proxy the latent volatility.

Even if the statistical significance of all βs parameters in both Range HAR and L-HAR mod-

els give insight on the possibility to extend the heterogeneous structure to such forecasting

models (see Table 5), these models do not pass accuracy tests at both considered level.

Indeed, the VaR forecasts according to both LUC and LCC are more accurate for daily data

than HF-data models.

Furthermore, allowing for an explicit jump component improves over HF-based VaR per-

formance at 1% level. No matter what the jump identification strategy is chosen, all models

(HARC-Jumps, HAR-CV-JV, and HAR-C-J) do not reject the null of unconditional and con-

22Both tests are also implemented to 10% level and the results are shown in the Appendix A. The quantile
required by Basel accords is 1%. Financial institutions, recently, has implemented stress tests which require VaR
forecasts for level smaller than 1%.
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Table 6: VaR accurancy at 5%. The first column shows the model chosen in order to compute
the VaR forecasts. H is the average number of violations computed for each model. VaR is
the average VaR forecasts. LRUC, LRCC and LRIND represent the pvalue associated to the
Kupiec (1995) and Christoffersen (1998) tests. All tests are evaluated at 1% significance level.

Model H VaR LRUC LRIND LRCC

AR(8) 0.074 -1.276 0.003 0.493 0.009

HAR 0.075 -1.267 0.002 0.134 0.002

L-HAR 0.073 -1.268 0.004 0.096 0.004

HARC-Jumps 0.076 -1.261 0.001 0.597 0.004

LHARC-Jumps 0.074 -1.266 0.003 0.114 0.003

HAR-CV-JV 0.076 -1.260 0.001 0.597 0.004

LHAR-CV-JV 0.074 -1.265 0.003 0.114 0.003

HAR-C-J 0.075 -1.257 0.002 0.544 0.006

LHAR-C-J 0.072 -1.261 0.007 0.399 0.018

GARJI 0.029 -1.646 0.002 0.030 0.001

ARGJI 0.024 -1.673 0.000 0.087 0.000

GARCH-t 0.032 -2.221 0.012 0.279 0.023

Beta-t-GARCH 0.032 -2.195 0.012 0.279 0.023

Range AR(8) 0.070 -1.255 0.010 0.664 0.034

Range HAR 0.075 -1.233 0.002 0.055 0.001

Range L-HAR 0.098 -1.135 0.000 0.453 0.000

ditional coverage at 1% significance level. At odds, the null is rejected for VaR computed at

5% level. For what concerns daily-data models, accounting for an explicit jump component

(GARJI, ARJI) or supposing a fat-tails distribution for log-returns gives the same VaR accu-

racy at 1% in terms of LUC and LCC. Allowing for an explicit jump factor in the conditional

log-returns distribution provides more accurate VaR measure, in addition to important in-

formation about the market response to outside news.

Another focus of this paper is represented by the leverage effect. Looking at Table 6 and

Table 7 , leverage effect has an important role in improving volatility forecasts and, in turn,

VaR accuracy. In fact, at least for daily data and HF-data, models that allow for an asym-

metric volatility response to price movements, do not reject the null of conditional coverage,
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passing both Kupiec (1995) and Christoffersen (1998) tests at 1% level. Surprisingly, L-HAR

model at 1% level generates the same proportion of hits (13%) of LHAR-CV-JV and LHARC-

Jumps, involving an equal value for the LCC statistic. This means that adding jumps as an

explanatory variable in the forecasting volatility model does not improve over VaR accuracy

if a leverage component is considered.

Table 7: VaR accurancy at 1%. The first column shows the model chosen in order to compute
the VaR forecasts. H is the average number of violations computed for each model. VaR is
the average VaR forecasts. LRUC, LRCC and LRIND represent the pvalue associated to the
Kupiec (1995) and Christoffersen (1998) tests. All tests are evaluated at 1% significance level.

