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Abstract 

In this paper we explore perceptions of distributive justice in Latin America during the 2000s 

and its relationship with income inequality. In line with the fall in income inequality in the 

region, we document a widespread, although modest, decrease in the share of the population 

that believes income distribution is unfair. The fall in the perception of unfairness holds across 

very heterogeneous groups of the population. Moreover, perceptions evolved in the same 

direction as income inequality for 17 out of the 18 countries for which microdata is available. 

Our analysis reveals unfairness perceptions are more correlated with relative measures of 

income inequality than absolute ones and that individual characteristics are correlated with 

distributive perceptions. On average, individuals that are older, more educated, unemployed, 

and left-wing tend to perceive income distribution as more unfair. We show that the decrease in 

unfairness perceptions during the last decade was due to changes in inequality, rather than to 

composition effects. Finally, we show that individuals that perceive income distribution as very 

unfair are more prone to mobilize and protest. 
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1. Introduction 

One of the most salient features of the 21st century is the rising concern for economic 

inequality, to the point that it is assessed as ‘the defining challenge of our time.’4 

Inequality has been observed with concern by multilateral organizations, politicians and 

religious leaders.5 The concerns about inequality are not only based on efficiency 

arguments, but especially on a moral ground. Anecdotal evidence suggests that concerns 

about inequality extend to the general population. For instance, protests such as ‘Occupy 

Wall Street’ are manifestations of the discontent with the wide income gaps. However, 

research on how the general population thinks about inequality, and how factors like age, 

gender, or education relate to our views on what is fair and unfair is still scarce.  

Central to this paper is the concept of social justice or fairness and the underlying desire 

to live in a just world.6 Since the seminal paper of Rabin (1993), the concept of fairness has 

been increasingly important in the field of Economics. Fehr and Schmidt (2003) provide 

an extensive review of the experimental evidence related with the desire for fairness. The 

authors show how in dictator games, participants share part of their endowments even 

though they could keep it all. Similarly, in ultimatum games, participants accept a 

monetary loss to penalize behavior that is not considered fair, and in gift exchange games, 

participants are averse to inequitable outcomes. 

The desire for fairness seems to transcend cultural differences. Throughout Jerusalem, 

Ljubljana, Pittsburgh, Tokyo, the Machiguenga of the Peruvian Amazon, and 15 other 

small-scale societies, ultimatum game offers are always positive, and payoffs that are not 

considered fair are punished by rejecting positive offers at considerable rates.7 Evidence 

from psychology suggests the desire for fairness is ingrained in human nature. Children as 

young as three years old react negatively to unfair distributions (Loblue et al, 2011),8 and 

children’s aversion to inequities also transcends borders (Blake et al., 2015). Insights from 

biology suggest preferences for fairness might have evolutionary origins. In their famous 

experiment, Brosnan and de Waal (2003) find that capuchin monkeys reject unequal 

payoffs, a finding that has been replicated in other species, such as dogs (Range et al., 

2009) and birds (Wascher and Bugnayar, 2015). Bjornskov et al. (2013) show that people 

who perceive their society as fairer exhibit higher levels of subjective well-being and, in 

                                                           
4 See, for instance ‘Remarks by the President on Economic Mobility,’ The White House Office of the Press 

Secretary, Washington, D.C., December 4, 2013. 

5
 During a visit to Bolivia in 2015, Pope Francis stated that: “Working for a just distribution of the fruits of the 

earth and human labor is not mere philanthropy. It is a moral obligation.” 
6 Benabou and Tirole (2005) show that this desire is so strong that people distorts their perceptions of 

reality in order to interpret it as fair. 

7 Evidence is provided in Roth et al. (1995), Henrich (2000) and Henrich et al. (2001), respectively.  

8 See also Fehr et al (2008) and Blake and McAuliffe (2011). 
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the context of distributive justice, Corneo and Fong (2008) find that US households put a 

monetary value on social justice of about a fifth of their disposable income. 

In this paper we study the general population’s beliefs about distributive justice, i.e., 

the perception of whether income distribution is fairly distributed, in the context of a 

pronounced decline in the income inequality in Latin America (LA), a highly unequal 

region. Our approach is to combine income microdata originated from household surveys 

with perceptions data from opinion polls surveys. We exploit the heterogeneity across 

years, countries, and individuals within countries to analyze how our views of fairness 

relate to the actual levels of income inequality. 

Evidence of the relationship between fairness perceptions and income inequality, 

particularly in LA, is rather scarce. In Argentina, Rodriguez (2014) finds that people who 

consider their income to be fair tend to perceive lower levels of inequality. The work 

closest to this paper is CEPAL (2010), which shows that perceptions of distributive 

inequity in LA remained persistently high during the 1997-2007 period, consistent with 

the high levels of inequality of the region. 

In the first part of the paper we document a series of stylized facts. After a decade of 

increasing disparities in LA, the 2000s saw a remarkable decrease in the levels of 

inequality. Despite this, the region continues to be one of the least egalitarian in the 

world, with levels of inequality comparable to those of Africa (Alvaredo and Gasparini, 

2015). To the best of our knowledge, we are the first to show that unfairness perceptions 

fell during the 2000s in line with the evolution of income inequality, although we find that 

unfairness perceptions are not very responsive to changes in inequality. During the 2002-

13 period, a 1 percentage point decrease in the Gini coefficient was associated with a 1.4 

percentage point decrease in the share of the population perceiving the distribution as 

unfair or very unfair. 

The evolution of unfairness and inequality was consistent across countries: 

perceptions moved in the same direction as the Gini coefficient for 17 out of the 18 

countries of the region for which microdata is available. We also show that this change 

was widespread across very heterogeneous groups of the population, and that the decline 

in unfairness perceptions was driven mainly by a reduction in the intensity of such beliefs 

(i.e., compared to ten years ago, fewer people perceive the distribution as very unfair). 

Next we shed some light on the discussion of whether inequality should be measured 

with relative vs. absolute indicators by analyzing which indicators are more correlated 

with unfairness perceptions. We show that relative indicators—and in particular, the Gini 

coefficient—are the ones mostly correlated with people’s perception of fairness. 

In the second part of the paper we explore how individual factors and belief systems 

affect how inequality is perceived. We find that older, unemployed and more educated 

people are more likely to perceive income distribution as unfair. A decomposition exercise 

provides evidence on the relative contribution of composition effects vis-à-vis changes in 
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aggregate inequality trends, to explain the decline in unfairness perceptions during the 

last decade. Regarding beliefs and unfairness, consistent with theories of fairness, we find 

that people leaning to the right of the political spectrum, Catholics, and optimists are 

more likely to believe income distribution is fair. Finally, we analyze the link between 

fairness perceptions and propensity to protest, and show some suggestive evidence that 

people that believe inequality is very unfair are more prone to mobilize. 

The rest of the paper is organized as follows. In section 2 we document some stylized 

facts about distributive justice perceptions and the evolution of income inequality. In 

section 3, we shed some light on the discussion of whether income inequality should be 

measured with absolute or relative measures by studying the relationship between 

perceptions data with different indicators of income inequality. In section 4 we analyze 

whether individuals’ unique background shape their perception of fairness, by analyzing 

how individuals’ characteristics relate with perception of distributive justice; and compare 

the relative importance of the demographic variables vis-à-vis aggregate trends of 

inequality to explain the observed changes in fairness perceptions. In section 5 we analyze 

the relationship between different beliefs systems and unfairness, while in section 6 we 

explore the link between fairness perceptions and social cohesion. Section 7 concludes. 

2. Income inequality and fairness: some stylized facts 

Latin America has long been characterized as a region with high levels of income 

inequality, among the least egalitarian regions in the world. Out of the ten most unequal 

countries of the world for which household survey data is available eight of them are in 

LA, and the rest in Sub-Saharan Africa (World Bank, 2016), probably the most unequal 

region in the world (Alvaredo and Gasparini, 2015). Although the disparities between the 

poor and rich are still large, after a period of increasing inequality during the 1990s, the 

region experienced a ‘turning point’ in the 2000s, when income inequality saw a 

widespread decrease across the countries of the region.9 The social gains in terms of 

inequality contrasts with what happened in other developing regions in the world, where 

the declines in inequality were much more modest (e.g., such as in the Middle East and 

North Africa), or even increased (such as in East Asia and Pacific, cf. Alvaredo and 

Gasparini, 2015, p. 29), and also contrasted with the increases in inequality experienced by 

developed countries (cf., Atkinson, Piketty and Saez, 2011). 

In this section we replicate the widespread decrease in income inequality in LA, and 

show how perceptions about fairness moved in the same direction. Our primary dataset 

for income inequality comes from a regional data harmonization efforts known as 

                                                           
9 See Gasparini, Cruces and Tornarolli (2011), Gasparini and Lustig (2011) and Lustig, López-Calva and 

Ortiz-Juárez (2013). 
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SEDLAC (CEDLAS and World Bank), which increase the cross-country comparability 

from official household surveys.10 

Figure 1 shows a scatterplot of the Gini coefficient of the per capita household income 

(in 2005 USD PPP) of 18 LA countries for which comparable data is available both at the 

beginning of the 2000s and one decade later (we use years close to 2002 and 2013). The 

Figure includes a 45 degree line denoting all the points for which the Gini coefficient is 

the same in both years, and points to the right of this line denote decreases in income 

inequality. 

Figure 1. Gini coefficient circa 2002 and 2013 

 
Note: This figure presents the Gini coefficient for 18 LA countries in 2002 and 2013. Due to household data 

unavailability or comparability issues, for some countries we use inequality data from adjacent years. In 

2002, we use: Argentina 2004, Chile 2003, Guatemala 2006, and Peru 2004. In 2013 we use: Guatemala 

2014, Mexico 2014 and Nicaragua 2014. Due to a break in data comparability, Costa Rica and Panama’s 

2002 Gini Coefficient were calculated with a linear interpolation. See Data Appendix for further details. 

As is immediately apparent from Figure 1, with the exception of Costa Rica, all 

countries of the region experienced a decrease in income inequality. The regional trend is 

consistent with the cross-country evidence: the average Gini coefficient has decreased 

every year since the beginning of the decade, declining from 0.54 in 2000 to 0.47 in 2014. 

Moreover, as Rodríguez-Castelán et al. (2016) note, the decline in income inequality of the 

region is robust to the inequality indicator used and to the method of aggregation of the 

countries. 

We complement the ‘objective’ evolution of income inequality with data from public 

opinions polls from Latinobarómetro, which has conducted surveys in 18 Latin American 

                                                           
10 See Data Appendix for more details on the data sources. 
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countries since the 1990s, interviewing about 1,200 individuals per country about 

individual socioeconomic background and preferences regarding political and social issues 

(including inequality). The surveys are representative at the national level for the 

population over 18 years old.11 In every country, Latinobarómetro asks “How fair do you 

think income distribution is in [country]? Very fair, fair, unfair or very unfair?” Using this 

question we construct dichotomical variables reflecting whether the individual believes 

income distribution is unfair or very unfair.12 Our baseline definition of unfairness 

perceptions includes all the individuals that perceived income distribution as unfair, i.e., 

we include those that answered both ‘unfair’ and ‘very unfair’, but also show the results 

are robust to a more narrow definition of unfairness (i.e., considering only those that 

answered ‘very unfair’). Figure 2 shows the percentage of each country’s population that 

believes income distribution is either unfair or very unfair in 2002 and 2013. 

