

Make Your Publications Visible.

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

da Silva, Felipe Pinto; Araujo, Jair Andrade; Costa, Edward Martins; Vieira Filho, José Eustáquio Ribeiro

Working Paper

Eficiência produtiva e pobreza rural no Nordeste brasileiro

Texto para Discussão, No. 2250

Provided in Cooperation with:

Institute of Applied Economic Research (ipea), Brasília

Suggested Citation: da Silva, Felipe Pinto; Araujo, Jair Andrade; Costa, Edward Martins; Vieira Filho, José Eustáquio Ribeiro (2016): Eficiência produtiva e pobreza rural no Nordeste brasileiro, Texto para Discussão, No. 2250, Instituto de Pesquisa Econômica Aplicada (IPEA), Brasília

This Version is available at: https://hdl.handle.net/10419/177466

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

2250 TEXTO PARA DISCUSSÃO

EFICIÊNCIA PRODUTIVA E POBREZA RURAL NO NORDESTE BRASILEIRO

Felipe Pinto da Silva Jair Andrade Araújo Edward Martins Costa José Eustáquio Ribeiro Vieira Filho

Brasília, novembro de 2016

EFICIÊNCIA PRODUTIVA E POBREZA RURAL NO NORDESTE BRASILEIRO

Felipe Pinto da Silva¹ Jair Andrade Araújo² Edward Martins Costa ³ José Eustáquio Ribeiro Vieira Filho⁴

^{1.} Mestrando em economia rural pela Universidade Federal do Ceará (UFC). *E-mail*: <dasilva.felipe@outlook.com>.

^{2.} Doutor em economia pela UFC e professor do curso de mestrado em economia rural da UFC. *E-mail*: <jaraujoce@gmail.com>.

^{3.} Doutor em economia pela Universidade Federal de Pernambuco (UFPE) e professor do curso de mestrado em economia rural da UFC. *E-mail*: <edwardcosta@ufc.br>.

^{4.} Técnico de planejamento e pesquisa do Ipea, secretário executivo da Sociedade Brasileira de Economia, Administração e Sociologia Rural (Sober) e professor do Programa de Pós-graduação em Agronegócio da Universidade de Brasília (Propaga/UnB). *E-mail*: <jose.vieira@ipea.gov.br>.

Governo Federal

Ministério do Planejamento, Desenvolvimento e Gestão Ministro interino Dyogo Henrique de Oliveira

Fundação pública vinculada ao Ministério do Planejamento, Desenvolvimento e Gestão, o Ipea fornece suporte técnico e institucional às ações governamentais — possibilitando a formulação de inúmeras políticas públicas e programas de desenvolvimento brasileiro — e disponibiliza, para a sociedade, pesquisas e estudos realizados por seus técnicos.

Presidente

Ernesto Lozardo

Diretor de Desenvolvimento Institucional, Substituto Carlos Roberto Paiva da Silva

Diretor de Estudos e Políticas do Estado, das Instituições e da Democracia João Alberto De Negri

Diretor de Estudos e Políticas Macroeconômicas

Claudio Hamilton Matos dos Santos

Diretor de Estudos e Políticas Regionais, Urbanas e Ambientais

Alexandre Xavier Ywata de Carvalho

Diretora de Estudos e Políticas Setoriais de Inovação, Regulação e Infraestrutura Fernanda De Negri

Diretora de Estudos e Políticas Sociais Lenita Maria Turchi

Diretor de Estudos e Relações Econômicas e Políticas Internacionais

Sérgio Augusto de Abreu e Lima Florêncio Sobrinho

Chefe de Gabinete

Márcio Simão

Assessora-chefe de Imprensa e Comunicação Regina Alvarez

Ouvidoria: http://www.ipea.gov.br/ouvidoria URL: http://www.ipea.gov.br

Texto para Discussão

Publicação cujo objetivo é divulgar resultados de estudos direta ou indiretamente desenvolvidos pelo Ipea, os quais, por sua relevância, levam informações para profissionais especializados e estabelecem um espaço para sugestões.

© Instituto de Pesquisa Econômica Aplicada – ipea 2016

Texto para discussão / Instituto de Pesquisa Econômica Aplicada.- Brasília : Rio de Janeiro : Ipea , 1990-

ISSN 1415-4765

1.Brasil. 2.Aspectos Econômicos. 3.Aspectos Sociais. I. Instituto de Pesquisa Econômica Aplicada.

CDD 330.908

As opiniões emitidas nesta publicação são de exclusiva e inteira responsabilidade dos autores, não exprimindo, necessariamente, o ponto de vista do Instituto de Pesquisa Econômica Aplicada ou do Ministério do Planejamento, Desenvolvimento e Gestão.

É permitida a reprodução deste texto e dos dados nele contidos, desde que citada a fonte.Reproduções para fins comerciais são proibidas.

SUMÁRIO

SINOPSE

ABSTRACT

1 INTRODUÇÃO	7
2 CARACTERIZAÇÃO DO SEMIÁRIDO DO NORDESTE BRASILEIRO	9
3 METODOLOGIA	18
4 ANÁLISE E RESULTADOS	31
5 CONSIDERAÇÕES FINAIS	41
REFERÊNCIAS	42

SINOPSE

Este estudo busca analisar as diferenças tecnológicas da produção agropecuária entre os municípios situados no semiárido e no não semiárido do Nordeste brasileiro. Utiliza-se o modelo de metafronteira tecnológica, proposta por Battese, Rao e O'Donnell (2004) e O'Donnell, Rao e Battese (2008), para responder até que ponto essas diferenças regionais influenciam na eficiência da produção e qual os seus impactos nos municípios. Constatou-se a hipótese de que os municípios pertencentes ao semiárido e ao não semiárido se deparam com diferentes oportunidades de produção. Os resultados indicaram que, quando comparadas as duas regiões, o não semiárido possui a maior eficiência técnica (ET) média com referência à metafronteira.

Palavras-chave: agricultura; tecnologia; semiárido nordestino; metafronteira de produção.

ABSTRACT

This study aims to analyze the technological differences in agricultural production between the municipalities in the semiarid and non-semiarid regions of Brazil's Northeast. It uses the technological meta-frontier model proposed by Battese, Rao e O'Donnell (2004), and O'Donnell, Rao e Battese (2008), for responding to what extent these regional differences influence the efficiency of production and what is its impact on municipalities. It was observed the hypothesis that municipalities belonging to the semiarid and non-semiarid have different production opportunities. The results indicated that when compared the two regions, the non-semiarid region has the highest average technical efficiency with reference to meta-frontier.

Keywords: agriculture; technology; semi-arid northeast; and production meta-frontier.

2 2 5 0

1 INTRODUÇÃO

O Brasil passou por um processo intenso de modernização de seu setor agrícola, a partir da década de 1960. Gasques *et al.* (2012) apresentam evidências do crescimento elevado da produtividade agrícola nacional, com taxas superiores aos principais países produtores de grãos e carnes, tais como Estados Unidos, União Europeia, China, Índia e Argentina. De forma complementar, Fuglie e Wang (2012) constatam que a agricultura brasileira e a chinesa apresentaram, nos últimos vinte anos, o maior e mais rápido crescimento da produtividade total dos fatores (PTF) em âmbito mundial. Além disso, essa tendência se intensificou durante o período 2000-2012 (Gasques, 2014).

Nota-se que esse processo se caracterizou de maneira heterogênea entre as regiões brasileiras. O Nordeste merece atenção nessa trajetória, por não ter acompanhado a dinâmica observada no país, tornando-se a região brasileira com menor dinamismo no setor agrícola (Vicente, 2004; Vieira Filho, 2013). No Brasil, é fácil perceber a convivência dual do moderno *versus* o atrasado. Enquanto, nas regiões Centro-Oeste e Sul, se encontra um setor agrícola moderno, com alto teor tecnológico e elevada produtividade, no eixo Norte e Nordeste, há um contraste de uma agricultura em que prevalece produtores que utilizam técnicas atrasadas e com baixa produtividade. A situação da pobreza rural se agrava no Nordeste brasileiro (Vieira Filho, 2013).

No Brasil, o Nordeste é uma das áreas mais vulneráveis às variabilidades climáticas, que se associam às chuvas irregulares, aos *deficit* hídricos e à baixa resiliência da produção agrícola das populações que se dedicam à agricultura, principalmente nos assentamentos da região semiárida (Simões *et al.*, 2010). Estas características fazem da agropecuária um empreendimento cercado de riscos, especialmente no semiárido. Ao contrário da dinâmica da produção moderna, o setor agropecuário constituído no semiárido nordestino tem acesso restrito aos mercados, o que dificulta o desenvolvimento regional.

Vale observar que, mesmo dentro do Nordeste, o setor agrícola não se comporta de maneira homogênea. Agricultores situados no semiárido, por hipótese, deparam-se com condições geográficas, culturais, históricas e institucionais distintas, que não devem ser negligenciadas das análises das políticas públicas de desenvolvimento regional. É necessário promover as instituições, de forma que não haja o aprofundamento da discrepância produtiva entre a região dinâmica e a atrasada, como bem demonstram os

estudos de Hayami (1969) e Hayami e Ruttan (1970; 1971). Diante dessas condicionalidades, é fato que os agricultores situados no Nordeste semiárido se deparam com diferentes oportunidades de produção. Assim, podem-se levantar alguns questões: *i*) essas diferenças influenciam na eficiência da produção?; e *ii*) se positiva a resposta ao primeiro questionamento, qual a magnitude dos impactos produtivos em pertencer ou não ao semiárido nordestino? Espera-se que esta problemática seja respondida ao longo do estudo.

Tendo expostas as questões centrais, como objetivo geral de investigação, busca-se identificar as diferenças tecnológicas da produção agropecuária entre os municípios situados no semiárido e nas demais regiões do Nordeste brasileiro. Para tanto, propõe-se a utilização do método utilizado por Battese, Rao e O'Donnell (2004) e O'Donnell, Rao e Battese (2008), para estimação da metafronteira de produção. Este quadro teórico é bastante utilizado para a comparação de níveis de eficiência e tecnologias de produção entre regiões distintas. Serão observadas em que proporção as diferenças regionais próprias do Nordeste, no que tange à qualidade do solo, à diferença climática, à infraestrutura econômica, entre outras variáveis, impactam na eficiência das firmas situadas nos diferentes grupos regionais. Particularmente, a análise se concentra no estudo do Nordeste, incluindo o semiárido e as demais regiões, a partir da cartografia delimitada pela Superintendência do Desenvolvimento do Nordeste (Sudene). Como objetivo específico, procura-se mensurar e analisar a eficiência técnica (ET) e a razão de metafronteira (MRT) dos municípios inseridos no semiárido e no não semiárido nordestino.

A principal contribuição deste estudo consiste em uma melhor caracterização dos municípios situados no semiárido e nas demais regiões do Nordeste brasileiro, atentando-se para a questão produtiva e tecnológica. Não há dúvidas de que estudos técnicos que possam identificar os reais problemas da região são importantes para a formulação de políticas públicas de desenvolvimento regional, especialmente no fomento do semiárido.

Para a análise, serão apresentadas cinco seções, incluindo esta breve introdução. Na seção 2, faz-se uma breve caracterização do semiárido, além de copilar estudos empíricos relacionados à eficiência produtiva da agropecuária da região. A seção 3, conforme Battese, Rao e O'Donnell (2004) e O'Donnell, Rao e Battese (2008),

apresenta a metodologia e o modelo econométrico, bem como a fonte dos dados e a amostra dos municípios usados na estimação. Na seção 4, há a discussão dos resultados. Por fim, seguem as considerações finais.

2 CARACTERIZAÇÃO DO SEMIÁRIDO DO NORDESTE BRASILEIRO

2.1 O semiárido brasileiro como delimitação empírica

O Nordeste brasileiro corresponde a uma área total de 1,57 milhões de km², perfazendo 18% do território nacional. Trata-se da segunda região mais populosa do país, constituindo 28% da população total do Brasil e concentrando cerca de 40% da pobreza. Em 2010, essa disparidade foi ilustrada ao comparar o índice de desenvolvimento humano (IDH)¹ de 0,57 da região Nordeste com o indicador da região Sudeste, de 0,78, como apontam Barbieri *et al.* (2010).

