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Rethinking Policy Evaluation – Do Simple Neural Nets 
Bear Comparison with Synthetic Control Method? 

 

With the advent of big data in economics machine learning algorithms become more and more appealing 

to economists. Despite some attempts of establishing artificial neural networks in in the early 1990s, 

only little is known about their ability of estimating causal effects in policy evaluation. We employ a 

simple forecasting neural network to analyze the effect of the construction of the Oresund bridge on the 

local economy. The outcome is compared to the causal effect estimated by the proven Synthetic Control 

Method. Our results suggest that – especially in so-called prediction policy problems – neural nets may 

outperform traditional approaches. 

 

Arne Steinkraus* 

JEL codes: C45, O18 

Keywords: Artificial Neural Nets, Machine Learning, Synthetic Control Method, Policy 

Evaluation. 

1 Introduction 

Machine learning methods such as artificial neural networks (ANN) were introduced in 

economics in the early 1990s, but did not become accepted by a wide range of economists (see 

e.g. Lee et al. 1993 and Kaastra and Boyd 1996). Their failure was not a cause of bad 

performance, instead classical methods of nonparametric estimation of treatment effects such 

as propensity-score-matching, k-nearest-neighbor matching, kernel methods performed well 

due to the small number of available covariates. Moreover these approaches also allow to 

estimate heterogeneous treatment effects, which had been hard to achieve with machine 

learning methods (see e.g. Crump et al. 2008). Today, more data becomes available and datasets 

are getting increasingly bigger. Especially the use of geocoded data, the need for image 

classification or the use of language data in economics cause classical approaches to fail due to 

e.g. the curse of dimensionality or the need for high non-linearity (see Jean et al. 2016, Wager 

and Athey 2017). Whereas there has been much effort to overcome this issue in computer 

science, it has been largely ignored in economics. However, starting with Athey´s approaches 

to use machine learning techniques for estimating (heterogeneous) causal effects there is a gain 

of recognition (see e.g. Athey 2017 and Athey and Imbens 2016,2017). Nevertheless, machine 

learning techniques remain fundamentally different from classical approaches of policy 

evaluation such as Regression Discontinuity Design or Instrumental Variables because their 

goal is prediction – not causal inference (Athey and Imbens 2017). Kleinberg et al. (2015) 

argue, that this feature is rather an asset than an issue since many policy evaluation problems 



require the prediction of the outcome instead of drawing causal inference about the effect of 

treatment on the outcome. As a consequence machine learning techniques may provide 

additional insights into policy evaluation. 

We contribute to the policy evaluation literature by assessing the practical relevance of ANN 

in ex-post policy evaluation in comparison to the new quasi-gold-standard Synthetic Control 

Method (SCM) which was introduced by Abadie and Gardeazabal (2003). This comparison is 

of high relevance because according to Athey and Imbens (2017) SCM has been “arguably the 

most important innovation in the policy evaluation literature in the last 15 years”. However, 

SCM fails when applied to big datasets. 

We proceed in two steps. First, we describe the identification strategy of SCM and the nonlinear 

regression framework of simple forecasting ANNs. Afterwards, we evaluate the performance 

of ANN compared to the state-of-the-art SCM by estimating the causal effect of the construction 

of the Oresund-Bridge, that connects the metropolitan regions of Malmo (Sweden) and 

Copenhagen (Denmark). We focus on Oresund because of two reasons. First, it is a very large 

infrastructure investment (more than one billion Euro were spent until opening in 2000) that 

may stimulate economic performance through improved market access, network effects and 

increased firm productivity. Therefore, we expect to find large positive effects on economic 

development on local (Malmo) and regional (Södra Sverige) level (see e.g. Aschauer 1989a,b 

and Cantos et a. 2005). Second, in a recently published study by Achten et al. (2018) SCM was 

applied on solely publicly available data to estimate the causal effect of the construction of the 

bridge. As a consequence, we can feed our ANN with the same data and use the results from 

Achten et al. (2018) as standard of comparison.  