Figure 2. Perceptions of unfairness in 2002 and 2013 

 

Note: This figure presents the percentage of the population that believes income distribution is either unfair 

or very unfair in 2002 and 2013 for all LA countries for which data is available in. Due to data unavailability 

in 2002, for the Dominican Republic we use 2007. See Data Appendix for further details. 

There are several things to note about Figure 2. First, the percentage of the 

population that believes income distribution is unfair is strikingly high in both points in 

time. The regional average was as high as 86.6% in 2002 (with Argentina peaking at 

                                                           
11 Latinobarómetro has been extensively used for research on several economic issues. For instance, Torgler 

(2003) uses this dataset to analyze tax morale and tax evasion in Latin America; Graham and Felton (2005) 

to analyze the relationship between inequality and subjective well-being; and Bonnet et al. (2012) to study 

satisfaction with the privatization of state-owned companies in Latin America. 

12 Unfortunately, this question was not asked every year. We restrict our analysis to the years in which this 

question was asked: 1997, 2001, 2002, 2007, 2009, 2010, 2011, 2013, and 2015. 
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97.7% of the population, in the midst of a severe crisis). Even in Venezuela, the country 

with the smallest perception of unfairness in 2002, three out of four individuals (74.5%) 

perceived inequality as unfair in 2002. Although lower, the share of the population 

unsatisfied with income distribution was still astoundingly high in 2013, when about 

72.8% of the population though inequality was unfair or very unfair. 

Second, there was a widespread decrease in the share of the population that perceived 

income distribution as unfair. Relative to the previous decade, in 2013 fewer people 

perceived income distribution as unfair in 16 out of the 18 countries analyzed. The change 

in perceptions range from modest decreases, such as in Chile, where the decline was of less 

than one percentage point, to remarkable reductions, such as in Ecuador, where 

perceptions about unfairness declined from 87.5% to 38.6% in the 2002-13 period.  

Lastly, with the exception of Honduras—where, despite falling inequality the 

population perceived the distribution as more unjust—in the rest of the countries both 

variables moved in the same direction. To see this more clearly, in Figure 3 we show 

jointly the change in the perceptions of unfairness (as measured by the percentage point 

change in the share of the population reporting income distribution is unfair or very 

unfair), and the change in the Gini coefficient during the 2002-13 period. As can be easily 

seen from Figure 3, most LA countries lie in the third quadrant, where both inequality 

and unfairness perceptions decreased.  

Figure 3. Change in fairness perceptions and Gini coefficient between 2002 and 2013 

 

Note: This figure presents the percentage point change in the share of the population that believes income 

distribution is either unfair or very unfair between 2002 and 2013 (or close years), and the change in the 

Gini coefficient between 2002 and 2013 (or close years) for all LA countries. See Data Appendix for more 

detail. 
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The relation between unfairness perceptions and the Gini coefficient is strong both 

across countries and time. In Figure 4 panel (a), we show the cross-country correlation 

between unfairness perceptions and income inequality in all the years for which both 

indicators are available, while in panel (b) we show the average regional trend over the 

1997-2015 period.13 

Figure 4.Unfairess perceptions and Gini coefficient in Latin America 

 

a) Across countries (Pooling all the countries and years) 

 
 

b) Over time (Cross-country average, 1997-2015) 

 

                                                           
13 In 1997 Latinobarómetro had a low coverage in large countries with high levels of inequality (such as 

Brazil and Colombia), and did not survey other countries at all (such as Dominican Republic, see Appendix 

B.). The increase in the coverage of the survey could drive part of the change in perceptions between 1997 

and 2001.  

Unfairness = 93.9 Gini + 31.91 
R² = 0.16 
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Note: Panel (a) of this figure presents the cross-county correlation between unfairness perceptions and the 

Gini coefficient for 18 LA countries over the 1997-2015 period. The figure does not include data points that 

were calculated through linear interpolations. Panel (b) shows the unweighted average Gini coefficient of 

LA and unfairness perceptions since 1997. To ensure the same set of countries is analyzed over time, a linear 

extrapolation of inequality indicators was made in the years in which income microdata was not available. 

Figures 4a and 4b indicate that income inequality and unfairness perceptions are 

closely related. The linear correlation between the Gini coefficient and the unfairness 

perceptions across countries is 0.40, while the Spearman correlation between the ranking 

of countries is 0.42 (in both cases, p<.01). The correlation over time is stronger than 

across countries. The linear correlation of the series plotted in Figure 4.b is notably high 

(0.77), and the correlation between the Gini coefficient and perceptions is even higher if 

we consider the share of individuals that responded income distribution is very unfair 

(0.82). 

Our results point to a low elasticity of unfairness perceptions to income inequality.14 

Pooling the data from all the countries we find that, during the 2002-13 period, a one 

percentage point decrease in the Gini coefficient was associated with a 1.4 percentage 

point decrease in the share of the population perceiving the distribution as unfair or very 

unfair.15 To put this number in context, this means that, at the pace of inequality reduction 

of the 2000s, it would roughly take LA more than another decade to reduce the population 

that perceives income inequality as unfair to 50%. 

The decrease in unfairness perceptions—from almost 90% in 2001 to 72.8% in 2013—

does not seem to be driven by any particular group of the population, but is rather a 

widespread phenomenon. To see this, in Figure 5 we present the perceptions of fairness by 

dividing the population in many subgroups: according to their age, gender, educational 

achievement and labor status. 

Figure 5 reveals some heterogeneity across groups. For instance, relatively younger 

population are less likely to perceive income distribution as unfair (panel a), while females 

are more likely to do so, although not consistently across time (panel b). Similarly, 

individuals with a higher educational achievement are more likely to belief income 

distribution is unfair, while the results according to employment status are mixed. 

Regardless of the different average beliefs, the perception of unfairness of all these groups 

consistently fell during the 2000s. 

  

                                                           
14 The elasticity of unfairness perceptions to the Gini coefficient is calculated as: 𝜀 = ∆%Unfairness/∆%Gini 

15 The estimated elasticity is the combined effect of a higher elasticity of ‘very unfair’ perceived inequality 

(2.1) and a lower elasticity ‘just unfair’ perceived inequality (0.9). 
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Figure 5. Perceptions of unfairness in LA by subgroup, 1997-2015 

(a) By age: (b) By gender: 

  

(c) By educational attainment: (d) By labor status: 

  

Note: This figure presents the share of individuals that perceived income distribution as unfair or very unfair 

according to four categories of age (18-24; 25-40; 41-64 and 65+), gender, maximum educational achievement and 

labor status. Each line refers to the average of 18 LA countries for which data is available.  
 

 

Not only injustice perceptions fell during the last decade, but the intensity of beliefs 

also diminished over time. To see this, Figure 6 shows the evolution of the different 

possible answers to the question of unfairness perceptions. 
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Figure 6. Intensity of unfairness perceptions in LA, 1997-2015 

 

Note: This figure presents the average across 18 LA countries of the share of individuals that perceived 

income distribution as very unfair, unfair, fair, and very fair over the 1997-2015 period. 

As can be seen from Figure 6, the decrease in unfairness perceptions was driven 

mainly by strong beliefs about unfairness (i.e., people that perceived inequality as very 

unfair). While in 2001, 37.4% of the population thought income distribution was very 

unfair, this figure decreased to 25% in 2015. In contrast, weak beliefs about unfairness (i.e., 

the population that responded income distribution was only ‘unfair’), have been more 

volatile, remaining relatively constant during the 2000s (from 51.4% in 2001 to 49% in 

2015). On the other hand, the share of the population believing in a fair distribution 

increased from a meager 9.5% in 2001 to a sizable 22.6% in 2015, while strong beliefs on 

fairness (i.e., ‘very fair’), have remained under 5% throughout all the 2000s.  

3. Is fairness absolute or relative?  

In the previous sections we showed that a large, albeit decreasing, share of the population 

believes income distribution is unfair, and that such levels and evolution are consistent 

with a high, but also declining Gini coefficient. Despite being the most widely used 

indicator to measure income inequality, the general population’s views on income 

distribution might, in fact, be better captured with other indices.  

The literature on inequality measurement makes a crucial distinction between two 

types of indicators: the relative (such as the Gini coefficient) and absolute ones (such as the 

Variance). The main distinction between them is that relative indicators fulfill the scale-

invariant axiom, while the absolute indicators meet the translation-invariant axiom. In 

practical terms, this means that if the income of the entire population increases by the 

same percentage, relative indicators will remain unchanged, while absolute indicators 
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might increase significantly. The question on which indicator should be used in practice 

has led to a heated debate in the literature. Milanovic (2016) provides several arguments 

to defend the use of relative indicators in practice, but the fact that they are better from a 

technical point of view does not say anything about how the general population perceives 

fairness.16 

Understanding whether people think about distributive fairness through the lens of 

relative or absolute indicators is more than a technical measurement issue or an 

economist’s whim. As Ravallion (2003) and Atkinson and Brandolini (2008) note, it has 

profound consequences about how we think of important issues such as the distributive 

effects of globalization or trade openness. As measured by absolute indicators, 

globalization has deteriorated the income distribution since the absolute income 

differences between the rich and the poor have increased, but under the lens of relative 

measurement, income inequality has been reduced, since the poor have grown 

proportionally more than the rich in relative terms.  

We take an agnostic approach and let the data show which inequality indicators are 

more correlated with the perceptions of distributive justice. To do this, we calculate 13 

different measures of income inequality for all the countries in our sample, and correlate 

all the indicators with the share of the population that believes income distribution is 

unfair over time.17 Table 1 shows the results for the three different ways of calculating the 

correlation between the perceptions and inequality indicators at the regional level: (i) 

pooling all the data (i.e. taking simultaneously the indicators of all the countries and 

calculating the correlations with that pool of data, columns 1-3); (ii) calculating the 

average of the indicators across all the countries in every year, and then calculating the 

correlation between the average values of the indicators (columns 4-6); and (iii) 

calculating the correlations between inequality indicators and perceptions at the country 

level and then averaging the results (columns 7-9).  

Our results suggest perceptions of unfairness are more correlated with relative 

indicators rather than absolute ones (Column 1 of Table 1). In fact, the Gini Coefficient—

probably the most used inequality indicator in the literature—is the one with the highest 

                                                           
16 Perhaps, the most disturbing instance of a mismatch between ‘best practices’ in inequality measurement 

theory and general perceptions is given by Amiel and Cowell (1992), who provide experimental evidence 

showing that many respondents do not agree with the Dalton-Pigou axiom, the backbone of all inequality 

indicators. 