Nessa região, a variabilidade climática é alta, e longos períodos de secas estão associados historicamente à fome e à mortalidade (Davis, 2002). Parcela significativa da população consiste de agricultores familiares tradicionais de subsistência e com baixo teor tecnológico. Kahn e Campos (1992) apontam que, em longos períodos de seca, as perdas no total da produção dos pequenos agricultores são de até 80%. Nasuti, Eiró e Lindoso (2013), ao pesquisarem cerca de 1.140 produtores rurais, dos estados da Bahia, do Ceará, de Pernambuco, do Rio Grande do Norte e do Piauí, no período 2011-2013, chegaram a resultados semelhantes, sendo que cerca de 70% dos produtores afirmavam obter prejuízos devido à variabilidade climática.

Como já destacado, a região Nordeste é heterogênea, tanto economicamente quanto do ponto de vista da distribuição dos recursos naturais. A região semiárida, ocupando 60% de toda a região Nordeste, estende-se a uma área de 982.563,3 km²,

^{1.} Índice sintético calculado pela média simples de três subíndices, referentes às dimensões de longevidade (índice de desenvolvimento humano – longevidade – IDHM-L), educação (IDHM-E) e renda (IDHM-R). Para obter informações metodológicas, consulte o *Atlas do Desenvolvimento Humano* no Brasil, elaborado pelo Programa das Nações Unidas para o Desenvolvimento (Pnud, 1998). O IDH é uma medida comparativa para classificar diferentes regiões pelo grau de desenvolvimento. Quanto mais próximo de 1, mais elevado é o grau de desenvolvimento. Ao contrário, quanto menor for o indicador, mais frágil é o desenvolvimento humano da região.

sendo que 89,5% pertence ao Nordeste brasileiro e o restante, ao norte do estado de Minas Gerais. Em termos populacionais, o semiárido nordestino compreende aproximadamente 12% da população do país. Popularmente conhecida como o "polígono das secas", é a região mais pobre do Brasil, sendo sujeita a severas secas periódicas (Da Mata e Resende, 2015), tornando-a a região semiárida dos trópicos mais populosa do mundo (Marengo, 2008).

Ainda em 2010, a região semiárida apresenta um nível de analfabetismo três vezes maior que a média nacional (Rocha e Soares, 2015). Conforme a tabela 1, ao comparar os indicadores demográficos, para 2010, a média da renda domiciliar *per capita* do semiárido nordestino foi 2,4 vezes menor em relação à média nacional, e apenas 70% da renda média do Nordeste.

Ao longo do período, de 2000 a 2010, percebe-se que o semiárido foi a região analisada com maior variação percentual de renda domiciliar *per capita*, o que resultou, consequentemente, numa melhora da distribuição de renda comparada às demais regiões. Deve-se ter cuidado ao interpretar o índice de Gini,² pois, embora a renda tenha aumentado na região semiárida no decorrer do período, os valores absolutos se mostram mais baixos que nas demais regiões — ou seja, a maior igualdade de renda se dá em uma situação de *socialização da pobreza*, ainda que com uma melhora de renda.

TABELA 1
Média da renda domiciliar per capita real e índice de Gini – Brasil, Nordeste e semiárido nordestino (2000 e 2010)

	Renda (R\$)			Índice de Gini		
Unidades	2000	2010	Variação (%)	2000	2010	Variação (%)
Semiárido nordestino	246,86	399,48	61,82	0,58	0,55	-5,17
Nordeste	365,89	570,10	55,81	0,64	0,62	-3,13
Brasil	701,71	949,99	35,38	0,63	0,60	-4,29

Fonte: Irffi (2015). Elaboração dos autores.

^{2.} O coeficiente de Gini mede o grau de desigualdade na distribuição da renda domiciliar *per capita* entre os indivíduos. Seu valor pode variar teoricamente desde 0, quando não há desigualdade (as rendas de todos os indivíduos têm o mesmo valor), até 1, quando a desigualdade é máxima (apenas um indivíduo detém toda a renda da sociedade, e a renda de todos os outros indivíduos é nula). Série calculada a partir das respostas à Pesquisa Nacional por Amostra de Domicílios do Instituto Brasileiro de Geografia e Estatística (Pnad/IBGE).

Em relação às questões sociais, Rocha e Soares (2015) mostram que, no semiárido nordestino, no período 1996-2008, aproximadamente 80% das crianças estavam abaixo da linha da pobreza e a mortalidade infantil era de 31 óbitos por mil nascimentos. Em contrapartida, a média brasileira se encontrava, respectivamente, nos patamares de 25% e aproximadamente quinze óbitos por mil nascimentos. Todos esses indicativos tornam a região semiárida brasileira o maior bolsão de pobreza do país.

A distribuição populacional da região não acompanhou o processo de urbanização que ocorreu no Brasil no século passado (Alves e Rocha, 2010). De acordo com Alves e Rocha (2010), o Nordeste é a região com maior potencial de êxodo rural nos próximos anos, e, por isso, é necessário definir políticas que possam fomentar o espaço rural e o urbano, de modo a não se repetir os erros do passado.

Os municípios que compõem o semiárido são pequenos, com uma população média de 12 mil habitantes, tendo sua economia fortemente baseada em formas extensivas de agricultura de subsistência com baixa produtividade e pouca resiliência às flutuações climáticas (Ab'saber, 1999; Barbieri *et al.*, 2010). A partir dos dados apresentados pelo Censo Agropecuário de 2006 do Instituto Brasileiro de Geografia e Estatística (IBGE, 2006), a agricultura familiar é o segmento predominante no contexto produtivo da agropecuária da região.

De acordo com o Censo Agropecuário de 2006 (IBGE, 2006), dos 5,1 milhões de estabelecimentos agropecuários no Brasil, cerca de 84% eram estabelecimentos de agricultura familiar. No comparativo regional, dos estabelecimentos de agricultura familiar, quase a metade (50%) estava localizada no Nordeste. No que se refere à extrema pobreza, essa porcentagem ainda é muito mais elevada na região nordestina, cerca de 61%.

No que tange aos níveis de escolaridade (gráfico 1), no Brasil, 90% dos proprietários dos estabelecimentos não possuíam o ensino fundamental (analfabetos, não educados e ensino fundamental), com 27% de analfabetos e 12% de não educados. Esses produtores detêm baixa capacidade de absorção tecnológica, segundo Vieira Filho (2014). Em uma comparação regional, o Nordeste tem o pior desempenho na educação, com 59% dos proprietários analfabetos e não educados, apenas 36% com ensino fundamental e 6% com ensino médio e superior. Estes números são impressionantes em comparação com as regiões do Centro-Sul e mostram uma enorme lacuna entre regiões desenvolvidas e atrasadas.

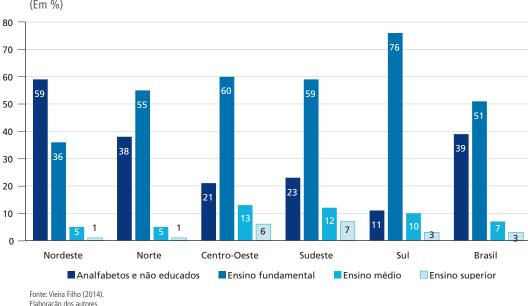


GRÁFICO 1

Proprietários por níveis de escolaridade e por regiões

(Em %)

Com certeza, essas características também são observadas no semiárido. Segundo Aquino e Lacerda (2014), esse ambiente torna atividades tradicionais na região, como a agricultura de sequeiro – que depende somente das precipitações pluviométricas – e a agropecuária extensiva, em empreendimentos de extremo risco. Dadas a concentração populacional e sua dependência dessas atividades, períodos prolongados de estiagem acarretam drásticas reduções na produção, aumento da fome, crescimento do desemprego e estímulo à migração para zonas urbanas, o que demanda maior investimento na prestação dos serviços públicos nas grandes cidades. Programas, tais como o Bolsa Família, contribuem para amenizar parte desse impacto negativo, mas é preciso planejamento mais específico para acabar com o problema da pobreza de forma estrutural. Políticas assistencialistas são importantes no período de transição, mas investimento em capacidade de absorção de conteúdo tecnológico é, entre outros investimentos, fundamental para erradicar os problemas estruturais.

Diante disso, os formuladores de políticas públicas voltaram sua atenção a essas questões, criando políticas específicas para o enfrentamento dessa condição. O principal instrumento de intervenção governamental, representada pela Sudene, é o Fundo Constitucional de Financiamento do Nordeste (FNE), que tem como seu gestor o

2 2 5 0

Banco do Nordeste Brasileiro (BNB). A Constituição Federal (CF) de 1988 estabeleceu o FNE e outros fundos constitucionais ³ através do art. 159 e regido por força da Lei nº 7.827, de 27 de setembro de 1989, sendo metade dos recursos dos fundos direcionada à região semiárida.

A delimitação do semiárido brasileiro é regulamentada mediante a Portaria nº 89, assinada em março de 2005 pelo Ministério da Integração Nacional (MI). O semiárido brasileiro constitui toda a área dos estados do Nordeste, incluindo todos os municípios do norte de Minas Gerais e do Espírito Santo que atendam aos seguintes critérios: precipitação pluviométrica média anual inferior a 800 milímetros; índice de aridez de até 0,5, calculado pelo balanço hídrico que relaciona as precipitações e a evapotranspiração potencial, no período 1961-1991; e risco de seca maior que 60%, tomando-se por base o período 1970-1990.

A importância desse fundo para a região foi mostrada por Da Mata e Resende (2015). No estudo, os autores comparam os municípios incluídos na região semiárida (grupo de tratamento), com municípios semelhantes que não foram incorporados à região na lei de 2005 (grupo de controle). Constatou-se que produtores de baixa renda e com menor porte nas novas localidades semiáridas têm investido o crédito subsidiado para expandir sua capacidade de resiliência às intempéries climáticas regionais. Notou-se ainda que esses empréstimos não se converteram em ganhos em produto interno bruto (PIB) *per capita*, dado o nível de informalidade desse setor na região.

Nessa perspectiva, a região de estudo será a cartografia da área de atuação da Sudene, e não apenas o Nordeste geográfico brasileiro (tabela 2 e mapa 1), definido pelo IBGE, no intuito de melhor representar os dois grupos regionais. Embora os municípios do norte de Minas Gerais pertençam a um estado rico, com maior grau de desenvolvimento, não se beneficiam desse nível de desenvolvimento, como mostra Irffi (2015). Já o norte do Espírito Santo foi mantido para garantir a estrutura institucional criada pela atuação da Sudene na região.

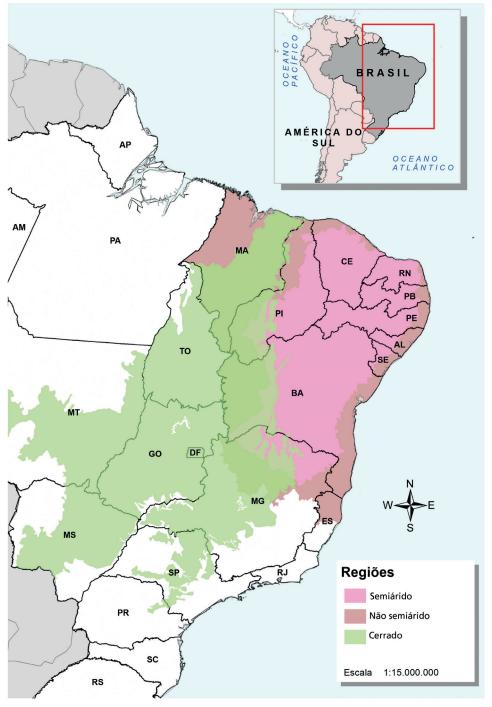
^{3.} Os fundos constitucionais foram criados no âmbito da Constituição Federal (CF) de 1988 e são constituídos de 3% da arrecadação do Imposto sobre Renda e Proventos de Qualquer Natureza (IR) e do Imposto sobre Produtos Industrializados (IPI). Os fundos são: Fundo Constitucional de Financiamento do Nordeste (FNE), Fundo Constitucional de Financiamento do Norte (FNO) e Fundo Constitucional de Financiamento do Centro-Oeste (FCO).