Our ANN finds treatment effects on local and regional level that are similar to those estimated 

by SCM. Therefore, it seems to be suitable method in ex-post evaluation. Considering that 

policy intervention must also be evaluated a priori and that a priori evaluation implies 

prediction, ANN are more advantageous than SCM due to their easy to implement prediction 

capability. Thus, machine learning techniques such as ANN need to be adapted by 

econometricians. 



2 Methods and Data 

In our study, we aim to estimate treatment effects. Therefore, we need to have a closer look at 

the potential outcome framework in a first step (Rubin 1974). In the so called Rubin causal 

model, a treatment effect 𝑇𝑅𝑖 is defined as the difference between two potential outcomes 𝑌𝑖
𝐼 

and 𝑌𝑖
𝑁, where 𝑌𝑖

𝐼 denotes the outcome of individual 𝑖 in a state with treatment and 𝑌𝑖
𝑁 is the 

potential outcome of individual 𝑖 without treatment:   

𝑇𝑅𝑖 = 𝑌𝑖
𝐼 − 𝑌𝑖

𝑁 (1) 

Unfortunately, we never directly observe 𝑇𝑅𝑖 because 𝑌𝑖
𝑁 cannot be realized in a state where 

individual 𝑖 is exposed to treatment (vice versa). This phenomenon is called “Hollands (1986) 

fundamental problem of causal inference”. In order to calculate the treatment effect, we need 

to predict 𝑌𝑖
𝑁 via ANN or SCM.  

2.1 Artificial Neural Network 

Due to the fact that ANN belongs to the supervised learning regimes of machine learning 

labelled training data is mandatory. Therefore, we employ a forecasting version of an ANN that 

uses economic growth predictor variables of several regions at time 𝑡 for training in order to 

forecast the regions outcome at time 𝑡 + 5.1 This approach also safeguards against possible 

simultaneity issues. Thus, our ANN learns how growth predictors forecast economic outcome. 

Afterwards, we employ the trained network on pre-treatment predictor data of Malmo and Södra 

Sverige. The forecasted outcomes serves as a proxy for 𝑌𝑖
𝑁. This approach is motivated by 

Foster et al. (2010) who aim to identify heterogeneous treatment effects along the covariate 

space 𝑋 by estimating 𝔼(𝑌𝑖
𝐼|𝑋𝑖 = 𝑥) and 𝔼(𝑌𝑖

𝑁|𝑋𝑖 = 𝑥) separately via random forests and by 

Sokolov-Mladenović et al. (2016) who feed an ANN with trade data to predict economic 

growth. 

To be more specific a neural network is a nonlinear regression technique that is modelled by an 

unobserved set of so-called hidden nodes. Suppose 𝑋𝑖 is a (𝑃 + 1 × 1) vector of 𝑃 observed 

predictor variables and one bias term that serves as the ANN equivalent of the intercept in a 

regression. This vector enters the 𝑃 + 1 input nodes of our artificial brain. Weighted 

combinations of the input nodes are then transferred as inputs to the hidden nodes: 

𝐻𝑖,𝑖𝑛𝑝𝑢𝑡 = 𝑊𝑖𝑛𝑝𝑢𝑡,ℎ𝑖𝑑𝑑𝑒𝑛 ∙ 𝑋𝑖 (2) 

                                            
1 We consider a five year forecast because they roughly span one business cycle. 



where 𝑊𝑖𝑛𝑝𝑢𝑡,ℎ𝑖𝑑𝑑𝑒𝑛 is a (𝑅 × 𝑃 + 1) weight-matrix and 𝐻𝑖,𝑖𝑛𝑝𝑢𝑡 denotes a (𝑅 × 1) 

vector that enters the 𝑅 hidden nodes. At the hidden nodes input signals are transformed 

by a sigmoidal function:2  

𝐻𝑖,𝑜𝑢𝑡𝑝𝑢𝑡 =
1

1 + 𝑒−𝐻𝑖,𝑖𝑛𝑝𝑢𝑡
. 