17 The indicators are the Gini coefficient, the ratio between the 75th percentile and the 25th percentile, the 

ratio between the 90th and 10th percentile, the Atkinson index with an inequality aversion parameter equal to 

0.5 and 1, the mean log deviation, the Theil index, the Generalized entropy index, the coefficient of 

variation, the absolute Gini, the Kolm index with an inequity aversion parameter equal to 1, and the 

variance of the per capita household income (in 2005 PPP). These last three indices correspond to the 

absolute measures of inequality, while the other ten are relative measures. 
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explanatory power.18 On average the Gini Coefficient explains about 10 percent of the 

variability of the perceptions about unfairness, as measured by the R-squared. On the 

other hand, the absolute indicators of inequality correlate negatively with the unfairness 

perceptions, and the explanatory power of such indicators is lower than of the relative 

indicators. It is interesting to note that indicators often mentioned in the mass media, 

such as the ratio between the richest 90% and the poorest 10% exhibit low explanatory 

power, although this may be due to mismeasurement of the top incomes. The results of 

the high correlation between unfairness perceptions and income inequality seems to be 

driven by the population that perceives inequality as very unfair (columns 2, 5, and 8), 

rather than just unfair (columns 3, 6, and 9), as the correlations in the latter are close to 

zero (<0.1) for almost all indicators. 

These results are consistent with experimental evidence from Amiel and Cowell (1992, 

1999) who show that support for the scale-invariance axiom was greater than for 

translation invariance, reflecting greater support for relative inequality indicators. 

Moreover, the results are also consistent with graphical evidence that shows decreasing 

relative inequality, but rising absolute inequality during the 2000s in LA (Figure 4 and 

Figure 7, respectively). Since unfairness perceptions also declined over time, the relative 

indicators do a better job of tracing such evolution.  

                                                           
18

 The results are very similar if we exclude the observations with income equal to zero. For example, 

pooling all the data and excluding individuals with zero income changes the correlation of the Gini with the 

share of the population that perceives income distribution as either unfair or very unfair from 0.412 to 0.417. 
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Table 1. Correlation between Inequality indicators and fairness perceptions, LA 1997-2015 

Correlation with… 
 Pooling all the data    Averaging indicators   Averaging correlations 

 U. or V.U.  V.U. U. 
 

 U. or V.U.  V.U. U. 
 

 U. or V.U.  V.U. U. 
 (1)  (2) (3) 

 
 (4)  (5) (6) 

 
 (7)  (8) (9) 

Gini coefficient 0.40 0.37 0.09   0.84 0.83 0.24   0.41 0.30 0.14 

 
(0.07) (0.07) (0.09) 

 
(0.10) (0.16) (0.35) 

 
(0.07) (0.07) (0.09) 

Ratio 75/25 0.39 0.40 0.05 
 

0.85 0.83 0.26 
 

0.35 0.22 0.16 

 
(0.07) (0.07) (0.09) 

 
(0.10) (0.16) (0.35) 

 
(0.07) (0.07) (0.09) 

Atkinson, A(0.5) 0.39 0.37 0.09 
 

0.84 0.83 0.25 
 

0.40 0.28 0.14 

 
(0.07) (0.07) (0.09) 

 
(0.10) (0.16) (0.35) 

 
(0.07) (0.07) (0.09) 

Theil index, GE(1) 0.37 0.32 0.13 
 

0.84 0.82 0.24 
 

0.39 0.29 0.12 

 
(0.07) (0.08) (0.09) 

 
(0.10) (0.16) (0.34) 

 
(0.07) (0.08) (0.09) 

Atkinson, A(1) 0.36 0.30 0.13 
 

0.84 0.82 0.24 
 

0.39 0.29 0.12 

 
(0.07) (0.08) (0.09) 

 
(0.10) (0.16) (0.34) 

 
(0.07) (0.08) (0.09) 

Mean log deviation, GE(0) 0.33 0.37 -0.01 
 

0.78 0.78 0.19 
 

0.22 0.19 0.11 

 
(0.08) (0.08) (0.09) 

 
(0.13) (0.16) (0.36) 

 
(0.08) (0.08) (0.09) 

Generalized entropy, GE(2) 0.32 0.17 0.25 
 

0.80 0.78 0.25 
 

0.37 0.29 0.13 

 
(0.07) (0.09) (0.08) 

 
(0.11) (0.17) (0.34) 

 
(0.07) (0.09) (0.08) 

Coefficient Variation 0.30 0.36 -0.05 
 

0.80 0.72 0.35 
 

0.22 0.11 0.19 

 
(0.05) (0.08) (0.08) 

 
(0.12) (0.18) (0.34) 

 
(0.05) (0.08) (0.08) 

Ratio 90/10 0.25 0.12 0.21 
 

0.81 0.79 0.24 
 

0.31 0.30 0.07 

 
(0.07) (0.08) (0.08) 

 
(0.11) (0.17) (0.33) 

 
(0.07) (0.08) (0.08) 

Variance -0.12 -0.01 -0.17 
 

-0.28 0.05 -0.68 
 

-0.07 0.07 -0.22 

 
(0.08) (0.09) (0.08) 

 
(0.4) (0.43) (0.16) 

 
(0.08) (0.09) (0.08) 

Absolute Gini -0.23 -0.10 -0.22 
 

-0.71 -0.47 -0.63 
 

-0.19 -0.06 -0.30 

 
(0.09) (0.1) (0.08) 

 
(0.23) (0.26) (0.32) 

 
(0.09) (0.1) (0.08) 

Kolm, K(1) -0.33 -0.18 -0.25 
 

-0.80 -0.65 -0.49 
 

-0.24 -0.13 -0.26 
  (0.09) (0.11) (0.08)   (0.13) (0.18) (0.37)   (0.09) (0.11) (0.08) 
Note: U. or V.U. = % Unfair or Very Unfair; V.U. = % Very Unfair; U. = % Unfair. Standard Errors are reported in parenthesis, and were calculated with 

bootstrap (500 iterations).
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Figure 7.Unfairess perceptions and Absolute Gini coefficient 

c) Over countries (Pooling all the countries and years) 

 
 

d) Over time (Cross country average, 1997-2015) 

 

Note: Panel (a) of this figure presents the cross-county correlation between unfairness perceptions and the 

absolute Gini coefficient for all LA countries for which data is available over the 1997-2015 period. The 

absolute Gini was normalized so the average over the period is equal to 100 in every country. Figure does 

not include data points that were calculated through linear interpolations. Panel (b) shows evolution f the 

unweighted average absolute Gini and unfairness perceptions. To ensure the same set of countries is 

analyzed over time, a linear extrapolation of inequality indicators was made in the years in which income 

microdata was not available. 
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4. Fairness through the eyes of people 

In this section we explore how individuals' characteristics relate to their views on 

inequality. As shown in the previous section, most of the change in perceptions over the 

last decade was driven by the share of the population that perceived income distribution as 

being very unfair, thus we focus on explaining the correlates of such measure, although 

we also show the results for a broader definition of unfairness. 

4.1 DATA 

Our sample of individuals comes from pooling all LA countries from nine different waves 

of Latinobarómetro over the 1997-2015 period. Appendix Tables A1-A3 show basic 

descriptive statistics of the sample. Roughly half of respondents are women (50.9%), the 

average age was 39.4 (most interviewees—38%—were aged 25-40). Over half of the 

sample (57.3%) reported being married or in a civil union, and are adherents to 

Catholicism (70.7%). 

About 90 percent of the sample are literate, the majority of respondents (76%) 

completed at least primary school, while a third of them (32.3%) had secondary education 

or more. Almost two thirds of the sample (64%) were part of the labor force, and 9.9% of 

them were unemployed. Access to basic services among respondents is relatively high: 

87.6% of individuals had access to running water inside their dwelling and over two thirds 

(69.7%) reported that their dwellings had access to a flush toilet connected to waste-

removal system (i.e., sewage). Ownership of durable goods ranges from low levels 

regarding cars and computers (27.3% and 29.6%, respectively) to high levels regarding 

fridges and mobile phones (79.2% and 76.4%). 

To assess the differences between Latinobarómetro’s sample and the household 

surveys’ sample (SEDLAC), Appendix Table A4 compares a set of summary statistics in 

both datasets in 2013. To ensure comparability of the samples, we restrict the calculations 

to individuals aged over 18, and to countries with data available in both databases. In 

general, the samples are similar in observable characteristics. For instance, the average 

age in Latinobarómetro’s reduced sample is 40.6 years, while in SEDLAC it is 42.7 years. 

Similarly, the percentage of males is 48.9% in Latinobarómetro and 47.6% in SEDLAC. 

The main difference arises from educational attainment. On average, the SEDLAC 

subsample is more educated (46.1% of the population has secondary education or more, 

while this figure is 38.8% in Latinobarómetro).  

4.2 ESTIMATION STRATEGY 

To formally assess the relationship between individuals’ characteristics and fairness 

perceptions, we run Logit regressions where the dependent variable takes the value 1 if 

the individual believes income distribution is very unfair and 0 otherwise. In the baseline 

specification, we assume that unfairness perceptions can be characterized according to the 

following equation: 
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𝑉𝑒𝑟𝑦 𝑈𝑛𝑓𝑎𝑖𝑟𝑖𝑐𝑡 = 𝛽0 + 𝛽1 𝛾𝑖𝑐𝑡 + 𝛽2 𝐺𝑐𝑡 +∑𝐶𝑐
𝑐

+∑𝑇𝑡
𝑡

+ 𝜀𝑖𝑐𝑡 

where 𝑉𝑒𝑟𝑦 𝑈𝑛𝑓𝑎𝑖𝑟𝑖𝑐𝑡 is the variable of interest, namely, whether the individual 𝑖 of 

country 𝑐 during year 𝑡 believes income distribution is very unfair or not; 𝛾 is a vector of 

individual characteristics that includes the age, sex, civil status, education, and type of job; 

𝐺𝑐𝑡 is the country’s Gini coefficient; 𝐶 is a vector of country and subnational fixed 

effects19; 𝑇 is a vector of year fixed effects and 𝜀𝑖𝑐𝑡 is the error term. 

We are interested in the sign and magnitude of 𝛽1 and 𝛽2. The first of these 

coefficients captures the relationship between the individual’s characteristics and 

unfairness perceptions. If unfairness is uncorrelated with observable characteristics, then 

this coefficient should not be statistically different from zero. On the other hand, 𝛽2 

captures the relationship between the Gini coefficient and the perceived fairness after 

controlling for an individual’s covariables. If subjective measures of income inequality are 

significantly correlated with their objective counterparts, we would expect this coefficient 

to be positive and statistically different from zero. 

4.3 RESULTS 

Table 2 summarizes the main results of the Logit regressions under different 

specifications. Column (1) presents the results controlling only for the Gini coefficient. 

