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Abstract 

When scheduling its audit-staff, the Management of an auditing firm encompasses 
a number of decisions. These may be grouped into several categories which differ 
markedly in terms of organizational echelon involved, length of the planning horizon 
and the planning periods, degree of aggregation of the audit tasks, degree of detail 
of the required Information, and decision objective. In this paper we consider the 
medium-term problem the focus of which is to assign teams of auditors to the en-
gagements. It constructs a schedule by determining the workload per auditor and 
week over a planning horizon of between three and twelve months. The objective 
of the model is to maximize the sum of the preferences of all assigned teams. As 
restrictions job completion, precedence and resource constraints have to be met. 

The problem is formulated as a set partitioning problem. We solve the LP-
relaxation of the set partitioning problem by column generation in order to compute 
tight upper bounds. Fortunately, the upper bounds obtained with the column gener­
ation approach are much tighter than those obtained by solving the LP-relaxation of 
a 'Standard' project scheduling model formulation. Furthermore, the column gener­
ation process is an order of magnitude faster than solving the LP-relaxation of the 
Standard model formulation. Finally, the optimal Solution of the continuous relax-
ation of the set partitioning problem is integral frequently and, hence, we have an 
optimal Solution of the overall integer programming problem. 

KEYWORDS: AUDIT-STAFF SCHEDULING, ASSIGNMENT OF TEAMS OF AUDIT­
ORS TO ENGAGEMENTS, SET PARTITIONING/COLUMN GENERATION 

1 Introduction 

When scheduling its audit-staff, the management of an auditing firm encompasses a num­
ber of decisions. These may be grouped into several categories which differ markedly 
in terms of organizational echelon involved, length of the planning horizon and the plan­
ning periods, degree of aggregation of the audit tasks, degree of detail of the required 
Information, and decision objective. However, traditional audit-staff scheduling models 
(Balachandran and Zoltners 1981, Chan and Dodin 1986, Gardner, Huefner, and Lofti 
1990, Dodin and Chan 1991, Drexl 1991, Dodin, Elimam, and Rolland 1996, Dodin and 
Elimam 1997) are single-level models which try to construct a direct assignment of aud­
itors to tasks and periods. To facilitate algorithmic treatment, all these models are more 
or less gross simplifications of practica! planning situations. 

These observations led us to conduct a survey among the 200 biggest certified public 
accountant (CPA) Arms in Germany. Based upon its results we formulated an hierarchical 
model (Salewski and Drexl 1993, Salewski 1995) comprising three levels: The medium-
term planning assigns teams of auditors to the engagements; it constructs a schedule by 
determining the workload per auditor and week over a planning horizon of between three 
and twelve months. The medium-to-short-term planning disaggregates the results of the 
first level for one week and all auditors; the outcome is a schedule for each auditor that 
Covers — on the basis of periods of four hours — all engagements in which he is involved 
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in the considered week. The short-term planning is based upon the results of the second 
level for one week and one engagement; it assigns the auditors involved in the auditing of 
that engagement to the corresponding audit tasks and schedules these tasks to periods of 
one hour. Here, we will focus on the first, that is, the medium-term level. 

The paper is organized as follows: In Section 2 we dehne the problem formally and 
investigate where it is positioned in the context of audit-staff/project scheduling. In 
Section 3 the problem is reformulated as a set partitioning problem with an exponential 
number of columns. The LP-relaxation of this model can be solved to optimality by 
column generation. Next we show in Section 4 that the columns of the the LP-relaxation 
can be efficiently computed by means of a shortest path model. The description of the test 
bed is provided in Section 5. Section 6 presents the results of an in-depth computational 
study. Finally, Section 7 provides a brief summary, along with our conclusions. 

2 Problem Setting 

The Medium-Term Audit-Staff Scheduling Problem (MASSP) may be characterized by 
the following assumptions (cp. Salewski, Schirmer, and Drexl 1997 also): 

• A firm employs one or more auditors, which have to audit one or more engagements 
within a given planning horizon of normally 13, 26, or 52 weeks. 

• Each engagement is made up of one or more phases, e.g. preliminary, intermediate, 
and final audit, which in turn can be decomposed into one or more subphases. Some 
subphases may not be executed before the completion of certain others (predecessors). 
More exactly: the phases of each engagement as well as the subphases of each phase 
must be processed in a strictly linear Order which implies that each subphase except 
of the first subphase of the first phase of each engagement possesses exactly one 
predecessor. Work on some phases may not commence before a specific release 
time, or may have to be completed by a certain deadline. 

• The availability of some auditors may be restricted in certain periods, e.g. due to 
holidays or vacation. In addition, for some periods a dient may want to limit the 
time during which the auditing takes place (maximum processing time), e.g. due to 
vacation periods or stock-taking activities. 

• Often an engagement could be audited by several alternative audit teams (modes). 
Different team compositions will result in difFerent auditor processing times. Usually 
some modes will be preferable to others: Factors infiuencing the suitability of an 
auditor for a specific engagement are e.g. qualification level, industry experience, 
familiarity with the clients business, and degree of difficulty of the audit tasks. The 
preferability of a mode as a whole may e.g. be linked to the total processing time 
needed. Hence, a preference value will be assigned to each mode. 

• Finally, mode-dependent minimum and maximum time-lags may be given between 
subsequent subphases (which thus belong to the same engagement). 
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The objective then is to assign the overall best-suited teams to the engagements (mode 
assignment with maximization of preferences), and to determine when the individual sub-
phases are to be executed (subphase scheduling). 