Model H VaR LRUC LRIND LRCC

AR(8) 0.017 -1.805 0.075 0.490 0.162

HAR 0.019 -1.791 0.019 0.034 0.007

L-HAR 0.013 -1.794 0.385 0.129 0.217

HARC-Jumps 0.018 -1.783 0.039 0.025 0.010

LHARC-Jumps 0.013 -1.790 0.385 0.129 0.217

HAR-CV-JV 0.018 -1.782 0.039 0.025 0.010

LHAR-CV-JV 0.013 -1.790 0.385 0.129 0.217

HAR-C-J 0.017 -1.778 0.075 0.019 0.013

LHAR-C-J 0.015 -1.783 0.138 0.191 0.142

GARJI 0.004 -2.423 0.031 0.883 0.098

ARGJI 0.002 -2.486 0.008 0.922 0.029

GARCH-t 0.008 -3.449 0.622 0.731 0.835

Beta-t-GARCH 0.010 -3.409 0.894 0.695 0.918

Range AR(8) 0.020 -1.775 0.009 0.350 0.021

Range HAR 0.023 -1.744 0.002 0.070 0.001

Range L-HAR 0.029 -1.606 0.000 0.180 0.000

A slightly different result is registered for the HAR-C-J and the L-HAR-C-J models, un-

derlying a superior ability of jump identification strategy proposed by Corsi et al. (2010).

Summing up, daily-data models are preferred to HF-data models when the VaR is required
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at 5% level23. At 1% VaR level, all daily data models pass the Kupiec (1995) and the Christof-

fersen (1998) tests, at odd of HF-data models. For this data category, only the more sophis-

ticated volatility forecasting models give accurate VaR forecasts. Finally, both jumps and

leverage effect are important factors in order to obtain reliable VaR measures.

5 Conclusion

This paper assesses the economic value of different forecasting volatility models, in terms

of informational content embedded in the HF observations and daily data. In order to do so,

I compare the performance of HF-data and daily data models in a VaR framework. Two key

assumptions are introduced: jumps in price and leverage effect in volatility dynamics.

Specifically, I consider various specifications of HF-data models for volatility forecast, which

differs along three main dimensions: different time-horizons for investors, separation of con-

tinuous and discontinuous volatility components and, finally, a cascade dynamic for the

leverage effect. I also consider different variants of the daily data models, in form of GARJI

models either with or without an asymmetric effect of news on volatility, as well as in form

of two fat-tails models, namely the GARCH-t and the Beta-t GARCH models. All these mod-

els are compared with a correspondent and equivalent model, based on the Range volatility

measure; the latter is expected to estimate a level of volatility which is intermediate with

respect to those measured by HF-data and daily data models. This analysis highlights im-

portant issues. First, it stresses the importance of the sampling frequency for data needed

in economic applications such as the VaR measurement. Second, it emphasizes the strict re-

lationship between VaR measures and the type of model used to forecast volatility. In sum,

daily-data models are preferred to HF-data models at 5% and 1% VaR level.

The accuracy of the VaR measure significantly improves when introducing both an explicit

jump component and a fat-tails distribution in forecasting volatility models. Specifically,

independently from the data frequency, allowing for jumps in price (or providing fat-tails)

and leverage effects translates in more accurate VaR measure. However, introducing jumps

allows risk managers to have relevant information on the market reaction to outside news.

23From Table 8 in the Appendix A only the AR(8) model passes all accuracy tests. This result can be interpreted
in favor of more sophisticated forecasting models when the α level required is less conservative.
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Appendix A VaR accurancy at 10% level

Table 8: VaR accurancy at 10% level. The first column shows the model chosen in order to
compute the VaR forecasts. H is the average number of violations computed for each model.
VaR is the average VaR forecasts. LRUC, LRCC and LRIND represent the pvalue associated to
the Kupiec (1995) and Christoffersen (1998) tests. All tests are evaluated at 1% significance
level.

Model H VaR LRUC LRIND LRCC

AR(8) 0.132 -1.276 0.003 0.670 0.010

HAR 0.139 -1.267 0.000 0.817 0.001

L-HAR 0.136 -1.268 0.001 0.881 0.004

HARC-Jumps 0.142 -1.261 0.000 0.945 0.001

LHARC-Jumps 0.138 -1.266 0.000 0.987 0.002

HAR-CV-JV 0.142 -1.260 0.000 0.726 0.001

LHAR-CV-JV 0.137 -1.265 0.001 0.949 0.003

HAR-C-J 0.147 -1.257 0.000 0.979 0.000

LHAR-C-J 0.141 -1.261 0.000 0.913 0.001

GARJI 0.070 -1.646 0.003 0.165 0.004

ARGJI 0.068 -1.673 0.001 0.279 0.003

GARCH-t 0.052 -2.221 0.000 0.029 0.000

Beta-t-GARCH 0.052 -2.195 0.000 0.029 0.000

Range AR(8) 0.143 -1.255 0.000 0.559 0.000

Range HAR 0.145 -1.233 0.000 0.621 0.000

Range L-HAR 0.166 -1.135 0.000 0.439 0.000
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