Column (2) includes basic demographic indicators: age, age squared and gender. Column 

(3) incorporates dummies for civil status and educational variables, namely, literacy and 

maximum educational attainment. Column (4) includes dummies for labor market 

variables: labor force participation and unemployment. Column (5) incorporates access to 

basic services—running water and sewage—and asset ownership, namely ownership of a 

computer, washing machine, telephone and car. Column (6) replicates the same 

specification as column (5), but with Ordinary Least Squares (OLS). All specifications 

include country, subnational and year fixed effects. 

Our first result is that the Gini coefficient has a positive and statistically significant 

relationship with unfairness perceptions, consistent with the evidence shown in the 

previous section. For example, in a country with average characteristics, a decrease of one 

point of the Gini coefficient (from 0.496 to 0.486), decreases in about half percentage point 

the share of the population that believes income distribution is very unfair. Such 

magnitude is quite similar with the Logit (column 5) and OLS (column 6) estimates, and 

does not vary much across different specifications (columns 1-5). It is important to stress 

that the interpretation is not causal. The relationship between income inequality and 

unfairness perceptions can go both ways. On one hand, higher inequality can increase the 

share of the population that believes distribution is unfair. But as more people perceive 

                                                           
19 Latinobarómetro’s survey is representative in each country at the subnational level, so we include 380 

subnational fixed effects to capture unobservable heterogeneities at this level. 
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income distribution as unfair, inequality can be affected through several channels (e.g., 

more demand for redistribution).  

 

Table 2. Logit regressions of unfairness perceptions (very unfair) and individual characteristics  

  (1) (2) (3) (4) (5) (6) 

Gini coefficient 0.603*** 0.603*** 0.595*** 0.591*** 0.575*** 0.504*** 

 
(0.064) (0.064) (0.064) (0.064) (0.065) (0.064) 

Age 
 

0.004*** 0.004*** 0.005*** 0.005*** 0.005*** 

  
(0.000) (0.000) (0.000) (0.000) (0.000) 

Age squared 
 

-0.000*** -0.000*** -0.000*** -0.000*** -0.000*** 

  
(0.000) (0.000) (0.000) (0.000) (0.000) 

Male dummy 
 

-0.001 -0.000 0.001 0.001 0.001 

  
(0.003) (0.003) (0.003) (0.003) (0.003) 

Married or civil union 
  

-0.005* -0.005* -0.005* -0.005* 

   
(0.003) (0.003) (0.003) (0.003) 

Literacy 
  

-0.031*** -0.031*** -0.029*** -0.028*** 

   
(0.006) (0.006) (0.006) (0.006) 

Complete Primary 
  

-0.002 -0.002 0.002 0.001 

   
(0.004) (0.004) (0.004) (0.004) 

Complete Secondary 
  

-0.005 -0.005 0.006 0.004 

   
(0.005) (0.005) (0.005) (0.005) 

Complete Tertiary 
  

0.004 0.005 0.019*** 0.016*** 

   
(0.005) (0.005) (0.006) (0.006) 

Economically active dummy 
   

-0.004 -0.004 -0.004 

    
(0.003) (0.003) (0.003) 

Unemployed dummy 
   

0.018*** 0.017*** 0.017*** 

    
(0.005) (0.005) (0.006) 

Sewage 
    

0.000 0.000 

     
(0.003) (0.003) 

Computer 
    

-0.008** -0.008** 

     
(0.003) (0.003) 

Washing machine 
    

-0.024*** -0.024*** 

     
(0.004) (0.004) 

Landline 
    

-0.010*** -0.009*** 

     
(0.003) (0.003) 

Has access to a car 
    

0.003 0.002 

     
(0.003) (0.003) 

Observations 150,144 150,144 149,119 149,116 145,039 145,104 
% Unfair 27.77 27.77 27.74 27.74 27.70 27.69 
Pseudo R-squared 0.0458 0.0469 0.0471 0.0471 0.0473 0.055 
Note: This table presents estimates of the correlation between unfairness perceptions dummy variable that indicates if the 

individual believes income distribution is very unfair and individuals’ characteristics. Columns 1 to 5 coefficients presents 

the marginal effects at the mean values of the rest of the variables and were estimated through Logit regressions, 

weighting by individuals probability of being interviewed, while column 6 coefficients were estimated through Ordinary 

Least Squares regressions. All columns include country, subnational and year fixed effects. ***, ** and * denote 

significance at 10%, 5% and 1% levels, respectively. Heteroskedasticity-robust standard errors in parentheses. 
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Regressions results also suggest that, holding all other variables constant, older 

people tend to respond more often that income distribution is very unfair, although the 

relationship between age and unfairness perception is not linear. This result is similar to 

that of Bellemare et al. (2008), who find that young individuals have lower aversion to 

inequity than other groups in an experimental setting.  

On average, males are just as likely as females to perceive income distribution as very 

unfair, while married individuals are less likely to do so. Education seems to be correlated 

with perceptions of unfairness but only at the highest level of education—for those who 

have completed primary and secondary school, the coefficients are not statistically 

different from zero. Being part of the labor force does not seem to be correlated with 

perceptions of unfairness, but being unemployed does. On average, the unemployed 

population is more likely to perceive income distribution as unfair. The dummy variables 

for access to basic services and asset ownership have negative signs. In household surveys, 

these variables tend to be correlated with household income—although the correlations 

tend to be low—so a possible interpretation is that relatively richer people (as measured 

by access to services and assets), are less likely to perceive income distribution as very 

unfair.  

Next, we run a similar set of regressions but, instead of considering only the people 

that responded that income distribution is ‘very unfair,’ we also consider the ones that 

answered only ‘unfair.’ The output of those regressions is reported in Table 3. 

When we use the broader definition of unfairness the effect of education on 

perceptions of unfairness becomes stronger: in all the specifications, educational 

attainment is positively correlated with a sense of distributive unfairness. Moreover, the 

magnitude of the coefficient increases with the level of qualification: the coefficient of 

those with tertiary education complete is three times larger than those with only primary 

education complete. These results are similar to those of Rodriguez (2014), who finds that 

more years of education are associated with higher perceptions of inequality. The other 

two main differences with respect to the baseline set of regressions is that the civil status 

stops being statistically significant, and the male dummy becomes negative and 

statistically significant (in both cases consistently so across specifications). 

As a robustness check we run the set of regressions reported in column (4), but using 

an alternative set of inequality indicators instead of the Gini coefficient. Those results are 

reported in Appendix Table A5. The result confirms the story of a positive and 

statistically significant correlation between income inequality and unfairness perceptions 

across a very different set of relative indicators (columns 1-4). Indeed, both the Gini 

coefficient calculated without households with zero income, the Atkinson index, the Theil 

index and the Generalized Entropy indicator are consistently correlated with unfairness, 

even after controlling for an individual’s characteristics, while the absolute Gini (our 

absolute measure of inequality in the table) is negatively correlated with unfairness 

perceptions.  
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Table 3. Logit regressions of unfairness perceptions (all unfair) and individual characteristics 

  (1) (2) (3) (4) (5) (6) 

Gini coefficient 0.423*** 0.423*** 0.412*** 0.410*** 0.410*** 0.262*** 

 
(0.059) (0.059) (0.059) (0.059) (0.060) (0.053) 

Age 
 

0.004*** 0.004*** 0.004*** 0.004*** 0.005*** 

  
(0.000) (0.000) (0.000) (0.000) (0.000) 

Age squared 
 

-0.000*** -0.000*** -0.000*** -0.000*** -0.000*** 

  
(0.000) (0.000) (0.000) (0.000) (0.000) 

Male dummy 
 

-0.013*** -0.013*** -0.012*** -0.012*** -0.012*** 

  
(0.002) (0.002) (0.002) (0.002) (0.002) 

Married or civil union 
  

-0.001 -0.001 0.000 -0.000 

   
(0.002) (0.002) (0.002) (0.002) 

Literacy 
  

-0.013*** -0.013*** -0.011** -0.014*** 

   
(0.005) (0.005) (0.005) (0.005) 

Complete Primary 
  

0.009*** 0.009*** 0.010*** 0.012*** 

   
(0.003) (0.003) (0.003) (0.003) 

Complete Secondary 
  

0.016*** 0.016*** 0.020*** 0.023*** 

   
(0.004) (0.004) (0.004) (0.004) 

Complete Tertiary 
  

0.024*** 0.025*** 0.030*** 0.034*** 

   
(0.005) (0.005) (0.005) (0.005) 

Economically active dummy 
   

-0.003 -0.004 -0.004 

    
(0.003) (0.003) (0.003) 

Unemployed dummy 
   

0.018*** 0.019*** 0.018*** 

    
(0.005) (0.005) (0.004) 

Sewage 
    

0.004 0.003 

     
(0.003) (0.003) 

Computer 
    

0.000 0.001 

     
(0.003) (0.003) 

Washing machine 
    

-0.017*** -0.019*** 

     
(0.003) (0.003) 

Landline 
    

0.002 0.000 

     
(0.003) (0.003) 

Has access to a car 
    

-0.007*** -0.007** 

     
(0.003) (0.003) 

Observations 150,081 150,081 149,056 149,053 144,977 145,104 
% Unfair 79.56 79.56 79.57 79.57 79.58 79.60 
Pseudo R-squared 0.0674 0.0691 0.0694 0.0695 0.0702 0.070 

Note: This table presents estimates of the correlation between unfairness perceptions dummy variable that indicates if the 

individual believes income distribution is unfair or very unfair and individuals’ characteristics. Columns 1 to 5 coefficients 

presents the marginal effects at the mean values of the rest of the variables and were estimated through Logit regressions, 

weighting by individuals probability of being interviewed, while column 6 coefficients were estimated through Ordinary 

Least Squares regressions. All columns include country, subnational and year fixed effects. ***, ** and * denote 

significance at 10%, 5% and 1% levels, respectively. Heteroskedasticity-robust standard errors in parentheses. 
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4.4 DECOMPOSING CHANGES IN UNFAIRNESS OVER TIME 

One of the broad takeaways from the regressions results is that both the aggregate 

inequality trends and the individual’s characteristics are associated with unfairness 

perceptions. A natural follow-up question is to ask what factors explain to a greater extent 

the reduction in the unfairness beliefs over the last decade: the observable characteristics 

of the individuals or the aggregate inequality trends. To analyze this point, we perform a 

basic Oaxaca-Blinder decomposition, taking 2002 and 2013 as the two ‘groups’ to be 

compared (see Appendix C for further detail on the Oaxaca-Blinder decomposition). The 

covariables included in the decomposition are analog to those of Column (4) in Table 2. 

The results are summarized in Figure 8. 

 

Figure 8. Oaxaca-Blinder decomposition of unfairness perceptions in LA, 2002-2013 

 
Note: This figure presents the estimates of the Oaxaca-Blinder decomposition. The dependent variable is a 

dummy that indicates whether the individual believes income distribution if unfair or not, and the regressors 

include the Gini coefficient, age, age squared, and dummy variables for: civil status, gender, literacy, 

maximum educational attainment, labor force participation and unemployment status. Results were 

calculated pooling data for 18 LA countries. The ‘explained’ part of the results refers to the endowment 

effects (changes in the value of the covariables), while the ‘unexplained’ refers to changes in the coefficients 

and the interaction terms. 