TABELA 2
Municípios abrangidos pela cartografia da Sudene (2005)

Estados		Número de municípios	
ESIdUOS	Nordeste semiárido	Nordeste não semiárido	Total
Alagoas	38	64	102
Bahia	265	152	417
Ceará	150	34	184
Maranhão	0	217	217
Paraíba	170	53	223
Pernambuco	122	63	185
Piauí	127	96	223
Rio Grande do Norte	147	20	167
Sergipe	29	46	75
Espírito Santo	0	28	28
Minas Gerais	85	83	168
Total	1.133	856	1.989

Fonte: Portaria MI nº 89, de 16 de março de 2005.

Elaboração dos autores.


Obs.: Os municípios de Aroeiras do Itaim (PI) e Barrocas (BA), apesar de estarem na região compreendida pelo semiárido nordestino, não foram incluídos na normativa legal que instituiu esse recorte.

Vale destacar que parte do semiárido brasileiro se encontra situada no Cerrado nordestino,⁴ área da nova expansão agrícola do Brasil que vem ocorrendo nos últimos dez ou quinze anos (Buainain e Garcia, 2016). Essa expansão se dá principalmente na região do Matopiba (acrônimo para distinguir os estados do Maranhão, do Tocantins, do Piauí e da Bahia). Tal interceção pode ser visualizada pelo mapa 1.

Mesmo havendo a predominância do bioma Cerrado, esta região sofre de alguns problemas comuns ao semiárido nordestino. Inúmeras áreas são suscetíveis ao processo de desertificação, ou mesmo já estão em processo, como é o caso das principais áreas ocupadas pelo agronegócio (Buainain e Garcia, 2016). A região também possui uma estrutura produtiva altamente concentrada, onde apenas dezesseis municípios do Cerrado nordestino concentram 55% do valor de produção agropecuária; possui uma produtividade média inferior à média nacional; e tem sua população em um estágio de fragilidade social. Em 2012, cerca de 59% das famílias residentes eram baneficiadas por programas de transferência de renda (Buainain e Garcia, 2016).

^{4.} O Cerrado nordestino compreende parte do bioma Cerrado, que se localiza no Nordeste do Brasil, estendendo-se do Maranhão até o norte de Minas Gerais.

MAPA 1 Localização do semiárido e do Cerrado na cartografia da Sudene

Fonte: IBGE (2016). Elaboração dos autores. Assim, dado o horizonte histórico deste estudo (1970-2006), optou-se por não se considerar este conjunto regional separadamente, já que esta região ainda não se enquadra no eixo mais dinâmico do setor nacional. Esse esforço busca captar o impacto da heterogeneidade espacial nordestina na eficiência das firmas de produção agropecuária situadas na delimitação proposta, e verificar o quanto as diferenciações tecnológicas entre as regiões influenciam na eficiência agrícolas dos municípios.

O estudo de O'Donnell, Rao e Battese (2008) corrobora essa percepção, onde firmas situadas em diferentes regiões se deparam com diferentes oportunidades de produção. As escolhas a serem tomadas são sobre diferentes combinações factíveis de "insumo-produto"— ou seja, a partir de diferentes "conjuntos de tecnologias". Essas diferenças podem ser explicadas pela disponibilidade e qualidade do estoque de capital físico, humano e financeiro, pela infraestrutura econômica, pela dotação de recursos naturais etc.

2.2 Principais tendências verificadas

Como apresentado na subseção anterior, a tendência do setor agrícola do semiárido nordestino é de baixa produtividade. Um cenário díspar quando comparado à dinâmica do agronegócio brasileiro. Enquanto em alguns países desenvolvidos se discute a existência ou não de uma tendência de redução do crescimento da produtividade agrícola, esse é o caso de diversos estudos que debatem o caso do setor agrícola americano (Alston *et al.*, 2009; James *et al.*, 2009; Ball, Schimmelpfennig e Wang, 2013), países em desenvolvimento, especialmente a China e o Brasil, apresentaram rápidos ganhos de PTF no setor (Fuglie, 2008).

Estudos que se detêm a analisar a evolução da PTF e da eficiência agrícola da região semiárida são escassos. A maioria dos trabalhos considera apenas o Nordeste como um todo. Desconsiderando a elevada heterogeneidade regional, os agricultores fazem as suas escolhas a partir de diferentes *conjuntos de tecnologias*. A literatura econômica sobre o tema mostra que o Nordeste vem a margem desse processo. Vicente (2004), ao analisar a eficiência e a PTF da agricultura brasileira no período 1970-1995, utilizando análise envoltória de dados (DEA), indica que o Nordeste sofreu uma involução tecnológica, o que o fez destoar do aumento da PTF por qual passou o setor agrícola brasileiro. Os fatores principais geradores desta tendência foram a deficiência na infraestrutura local, a dificuldade no acesso e na utilização de insumos modernos e a deterioração das relações de troca na agricultura. A amálgama desses fatores influenciou o desempenho da PTF na região.

Araújo e Santos (2009) argumentam que o Nordeste passou por um processo tardio de integração à dinâmica da agricultura brasileira, passando a acompanhar de perto a economia brasileira como um todo, crescendo a taxas médias superiores às nacionais. A base agropecuária da região passou por um processo de diversificação. Toma-se como exemplo a presença da fruticultura irrigada, especialmente no polo agroindustrial de Petrolina-Juazeiro, no vale submédio do São Francisco, e no moderno polo de fruticultura do Rio Grande do Norte, no Vale do Açu. Da mesma forma, a produção de grãos vem crescendo na direção do Matopiba, que se estende aos cerrados nordestino e tocantinense.

Gasques *et al.* (2012) analisam a PTF da economia brasileira no período 1970-2006. Apontaram que a taxa de crescimento da produtividade dos estados nordestinos, no período 1995/1996-2006, apresentou crescimento superior à média nacional, com exceção dos estados da Paraíba e do Rio Grande do Norte.

Fornazier e Vieira Filho (2012), ao estudar o setor agropecuário brasileiro, encontrou fortes evidências de que o setor é estruturalmente heterogêneo. Para tanto, compararam-se as diferenças a partir dos dados do Censo Agropecuário de 2006. Isso significa que, no caso brasileiro, o setor moderno e produtivo convivia com o atrasado e pobre, bem representados na diferença entre os produtores familiares e não familiares. Entretanto, os autores encontraram que a heterogeneidade não se dá unicamente pelo tipo de produção (familiar ou patronal) ou mesmo pelo tamanho (pequeno ou grande). Há outras características como fatores culturais, geográficos e climáticos. Além do mais, foi constatado que, dentro da própria categoria de agricultura familiar, havia produção moderna com alta produtividade *versus* produção atrasada com baixa eficiência técnica produtiva, que produzem praticamente sem excedente monetário.

Vieira Filho (2013) verificou a heterogeneidade estrutural existente na agricultura familiar brasileira em diferentes regiões e constatou que há a coexistência de produtores familiares, modernos e produtivos, com agricultores tradicionais de subsistência com baixo teor tecnológico, sendo estes últimos mais vulneráveis às variabilidades climáticas próprias da região Nordeste. Apresentou-se que a região Nordeste possui a maior heterogeneidade entre os agricultores familiares, já que a maior parte de seus estabelecimentos agropecuários se classificava nesse tipo de organização, cerca de 88% do total (IBGE, 2006).

Helfand, Magalhães e Rada (2015) analisaram a PTF e a eficiência técnica com o modelo de fronteira estocástica, a partir dos dados dos censos agropecuários para 1985, o período 1995-1996 e 2006. Foi examinado o papel do tamanho da propriedade no acelerado crescimento da PTF agrícola do Brasil nos últimos vinte anos. Para tanto, os estabelecimentos agrícolas foram divididos em classes pelo tamanho e pelas suas respectivas contribuições ao crescimento da PTF nacional. Os resultados específicos para o Nordeste mostraram que a segunda menor classe de estabelecimentos (de 5 a 20 hectares) foi responsável por 18% da produção e 21% dos estabelecimentos da região. Esta foi a classe que mais evoluiu em eficiência técnica (7,75%), bem como em relação ao crescimento da PTF (4,12%). Não obstante, a maior parte das terras da região, 69% do total, representou maiores fazendas (de 100 a 500 hectares). Esta faixa apresentou as mais reduzidas taxas de crescimento da PTF.

3 METODOLOGIA

3.1 Função de produção e eficiência técnica

No delineamento teórico deste estudo, considera-se importante destacar que a mensuração de eficiência está intimamente relacionada com a teoria da produção e com o conceito de função de distância. A noção de função de distância foi introduzida na literatura econômica, simultaneamente, por Malmquist (1953) e Shephard (1970), sendo bastante útil para descrever uma dada tecnologia, de maneira a possibilitar a mensuração da eficiência e da produtividade. Nesta subseção, apresentar-se-á formalmente como o conceito *função distância produto orientada* é utilizado para medir a eficiência técnica e a razão de metatecnologia (MTR) (O'Donnell, Rao e Battese, 2008), ou razão de *gap* tecnológico (TGR) (Battese, Rao e O'Donnell, 2004).

Sejam y e x vetores de produtos e insumos, sendo seus elementos compostos de números não negativos e reais com dimensões Mx1 e Nx1, respectivamente. Assim, x e y podem ser considerados como elementos do ortante não negativo dos espaços euclidianos N- e M-dimensional, representados por R_N^+ e R_M^+ . O conjunto de metatecnologias, que contém todas as combinações factíveis de insumo-produto, pode ser definido como:

$$T = \{(x, y): x > 0; y > 0; x pode produzir y\}.$$
(1)

2 2 5 0

Esse conjunto de metatecnologia é proporcionalmente representado e descrito por conjuntos de insumos e produtos associados. Por exemplo, o conjunto de produto, que apresenta o conjunto de todos os vetores produtos, *y*, que podem ser produzidos usando o vetor insumo, *x*. Formalmente, define-se o conjunto produto como:

$$P(x) = \{y : x \text{ pode produzir } y\} = \{y : (x, y) \in T\}.$$
(2)

O conjunto produto é desenhado como a curva de possibilidade de produção, sendo a borda referida como o produto de *metafronteira*. Assume-se que o conjunto produto satisfaz as propriedades listadas por Färe e Primont (1995), que são:

- i) $0 \in P(x)$, é possível produzir nada;
- *ii*) para todo $x, y \in P(x)$, e se $0 < \theta \le 1$, então $y^* = \theta y \in P(x)$ satisfazendo a descartabilidade forte de produto;
 - iii) para todo x, P(x) é um conjunto limitado e fechado; e
 - *iv*) para todo x, P(x) é convexo.

Para fins deste estudo, é conveniente representar a tecnologia usando a *função de metadistância produto orientado*. Esta função mede a quantidade máxima pela qual a firma pode expandir radialmente seu vetor produto, dado um vetor insumo, definida como:

$$d(x,y) = \inf_{\theta} \left\{ \theta > 0 : \left(\frac{y}{\theta} \right) \in P(x) \right\}$$
(3)

Onde P(x) é o conjunto de produto; y, o vetor produto; x, o vetor insumo; e d(x,y), o valor da função distância em que a firma se encontra, quando utiliza um dado vetor x de insumo para produzir uma expansão máxima q de produto. Uma dada observação (x, y) será tecnicamente eficiente com relação à metafronteira se, e somente se, d(x, y) = 1. Tendo que ainda respeitar as seguintes propriedades da *função distância produto orientada* (Coelli, Rao e Battese, 2005):

i)
$$d_o(x, y) = 0$$
, para todo x não negativo;

- *ii*) $d_o(x, y)$ é não decrescente em q e não negativa em x;
- *iii*) $d_o(x, y)$ é linearmente homogênea em q;
- $iv) d_o(x, y)$ é quase-convexa em x e convexa em q; e
- v) se q pertence ao conjunto de possibilidade de produção de x i.e., $q \in P(x)$ –, então $d_o(x,y) \le 1$.