(3) 

The output of the hidden nodes 𝐻𝑖,𝑜𝑢𝑡𝑝𝑢𝑡 is weighted by the (1 × 𝑅) vector 𝑊ℎ𝑖𝑑𝑑𝑒𝑛,𝑜𝑢𝑡𝑝𝑢𝑡 and 

transformed by the sigmoidal function again. Thus the predicted outcome 𝑌�̂� is given by: 

𝑌�̂� =
1

1 + 𝑒−(𝑊ℎ𝑖𝑑𝑑𝑒𝑛,𝑜𝑢𝑡𝑝𝑢𝑡∙𝐻𝑖,𝑜𝑢𝑡𝑝𝑢𝑡)
 (4) 

Initially, the elements of the weight-matrices are randomly drawn from a normal distribution 

with mean zero and standard deviation √𝑅 and 1 respectively. The subsequent training of the 

neural network employs the so-called back-propagation technique (BP) on the training sample 

that contains approx.. 90 % of all available data (see Rumelhart et al. 1986). We chose BP 

because it is the standard approach in forecasting settings. In a first step, the squared prediction 

error 𝐸𝑜𝑢𝑡𝑝𝑢𝑡 is calculated in a textbook like fashion as (𝑌𝑖 − �̂�)
2
 and backward distributed 

across the hidden nodes in order to calculate the hidden error 𝐸ℎ𝑖𝑑𝑑𝑒𝑛: 

𝐸ℎ𝑖𝑑𝑑𝑒𝑛 = 𝑊ℎ𝑖𝑑𝑑𝑒𝑛,𝑜𝑢𝑡𝑝𝑢𝑡
𝑇 ∙ 𝐸𝑜𝑢𝑡𝑝𝑢𝑡 (5) 

In a second step, we need to update the elements of both weight-matrices in order to minimize 

the error terms using gradient descent method. At this stage the advantage of the sigmoid 

function becomes obvious because of it is continuously differentiable and its deviation is easy 

to implement.3 Thus the updated matrices are given by: 

𝑊ℎ𝑖𝑑𝑑𝑒𝑛,𝑜𝑢𝑡𝑝𝑢𝑡( 𝑚+1) = 𝑊ℎ𝑖𝑑𝑑𝑒𝑛,𝑜𝑢𝑡𝑝𝑢𝑡(𝑚) + 𝜑 ∙ 𝐸𝑜𝑢𝑝𝑡𝑢𝑡 ∙ �̂� ∙ (1 − �̂�) ∙ 𝐻 𝑜𝑢𝑡𝑝𝑢𝑡
𝑇  (6a) 

𝑊𝑖𝑛𝑝𝑢𝑡,ℎ𝑖𝑑𝑑𝑒𝑛(𝑚+1) = 𝑊𝑖𝑛𝑝𝑢𝑡,ℎ𝑖𝑑𝑑𝑒𝑛(𝑚) +  𝜑 ∙ 𝐸ℎ𝑖𝑑𝑑𝑒𝑛 ∙ 𝐻𝑜𝑢𝑡𝑝𝑢𝑡 ∙ (1 − 𝐻𝑜𝑢𝑡𝑝𝑢𝑡) ∙ 𝑋𝑇 (6b) 

Where the index 𝑚 denotes the training stage and 𝜑 is the learning rate. The final matrices can 

be employed to forecast the outcome variable of interest.  

Several approaches for choosing the optimal number of hidden nodes as well as the learning 

rate such as fixed, constructive and destructive exist. Most of them got in common that they 

aim to minimize the mean squared prediction error in the test sample. Therefore, we refuse from 

reporting these methods in detail and point to Kaastra and Boyd 1996 who provide a detailed 

overview. 



Due to their ability to learn patterns and to approximate almost any nonlinear function, ANN 

can also be used in recognition and classification. Moreover, in many cases they are more 

advantageous than classical econometric approaches because they can tolerate fat tails and 

noise, do not require strong assumptions regarding the error term, can adapt to new patterns and 

even incorporate observations with missing variables by including dummy nodes (Masters 

1993, Kaastra and Boyd 1996, Tkáč and Verner 2016). On the contrary, although ANN provide 

just another way to solve the least squares problem, their black-box character remains 

immanent. Thus, it is hard to provide a convincing story regarding causality when ANN are 

applied. 