During the 2002-13 period, the share of the population perceiving the distribution as 

unfair decreased 13.8 percentage points, from 86.8% to 73.0%.20 The decomposition 

results suggest that a third of such change (4.5 percentage points) cannot be explained by 

                                                           
20 These figures are slightly different from those presented in the previous section due to some observations 

having missing values in the covariables relevant for the decomposition. 

86.9 

73.0 73.0 

9.3 

4.5 

50

60

70

80

90

2002 2013 Change 2002-13

%
 U

n
fa

ir
 o

r 
V

er
y

 U
n

fa
ir

 

Change in 
Unfairness 
Perceptions 

2002-13 

+9.5 Gini Coefficient 
 

-0.1 Composition 
Effects 

Unexplained 

Explained 



21 

 

changes in the covariate’s values (i.e., changes in the 𝑋’s of the regression), but rather are 

a consequence of changes in the elasticity of perceptions to each covariable (i.e., the 𝛽’s of 

the regression), while the other two thirds (9.33 percentage points) can be explained by 

changes of the covariables’ values.  

Among the covariables included in the decomposition, the one that explains the 

decline in the unfairness perceptions is the change in the value of the Gini coefficient, and 

not changes in the composition of the groups. In fact, although marginal, the demographic 

component actually contributed to an increase in the unfairness perceptions. This is mostly 

due to changes in average age and educational attainment. Between 2002 and 2013 both 

the average age and the maximum educational attainment saw a modest increase in our 

sample, and since older and more educated individuals are more likely to perceive the 

distribution as unfair, these changes counteracted part of the decrease in unfairness 

perceptions. 

5. Fairness and beliefs 

Ingrained in any judgement of income distribution as unfair is an assessment of the 

sources of the inequalities. Theories of fairness suggests that societies that perceive that 

inequality arises from hard work and effort are less likely to perceive distribution as 

unfair, while societies that believe luck, connections and corruption are the main 

determinants of income are more prone to see inequality as unfair (see Alesina et al., 

2001).21 Understanding why some people perceive outcomes as a consequence of luck 

while other think it is due to effort is challenging, although the literature has provided a 

few clues. 

First, political views matter. One of the clear dividing lines between the political ‘left’ 

and the ‘right’ is the views of to what extent luck determines incomes (which, in turn, 

affect preferences about the extent to which the government should intervene to 

redistributive from the rich to the poor as shown by Alesina and Giuliano, 2009). A 

second view is that beliefs are shaped by groups of interests (e.g., Glaeser, 2005). In 

particular, religion has been identified of a relevant group shaping beliefs (Bénabou and 

Tirole, 2005). In LA, we would expect Catholicism—the predominant religion—to affect 

fairness perceptions. Finally, sociology suggests that individuals with motivated beliefs are 

more likely to perceive hard work and effort as the ultimate determinants of success (e.g. 

Hochschild, 1981). In line with this research, we would expect people with a more 

optimistic life outlook to perceive income distribution as less unfair. Summarizing, we 

identify political views, religion and life outlook as some possible determinants of 

distributive justice perceptions. We test empirically whether these variables correlate with 

unfairness perceptions. 

                                                           
21 This theory is supported by much experimental and empirical evidence. For a review of relevant 

literature, see Fehr and Schmidt (2001). 
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To measure political views, we rely on the question “In politics, people normally speak of 

“left” and “right”. On a scale where 0 is left and 10 is right, where would you place yourself?” We 

interpret values closer to zero (ten) closer to a liberal (conservative) worldview. We create 

a categorical variable for reported religion, coding the rest of the religions (and lack of 

religion) as zero. Finally, we proxy life outlook with the question: “In the next 12 months do 

you think that, in general, the economic situation of your country will be much better, a little better, 

the same, a little worse or much worse than now?” When using these questions we control for 

the current assessment of the country’s situation to avoid any spurious correlation.22 We 

interpret expectations that the country will be better (conditional on the present situation) 

as a positive life outlook. 

Table 4 presents the main results. We control for individual characteristics in all the 

specifications, and include country and year fixed effects we well.  

Table 4. Logit regressions of unfairness perceptions (very unfair) and individual beliefs 

  (1) (2) (3) (4) 

Gini coefficient 0.490*** 0.582*** 0.343*** 0.277*** 

 
(0.072) (0.065) (0.074) (0.083) 

Self-reported Ideology -0.002*** 
  

-0.002*** 

 
(0.001) 

  
(0.001) 

Catholic religion 
 

-0.008*** 
 

-0.008** 

  
(0.003) 

 
(0.004) 

Current economic situation of 
the country 

  
-0.114*** -0.113*** 

  
(0.002) (0.003) 

Positive Outlook 
  

-0.042*** -0.040*** 

   
(0.004) (0.004) 

Negative Outlook 
  

0.076*** 0.075*** 

   
(0.004) (0.004) 

Observations 113,398 143,246 117,591 90,785 

% Unfair 26.84 27.66 27.94 27.06 

Pseudo R-squared 0.0487 0.0472 0.0874 0.0895 

Note: This table presents estimates of the correlation between perception of distribution as very unfair and 

measures of individual values. Coefficients present the marginal effects at the mean values of the rest of the 

variables and were estimated through Logit regressions, weighting by individuals’ probability of being 

interviewed. All regressions control for age, squared age, gender, civil status, maximum educational 

attainment, labor force participation, and unemployment status, access to basic services and asset holding, as 

well as country, subnational and yearly fixed effects. ***, ** and * denote significance at 10%, 5% and 1% 

levels, respectively. Heteroskedasticity-robust standard errors in parentheses. 

                                                           
22 Such assessment comes from the question: “In general, how would you describe the country’s present economic 
situation? Would you say it is…? (1) Good, (2) About average and (3) Bad.” We recode the variables so larger 
values correspond to a more positive assessment. 
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Our results suggest that, as expected, ideologically conservative people are, on 

average, less likely to perceive income distribution as very unfair (column 1). Catholics are 

less likely to perceive income distribution as very unfair, even after controlling for other 

observable individual characteristics (column 2). Finally, people with a more positive (and 

less negative) future outlook (column 3), are less likely to perceive inequality as unfair, 

even controlling for the country’s current situation (as perceived by the individual). These 

results are robust to controlling for all the beliefs at the same time (column 4). The Gini 

coefficient is positive and statistically different from zero in all specifications, although the 

magnitude decreases notably when all the variables are included, suggesting part of the 

relationship between the Gini and unfairness perceptions is mediated through other 

beliefs. 

As a robustness check, we run the same set of regressions, but using as the dependent 

variable all unfairness perceptions. These results are shown in Appendix Table A6. We 

find that the relationship between Catholicism and unfairness loses its significance, while 

the self-reported ideology actually changes its sign, which suggests these two results—

religion and political ideology—are driven by the population with strong beliefs about 

unfairness. The rest of the results remain unchanged. As noted previously, we are not 

inferring any causal relationship out of these results, but rather establishing strong 

empirical associations as stylized facts. For example, it could be the case that a negative 

life outlook increases the unfairness perceptions, or that an unfair distribution of income 

makes people more negative about life in general, or that both variables are caused by a 

third (omitted) variable.  

6. Unfairness and Social Unrest 

There is a vast literature that relates economic inequality—and more recently, measures 

of polarization—to social cohesion, conflict, and activism.23 More recently, some papers 

have argued that models that include ‘objective’ measures of inequality to explain social 

phenomena such as conflict could be misleading since people do not directly observe the 

income distribution (or the Gini coefficient), but rather take decisions based on their 

perceptions of it (e.g. Gimpelson and Treisman, 2015). Thus, this evidence suggests 

perceived inequality, and not actual inequality, should be the relevant regressor in the 

models that relate social unrest with inequality. To understand what this implies from an 

empirical point of view, it is useful to take the measurement-error perspective. Let’s 

assume perceived inequality is equal to real inequality plus an error term: 

Perceived inequality = Inequality + Error 

If the population’s perception of inequality corresponds to the actual level of 

inequality, then 𝜀 = 0, and the estimations we would obtain of the relationship between 

                                                           
23 For instance, in LA, Gasparini et al. (2008) find a strong empirical correlation between inequality and 

conflict, as well as polarization and conflict. 
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conflict and inequality would be unbiased. However, research about how accurately people 

perceive income inequality reveals systematic cognitive biases. The seminal paper of this 

strand of the literature is Norton and Ariely (2011), who find individuals dramatically 

underestimated the current level of inequality.24 Gimpelson and Treisman (2015) show 

that ordinary people have little idea about the levels of inequality, its evolution over time, 

and their place in the income distribution. Individuals consistently arrive to 

misperceptions of inequality, regardless of the data source, operationalization, and 

measurement method. In a survey experiment, Cruces et al. (2013) find systematic biases 

in perceptions of own income rank: a significant portion of relatively poor individuals 

place themselves in higher positions than they actually occupy. This evidence suggests 

that the mean of the error term will not necessarily be zero. Thus, if we use the ‘objective 

inequality,’ instead of the perceived one as explanatory variable in regressions, the 

measurement error becomes part of the error term in the regression equation, creating an 

attenuation bias. 

In this section we test whether unfairness perceptions are positively correlated with 

social unrest, exploiting the fact that both perceptions and stated activism vary at the 

individual level.25 We rely on the following question from Latinobarómetro: “On a scale 

from 1 to 10 where 1 means “not at all” and 10 “very”, how willing would you be to demonstrate 

and protest about…? (a) Higher wages and better working conditions; (b) Improvement in 

healthcare and education; (c) Exploitation of natural resources; and (d) To defend democratic 

right.”  

Figure 9 shows the simple cross-country correlations between unfairness perceptions 

at the country level and the average index of the different measures of stated activism in 

2015. Visual evidence suggests that unfairness measures tend to be positively correlated 

with the social unrest measures, although in some cases the correlation is small.  

 

Figure 9. Perceptions of unfairness (very unfair) and stated activism in LA, 2015 (%) 

(a) Better working conditions (b) To defend democratic right 

                                                           
24 Perhaps more interestingly, individuals constructed ideal distributions that were far more equitable than 

even their erroneously low estimates of the actual distribution. 

25 Most of previous studies linking inequality and conflict are based on cross-country regressions, and 

therefore have a notably smaller sample size. 
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(c) Improvement in healthcare and education (d) Exploitation of natural resources 

  

% of the population that perceives income distribution as unfair or very unfair in 2015 
 

To formally assess the relationship between unfairness and activism, we run OLS 

regressions, where we use each of the social unrest measures as dependent variables and 

unfairness perceptions (as very unfair) as the main regressor, including the usual 

individual and fixed effect controls. Table 5 shows the main results. 