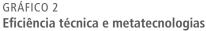
Pode-se ainda conceituar a existência de subtecnologia que representa as possibilidades de produção de regiões onde as firmas estão localizadas. Para o objetivo desse trabalho, considerar-se-á que o universo de firmas será dividido em j (>1) regiões. Essa separação se dá por haver restrições de recursos naturais, regulatórios, entre outros fatores que impedem certos grupos de alcançar todas as possibilidades de combinações entre insumos e produtos tecnicamente factíveis, expostos no conjunto de metatecnologias, T. Destarte, as combinações factíveis para as firmas na j-ésima região estão contidas num conjunto tecnologia de grupo específico definido como:

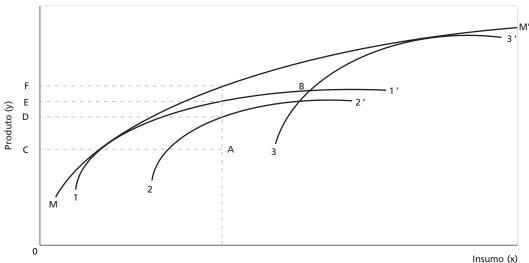
$$T^{j} = \left\{ (x, y) : x > 0; y > 0; \\ x \text{ pode ser usado pelas firmas no grupo j para produzir y} \right\}.$$
 (4)

Assim como o conjunto de metatecnologia, o conjunto tecnologia da região específica *j* pode ser representado pelos seguintes conjuntos produto e *função distância* produto orientado da região específica:

$$P^{j}(x) = \{y : x \ pode \ produzir \ y\} = \{y : (x,y) \in T^{j}\}, j = 1,2, \dots \ J; \ _{\mathrm{e}} \qquad \ \ (5)$$

$$d^{j}(x,y) = \inf_{\theta} \left\{ \theta > 0 : \left(\frac{y}{\theta} \right) \in P^{j}(x) \right\}, j = 1, 2, \dots J$$
(6)


A borda do conjunto produto da região específica é referida como *fronteira regional*. Se o conjunto produto, $P^{j}(x)$, j = 1,2, ... J, satisfaz as propriedades padrões já citadas, então a função distância, d(x,y), j=1,2, ... J, também satisfaz as propriedades padrões que a regulam (Coelli, Rao e Battese, 2005). Independentemente das propriedades destes conjuntos e funções, devem-se respeitar os seguintes pressupostos:


2 2 5 0

i) se
$$(x,y) \in T^j$$
 para cada j , então $(x,y) \in T$;
ii) se $(x,y) \in T$, então $(x,y) \in T^j$ para algum j ;
iii) $T = \{T^1 \cup T^2 \cup T^3 \dots \cup T^j\}$;
iv) $d^j(x,y) \ge d(x,y)$, para todo $k=1,2,...J$; e

v) a convexidade de P(x) não necessariamente implica a convexidade do conjunto produto regional P(x), j=1, 2, ..., J, e vice-versa.

Essas propriedades derivam do fato de que o conjunto produto região específica, P(x), j=1, 2, ... J, é subconjunto do produto irrestrito, P(x). Pode-se exemplificar essas relações no gráfico 2, onde se descrevem as possibilidades de produção disponíveis para o caso de firmas com um produto e um insumo em três diferentes regiões. Cada fronteira regional j é nomeada j-j, e assume-se que essas fronteiras são convexas (k=1, 2, 3). Se existirem apenas essas três regiões, então a curva envoltória das fronteiras regionais específicas é a fronteira definida não convexa, situada no trecho 1-B-3'. Se j não exaurir todas as regiões existentes no universo de possibilidades, então outras combinações factíveis são possíveis e a metafronteira será a fronteira convexa M-M'. Então, tem-se que:

Fonte: O'Donnell, Rao e Battese (2008). Elaboração dos autores. Como foi apresentado, uma dada observação (x,y) é tecnicamente eficiente em relação à metafronteira se e somente se d(x, y) = 1. De uma maneira geral, a medida produto orientada da eficiência técnica de uma combinação observada (x,y) com a respectiva metatecnologia é:

$$ET(x,y) = d(x,y). (7)$$

Essa relação nos diz que se d(x, y) = 0.75, o vetor produto, y, é 75% do máximo de produto que pode ser produzido por uma firma que utilize o vetor insumo, x. Da mesma forma, pode-se medir a eficiência técnica das firmas com respeito à fronteira regional -j. Formalmente, a mensuração da eficiência técnica produto orientado em relação à sua fronteira regional j é descrita por:

$$ET^{j}(x,y) = d^{j}(x,y)$$
(8)

Por exemplo, se $d^j(x,y) = 0.85$, então o produto é 85% do produto máximo possível, ao utilizar-se o vetor insumo, x, com a tecnologia disponível para região j. Como a propriedade iv apontou, a função distância regional não pode ser menor que a função metadistância. Essa é uma outra forma de dizer que a metafronteira é a curva envoltória de todas as fronteiras regionais. Quando as distâncias são diferentes, respeitando-se o pressuposto iv, pode-se calcular uma medida de distância entre a fronteira regional e a metafronteira. Essa medida é chamada de MTR ou TGR para a região-j, formalmente:

$$MTR^{j}(x,y) = \frac{d(x,y)}{d^{j}(x,y)} = \frac{ET(x,y)}{ET^{j}(x,y)}$$
(9)

Utilizando-se os exemplos numéricos já apresentados, temos que MTR^j = 0,88 (0,75/0,85). O que significa que, dado o vetor insumo, x, o máximo produzido por uma firma do grupo j é 88% do produto factível usando a metatecnologia. Manipulando-se a equação (9), encontra-se a seguinte relação:

$$ET(x,y) = ET^{j}(x,y) \times MTR^{j}(x,y)$$
(10)

A nova relação posta pela equação (10) mostra que a eficiência técnica da firma com referência à metafronteira pode ser representada pelo produto da eficiência técnica com referência à fronteira regional específica j, com a razão de metatecnologia, que mede a distância da fronteira regional j à metafronteira. A primeira considera apenas o estado de conhecimento e as condições físicas, sociais e econômicas que caracterizam a região específica j; já a segunda representa o quão perto está a fronteira regional j da metafronteira.

Há diversas abordagens metodológicas para a mensuração empírica da eficiência técnica e da razão de metatecnologia. O método escolhido foi o de Battese e Coelli (1992) e O'Donnell, Rao e Battese (2008), para a construção da metafronteira de produção em dois estágios. O primeiro estágio é dado pela construção de fronteiras estocásticas regionais, pelo método proposto por Battese e Coelli (1992; 1995) e Coelli, Rao e Battese (2005). Já o segundo estágio consiste em estimar a metafronteira por técnicas de programação linear. A escolha por estimar as fronteiras regionais pela análise de fronteira estocástica foi uma decisão dos autores, pois, como apresenta O'Donnell, Rao e Battese (2008), há possibilidade de utilizar DEA.

3.2 Metafronteira de produção estocástica

A construção da metafronteira de produção dá-se em dois estágios. O primeiro estágio é dado pela construção de fronteiras estocásticas regionais. Para tanto, considere que a relação entre insumos e produtos das diversas firmas em diferentes regiões, numa dada indústria, é representada por uma fronteira estocástica regional para cada grupo de firmas. Sendo assim, para cada j-ésimo grupo, existe uma amostra de N_j firmas, produzindo um produto a partir de vários insumos; a fronteira estocástica para estes grupos é definida por:

$$y_{it} = f(X_{it}, \beta^{j}) \cdot exp\{v_{it}^{j} - u_{it}^{j}\}.$$
(11)

Onde $\mathcal{Y}it$ é denotado como a produção observada na firma – neste caso, o munícipio – i, no ano t; X_{it} representa o vetor 1xK de insumos ou outras variáveis explicativas associadas com a firma; β^j denota o vetor Kx1, parâmetros desconhecidos associados ao grupo j. Considerou-se cada município situado na área semiárida como uma firma, dividida em duas regiões, assim j= semiárido e não semiárido. No intuito de testar a

hipótese de que as tecnologias usadas nos municípios do semiárido e não semiárido nordestino são as mesmas, serão estimadas três fronteiras estocásticas, duas fronteiras regionais (semiárido e não semiárido) e uma com todos os municípios.

A composição do termo do erro se dá pelos termos $v_{it}^{\ j}$ e $u_{it}^{\ j}$, sendo estes independentes entre si. O primeiro representa as variações por choques aleatórios, erros de medição etc., que são por hipótese $iidN(0,\sigma_v^2)$ – ou seja, independentes e identicamente distribuídos, com distribuição normal de média zero e variância σ^2 . Já o segundo se refere à ineficiência técnica própria da firma, que desvia a fronteira de produção para baixo, podendo apresentar diversos tipos de distribuição, como a half-normal (HN), como em Aigner, Lovell e Schmidt (1977), a normal truncada (Battese e Coelli, 1995), a exponencial e a gama. Assume-se ainda que: $E(v_{it}) = 0$ (média zero); $E(v_{it}^2) = \sigma_v^2$ (homocedasticidade); $E(v_{it}v_{jt}) = 0$, para todo $i \neq j$ (não correlacionados).

As estimações desses parâmetros serão obtidas pelo método da máxima verossimilhança, partindo da hipótese de o termo da ineficiência possuir distribuição HN, onde $u_{it} \sim iidHN(0, \sigma_v^2)$, como proposto por Battese e Coelli (1992). A função log-máxima verossimilhança é expressa em termos da variância dos parâmetros: $\sigma^2 = \sigma_v^2 + \sigma_u^2$; $\gamma = \frac{\sigma_u^2}{\sigma^2}$ O resultado da eficiência técnica da firma (município) específica é dada pela relação:

$$ET_{it}^{j} = \frac{y_{it}^{j}}{f(X_{it}^{j}\beta_{it}^{j}).exp\{v_{it}^{j}\}} = \{exp(-u_{it}^{j})\}, \qquad j = semiárido, não semiárido$$
 (12)

Para testar a hipótese de que as duas regiões são representadas pela mesma fronteira de produção estocástica, utiliza-se o teste da razão de verossimilhança (LR). Se a hipótese nula for rejeitada, a fronteira de produção agrupada é recusada e aceita-se a hipótese alternativa de existência de fronteiras regionais distintas. No entanto, as ETs computadas pelas fronteiras regionais estimadas não podem ser comparadas; contudo,

^{5.} Poder-se-ia utilizar o modelo proposto por Battese e Coelli (1995), em que há a possibilidade de desenvolver um modelo para a explicação do termo de ineficiência técnica da firma. Dessa forma, buscar-se-iam fatores que explicam a ineficiência dos municípios analisados. No entanto, tal incorporação de variáveis se torna inviável, dada a indisponibilidade de dados em âmbito municipal, ou mesmo devido ao horizonte temporal escolhido para este estudo.

adota-se o conceito de função de metaprodução para comparação das diferenças de *performances* entre as duas regiões de estudo.

Parte-se da hipótese de que os munícipios estão divididos em dois grupos regionais (semiárido e não semiárido) e possuem diferentes *conjuntos de produção*, dados seus diferentes níveis de acesso aos estoques de capital físico, humano e financeiro, como nas diferentes dotações de recursos naturais, disparidade na qualidade do solo, clima, acesso a recursos energéticos, infraestrutura etc. Assim, a Metafronteira (MF) possibilita a comparação das ETs das diferentes fronteiras estimadas. A função de MF de produção toma a seguinte forma:

$$y_{it}^* = f(X_{it}, \beta^*) \equiv \exp\{X'_{it}\beta^*\}.$$
 (13)

Em que y_{it}^* indica o produto da metafronteira e β^* indica o vetor de parâmetros para a MF de produção que satisfaça a seguinte restrição:

$$X'_{it}\beta^* \ge X'_{it}\beta^j$$
, para $j = semi\'arido$, não $semi\'arido$. (14)

Essa restrição garante que nenhuma fronteira regional seja maior que a meta-fronteira. O'Donnell, Rao e Battese (2008) apresentam duas formas para o cálculo β^* . O primeiro método é estimar uma metafronteira estocástica, usando os produtos, insumos de todas as firmas, independentemente da região e em todos os períodos, calculando uma metafronteira estocástica. Este método não garante que a metafronteira estimada seja a envoltória das fronteiras regionais, dada a possibilidade de haver problema de má especificação. O segundo método, proposto por Battese, Rao e O'Donnell (2004) e O'Donnell, Rao e Battese (2008), considera que, em razão dos parâmetros estimados $\hat{\beta}^j$ das fronteiras regionais no primeiro passo, o segundo passo para a estimação da MF se dá na estimação de β^* pela solução do seguinte problema de programação linear:

$$\min_{\beta} L \equiv \sum_{t=1}^{T} \sum_{i=1}^{N} \left| lnf(X_{it}, \beta^*) - lnf(X_{it}, \hat{\beta}^j) \right|$$
(15)

s.t.
$$lnf(X_{it}, \beta^*) \ge lnf(X_{it}, \hat{\beta}^j)$$
, para todo $i \in t$. (16)