2.2 Synthetic Control Method 

The basic idea behind SCM is to build on classical difference in differences estimation but to 

select comparison units and assign weights based on a data driven approach. This feature is 

advantageous in comparison to ANN because results claim causality by construction. 

Therefore, in SCM, as introduced by Abadie and Gardeazabal (2003), Abadie et al. (2010), and 

Abadie et al. (2015), it is assumed that 𝑌𝑖,𝑡
𝑁 is given by the following factor model: 

 

𝑌𝑖,𝑡
𝑁 = 𝛿𝑡 + Θ𝑡𝑍𝑖 + 𝜆𝑡𝜇𝑖 + 휀𝑖,𝑡, (7) 

where 𝛿𝑡 denotes an unknown common factor, Θ𝑡 is a (1 × 𝑟) vector of unknown parameters, 

𝑍𝑖 is a (𝑟 × 1) vector of observed but unaffected predictors, 𝜆𝑡 denotes a time varying (1 × 𝐹) 

vector of unobserved common factors, 𝜇𝑖 is a (𝐹 × 1) vector of unknown factor loadings and 

휀𝑖,𝑡 are zero mean unobserved shocks. Suppose that our sample consists of 𝑖 = 1, … , 𝐽  units of 

which only the first unit is exposed to the treatment and all other units serve as possible donors. 

All units are observed at dates 𝑡 = 1, . . , 𝑇. [1, 𝑇0] denotes the entire pre-treatment period so that 

𝑇0 ∈ [1, 𝑇[. Consider a (𝐽 − 1 × 1) vector of non-negative weights 𝑊 = (𝑤2, … , 𝑤𝐽), whose 

elements sum up to one. Each realisation of 𝑊 represents a potential synthetic control unit. The 

resulting synthetic control units come with the following value of their outcome variable:  

∑ 𝑤𝑗𝑌𝑗,𝑡

𝐽

𝑗=2

= 𝛿𝑡 +Θ𝑡 ∑ 𝑤𝑗𝑍𝑗

𝐽

𝑗=2

+ 𝜆𝑡 ∑ 𝜇𝑗

𝐽

𝐽=2

+ ∑ 휀𝑗,𝑡

𝐽

𝑗=2

 (8) 

                                            
2 Other transfer-function such as arc-tan, step or linear exists but are seldom employed. 

3The deviation is given by: 
𝑑

1

1+𝑒−𝒙

𝑑𝑥
=

1

1+𝑒−𝒙 ∙ (𝟏 −
1

1+𝑒−𝒙) 



Since SCM aims to assign weights to donors according to their similarity to the treated unit, we 

need to find the optimal set of weights 𝑊∗ such that pre-intervention matching: 

is achieved at least approximately. Such a 𝑊∗ does exist if (𝑌1,1, … , 𝑌1,𝑇0
, 𝑍1

′ ) is not too far away 

from the convex hull of {(𝑌2,1, … , 𝑌2,𝑇0
, 𝑍2

′ ), … , (𝑌𝐽,1, … , 𝑌𝐽,𝑇0
, 𝑍𝐽

′)}. In this case, and under 

standard conditions ∑ 𝑤𝑗
∗𝑌𝑗,𝑡

𝐽
𝑗=2  can be used as an estimator of 𝒀𝟏

𝑵 for 𝑇0 < 𝑡 ≤ 𝑇.  