Table 5 .OLS regressions of unfairness perceptions (very unfair) and stated activism 

 
Higher wages 

and better work 
Democratic 

rights 
Healthcare 

and education 
Natural 

resources 

 
(1) (2) (3) (4) 

Very Unfair 0.290*** 0.117** 0.247*** 0.149*** 

 

(0.045) (0.046) (0.043) (0.046) 

Gini coefficient -10.273*** -16.791*** -15.445*** -13.062*** 

 

(2.767) (2.673) (2.565) (2.721) 

Constant 9.703*** 12.894*** 12.113*** 10.719*** 

 
(1.213) (1.182) (1.133) (1.196) 

Individual controls    

Fixed Effects    

Observations 35,534 35,221 35,651 35,268 
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% Unfair 24.89 24.72 24.85 24.80 
Adjusted R-squared 0.101 0.0875 0.113 0.0808 
Note: This table presents estimates of the correlation between measures of demonstrations and unfairness 

perceptions (very unfair). Coefficients were estimated through OLS. Column (1) presents the results for 

higher wages and better working conditions. Column (2) to defend democratic right. Column (3) for 

improvement in healthcare and education. Column (4) for exploitation of natural resources. All regressions 

control for age, squared age, gender, civil status, maximum educational attainment, labor force participation, 

unemployment status, access to basic services and asset holding, as well as country, subnational and yearly 

fixed effects. ***, ** and * denote significance at 10%, 5% and 1% levels, respectively. Robust standard 

errors in parentheses. 

 

Table 5 suggests that the population that perceives distribution as very unfair is more 

prone to actively demonstrate. Each of the four reasons to mobilize has positive and 

statistically different from zero coefficients. The magnitude of the coefficients suggest this 

effect is larger in the case of protests for jobs, health and education, compared to 

exploitation of natural resources or to defend democratic rights, where the size of the 

coefficients is half as large. Table 5 also suggests that, on average, people are less prone to 

protest in countries with relatively higher levels of inequality. As with previous results, 

the relationship can go either way. For instance, relatively unequal countries might, in 

fact, have higher levels of inequality due to a lower propensity of its citizens to manifest 

against such disparities.  

Although these results are encouraging, the analysis relies on ‘willingness’ to 

demonstrate. However, people might state they are very eager to protest, while in practice 

they might not do it. To partially overcome this issue, we analyze the relationship 

between unfairness and actually having mobilized in the past. In particular, we consider 

six different types of demonstrations: making a complaint to the media, making a 

complaint on social networks, signing a petition, refusing to pay taxes and being part of 

an authorized or unauthorized demonstration. We recode these variables so they take a 

value equal to 1 if the individual stated she had a past of mobilization, and 0 otherwise. 

Cross-country visual evidence is provided in Appendix Figure A9 while regression results 

are shown in Table 6.  

Overall, both visual and regression analysis suggests unfairness perceptions are 

positively and significantly correlated with a past of activism. With the exception of 

illegal activities (columns 1 and 4),26 and making a complaint to the media, all other 

coefficients have the expected sign and are statistically significant. In Appendix Tables A7 

and A8 we replicate Tables 5 and 6 regressions, but using as the regressor of interest the 

population that perceived distribution as unfair or very unfair. We observe two main 

differences. First, some of the coefficients stop being statistically different from zero (e.g., 

columns 3 and 4 from Table 5). Second, some of the coefficients actually turn negative and 

                                                           
26 Perhaps, the lack of results with respect to illegal activities (columns 1 and 4) could be due to 

measurement error, as there are no incentives to report a past of doing illegal activities accurately. 
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statistically significant (e.g., column 2 from Table 5, and columns 1-3 from Table 6). 

These two facts together suggest that activism is driven by the population with strong 

views about inequality (i.e., very unfair), and not by those who perceive it as just unfair. 

Even though a strikingly high share of the population shares the view that income 

distribution is unfair, the fight against inequality does not seem to be a top priority among 

LA citizens. Every year, Latinobarómetro asks respondents what they think is their 

country's most important problem. Although there is a lot of heterogeneity both across 

countries and across time, insecurity and unemployment are consistently listed as the top 

priorities. In these rankings, reducing the high disparities between the rich and the poor is 

usually listed in the bottom half of the priorities, under other issues like 'education’ or 

‘corruption.’ 
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Table 6. Logit regressions of unfairness perceptions (very unfair) and past activism 

  

Refuse to pay 
taxes 

Signing a 
petition 

Taking part in 
authorized 

demonstrations 

Taking part in 
unauthorized 

demonstrations 

Make a 
complaint to 

the media 

Make a 
complaint 

through the 
social media 

  (1) (2) (3) (4) (5) (6) 

Very Unfair 0.003 0.012*** 0.008** -0.003 0.004 0.013*** 

 

(0.004) (0.004) (0.003) (0.004) (0.004) (0.004) 

Gini coefficient 0.098** 0.361*** 0.118 0.139*** 0.251*** 0.287*** 

 

(0.045) (0.093) (0.076) (0.042) (0.055) (0.049) 

Individual controls      

Fixed Effects      

Observations 18,141 51,036 51,580 18,422 18,406 18,192 

% Unfair 25.89 28.70 28.70 25.94 25.90 25.95 

Pseudo R-squared 0.0110 0.0706 0.0705 0.0251 0.0267 0.0733 
 Note: This table presents estimates of the correlation between measures of past demonstrations and unfairness perceptions (very unfair). Coefficients present 

the marginal effects at the mean values of the rest of the variables and were estimated through Logit regressions, weighting by individuals’ probability of being 

interviewed. Column (1) presents the results for refusing to pay taxes. Column (2) for signing a petition. Column (3) for unauthorized demonstrations. Column 

(4) authorized demonstrations. Column (6) making a complaint to the media and Column (6) complaining in social media. All regressions control for age, 

squared age, gender, civil status, maximum educational attainment, labor force participation, and unemployment status, as well as country, and yearly fixed 

effects. ***, ** and * denote significance at 10%, 5% and 1% levels, respectively. Heteroskedasticity-robust standard errors in parentheses. 
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A highly speculative reading of this section is that, the way in which this higher 

propensity to mobilize could manifest is not with direct demonstrations against inequality 

(like in the Occupy Wall Street movement), but rather in demonstrations against other 

types of inequalities (such as inequality in access to education or health), or against the 

underlying causes of it (such as low wages of some specific segments of the population). 

7. Concluding remarks 

There is a growing body of evidence showing that many of the decisions agents make are 

not based on objective economic indicators, but rather on how these are perceived. 

Understanding what people believe about the income distribution is crucial from a policy 

perspective—not only from a traditional view, in which a just income distribution is seen 

as a pure public good (Thurow, 1971) and is therefore underprovided by unregulated free-

market economy, but also because interventions that make information less costly can 

have welfare-improving effects (Roemer, 2003) if there are mismatches between 

perceptions and reality. 

In this paper we analyzed the perceptions of distributive justice in a context of falling 

income inequality. If fairness perceptions are interpreted as preferences for some leveling 

of income, our results suggest a striking majority is in favor of reducing the existing 

disparities between the rich and the poor, while very few people believe the current 

distribution is fair and all incomes should be the same. 

The positive news is that beliefs moved in line with the evolution of objective 

indicators: both unfairness perceptions and income inequality declined both across 

countries and time. The bad news is that three in four LA citizens believe income 

distribution is unfair, and such perceptions have proved to be quite inelastic to changes in 

income distribution. What happened during the 2000s in terms of inequality reduction 

was remarkable, but recent evidence suggests the pace of inequality reduction is not going 

to be the same in the near future. As inequality reduction in LA stagnates, one can wonder 

if an income distribution that the majority of the population thinks is unfair can be a 

steady state in the long run. 

We believe that, compared to the vast literature on inequality measurement, as well as 

its causes and consequences, relatively little emphasis has been given to how inequality is 

perceived by the general population. This paper intends to bridge this gap in the research 

agenda. We present the characterization of fairness perceptions in LA not as conclusions 

but as a starting point for researchers who are interested in income inequality perceptions. 

The results of this paper also raise a number of puzzling questions for future research: 

Where do people think the unfairness of income distribution stems from? What has been 

the role of mass media in shaping these beliefs? Does the general population think 

separately about the ‘micro-justice’ (i.e., the income I receive is fair) and the ‘macro-justice’ 

of overall patterns of inequality? Would fairness perceptions change if individuals are 
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confronted with accurate information about income distribution? We hope future research 

helps to clarify these questions.   
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Appendix A: Additional Figures and Tables 

 

Table A1. Descriptive statistics of the sample pooling data 1997-2015 

Variables 

 

Mean   Standard Dev.  Observations 

Sociodemographic variables 
   

Age 39.49 16.18 167,420  

Male (%) 49.08 0.50 167,436  

Catholic religion (%) 70.70 0.46 165,329  

Married or civil union (%) 57.30 0.49 166,121  

City > 1 Million Inhabitants. (%) 50.43 0.50 150,224  

Education and Labor market 
   

Literate (%) 89.95 0.30 165,925  

Secondary education or more (%) 32.38 0.47 165,925  

Parents with secondary education (%) 16.77 0.37 132,792  

Economically active (%) 64.07 0.48 167,091  

Unemployed (% Labor Force) 9.95 0.30 167,091  

Access to services 
   

Access to a sewage (%) 69.73 0.46 164,743  

Access to running water (%) 87.67 0.33 146,354  

Asset ownership 
   

Car (%) 27.29 0.45 164,521  

Computer (%) 29.63 0.46 164,719  

Fridge (%) 79.22 0.41 146,686  

Homeowner (%) 73.65 0.44 165,650  

Mobile (%) 76.49 0.42 114,297  

Washing machine (%) 51.72 0.50 165,195  

Landline (%) 45.14 0.50 165,108  

Source: Author’s elaboration based on Latinobarómetro. 
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Table A2. Unfairness perceptions by population group pooling data 1997-2015, in % 

Category 
Perception of income distribution   

Very unfair Unfair Fair Very fair Total 

All 28.0 51.6 17.5 2.9 100 

Gender 
     

Female 28.1 52.2 16.8 2.8 100 

Male 27.9 51.0 18.1 3.0 100 

Age group 
     

15-24 25.3 52.0 19.6 3.1 100 

25-40 28.3 51.3 17.3 3.0 100 

41-64 29.2 51.7 16.3 2.8 100 

65+ 28.8 51.6 17.1 2.5 100 

Civil Status 
     

Married 28.2 51.9 17.1 2.8 100 

Not married 27.7 51.3 17.9 3.1 100 

Religion 
     

Catholic 28.2 51.7 17.2 2.9 100 

Not catholic 27.5 51.5 18.1 2.9 100 

Education level 
     

Less than Primary 28.7 50.9 17.3 3.0 100 

Complete Primary 27.6 51.6 17.9 3.0 100 

Complete Secondary 27.6 52.1 17.7 2.6 100 

Complete Tertiary 28.7 52.9 15.6 2.8 100 

Type of employment 
     

Employee 28.1 51.5 17.5 2.9 100 

Employer 27.1 52.5 17.5 2.8 100 

Self-employed 27.9 51.1 17.9 3.2 100 

Unemployed 30.6 51.5 14.9 2.9 100 

City size 
     

100,000 to 1,000,000 26.2 51.7 19.1 2.9 100 

More than 1,000,000 29.4 51.2 16.8 2.6 100 

Under 100,000 26.5 52.7 18.5 2.4 100 

Source: Author’s elaboration based on Latinobarómetro. 
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Table A3. Unfairness perceptions by geographical location pooling data 1997-2015, in % 