Onde $\hat{\beta}^j$ é o vetor dos coeficientes estimados das *j*-ésimas fronteiras estocásticas. No caso destes parâmetros estimados para as fronteiras estocásticas nas diferentes regiões ($\hat{\beta}^j$, *j*= semiárido e não semiárido) serem fixos para todo o problema, e sendo a

função f(.) log linear nos parâmetros, como foi assumido em (11), o problema linear toma a seguinte forma:

$$\min_{\beta} \, \bar{X}\beta^* \tag{17}$$

s.t.
$$X'_{it}\beta^* \ge X'_{it}\beta^j$$
, para $j=semi\'arido$, não $semi\'arido$, para todo i e t . (18)

Onde $\overline{X'}$ é o vetor coluna das médias dos elementos dos x_{it} -vetores para todas as observações no conjunto de dados. Com o problema de programação linear resolvido, tem-se o vetor β^* definido e rescreve-se o produto observado da firma (município) i, na região j no ano t, pela seguinte decomposição:

$$y_{it}^{j} = exp(-u_{it}^{j}) \times \frac{f(X_{it}^{j}, \beta^{j})}{f(X_{it}^{j}, \beta^{*})} \times f(X_{it}^{j}, \beta^{*}) \exp(v_{it}^{j})$$
(19)

$$MTR_{it}^{j} = \frac{f(X_{it}^{j}, \beta^{j})}{f(X_{it}^{j}, \beta^{*})}, \text{ onde } 0 \le MTR_{it}^{j} \le 1$$
(20)

O primeiro termo do lado direito da equação (19) representa a eficiência técnica relativa à fronteira estocástica da *j*-ésima região. O segundo termo é nomeado de MTR, que representa a diferença entre a tecnologia disponível para a região *j*, concernente à melhor tecnologia disponível para a indústria como um todo e exposta na equação (20). A ET relativa à metafronteira estocástica é definida de uma forma análoga à equação (21):

$$ET_{it}^{*j} = \frac{y_{it}^j}{f(X_{it}^j, \beta^*) exp(v_{it}^j)} = TE_{it}^j \times MRT_{it}^j$$
(21)

3.3 Base de dados

Os dados utilizados correspondem às 1.989 informações dos municípios que compõem a área de atuação da Sudene. As fontes de informações baseiam-se nos censos agropecuários do IBGE de 1970 a 2006, além do Sistema de Contas Regionais, também disponibilizadas pela plataforma do Ipeadata, em uma série temporal de 1970, 1975, 1980,

1985, 1995-1996 e 2006. Os municípios não existentes nos períodos do censo, ou que possuíam informações omitidas para alguma variável em algum dos anos de análises, foram excluídos da amostra, de forma a manter os dados em painel balanceado. Dos 1.989 munícipios iniciais, a amostra final contabilizou 1.268 municípios que continuaram nesta análise, sendo 740 pertencentes ao semiárido e 528 ao não semiárido.

A variável escolhida para representar o produto foi o PIB agrícola municipal, disponibilizado pelo Ipeadata e deflacionado a preços de 2000 pelo deflator implícito do PIB. Para a mensuração dos fatores de produção terra, trabalho e despesas com insumos, a coleta de dados dependeu exclusivamente dos dados disponibilizados pelos censos agropecuários. O fator terra foi considerado como a área total das terras plantadas com lavouras permanentes e temporárias.

Para medir a força de trabalho, optou-se por utilizar os dados referentes ao pessoal ocupado na agropecuária, que inclui tanto proprietários quanto trabalhadores contratados. Já as despesas com insumos foram retiradas dos gastos declarados em fertilizantes, defensivos, sementes, mudas, energia, entre outros exemplos. Estes valores estão deflacionados pelo deflator implícito do PIB nacional. Para a variável estoque de capital, utilizou-se o valor dos bens dos agricultores, disponibilizados pelo Censo Agropecuário, incluindo as construções rurais, as máquinas e os equipamentos. Contudo, essa variável não foi disponibilizada no Censo Agropecuário do período 1995-1996, o que obrigou a utilização de uma *proxy* para esse período em especial, tal como proposto por Bragagnolo (2012). O método consistiu em partir dos dados disponíveis em 1985, dos quais se acumularam os valores dos investimentos anuais até 1995, aplicando ainda uma depreciação de 6%, de acordo com os valores apresentados em Gasques *et al.* (2012). Esta variável foi deflacionada em reais de 2000, pelo deflator implícito da formação bruta de capital, disponibilizado pelo Ipeadata.⁶

3.4 Especificação do modelo empírico

Para o cálculo da metafronteira de produção, deve-se primeiramente estimar de fronteiras regionais por fronteira estocástica. Utiliza-se o método proposto por Aigner, Lovell e Schmidt (1977) e Meeusen e Broeck (1977), de fronteira estocástica de produção,

^{6.} Ver o site disponível em: <www.ipeadata.gov.br>.

o qual foi aprimorado por Pitt e Lee (1981) e Schimidt e Sickles (1984), permitindo, dessa maneira, a modelagem de dados em painel, que incorporou o componente de ineficiência técnica de produção, junto às contribuições relativas a Battese e Coelli (1992; 1995).

Nesse sentido, inicialmente se definiu a forma funcional da fronteira estocástica de produção. Existem diferentes formas funcionais que dão origem a diferentes modelagens econométricas na análise de fronteiras estocásticas. As formas funcionais mais comuns na literatura são as de Cobb-Douglas (CD) e Translog (TL). Good, Nadiri e Roller (1993) e Ahmad e Barvo-Ureta (1997) argumentam que a mensuração da ET é robusta para ambas as formas funcionais.

Dessa forma, utilizar-se-á a forma funcional CD pela sua simplicidade e dado o objetivo de estudo. A escolha realizada deu-se pelos desafios inerentes à estimação de fronteiras regionais com os mesmos fatores de produção, pois as diversas formas funcionais testadas tinham indícios de má especificação para pelo menos uma das fronteiras estimadas. Sendo assim, optou-se por uma abordagem mais simples, ainda assim robusta, como salientado. A fronteira de produção estocástica é especificada da seguinte forma:

$$lnY_{it} = \beta_1 + \beta_2 \ln L_{it} + \beta_3 \ln T_{it} + \beta_4 \ln K_{it} + \beta_5 \ln I_{it} + \beta_6 t + v_{it} - u_{it}.$$
 (22)

Onde: Y_{it} = produto agropecuário do município i no período t; L_{it} = fator de produção terra do município i no período t; T_{it} = trabalho por município i no período t; K_{it} = estoque de capital por município i no período t; I_{it} = despesas com insumos por município i no período t; t = tendência linear; v_{it} = distúrbios aleatórios da função de produção que por hipótese $iid \sim N(0, \sigma^2)$; e u_{it} = ineficiência técnica da produção que por hipótese se assume que $iid \sim HN(0, \sigma^2)$.

A estimação dos parâmetros da equação (22) é feita pelo método da máxima verossimilhança, permitindo o cálculo das magnitudes das eficiências técnicas para cada um dos municípios da amostra e, consequentemente, possibilitando a estimação das fronteiras regionais (semiárido e não semiárido), quanto à fronteira agrupada.

3.5 Testes realizados

3.5.1 Teste da forma funcional

Estimou-se a função de produção Cobb-Douglas e, em seguida, na forma Translog, no intuito de se comparar as duas pelo teste de funcionalidade, de modo a saber a melhor especificação a ser utilizada. A forma funcional Cobb-Douglas é comumente utilizada nos modelos de estimação de fronteira; no entanto, é um modelo simples associado a um número de propriedades restritas, sendo a principal delas a elasticidade e o retorno de escala constante de Coelli, Rao e Battese (2005).

Assim sendo, foi utilizado o teste da forma funcional, o qual estima ambas as formas, Cobb-Douglas e Translog, e testa a hipótese nula onde a Cobb-Douglas é a forma adequada para representação dos dados, em razão das especificações da Translog. Utilizaram-se o teste de máxima verosimilhança (*likelihood-ratio test*) e a tabela de Kodde e Palm (1986) para comparação dos valores críticos dos resultados, dados os graus de liberdade.

O teste se dá da seguinte forma. Após a obtenção dos dois modelos e de seus respectivos valores de log-verossimilhança (LL), considera-se o valor da estatística da verossimilhança generalizada (LR) forma funcional. Em seguida, aplica-se o teste de hipótese. Assim, a razão de verossimilhança generalizada é dada por:

Ho: LL; Cobb-Douglas.

 $H_1: LL$; Translog.

 $LR = -2 \left[ln \ LL \ H_0 - Ln \ LL \ H_I \right] \sim \chi^2$.

LR > T KP (tabela de Kodde e Palm, 1986); rejeita-se H_0

Além desse teste apresentado entre a Cobb-Douglas e a Translog, no intuito de se buscar um modelo ideal para representação dos dados, foram conduzidos outros testes de formas funcionais, os quais variaram a magnitude do γ. No entanto, alguns modelos não convergiram para ambas as regiões, não sendo possíveis assim comparações entre os dois modelos para o semiárido e o não semiárido. Daí a opção da forma funcional Cobb-Douglas.

3.5.2 Efeito da ineficiência técnica na função de produção

Testa-se a inexistência da ineficiência técnica – ou seja, se de fato o modelo capta a ineficiência da firma. Neste caso, toma-se o valor da log-verossimilhança do modelo estimado sem esta variável. Pelo método de mínimos quadrados ordinários, aplica-se novamente o teste de verossimilhança generalizada, comparando-se ao valor crítico da tabela de Kodde e Palm (1986). Os graus de liberdade aqui são correspondentes às variáveis definidas pela função de produção, definida anteriormente. Então, tem-se:

Ho: Modelo de mínimos quadrados ordinários (inexistência de ineficiência técnica, $\gamma = 0$).

*H*1: Hipótese alternativa: a ineficiência técnica deve ser considerada no modelo, $\gamma \neq 0$.

 $H_{0}: LL$; Cobb-Douglas.

 $H_1: LL$; Translog.

$$LR = -2 \left[ln \ LL \ H_0 - Ln \ LL \ H_1 \right] \sim \chi^2$$

LR > T KP (tabela de Kodde e Palm, 1986); rejeita-se H_0

3.5.3 Ausência de progresso técnico

Neste teste, considera-se que os coeficientes correspondentes às variáveis relacionadas ao tempo na função Cobb-Douglas são iguais a 0 ou não – ou seja, testa-se a hipótese de β_6 da equação (22) ser igual a 0. Dessa forma, tem-se:

$$H_0$$
: $LL \beta_6 = 0$

$$H_1$$
: $LL \beta_6 \neq 0$

$$LR = -2 \left[ln \ LL \ H_o - Ln \ LL \ H_I \right] \sim \chi^2$$

LR > TKP (tabela de Kodde e Palm, 1986); rejeita-se $H_{o.}$

3.5.4 Existência de duas fronteiras regionais

Para testar a hipótese de que as duas regiões podem ser representadas pela mesma fronteira de produção estocástica, utiliza-se o teste da razão de verossimilhança generalizada (*LR*). Então, tem-se:

Ho: LL da fronteira agrupada do Nordeste.

H1: LL é a soma dos valores de LL das fronteiras regionais referente ao semiárido e ao não semiárido nordestino.

$$LR = -2 \left[ln \ LL \ H_0 - Ln \ LL \ H_1 \right] \sim \chi^2$$

LR > T KP (tabela de Kodde e Palm, 1986); rejeita-se H

Se a hipótese nula for rejeitada, a fronteira de produção agrupada é rejeitada e aceita-se a hipótese alternativa de existência de fronteiras regionais distintas.

4 ANÁLISE E RESULTADOS

Procura-se dividir a análise em quatro partes. Na primeira seção, contempla-se a análise das estatísticas descritivas. Na segunda, encontra-se o primeiro estágio da estimação da meta-fronteira, que é constituído pela estimação das fronteiras regionais na abordagem da fronteira estocástica, bem como seus resultados. Na terceira seção, apresentam-se os respectivos testes de forma funcional para escolha do melhor modelo, o de existência de ineficiência técnica, de ausência de progresso técnico, como também o de existência de fronteiras regionais, bem como seus resultados. Por fim, tem-se o segundo estágio, no qual se estima a meta-fronteira de produção por técnicas de programação linear, analisando-se os seus resultados.