A suitable procedure to obtain 𝑊∗ is described as follows. Define 𝑋1 as a (𝑀 × 1) vector of 

pre-intervention values of predictor and outcome variables for the treated unit 1. Let 𝑋 denote 

a (𝑀 × 𝐽 − 1) matrix of the same variables for the 𝐽 − 1 units from the donor pool. The optimal 

weights 𝑊∗ are chosen to minimize the weighted distance between 𝑋1 and 𝑋: 

𝑊∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑊 (𝑋1 − 𝑋𝑊)′𝑉(𝑋1 − 𝑋𝑊), (11) 

where 𝑉 is a non-negative semidefinite (𝑀 × 𝑀) matrix whose diagonal elements reflect the 

importance of each considered predictor variable. At this step, the optimal 𝑊∗(𝑉) depends on 

the choice of the relative predictor importance. Among all possible matrices 𝑉, 𝑉∗ is chosen to 

minimize the residual mean squared prediction error (RMSPE) of the outcome variable during 

the pre-intervention period:  

𝑉∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑉 (𝑌1 − 𝑌𝑊∗(𝑉))′(𝑌1 − 𝑌𝑊∗(𝑉)), (12) 

where 𝑌1 is a (𝑇0 × 1) vector of pre-treatment outcomes for unit 1 and 𝑌 is a (𝑇0 × 𝐽) matrix 

that contains the pre-treatment outcomes for the donor units. Since there are infinitely many 

collinear solutions of 𝑉∗, the Euclidean norm of 𝑉∗ is normalized to one. The optimal weights 

are given by 𝑊∗(𝑉∗). This synthetic control unit, which comes as a weighted average of units 

from the donor pool, is the best to reproduce unit 1´s trajectory in the absence of treatment. 

Thus, SCM provides a synthetic counterfactual as a convex combination of control regions. 

In contrast to ANN, the procedure of SCM allows us to perform so-called placebo studies to 

test the significance of the treatment effect (Abadie et al. 2010, and Abadie et al. 2015, Munasib 

and Rickman 2015). The in-space placebo test produces inferences by computing a distribution 

∑ 𝑤𝑗𝑌𝑗,𝑡 = 𝑌1,𝑡

𝐽

𝑗=2

 ∀ 𝑡 = 1, … , 𝑇0 (9) 

∑ 𝑤𝑗𝑍𝑗 = 𝑍1

𝐽

𝑗=2

 (10) 



of a test statistic in the following manner. It assumes that treatment is assigned across units at 

random. Thus, a synthetic counterfactual is calculated for each unit in the donor pool producing 

a distribution of placebo treatment effects. Let us denote the actual treatment effect by 𝑇𝑅1 and 

the cumulative density function of placebo effects by 𝐹(𝑇𝑅). Following the argumentation of 

Munasib and Rickman (2015), the 𝑝-value of a one-tailed test of a null-hypothesis that 𝑇𝑅1 ≤

0 can easily be calculated by 𝑝 = 1 − 𝐹(𝑇𝑅1).  

This procedure is advantageous over other identification strategies such as OLS based DiD 

estimations. First, the data-driven weighting approach allows to abstract from the subjective 

choice of comparison units. Second, the restriction of the weights to be non-negative and sum 

to one makes the counterfactual very realistic and supports causality. Third, this procedure is 

robust against time-trends and against the violation of strict exogeneity in time series data that 

both lead to biased results in DiD. Fourth, by applying placebo tests in space and in time, one 

can test the significance of the results and control for endogeneity issues (for more detailed 

description of the advantages also see Buchmueller et al., 2011, Munasib and Rickman, 2015 

and Pinotti, 2015). 

However, when applied to real world data, SCM suffers from the following three shortcoming: 

First, Kaul et al. (2016) argue that pre-treatment matching is often achieved only if pre-

treatment outcome variables are included as additional predictor variables. This procedure turns 

the other predictor variables irrelevant and reduces the credibility of the final results. Second, 

SCM suffers from severe reproducibility problems. Klößner et al. (2017) show that the choice 

of software package as well as the order of observations in the dataset are influential factors in 

determining the estimated treatment effect. Third, when it comes to big datasets or many control 

units, the execution of SCM is inefficient, causes standard computers to run into RAM limits 

and does not necessarily provide efficient estimates. By and large, these features diminish the 

practical relevance and plausibility of SCM.  