Category 
Perception of about income distribution   

Very unfair Unfair Fair Very fair Total 

City size      
Under 100,000 26.5 52.7 18.5 2.4 100 

100,000 to 1,000,000 26.2 51.7 19.1 2.9 100 

More than 1,000,000 29.4 51.2 16.8 2.6 100 

Country      
Argentina 38.38 50.66 10.14 0.83 100 

Bolivia 17.77 55.87 23.88 2.48 100 

Brazil 31.81 53.75 12.94 1.50 100 

Chile 40.20 49.94 8.42 1.45 100 

Colombia 35.13 51.21 11.40 2.26 100 

Costa Rica 23.18 53.55 20.12 3.15 100 

Dominican Rep. 32.45 46.49 17.51 3.56 100 

Ecuador 21.55 47.58 27.38 3.49 100 

El Salvador 22.67 53.04 20.58 3.71 100 

Guatemala 28.26 51.37 16.70 3.66 100 

Honduras 28.86 53.46 14.27 3.41 100 

Mexico 32.18 49.86 15.22 2.74 100 

Nicaragua 18.94 51.67 24.23 5.16 100 

Panama 27.23 48.11 20.29 4.36 100 

Paraguay 37.32 48.92 11.91 1.86 100 

Peru 24.83 62.01 11.79 1.37 100 

Uruguay 18.26 57.50 22.61 1.64 100 

Venezuela 23.53 42.89 26.64 6.94 100 

Source: Author’s elaboration based on Latinobarómetro. 
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Table A4. Comparison of descriptive statistics in Latinobarómetro and SEDLAC, 2013  

   Mean     Standard Dev.  

   Latinob.   SEDLAC     Latinob.   SEDLAC  

Sociodemographic      

Age 40.59 42.68 
 

16.43 17.25 

Male (%) 48.97 47.63 
 

0.50 0.50 

Married or civil union (%) 56.77 36.41 
 

0.50 0.48 

Education and Labor market 
     

Literate (%) 91.18 92.17 
 

0.28 0.27 

Secondary education or more (%) 38.83 46.11 
 

0.49 0.50 

Economically active (%) 65.14 68.66 
 

0.48 0.46 

Unemployed (%) 5.78 4.08 
 

0.23 0.20 

Assets and Services 
     

Access to a sewage (%) 68.76 63.41 
 

0.46 0.48 

Car (%) 26.37 21.09 
 

0.44 0.41 

Computer (%) 46.55 47.82 
 

0.50 0.50 

Fridge (%) 82.76 88.89 
 

0.38 0.31 

Homeowner (%) 74.09 69.64 
 

0.44 0.46 

Mobile (%) 86.91 91.78 
 

0.34 0.27 

Washing machine (%) 60.49 56.88 
 

0.49 0.50 

Landline (%) 40.22 39.47   0.49 0.49 

Source: Author’s elaboration based on Latinobarómetro and SEDLAC. Summary statistics were 

calculated on a restricted sample (individuals aged over 18) to ensure comparability between both 

datasets, pooling data from 14 countries in 2013: Argentina, Bolivia, Brazil, Chile, Colombia, Costa 

Rica, Dominican Republic, Ecuador, El Salvador, Honduras, Panama, Peru, Paraguay, and 

Uruguay. 
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Table A5. Regressions of unfairness perceptions (very unfair) and different inequality indicators 

  (1) (2) (3) (4) (5) 

Gini coefficient (no zero income) 0.605*** 
    

 
(0.065) 

    
Atkinson, A(1) 

 
0.182*** 

   

  
(0.045) 

   
Theil index, GE(1) 

  
0.165*** 

  

   
(0.023) 

  
Generalized entropy, GE(2) 

   
0.010*** 

 

    
(0.002) 

 
Absolute Gini 

    
-0.000*** 

     
(0.000) 

Age 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 

 
(0.000) (0.000) (0.000) (0.000) (0.000) 

Age squared -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** 

 
(0.000) (0.000) (0.000) (0.000) (0.000) 

Male dummy 0.001 0.001 0.001 0.001 0.001 

 
(0.003) (0.003) (0.003) (0.003) (0.003) 

Married or civil union -0.005* -0.005* -0.005* -0.005* -0.005* 

 
(0.003) (0.003) (0.003) (0.003) (0.003) 

Literacy -0.031*** -0.032*** -0.032*** -0.032*** -0.032*** 

 
(0.006) (0.006) (0.006) (0.006) (0.006) 

Complete Primary -0.002 -0.002 -0.002 -0.002 -0.002 

 
(0.004) (0.004) (0.004) (0.004) (0.004) 

Complete Secondary -0.005 -0.004 -0.004 -0.004 -0.003 

 
(0.005) (0.005) (0.005) (0.005) (0.005) 

Complete Tertiary 0.005 0.006 0.006 0.007 0.007 

 
(0.005) (0.005) (0.005) (0.005) (0.005) 

Economically active dummy -0.004 -0.004 -0.004 -0.004 -0.004 

 
(0.003) (0.003) (0.003) (0.003) (0.003) 

Unemployed dummy 0.018*** 0.018*** 0.018*** 0.018*** 0.018*** 

 
(0.005) (0.005) (0.005) (0.005) (0.005) 

Observations 149,116 149,116 149,116 149,116 149,116 

% Unfair 27.74 27.74 27.74 27.74 27.74 

Pseudo R-squared 0.0471 0.0467 0.0469 0.0468 0.0466 

Note: This table presents estimates of the correlation between a dummy variable that indicates whether the 

individual believes income distribution is very unfair and individuals’ characteristics controlling for different 

inequality indicators. Coefficients present the marginal effects at the mean values of the rest of the variables 

and were estimated through Logit regressions, weighting by individuals’ probability of being interviewed. 

All columns include country, subnational and year fixed effects. ***, ** and * denote significance at 10%, 5% 

and 1% levels, respectively. Heteroskedasticity-robust standard errors in parentheses. 
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Table A6. Logit regressions of unfairness perceptions (unfair or very unfair) and individual beliefs 

  (1) (2) (3) (4) 

Gini coefficient 0.541*** 0.418*** 0.207*** 0.331*** 

 
(0.071) (0.060) (0.060) (0.072) 

Self-reported Ideology 0.002*** 
  

-0.000 

 
(0.000) 

  
(0.001) 

Catholic religion 
 

-0.003 
 

-0.001 

  
(0.002) 

 
(0.003) 

Current economic situation of 
the country 

  
-0.107*** -0.116*** 

  
(0.002) (0.002) 

Positive Outlook 
  

-0.065*** -0.067*** 

   
(0.003) (0.003) 

Negative Outlook 
  

0.050*** 0.054*** 

   
(0.003) (0.004) 

Observations 113,298 143,190 117,532 90,705 

% Unfair 78.25 79.56 80.30 79.08 

Pseudo R-squared 0.0729 0.0701 0.142 0.146 

Note: This table presents estimates of the correlation between perception of distribution as very unfair and 

measures of individual values. Coefficients present the marginal effects at the mean values of the rest of the 

variables and were estimated through Logit regressions, weighting by individuals’ probability of being 

interviewed. All regressions control for age, squared age, gender, civil status, maximum educational 

attainment, labor force participation, and unemployment status, access to basic services and asset holding, as 

well as country, subnational and yearly fixed effects. ***, ** and * denote significance at 10%, 5% and 1% 

levels, respectively. Heteroskedasticity-robust standard errors in parentheses. 
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Table A7. OLS regressions of unfairness perceptions (unfair or very unfair) and stated activism 

  

Higher wages 
and better work 

Democratic 
rights 

Healthcare and 
education 

Natural 
resources 

  (1) (2) (3) (4) 

Unfair 0.139*** -0.113*** 0.052 -0.036 

 

(0.042) (0.042) (0.040) (0.042) 

Gini coefficient -10.347*** -16.790*** -15.498*** -13.082*** 

 

(2.771) (2.676) (2.569) (2.724) 

Constant 9.687*** 12.981*** 12.136*** 10.771*** 

 
(1.215) (1.184) (1.135) (1.198) 

Individual controls    

Fixed Effects    

Observations 35,534 35,221 35,651 35,268 

% Unfair 73.57 73.47 73.50 73.49 

Adjusted R-squared 0.0998 0.0875 0.112 0.0805 

Note: This table presents estimates of the correlation between measures of demonstrations and unfairness 

perceptions (unfair or very unfair). Coefficients were estimated through OLS. Column (1) presents the 

results for higher wages and better working conditions. Column (2) to defend democratic right. Column (3) 

for improvement in healthcare and education. Column (4) for exploitation of natural resources. All 

regressions control for age, squared age, gender, civil status, maximum educational attainment, labor force 

participation, unemployment status, access to basic services and asset holding, as well as country, 

subnational and yearly fixed effects. ***, ** and * denote significance at 10%, 5% and 1% levels, 

respectively. Heteroskedasticity-robust standard errors in parentheses. 
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Table A8. Logit regressions of unfairness perceptions (unfair or very unfair) and past activism 

  

Refuse to pay 
taxes 

Signing a 
petition 

Taking part in 
authorized 

demonstrations 

Taking part in 
unauthorized 

demonstrations 

Make a 
complaint to 

the media 

Make a complaint 
through the social 

media 

  (1) (2) (3) (4) (5) (6) 

Unfair -0.009*** -0.015*** -0.014*** -0.004 0.001 0.011** 

 

(0.004) (0.005) (0.004) (0.004) (0.004) (0.004) 

Gini coefficient 0.111** 0.389*** 0.139* 0.139*** 0.256*** 0.297*** 

 

(0.046) (0.093) (0.076) (0.043) (0.055) (0.049) 

Individual controls      

Fixed Effects      

Observations 18,141 51,036 51,580 18,422 18,406 18,192 

% Unfair 75.05 79.70 79.77 75.18 75.23 75.16 

Pseudo R-squared 0.0120 0.0706 0.0708 0.0253 0.0266 0.0727 
 Note: This table presents estimates of the correlation between measures of past demonstrations and unfairness perceptions (unfair or very unfair). Coefficients 

present the marginal effects at the mean values of the rest of the variables and were estimated through Logit regressions, weighting by individuals’ probability 

of being interviewed. Column (1) presents the results for refusing to pay taxes. Column (2) for signing a petition. Column (3) for unauthorized demonstrations. 