4.1 Estatísticas descritivas

O produto agrícola do semiárido é menor, em média, do que no não semiárido. Todavia, apresenta menor desvio-padrão e menor amplitude, representando que os municípios do semiárido são mais homogêneos que os do não semiárido. No que tange aos fatores de produção, o semiárido consome, em média, menos em quase todos os insumos, com exceção do fator de produção *terra*. Isso pode indicar uma relação dessa região diferenciada com a terra.

O não semiárido gasta, em média, quase o dobro de insumos, quando comparado ao semiárido, e possui o fator *capital médio* significativamente mais elevado. Isso quer dizer que o não semiárido possui um quantitativo superior de maquinaria, veículos e construções. No que concerne às despesas com insumos, o não semiárido consome, em média, uma maior quantidade de energia, de mudas, de serviços veterinários, entre outros exemplos, quando comparado ao semiárido.

TABELA 3
Estatísticas descritivas

Variáveis	Região	Média	Desvio-padrão	Mínimo	Máximo
	Semiárido	8.273,20	11.208,94	38,51	216.760,36
Produto (R\$ milhares)	Não semiárido	12.375,00	18.490,09	31,00	360.224,00
Á (h-)	Semiárido	8.768,55	10.843,26	60,22	265.468,37
Área (ha)	Não semiárido	8.284,13	10.124,78	1,76	176.136,44
	Semiárido	6.210,00	5.302,72	37,00	39.477,00
Trabalho (pessoas ocupadas)	Não semiárido	6.256,00	6.077,623	18,00	67.187,00
Capital (R\$ milhares)	Semiárido	102.031,00	280.192,44	234,00	9.905.797,00
	Não semiárido	150.493,00	391.280,5	159,00	7.812.573,00
D(D¢:	Semiárido	3.933,40	13.480,83	53,20	691.557,50
Despesas com insumos (R\$ milhares)	Não semiárido	6.989,10	23.673,91	0,10	865.807,70

Fonte: Resultados da pesquisa. Elaboração dos autores.

4.2 Estimação das fronteiras de produção e testes de especificação

Os resultados das estimações⁷ estão presentes na tabela 4. Vale salientar que, para todas as fronteiras, foi realizado o teste de hipótese pelo teste razão de verossimilhança generalizada, no intuito de verificar se o termo do erro correspondente à ineficiência seria inexistente. Rejeitou-se a hipótese nula de inexistência da eficiência técnica em todas as fronteiras a um nível de significância de menos de 1%.

Nas três fronteiras estimadas, todos os parâmetros são altamente significativos a um nível de 1%, implicando uma função de produção bem comportada, com quase todos os parâmetros com sinais esperados. Chamou atenção o quão semelhante as duas

^{7.} Para estimação dos parâmetros das fronteiras de produção, utilizou-se o *software* estatístico R-Project; especificamente, o pacote *frontier*.

fronteiras regionais foram, sendo as mesmas variáveis, impactando positivamente ou negativamente na produção agrícola em ambas as regiões.

Os fatores de produção *terra, trabalho e estoque de capital* impactam positivamente no produto agrícola em ambas as fronteiras regionais, como esperado. Existiam diferenças regionais nos impactos dessas variáveis na produção, sendo que o semiárido se mantém à retaguarda, comparativamente às outras regiões em relação ao fator terra. Porém, a influência do trabalho e do capital é superior no semiárido, o que sinaliza que investimentos em educação e em tecnologia são essenciais para transpor os desafios climáticos e produtivos da região.

O fator *trabalho* impacta positivamente na produção em ambas as fronteiras regionais, apontando o quão importante é o investimento em educação para o Nordeste como um todo, no sentido de potencializar esses ganhos. Esta assertiva é confirmada por Araújo e Santos (2009), que percebem que o Nordeste necessita de melhoras na educação para alcançar o desempenho nacional, como se apresentou no gráfico 1.

É perceptível que o fator *capital* influência positivamente na produção agropecuária e é ligeiramente maior no semiárido, corroborando os resultados de Gasques (2014). Dessa forma, a modernização do maquinário, que substituísse tratores de menor potência pelo uso de veículos de médio e grande porte, acarretaria ganhos na produção do setor. Daí a importância da política de juros subsidiados proporcionada pelo FNE, com enfoque no semiárido, na ampliação do estoque de capital.

O fator de produção *terra* influencia positivamente a produção em ambas as fronteiras regionais, sendo mais significativa no não semiárido nordestino. O trabalho de Helfand, Magalhães e Rada (2015) discute a estrutura fundiária do Nordeste. Segundo os autores, os estabelecimentos mais eficientes e produtivos da região Nordeste são as pequenas propriedades; todavia, 69% das terras estão em propriedade dos estabelecimentos de grande porte, os menos produtivos da região. A incorporação de novas áreas para os produtores mais eficientes e produtivos da região é bastante restrita, podendo caracterizar um entrave à elevação da produtividade via aumento da área cultivada desses pequenos produtores eficientes.

TABELA 4 Fronteiras estocásticas estimadas

Variáveis	Parâmetros	Nordeste	Não semiárido	Semiárido
(intercepto)	β_1	3,0*** (0,12)	3,24*** (0,16)	2,55*** (0,15)
\mathcal{L}_{it}	β_2	0,21*** (0,01)	0,24*** (0,02)	0,20*** (0,02)
T_{it}	β_3	0,25*** (0,01)	0,23*** (0,02)	0,27*** (0,02)
K _{it}	$\beta_{\scriptscriptstyle 4}$	0,23*** (0,01)	0,22*** (0,01)	0,24*** (0,01)
I _{it}	β_s	-0,15*** (0,01)	-0,12*** (0,02)	-0,15*** (0,01)
t	β_6	-0,03*** (0,01)	-0,05*** (0,00)	-0,02*** (0,00)
	σ^2	1,13*** (0,05)	0,90*** (0,06)	1,03*** (0,06)
	γ	0,73*** (0,01)	0,66*** (0,02)	0,71*** (0,02)
	$\sigma_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	0,82*** (0,05)	0,60*** (0,06)	0,72*** (0,06)
	$\sigma_{\rm v}^{\;2}$	0,30*** (0,00)	0,30*** (0,00)	0,30*** (0,00)
	σ	1,06*** (0,02)	0,95*** (0,03)	1,01*** (0,03)
	$\sigma_{_{\mathrm{u}}}$	0,91*** (0,03)	0,77*** (0,03)	0,85*** (0,03)
	$\sigma_{_{ m v}}$	0,55*** (0,00)	0,55*** (0,00)	0,55*** (0,03)
	λ^2	2,74*** (0,17)	1,98*** (0,21)	2,41*** (0,22)
	λ	1,67*** (0,05)	1,41*** (0,07)	1,55*** (0,07)
	ET média	0,52	0,58	0,54
	Log-verossimilhança	-7.359,52	-3.011,32	-4.259,06

Fonte: Resultados da pesquisa.

Find: Resultations day pesquisal. Elaboração dos autores.
$$\gamma = \frac{\sigma^2}{\sigma_v^2 + \sigma_u^2} \lambda^2 = \frac{\sigma_u^2}{\sigma_v^2}.$$
 Onde:

A codificação para a significância dos coeficientes estimados:

**** significante a um nível de 1%.

Já as variáveis despesas com insumos e tendência temporal possuem uma relação inversa com a produção em ambas as fronteiras regionais. No que tange a despesas com insumos, há uma indicação de causalidades perante às condições próprias da região, que tornam estes gastos forçosos ao processo produtivo, pois as três fronteiras apresentaram a mesma relação, sendo ainda mais forçosa para o Nordeste semiárido. Nesse ponto, quanto maiores são os gastos com insumos, menor seria o retorno produtivo – ou seja, o uso intensivo de insumo não representa aumento de produção. Esse é um resultado curioso, mas pode estar associado à baixa capacidade de absorção tecnológica dos agentes, já que estes são agricultores com baixo nível de escolaridade.

Isso se dá pela região demandar intensamente adubos, defensivos e gastos com energia e água, para manter uma área irrigada, por exemplo. Também se pode inferir a possibilidade da má utilização desses mesmos fatores, dada a baixa qualificação da mão de obra, ou mesmo a não efetividade dos insumos, em razão das características próprias da região. Vicente (2004) aponta como possível causa para o baixo dinamismo da região o caso da infraestrutura ineficiente e o limitado acesso ao crédito assimétrico, inviabilizando a aquisição de insumos modernos. Há indícios de uma reversão dessa involução técnica do Nordeste a partir de 1985, dada uma maior integração do Nordeste com o mercado interno brasileiro e o advento do FNE. Porém, não se percebe esta tendência nos resultados aqui apresentados. Vale ressaltar que a maior parte dos estabelecimentos situados no Nordeste é composta por agricultores familiares de subsistência e a utilização de insumos é significantes em estabelecimentos mais capitalizados. Essa característica pode influenciar estes resultados.

A variável tendência linear foi significativa para ambas as fronteiras e indica uma diminuição da dinamicidade do setor agrícola da região no decorrer da série histórica, corroborando os resultados encontrados por Vicente (2004). Essa tendência pode ser um indicativo de que o Nordeste brasileiro ficou à margem do processo de modernização agrícola, que tornou a agricultura do país competitiva no cenário internacional, como mostra O'Donnel, Rao e Battese (2008) e Gasques (2014), tornando o Nordeste uma região de baixo dinamismo no setor agrícola, como evidencia a literatura econômica (Vieira Filho, 2013). Percebe-se ainda que essa tendência é ainda mais intensa no não semiárido nordestino.

^{8.} No Nordeste, há o predomínio de solos do tipo litossolos, bruno não cálcicos, litólicos eutróficos, entre outros, que possuem baixa fertilidade natural; condição que se agrava dada a baixa pluviosidade da região. Nesses tipos de solo, mesmo com investimento em insumos, os retornos em produtividade estão abaixo dos esperados, quando comparados com solos com boa aptidão agrícola.

A média da *eficiência técnica* varia entre as fronteiras regionais. O não semiárido apresenta ET média de 58,07%, e o semiárido possui o escore médio de eficiência de 53,8%. Esta diferença não implica que os munícipios do semiárido possuem desempenhos piores que os do não semiárido, pois a comparação das duas fronteiras só fará sentindo se elas não compartilharem da mesma tecnologia de produção. No entanto, se as duas regiões comungam da mesma tecnologia, deve-se usar o resultado dos munícipios agrupados do Nordeste.

4.3 Análise dos testes de hipóteses

Após as estimações dos modelos, foram realizados os respectivos testes de forma funcional para escolha do melhor modelo, o de ineficiência técnica, o teste de ausência de progresso técnico, como também o de existência de fronteiras regionais. Como discutido, por problemas de convergência, optou-se pela forma funcional Cobb-Douglas, pois mostrou-se a mais adequada para as três fronteiras estimadas, não havendo indícios de má especificação.

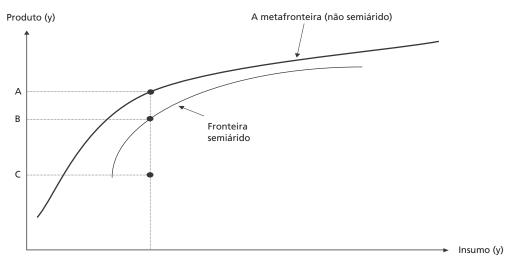
Escolhida a forma funcional, realizou-se o teste de ausência de ineficiência técnica ao modelo, caso $\gamma=0$ – não se deve utilizar o Modelo de Fronteira Estocástica; ou seja, o modelo não capta o efeito ineficiência. Nesse caso, é indicado a utilização do método de mínimos quadrados ordinários. A partir dos respectivos valores de log máxima verossimilhança das estimações de cada fronteira, os valores λ estão dispostos na tabela 5. Têm-se os resultados do teste para as três fronteiras, que superam seus respectivos valores críticos e significância de 5% na tabela de Kodde e Palm (1986), dados seus graus de liberdade. Portanto, rejeita-se H_0 e aceita-se a hipótese H_1 , confirmando a presença de progresso técnico para as três fronteiras apresentadas.

Posteriormente, testou-se a ausência de progresso técnico. De acordo com o teste descrito anteriormente, estimou-se o modelo na forma funcional Cobb-Douglas e na forma com ausência de progresso técnico. De acordo com os resultados, rejeitou-se a hipótese nula e aceitou-se a hipótese alternativa, validando o uso do modelo de fronteira estocástica.