2.3 Data 

To be consistent with the approach of Achten et al. (2018) we feed or ANN with data from the 

Cambridge Econometrics European Regional Database (ERD). Although it provides economic 

indicators over a period between 1980 and 2014, we limit the period of investigation to the year 

2005 – five years after the opening of the bridge. We do so because our ANN gives us a five 

year forecast of Gross Domestic Product per Capita (GDPpC) and using post-treatment 

predictor variables would cause severe endogeneity issues. We employ investment share, 



sectoral shares of value added, population density, compensation of employees and the pre-

treatment level of the GDPpC as predictors for economic growth following Barro (1991).  

As in Achten et al. (2018), we also consider only those regions in our training and test sample 

for which data is available from 1980 onwards. If spillover effects are relevant in fact, the 

inclusion of Germany and Scandinavia would induce biased estimates. Therefore and due to 

the fact that Jean et al. (2016), who focus on convolutional neural networks and satellite 

imagery, argue that the exclusion of the states of interest reduces predictive power only 

modestly, we exclude all German and Scandinavian regions. To make the outcome of SCM and 

ANN comparable and to guarantee causality, we also drop all observations that were exposed 

to large infrastructure investment during entire period. Our final sample consists of nearly 6.000 

suitable observations. However, since we employ ten-fold cross-validation to avoid overfitting, 

our training- and test-samples contain 5.400 and 600 observations respectively 

3 Results 

Based on the pyramids rule (see Master 1993) and due to the fact that we the ANN to densify 

information across the layers, we assume the optimal number of hidden nodes to be between 11 

and 2. Therefore, we use the fixed approach to choose the number of hidden nodes as well as 

the learning rate. Since this procedure examines (almost) all available combinations, we select 

the configuration that minimizes the mean of squared residuals in the test-samples using ten-

fold cross-validation. A graphical illustration of the results can be seen in Figure 1.  

< Insert Figure 1 about here > 

Our final network contains 6 hidden nodes and is endowed with a learning rate of 1. At this 

stage, we need to mention that the BP algorithm – although it converges – does not necessarily 

find the global optimum solution and may stuck in local optima. However, we aim to overcome 

this problem, by using randomly chosen initial weights, repeating the algorithm several times 

and averaging the outcomes. Despite this shortcoming, we employed this algorithm because it 

is easy to implement, highly efficient and does not require strong assumptions regarding the 

error term. Similar to other machine learning techniques ANN also tend to overfit. However, 

the number of weights in the network is small compared to the number of observations and we 

find good results in our cross-validation approach. Thus, refuse from pruning high weights and 

model complexity. In a robustness check, we also considered a deep neural network consisting 

of two hidden layers. We refuse from reporting the results, because it seemed to memorize 

instead of learning patterns so that it showed severe overfitting. 



To avoid the above mentioned local optima issue we repeat the forecasting of Malmo´s (local 

level NUTS4 2) and Södra Sverige´s (regional level NUTS 1) GDPpC trajectories one hundred 

times and calculate the averages. Afterwards, we also calculated the treatment effects as the 

differences between the actual outcomes and the forecasted versions. The results are shown in 

Figure 2 and 3. To compare the results of our ANN with the SCM approach, the outcome of 

SCM is shown in Figures 4 and 5. 

< Insert Figure 2 about here > 

< Insert Figure 3 about here > 

< Insert Figure 4 about here > 

< Insert Figure 5 about here > 

It becomes obvious that both estimation strategies reveal a distinct positive treatment effect 

around the year 2000. Additionally, the ANN confirms the previous results of a more 

pronounced effect at the regional level (Södra Sverige) that arises from potential spill-over 

effects. Since neither our ANN nor the SCM of Achten et al. (2018) do perfectly replicate the 

pre-treatment path of GDPpC, we apply the difference-in-differences treatment estimator 𝑇𝑅 as 

suggested by Bohn et al. 2014: 

𝑇𝑅 = (𝑌𝑝𝑜𝑠𝑡
𝐼 − 𝑌𝑝𝑜𝑠𝑡

𝑁̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) − (𝑌𝑝𝑟𝑒
𝐼 − 𝑌𝑝𝑟𝑒

𝑁̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) (13) 

where 𝑌𝑝𝑜𝑠𝑡
𝐼  is the actual post-intervention outcome , 𝑌𝑝𝑜𝑠𝑡

𝑁  is the counterfactual post-treatment 

outcome, 𝑌𝑝𝑟𝑒
𝐼  denotes the actual and 𝑌𝑝𝑟𝑒

𝑁   the counterfactual pre-treatment outcome. 