Column (4) for authorized demonstrations. Column (5) make a complaint to the media and Column (6) complain in social media. All regressions control for age, 

squared age, gender, civil status, maximum educational attainment, labor force participation, and unemployment status, as well as country, and yearly fixed 

effects. ***, ** and * denote significance at 10%, 5% and 1% levels, respectively. Heteroskedasticity-robust standard errors in parentheses. 
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Figure A9 Perceptions of unfairness (unfair and very unfair) and past activism in LA, 2015 (%) 

(a) Refused to pay taxes (b) Signed a petition 

  

(c) Took part in authorized demonstrations (d) Took part in unauthorized demonstrations 

  

(e) Made a complaint to the media (f) Made a complaint through the social media 

  

% of the population that perceives income distribution as unfair or very unfair in 2015 
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Appendix B: About the data 

The numbers presented in this paper are based on two harmonization projects, known as 

Latinobarómetro and SEDLAC (Socio-Economic Database for Latin America and the 

Caribbean). In this Appendix we describe how we make both sources compatible.  

Our perceptions data comes from Latinobarómetro, which has conducted opinion 

surveys in 18 LA countries since the 1990s, interviewing about 1,200 individuals per 

country about individual socioeconomic background, and preferences towards political 

and social issues. Although the survey is conducted every year, not all years include the 

question regarding fairness of income distribution. The survey was designed to be 

representative at the national level of the voting-age population (in most LA countries, 

population aged over 18). In Table B1 we show what percentage of the voting-age 

population is represented by the survey in each country for all the years in which the 

fairness question is available. 

Table B1. Coverage of each country’s population in Latinobarómetro overtime (in %) 

 
1997 2001 2002 2007 2009 2010 2011 2013 2015 

Argentina 68 75 75 100 100 100 100 100 100 

Bolivia 32 52 100 100 100 100 100 100 100 

Brazil 12 100 100 100 100 100 100 100 100 

Chile 70 70 70 100 100 100 100 100 100 

Colombia 25 71 51 100 100 100 100 100 100 

Costa Rica 100 100 100 100 100 100 100 100 100 

Dominican Rep. N/A N/A N/A 100 100 100 100 100 100 

Ecuador 97 97 100 100 100 100 100 100 100 

El Salvador 65 100 100 100 100 100 100 100 100 

Guatemala 100 100 100 97 100 100 100 100 100 

Honduras 100 100 100 98 100 99 99 99 99 

Mexico 93 88 95 100 100 100 100 100 100 

Nicaragua 100 100 100 100 100 100 100 100 100 

Panama 100 100 100 99 99 99 99 99 99 

Paraguay 46 46 46 100 100 100 100 100 100 

Peru 52 52 100 100 100 100 100 100 100 

Uruguay 80 80 80 100 100 100 100 100 100 

Venezuela 100 100 100 100 93 100 100 100 100 

Weighted average 68 86 91 100 100 100 100 100 100 
Note: This table presents the percentage of the voting age population represented each year in 

Latinobarómetro overtime. The regional average was calculated by weighting each country’s population. 

N/A means the survey was not conducted in that particular country.  

Since our goal is to analyze how unfairness perceptions evolved vis-à-vis changes in 

income inequality, we put a lot of effort in trying to get income inequality data for each 

data point for which we have perceptions data available.  
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Our source for income inequality data is SEDLAC, a joint effort of the World Bank 

and CEDLAS at the National University of La Plata in Argentina. SEDLAC increases 

cross-country comparability of selected findings from official household surveys. The 

welfare indicator used is the total household per capita income in 2005 US$ (PPP) per day. 

The inequality measures we use include households with zero incomes unless otherwise 

noted (results are similar with the exclusion of these households). For Argentina and 

Uruguay, the inequality data corresponds to urban areas only. 

Whenever possible, we used comparable annual household surveys to estimate 

inequality indicators. However, some countries did not conduct surveys every year, and 

some of the household surveys available in certain countries are not comparable across 

time, usually due to important methodological changes (for instance, due to changes in the 

sampling scheme or in the set of variables available). 

To increase the number of observations available (without pushing the data too much), 

we made to two partial fixes. First, we filled the data gaps using household surveys of 

‘close’ years in which previously unused data was available. For instance, Chile conducts 

household surveys on average every two years. We have perceptions data in 1997 but no 

income inequality data for the same year. Therefore, we use the inequality data from the 

adjacent year (1998) to compare the perceptions data from 1997. As noted previously, we 

only do this process of using data from close years if the data from the adjacent year 

corresponds to a year in which the perceptions question was not asked (and therefore, 

inequality data is not needed in that year). 

Table B2. Circa years used to fill data gaps 

Country Year without household data Data point used instead 

All 2015 2014 

Chile 1997 1998 

Chile 2001 2000 

Chile 2002 2003 

Chile 2007 2006 

Colombia 2007 2008 

Ecuador 2002 2003 

El Salvador 1997 1998 

Guatemala 2001 2000 

Mexico 1997 1998 

Mexico 2001 2000 

Mexico 2007 2006 

Mexico 2009 2008 

Mexico 2011 2012 

Nicaragua 1997 1998 

Nicaragua 2007 2005 
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Venezuela 2013 2012 

 

Finally, for some countries, a few years had perceptions data available but no 

comparable household survey overtime and no ‘close year’ available. In this case, and in 

order to analyze the same set of countries every year, interpolation was applied to the 

inequality indicators. 

Table B3. Years in which inequality indicators were calculated with a linear interpolation 

Country Years interpolated 

Argentina 1997, 2001, and 2002 

Bolivia 2010 

Brazil 2010 

Chile 2010 

Colombia 1997 

Costa Rica 1997, 2001, 2002, 2007, and 2009 

Ecuador 1997, 2001 

Guatemala 1997, 2002, 2009, 2010, and 2013 

Mexico 2013 

Nicaragua 2002, 2010, 2011, and 2013 

Panama 1997, 2001, 2002, and 2007 

Peru 1997, 2001, 2002 

Venezuela 2015 
 

Overall, the years in which income inequality was calculated using linear 

interpolations represent a relatively small share of the total data points (about a fifth of 

the 161 data points we have available). The majority of our inequality data points (59%) 

were calculated using a household surveys from the same year in which the perceptions 

polls were conducted (Table B1), while the remaining 21% of our inequality indicators 

were calculated using households surveys from adjacent years (Table B2). A summary of 

the data sources used in every year in which perceptions data is available is provided in 

Figure B1. 
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Figure B1. Summary of the data used in every country/year 

 
1997 2001 2002 2007 2009 2010 2011 2013 2015 

Argentina 3 3 3 1 1 1 1 1 2 

Bolivia 1 1 1 1 1 3 1 1 2 

Brazil 1 1 1 1 1 3 1 1 2 

Chile 2 2 2 2 1 3 1 1 2 

Colombia 3 1 1 2 1 1 1 1 2 

Costa Rica 3 3 3 3 3 1 1 1 2 

Dominican Rep. 0 1 1 1 1 1 1 1 2 

Ecuador 3 3 2 1 1 1 1 1 2 

El Salvador 3 2 3 2 3 3 1 3 2 

Guatemala 1 1 1 1 1 1 1 1 2 

Honduras 2 2 1 2 2 1 2 3 2 

Mexico 2 1 3 2 1 3 3 3 2 

Nicaragua 3 3 3 3 1 1 1 1 2 

Panama 3 3 3 1 1 1 1 1 2 

Paraguay 1 1 1 1 1 1 1 1 2 

Peru 2 1 1 1 1 1 1 1 2 

Uruguay 1 1 1 1 1 1 1 1 2 

Venezuela 1 1 1 1 1 1 1 2 3 

          

 
  Both perceptions and inequality data available 

 
  Inequality was calculated with an adjacent year survey 

 
  Inequality was estimated with a linear interpolation 

 
  Latinobarómetro did not conduct survey in this year 
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Appendix C: The Oaxaca-Blinder Decomposition 

The starting point to decompose changes in unfairness perceptions between 2002 and 

2013 is the following equation: 

𝑈𝑛𝑓𝑎𝑖𝑟𝑡 = 𝛽𝑡 𝑋𝑡 + ε𝑡    ;       t ∈ {2002, 2013} (C.1) 

  

Where t indicates the year in which perceptions are captured, and X denotes all the 

explanatory variables defined in the regressions (mainly, demographics factors and the 

Gini coefficient). Defining 𝐷2013 as a dummy variable that takes the value 1 if the year is 

2013, then, the mean difference in unfairness perceptions between both years is given by: 

∆𝜇= 𝐸(𝑈𝑛𝑓𝑎𝑖𝑟2013|𝐷2013 = 1) − 𝐸(𝑈𝑛𝑓𝑎𝑖𝑟2002|𝐷2013 = 0) (C.2) 

  

Since the regression line that comes from estimating the parameters in equation C.2 

above meets the property of passing through the sampling means, we have: 

𝑈𝑛𝑓𝑎𝑖𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅
2002 = �̂�2002 �̅�2002     &     𝑈𝑛𝑓𝑎𝑖𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅

2013 = �̂�2013 �̅�2013   (C.3) 

  

Where �̅�𝑡 is the vector of the average values of the explanatory variables in year t, and 

�̂� the vector of estimated coefficients. If the relationship between the explanatory 

variables and the perceptions of fairness did not change during the 2002-13 period (i.e., 

the 𝛽 remained constant), then the unfairness perceptions in 2013 could be expressed as: 

𝑈𝑛𝑓𝑎𝑖𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅
2013
𝐶 = �̂�2002 �̅�2013      

 

(C.4) 

Where the superscript C indicates this value comes from a counterfactual exercise. 

Replacing the expected value of the covariables in equation (C.2) by the sample 

averages, the difference in the perceptions between both years can be expressed as: 

∆𝜇= �̂�2013�̅�2013 − �̂�2002�̅�2002 

 

∆𝜇= �̂�2013�̅�2013 − �̂�2002�̅�2002   + �̂�2002�̅�2013 − �̂�2002�̅�2013 
 

∆𝜇=
�̂�2002(�̅�2013 − �̅�2002) ⏟              

∆̂𝑋
𝜇

+
�̅�2013(�̂�2013 − �̂�2002) ⏟              

∆̂𝑆
𝜇

 (C.5) 

 

The first term of equation (C.5.), usually known as the “composition effect,” captures 

the difference between the average perceptions in 2002 and the counterfactual perceptions 

2013 if the �̂�’s—i.e., the elasticity of perceptions to the different covariables—remained 

constant during the 2002-13 period. In other words, this first term captures only 
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differences in the endowments of characteristics that determine unfairness perceptions 

(such as the educational attainment, age or income inequality).  

In turn, the second term of equation (C.5)—what can be thought of as a “perceptions 

structure effect”—reflects the difference between the average perceptions in 2013, and the 

counterfactual perceptions in 2002 with the observable attributes of 2013. Therefore, this 

component reflects changes in perceptions that are due to changes in the elasticity of the 

different covariables between both years. 

In the main text of the paper we exploit the additive linearity assumption of the 

decomposition, and report the sole effect of changes in the Gini coefficient. 
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