TABELA 5
Prova de razão verossimilhança dos parâmetros das fronteiras de produção

Prova	Região	Hipótese nula	Graus de liberdade	Valor de λ	Valor crítico	Decisão (valor de 5%)
	Fronteira agrupada	H_0 : $\gamma = 0$	1,00	1.937,60	6,64	Rejeita H ₀
Inexistência de eficiência técnica	Fronteira semiárido	H_0 : $\gamma = 0$	1,00	873,56	6,64	Rejeita $H_{\scriptscriptstyle 0}$
	Fronteira não semiárido	H_0 : $\gamma = 0$	1,00	617,70	6,64	Rejeita $H_{\scriptscriptstyle 0}$
	Fronteira agrupada	H_0 : $\beta_6 = 0$	1,00	37,80	6,64	Rejeita H ₀
Ausência de progresso técnico	Fronteira semiárido	H_0 : $\beta_6 = 0$	1,00	7,82	6,64	Rejeita $H_{\scriptscriptstyle 0}$
	Fronteira não semiárido	H_0 : $\beta_6 = 0$	1,00	41,12	6,64	Rejeita $H_{\scriptscriptstyle 0}$
Existência de duas fronteiras regionais	Não se aplica	H₀: Fronteira agrupada	8,00	178,00	25,37	Rejeita H₀

Fonte: Resultados da pesquisa. Flaboração dos autores.


Por fim, realizou-se o teste para validar a existência da diferenciação entre as possibilidades produtivas entre as duas regiões ou não. Conforme os resultados, foi rejeitada a hipótese nula e aceita a hipótese alternativa, validando que os municípios pertencentes ao semiárido ou ao não semiárido empregam diferentes tecnologias de produção. Logo, pode-se utilizar o quadro teórico da metafronteira de produção, a fim de comparar o desempenho de eficiências entre as diferentes regiões.

4.4 Análise das eficiências técnicas e razão de metafronteira

Para a estimação dos parâmetros da metafronteira tecnológica, foi resolvido o problema de programação linear apresentado, utilizando o *software* estatístico Shazam. Os parâmetros encontrados para a metafronteira correspondem aos apresentados na fronteira regional dos municípios situados no não semiárido, estimada pelo modelo de fronteira estocástica. Este resultado indica que a tecnologia de produção empregada na agropecuária nestes municípios é mais avançada que na região semiárida. O resultado aponta que a região não semiárida define tecnologia potencial disponível para todos os munícipios do Nordeste. Essa relação é representada no gráfico 3, onde o ponto *A* ilustra um município qualquer situado nesta região.

 $[\]lambda$ = Prova estatística da razão de máximo verossimilhança em que $\lambda = -2[LL(H_0) - LL(H_1)] \sim \chi^2$, com graus de liberdade iguais ao número de restrições independentes.

GRÁFICO 3 Ilustração das fronteiras estimadas para o semiárido e o não semiárido

Elaboração dos autores

A razão de metatecnologia, definida na equação (20), é para todos os municípios do não semiárido igual a 1, pois eles se situam na metafronteira de produção. A MTR média dos municípios do semiárido é por volta de 64%, com um desvio-padrão de 4%. Esse resultado indica que, em média, os municípios do semiárido produzem 68% do máximo que pode ser produzido na região não semiárida, ao utilizar os mesmos fatores de produção e tecnologias disponíveis no não semiárido.

Já a ET referente à metafronteira de produção é chamada de ET* e foi estimada para todos os municípios do semiárido, de acordo com a equação (21). Os munícipios do não semiárido, por serem pertencentes à metafronteira de produção, têm a sua ET* equivalente à calculada sobre a fronteira regional. A tabela 6 resume os resultados referente às eficiências e à MRT.

TABELA 6
Estatística descritiva e distribuição de frequência das ETs e MTRs estimadas

Estatísticas	$ET_{Semisuperitarido}$	$MTR_{Semisuperitarido}$	$ET^*_{semisplayrido}$	$ET_{n\hat{a}o-semi\acute{a}rido} = ET_{n\tilde{a}o-semi\acute{a}rido}^*$
Média	0,54	0,64	0,35	0,58
Desvio-padrão	0,20	0,04	0,13	0,19
Mínimo	0,04	0,54	0,03	0,07
Máximo	0,96	0,76	0,67	0,97

(Continua)

Texto para Discussão

2 2 5 0

(Continua	cão)
Continua	şuo,

Estatísticas	$ET_{Semisupper ido}$	$MTR_{Semisupper ido}$	ET*semiárido	$ET_{n\hat{a}o-semi\acute{a}rido} \ = ET_{n\tilde{a}o-semi\acute{a}rido}^*$
Níveis (%)				
<0.6	63,7	19,2	95,3	51,5
0,6-0,7	13,4	74,9	4,7	17,4
0,7-0,8	9,9	5,9	0,0	14,4
0,8-0,9	8,5	0,0	0,0	13,7
0,9-1	4,5	0,0	0,0	3,1

Fonte: Resultados da pesquisa. Elaboração dos autores.

O semiárido apresenta uma ET* 35%, tendo como referência à MF entre 1970 e 2006. O município mais ineficiente da região possui um escore de ET* de 3%, enquanto o município mais eficiente apresenta um escore de 67%. Já a região não semiárida tem um escore de ET* média de 58%, substancialmente superior à outra região de análise, onde a sua amplitude é tão grande quanto a apresentada no semiárido, possuindo valor mínimo de 7% e máximo de 97%.

Quando se comparam apenas as eficiências regionais, tem-se a impressão enganosa de que a diferença entre as duas regiões, no que tange à ET, não seria tão gritante. Ao comparar as distribuições de frequências das $ET^*_{não-semiárido}$ e $ET^*_{semiárido}$, ainda na tabela 6, percebe-se que todas as observações no semiárido se encontram entre 0,0 e 0,7, enquanto no não semiárido se distribuem de maneira mais homogênea. Essas conclusões não implicam que a situação do não semiárido seja das melhores. Nesta região, a maioria dos municípios apresenta escores inferiores a 60%, tornando ainda mais grave a situação no semiárido nordestino, tendo em vista a dependência das camadas mais pobres da população com a atividade agropecuária.

Quando se agrupam os municípios em estados, percebe-se uma uniformização da MRT no período de análise, como disposto na tabela 7. Ao comparar as ETs*, percebe-se que o semiárido piauiense apresenta pior *performance* (27,2%), acompanhado pelo semiárido paraibano (30,5%), potiguar (31,3%) e sergipano (31,9%). Os maiores escores são apresentados pelo semiárido cearense (37,8%), acompanhado de perto do semiárido pernambucano (37,6%) e mineiro (37,6%), mesmo assim com percentuais bastante inferiores.

TABELA 7

Amostras sub-regionais das ETs e MRTs médias (1970-2006)

Região semiárida	ET	MRT	ET*	Contagem
Alagoas	0,49	0,64	0,32	204
Bahia	0,58	0,64	0,37	1.224
Ceará	0,59	0,64	0,38	702
Minas Gerais	0,58	0,64	0,37	48
Paraíba	0,48	0,64	0,31	504
Pernambuco	0,58	0,64	0,38	624
Piauí	0,43	0,64	0,27	288
Rio Grande do Norte	0,49	0,64	0,31	672
Sergipe	0,50	0,64	0,32	174
Região não semiárida		ET=ET*		Contagem
Alagoas		0,59		336
Bahia		0,61		702
Ceará		0,52		126
Espírito Santo		0,86		90
Maranhão		0,62		744
Minas Gerais		0,60		30
Paraíba		0,49		186
Pernambuco		0,69		306
Piauí		0,39		300
Rio Grande do Norte		0,48		96
Sergipe		0,48		252

Fonte: Resultados da pesquisa. Elaboração dos autores.

O não semiárido dos estados do Nordeste apresenta melhor desempenho na eficiência técnica com relação à metafronteira, quando comparado ao semiárido. Percebe-se, nesse conjunto de estados, uma disparidade nos municípios pertencentes ao norte do Espírito Santo (86%), dada a distância de seu desempenho técnico com as médias dos demais estados. Esse resultado pode apontar uma dissociação do norte do Espírito Santo, no que tange ao perfil dos municípios que compõem a área de atuação da Sudene.

Percebe-se que a opção de manter o norte de Minas Gerais na amostra de municípios pertencentes à cartografia do Nordeste considerada pela Sudene foi acertada. Identifica-se a homogeneidade da região, podendo-se inferir que, mesmo pertencendo ao estado de Minas Gerais, um estado mais desenvolvido, que possui maior arrecadação que os estados do Nordeste e, consequentemente, maior capacidade de ofertar bens e serviços públicos, ainda assim, não é capaz de diferenciar seus municípios das condições no que tange à eficiência produtiva. Esse resultado se aproxima de Irffi (2015).

Ainda nas melhores práticas, é possível citar o não semiárido pernambucano (69%). O semiárido delimitado pelo estado com o menor escore é o Piauí, o que mostra o quão problemática é a agropecuária do estado, seguido pelo não semiárido paraibano (30,5%), potiguar (31.3%) e sergipano (32%), novamente tornando estes estados com as piores práticas nos dois estratos. É importante destacar que esses dados não captam a pungente produção de grãos que vem se instalando no cerrado do Piauí, dado o horizonte temporal utilizado, o que pode não captar as transformações recentes que estão ocorrendo no estado, bem como seus impactos na eficiência técnica de seus municípios. Essa ressalva se dá pela base produtiva, intensiva em capital e tecnologia, que essa ocupação vem empregando na região do Matopiba (Buainain e Garcia, 2016; Vieira Filho, 2016).

5 CONSIDERAÇÕES FINAIS

O objetivo deste estudo foi o de analisar as diferenças tecnológicas da agropecuária entre os municípios situados no semiárido e no não semiárido do Nordeste brasileiro. Inicialmente, definiu-se a área de atuação da Sudene, e não apenas o Nordeste geográfico brasileiro, definido pelo IBGE, no intuito de melhor representar os dois grupos regionais. O modelo utilizado foi o de metafronteira proposto por Battese, Rao e O'Donnell (2004) e O'Donnell, Rao e Battese (2008), que possibilitou as estimações das ET e ET* e da MRT dos municípios inseridos no semiárido e não semiárido nordestino.

A partir desses procedimentos metodológicos, pode-se afirmar que o semiárido e o não semiárido nordestino não compartilham da mesma tecnologia de produção, aceitando a assertiva assumida como hipótese. Para tanto, foram utilizados dados do Censo Agropecuário e das Contas Nacionais, para o período 1970-2006. Pelas fronteiras de produção estimadas, indica-se que as políticas públicas da agropecuária da região devem levar em conta a importância do investimento em qualificação da mão de obra, a necessidade de direcionamento do crédito subsidiado disponibilizado pelo FNE para o aumento e a modernização do estoque de capital e a aquisição de insumos modernos. Outro ponto importante é fortalecer o papel das instituições de assistência técnica e extensão rural (Ater), que estão desmanteladas na maioria dos estados do Nordeste, além de melhorar os níveis de escolaridade da população e os serviços de extensão rural com capilaridade local.

Buscou-se atentar à análise da questão da produção agrícola do Nordeste; a saber, que diferenças regionais, próprias do semiárido nordestino, impactam nas práticas agrícolas dos municípios, impondo-lhes diferentes combinações factíveis de *insumo-produto*, a partir de diferentes *conjuntos de tecnologias*. Essa constatação não implica que a organização produtiva da agropecuária no não semiárido seja moderna, aproximando-a das regiões mais dinâmicas do país.

Constata-se que os problemas no setor agrícola do Nordeste, identificados extensamente pela literatura acadêmica como um todo, impactam de maneira ainda mais severa o semiárido nordestino. Numa análise em âmbito estadual, os municípios situados no Espírito Santo se sobressaíram quando comparados aos demais agrupamentos estaduais dos municípios situados no não semiárido. No entanto, o norte de Minas Gerais não se destaca dos demais, mesmo pertencendo a um estado com um maior grau de desenvolvimento. Os estados que apresentaram as piores práticas para ambas as regiões do Nordeste foram Piauí, Paraíba, Rio Grande do Norte e Sergipe.