Considering Malmo our ANN 𝑇𝑅 amounts to 1.489 € (in 2005 terms) and is very close to the 

SCM estimate (1.680 €). For Södra Sverige the ANN 𝑇𝑅 (4.133 €) is approximately 38 % larger 

than the SCM 𝑇𝑅 (2.988 €). However, the discrepancy may arise from the fact that the period 

of consideration in the SCM approach is 2 years longer and our ANN counterfactual indicates 

a decrease in treatment effect starting in 2005. 

As a robustness checks, we exclude the year of prediction as input variable in our training 

procedure to prevent the network from memorizing Europe-wide exogeneous economic shocks. 

Instead, it now has to learn more general patterns from the economic predictor variables The 

results are reported in the appendix and confirm our prior results. 

                                            
4 Nomenclature of territorial units for statistics. 



4 Conclusion 

In this study we showed that ANNs are powerful tools for solving the least squares problem in 

a highly nonlinear fashion. Moreover, by applying a simple forecasting ANN to a case study, 

namely the construction of the Oresund bridge, we find that this single-layer feed forward 

neural network yields similar results as the much more advanced and appreciated SCM. 

Considering that ANNs are said to perform notably well in settings where there are many 

covariates relative to the number of observations, this result becomes even more astonishing. 

As pointed out by Kleinberg et al. (2015) most policy evaluation problems are rather prediction 

than causal inference problems. Therefore, ANNs – which provide excellent prediction 

capabilities – should find their way into the toolbox of any econometrician. This claim can 

easily be verified if one considers that each policy intervention needs to be evaluated ex ante 

and ex post. Whereas SCM and the backward looking forecasting ANN – as employed above – 

are both suitable for ex post identification of causal effects, pure forecasting machine learning 

techniques also allow a status-quo prediction of future outcomes. This feature is of high 

relevance because the effect of a policy often depends on the relevant outcome itself. The 

following example illustrates this statement. The net return of a large infrastructure investment 

such as the Oresund bridge is a function of the future economic prosperity itself. In detail, the 

construction of the bridge would cause more and more intense network and spillover effects in 

a hypothetical situation where there is a high future GDPpC. Consequently, there would be a 

high treatment effect in terms of GDPpC. On the contrary, if the future GDPpC is low, the 

construction of the bridge has merely short term government spending effect on GDPpC 

because network effects will not occur.   

With the advent of big data in economics the importance of ANN will continue to rise. 

Specifically, since SCM and other popular approaches such as LASSO or elastic nets either 

become inefficient or hard to interpret as the number of covariates increases, there is a need in 

economics to borrow machine learning techniques from computer scientist in order to adapt 

them for policy evaluation purposes. However, up to now, an ANN remains a black box without 

a well-understood sampling distributions what makes it really hard to test hypotheses. 

Although, there remains much work to establish causal ANN in economics we are confident 

that this paper excites economists and econometricians to explore the field of machine learning.   
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Figures: 

 

Figure 1: Results of fixed approach 
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Figure 2: ANN forecast of Malmo and treatment effect  

 

 

 

 

 



 

 

Figure 3: ANN forecast of Södra Sverige and treatment effect 

 

 

 

 

 



 

 

Figure 4: SCM results of Malmo - taken from Achten et al. 2018 
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Figure 5: SCM results of Södra Sverige - taken from Achten et al. 2018 

  



Appendix 

 

 

 

Figure A 1: ANN forecast of Malmo and treatment effect – Year excluded from set of predictors: TR: 1.583 € 

 

 

 



 

 

 

Figure A 2: ANN of Södra Sverige and treatment effect – Year excluded from set of predictors: TR: 3.863 € 

 

 

 