Os resultados indicaram que, quando comparadas as duas regiões, o não semiárido possui a maior eficiência técnica média com referência à metafronteira, de 58% contra 35% do semiárido. Este resultado sugere que, mesmo lançando mão de todas as possibilidades produtivas da região Nordeste, o não semiárido tem uma prática bem aquém do ideal, pois utilizam-se neste fatores de produção bem abaixo de suas reais potencialidades. Por fim, este estudo não discute as razões dessas disparidades regionais no que concerne à MTR e às eficiências técnicas entre ambas as fronteiras regionais e a metafronteira. Este tema é digno de aprofundamentos em investigações futuras.

REFERÊNCIAS

AB'SABER, A. Sertões e sertanejos: uma geografia humana sofrida. **Estudos Avançados**, São Paulo, v. 13, n. 36, p. 7-59, May/Aug. 1999.

AHMAD, M.; BRAVO-URETA, B.E. Technical efficiency measures for dairy farms using panel data: a comparison of alternative model specifications. **Journal of Productivity Analysis**, v. 7, n. 4, p. 399-415, Oct. 1997.

AIGNER, D. J.; LOVELL, C. A. K.; SCHMIDT, P. Formulation and estimation of stochastic frontier production functions models. **Journal of Econometrics**, v. 6, n. 1, p. 21-37, July 1977.

ALSTON, J. M. *et al.* **Persistence pays**: US agricultural productivity growth and the benefits from public R&D spending. Berlin: Springer Science & Business Media, 2009.

ALVES. E.; ROCHA. D. P. Ganhar tempo é possível? *In*: GASQUES, J. G.; VIEIRA FILHO, J. E. R.; NAVARRO. Z. (Orgs.). **A agricultura brasileira**: desempenho, desafios e perspectivas. Brasília: Ipea. 2010. p. 275-290.

AQUINO, J.; LACERDA, M. A. Magnitude e condições de reprodução econômica dos agricultores familiares pobres no semiárido brasileiro: evidências a partir do Rio Grande do Norte. **Revista de Economia e Sociologia Rural**, v. 52, supl. 1, p. 167-188, 2014.

ARAÚJO, T. B.; SANTOS, V. Desigualdades regionais e Nordeste em formação econômica do Brasil. *In*: ARAÚJO, T.; VIANNA, S.; MACAMBIRA, J. (Orgs.). **50 anos de formação econômica do Brasil**: ensaios sobre a obra clássica de Celso Furtado. Rio de Janeiro: Ipea, 2009.

BALL, E.; SCHIMMELPFENNIG, D.; WANG, S. L. Is US agricultural productivity growth slowing? **Applied Economic Perspectives and Policy**, v. 35, n. 3, p. 435-450, 2013.

BARBIERI, A. F. *et al.* Climate change and population migration in Brazil's Northeast: scenarios for 2025–2050. **Population and Environment**, v. 31, n. 5, p. 344-370, 2010.

BATTESE, G. E.; COELLI, T. J. Frontier production functions, technical efficiency and panel data: with application to paddy farmers in India. **Journal of Productivity Analysis**, v. 3, n. 1-2, p. 153-169, June 1992.

_____. A model for technical inefficiency effects in stochastic frontier production functions for panel data. **Empirical Economics**, v. 20, n. 2, p. 325-332, June 1995.

BATTESE, G. E.; RAO, D. S. P.; O'DONNELL, C. J. A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies. **Journal of Productivity Analysis**, v. 21, n. 1, p. 91-103, 2004.

BRAGAGNOLO, C. **Produtividade, crescimento e ciclos econômicos na agricultura brasileira**. 2012. 168 p. Tese (Doutorado) — Escola Superior de Agricultura "Luiz de Queiroz", São Paulo, 2012.

BUAINAIN, A. M.; GARCIA, J. R. Crescimento da agricultura no Cerrado nordestino: fatores condicionantes, limites e resultados socioeconômicos. *In*: VIEIRA FILHO, J. E. R.; GASQUES, J. G. (Orgs.). **Agricultura, transformação produtiva e sustentabilidade**. Brasília: Ipea, 2016. cap. 4, p. 109-142.

COELLI, T. J.; RAO, D. S. P.; BATTESE, G. E. An introduction to efficiency and productivity analysis. Dordrecht: Kluwer Academic Publishers, 2005.

DA MATA, D.; RESENDE, G. **Changing the climate for banking**: the economic effects of credit in a climate-vulnerable area. 2015. Disponível em: https://goo.gl/5zPr25.

DAVIS, M. Holocaustos coloniais. Rio de Janeiro: Record, 2002.

FÄRE, R.; PRIMONT, D. **Multi-output production and duality**: theory and applications. Berlin: Springer, 1995.

FORNAZIER, A.; VIEIRA FILHO, J. E. R. Heterogeneidade estrutural no setor agropecuário brasileiro: evidências a partir do Censo Agropecuário de 2006. Brasília: Ipea, 2012. p. 7-30. (Texto para Discussão, n. 1708).

FUGLIE, K. O. Is a slowdown in agricultural productivity growth contributing to the rise in commodity prices? **Agricultural Economics**, v. 39, n. s1, 431-441, Nov. 2008.

FUGLIE, K. O.; WANG, S.L. New evidence points to robust but uneven productivity growth in global agriculture. **Amber Waves Feature**, Economic Research Service/U.S. Department of Agriculture, 20 Sept. 2012. Disponível em: https://goo.gl/UHXpdN>.

GASQUES, J. G. **Total factor productivity in agriculture**: Brazil and selected States. Productivity note. Brasilia: Mapa, Feb. 2014.

GASQUES, J. G. *et al.* Total factor productivity in Brazilian agriculture. *In*: FUGLIE, K. O.; WANG, S. L.; BALL, V. E. (Eds.). **Productivity growth in agriculture**: an international perspective. Oxfordshire: CAB International, 2012. p. 145-162.

GOOD, D. H.; NADIRI, M. I.; ROLLER, L. Sickles RC (1993) Efficiency and productivity growth comparisons of European and US air carriers: a first look at the data. **Journal of Productivity Analysis**, v. 4, n. 1, p. 115-125, June 1993.

HAYAMI, Y. Sources of agricultural productivity gap among selected countries. **American Journal of Agricultural Economics** v. 51, n. 3, p. 564-575, Aug. 1969.

HAYAMI, Y.; RUTTAN, V. W. Agricultural productivity differences among countries. **American Economic Review**, v. 60, n. 5, p. 895-911, Dec. 1970.

_____. **Agricultural development**: an international perspective. Baltimore: John Hopkins University Press, 1971.

HELFAND, S.; MAGALHÁES, M.; RADA, N. Brazil's agricultural total factor productivity growth by farm size. Washington: IDB, 2015.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **Censo Agrope-cuário 2006**. Rio de Janeiro: IBGE, 2006. Disponível em: http://goo.gl/V8b1ga. Acesso em: 19 fev. 2016.

_____. **Geociências**. 2016. Disponível em: http://goo.gl/koU3MP>. Acesso em: 11 ago. 2016.

IRFFI, G. D. **Semiárido brasileiro e políticas regionais**: o caso do Fundo Constitucional de Financiamento do Nordeste (FNE). Relatório de Pesquisa. Brasília: Ipea, 2015. Disponível em: https://goo.gl/h9hqaw.

JAMES, J. S. *et al.* Structural Changes in U.S. **Agricultural Production and Productivity Choices**, v. 24, n. 4, p. 1-5, 2009.

KHAN, A. S.; CAMPOS, R. T. Effects of drought on agricultural sector of Northeast Brazil. New Delhi, Icid, 1992.

KODDE, D. A.; PALM, F. C. Wald criteria for jointly testing equality and inequality restrictions. **Econometric, Notes and Comments**, v. 54, n. 5, p. 1243-1248, 1986.

MALMQUIST, S. Index numbers and indifference surfaces. **Trabajos de Estatistica**, v. 4, n. 2, p. 209-242, 1953.

MARENGO, J. A. Vulnerabilidade, impactos e adaptação à mudança do clima no semiárido do Brasil. **Parcerias Estratégicas**. Brasília, n. 27, p. 149-176, dez. 2008.

MEEUSEN, W.; BROECK, V. D. Efficiency estimation from Cobb-Douglas production with composed error. **International Economics Review,** 32, p.715-723, 1977.

NASUTI, S.; EIRÓ, F.; LINDOSO, D. Os desafios da agricultura no semiárido brasileiro. **Sustentabilidade em Debate**, v. 4, n. 2, p. 276-298, 2013.

O'DONNELL C. J.; RAO, D.S.P.; BATTESE, G.E. Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. **Empirical Economics**, v. 34, n. 2, p. 231-255, 2008.

PNUD – PROGRAMA DAS NAÇÕES UNIDAS PARA O DESENVOLVIMENTO. **Atlas do Desenvolvimento Humano no Brasil**. Belo Horizonte: Pnud, 1998.

PITT, M. M.; LEE, L. F. The measurement and sources of technical inefficiency in the Indonesian Weaving Industry. **Journal of Development Economics**, v. 9, n. 1, p. 43-64, Aug. 1981.

ROCHA, R.; SOARES, R. R. Water scarcity and birth outcomes in the Brazilian semiarid. **Journal of Development Economics**, v. 112, p. 72-91, Jan. 2015.

SCHIMIDT, P.; SICKLES, R. Production frontiers and panel data. **Journal of Business and Economic Statistics**, v .2, n. 4, p. 367-374, 1984.

SHEPHARD, R.W. **Theory of costs and production functions**. Princeton: Princeton University Press, 1970.

SIMÓES, A. F. *et al.* Enhancing adaptive capacity to climate change: the case of smallholder farmers in the Brazilian semi-arid region. **Environmental Science & Policy,** v. 13, n. 8, p. 801-808, Dec. 2010.

VICENTE, J. R. Mudança tecnológica, eficiência, produtividade total de fatores na agricultura brasileira: 1970-95. **Economia Aplicada**, v. 8, n. 4, p. 729-760, 2004.

VIEIRA FILHO, J. E. R. Heterogeneidad estructural de la agricultura familiar en el Brasil. **Revista de la Cepal** (Impresa), v. 111, p. 103-121, Dic. 2013.

— Transformação histórica e padrões tecnológicos da agricultura brasileira. *In*: BUAI-NAIN, A. *et al* . **O mundo rural no Brasil do século**. Brasília: Ipea, 2014. parte 3, cap. 2, p. 395-421.

BIBLIOGRAFIA COMPLEMENTAR

CIRILO, J. A. Políticas públicas de recursos hídricos para o semiárido. **Estudos Avançados**, v. 22, n. 63, p. 61-82, 2008.

SUDENE. **As secas do Nordeste**: uma abordagem histórica de causas e efeitos. Recife: Sudene; Brasília: Ministério do Interior, 1981.

Ipea – Instituto de Pesquisa Econômica Aplicada

EDITORIAL

Coordenação

Cláudio Passos de Oliveira

Supervisão

Everson da Silva Moura Reginaldo da Silva Domingos

Revisão

Clícia Silveira Rodrigues
Idalina Barbara de Castro
Leonardo Moreira Vallejo
Marcelo Araujo de Sales Aguiar
Marco Aurélio Dias Pires
Olavo Mesquita de Carvalho
Regina Marta de Aguiar
Alessandra Farias da Silva (estagiária)
Lilian de Lima Gonçalves (estagiária)
Luiz Gustavo Campos de Araújo Souza (estagiário)
Paulo Ubiratan Araujo Sobrinho (estagiário)
Pedro Henrique Ximendes Aragão (estagiário)
Thayles Moura dos Santos (estagiária)

Editoração

Bernar José Vieira Cristiano Ferreira de Araújo Daniella Silva Nogueira Danilo Leite de Macedo Tavares Jeovah Herculano Szervinsk Junior Leonardo Hideki Higa Herllyson da Silva Souza (estagiário)

Capa

Luís Cláudio Cardoso da Silva

Projeto Gráfico

Renato Rodrigues Bueno

The manuscripts in languages other than Portuguese published herein have not been proofread.

Livraria Ipea

SBS – Quadra 1 - Bloco J - Ed. BNDES, Térreo. 70076-900 – Brasília – DF

Fone: (61) 2026-5336

Correio eletrônico: livraria@ipea.gov.br

Missão do Ipea

Aprimorar as políticas públicas essenciais ao desenvolvimento brasileiro por meio da produção e disseminação de conhecimentos e da assessoria ao Estado nas suas decisões estratégicas.