The problem parameters of the MASSP are summarized as follows: 
A 
E 

Cat 

Det 

&ep 
Gepsma 

eP 
Me 

Pe 
Qepsp's'm 

Qepsp's'm 

sev 

K eps 

number of auditors, indexed by a 
number of engagements, indexed by e 
preference value corresponding to the processing of 
engagement e in mode m 
capacity of auditor a in period t 
maximum processing time of engagement e in period t 
deadline of phase (e,p) 
time auditor a needs to process subphase (e,p,s) in mode m 
(capacity usage) 
release time of phase (e,p) 
number of modes of engagement e, indexed by m 
number of phases of engagement e, indexed by p 
minimum (finish-to-start) time-lag between subsequent 
subphases (e,p,s) and (e,p',s') when processing e in mode m 
maximum (finish-to-start) time-lag between subsequent 
subphases (e, p, s) and (e,p',sf) when processing e in mode m 
number of subphases of phase (e,p), indexed by 5; w.l.o.g. each 
subphase has a duration of one period 
number of periods, indexed by t 
set of all immediate predecessors of subphase (e,p, s) 

Note, precedence relations expressed via Veps exist only between subphases belonging 
to the same engagement. This characteristic is called 'isolating' in Salewski, Schirmer, 
and Drexl (1997). 

The problem under consideration is formulated as a binary optimization problem in 
Salewski, Schirmer, and Drexl (1997). Furthermore, it is shown, that the MASSP is 
a special case of the more general project scheduling problem with resource and mode 
identity constraints. In addition, it is proven that the (feasibility variant of the) MASSP 
is (strongly A^-complete) strongly A^-hard. In order to keep this paper self-contained 
we reproduce the project scheduling-based binary optimization model in Appendix A. 

Throughout this paper we make use of the illustrative example which is provided in 
Appendix B. 

3 Set Partitioning Model 

The basic idea is to iteratively compute sequences for each of the engagements by means 
of a shortest (in fact a longest) path model. From the set of sequences on hand those are 
chosen via a set partitioning model which respect the capacity constraints of the auditors 
(in the LP-relaxation). A description of basic column generation techniques can be found 
in, e.g., Bradley, Hax, and Magnanti 1977. 
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In order to describe the set partitioning model formally we use the following parameters 
and variables: 

e(i) : engagement e column i is associated with 
Se : set of columns representing sequences for engagement e, index i 

bgiat : 1, if engagement e is processed within sequence i by auditor a and 
finished in period t 

c, : objective function coefficient of sequence i related to engagement e(i) 
yi : 1, if sequence i is part of the optimal Solution (0, otherwise) 

Based on these definitions the (restricted) master problem can be stated by equations 
(l)-(4) as a set partitioning model. 

max^^Cit/i (1) 
e=l i 6<S'-

s.t. ^2 yi = 1 e = l,...,£ (2) 
ies* 

E 
Yjlübeiatyi < Cat Q = 1, . . . , A, t = 1, . . . , T (3) 
e=l ieS« 

yi € {0,1} e = l ,...,E,ieSe (4) 

The objective (1) is to select a subset of columns at minimum costs. Equations (2) 
make exactly one sequence per engagement to be part of the Solution, while inequalities 
(3) require to respect the capacity constraints of the auditors in each of the periods of the 
planning horizon. Finally, restrictions (4) define the decision variables to be binary-valued. 

4 Shortest Path Model 

For each tupel of engagement and mode (e, m), sequences are computed by solving shortest 
path problems. Apparently, these constraints essentially render each (e, m) subgraph, 
l < e < E, l<m< Me, to consist of nodes solely (cp. Figure 1 also). 

In order to simplify the presentation we relabel the nodes h <— (/>, s, t) and j <- (/>', s', t') 
similarly to what is done in equation (15) in Appendix A. Obviously, this relabeling has 
to be done for each (e, m) subgraph. Now, let denote 

•A/"*"1 : set of nodes of the graph associated with engagement e and mode m 
set of arcs of the graph associated with engagement e and mode m 
phase p node j € Nem is associated with 
subphase g node j € Afem is associated with 
period t node j E Mem is associated with 

Aem 

P(j) 
sli) 
t(j) 

Figure 1 illustrates the preliminary shortest path graph for enagement e = 2 and mode 
m — 2 of the instance provided in Appendix B. This shortest path graph shows that — for 
a given tupel (e, m) — two nodes (p(h), s(h), t(h)) and (p{j),s(j),t(j)) are connected by 
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an arc only if the conditions (6) to (11) are met. Note that nodes can be connected only 
if h and j belong to the same engagement e ('isolating' precedence structure — cp. (5)) 
and if they are processed in the same mode. 

(e,p(h),s(h)) € K,p(j),»(j) (precedence relations) (5) 

t{j) ~ t(h) > qe,p(h),s(h),p(j)Aj),rn. + 1 (h,j G A em, h G Ve lP(j)tS(j) — min time lag) (6) 
t(j) - t(h) < ?e,p(A),s(A),p(i),s(i),m + 1 (h,j G A em, h € %.,%),,(;) ~ max time lag) (7) 

A 
ke,p(h),s(h),m,a < De,t(h) (& G N*™ — maximum processing time) (8) 

0 = 1 
A 

22 ke,p(j),s(j),m,a < De,t(j) {j G N* ™ — maximum processing time) (9) 
0 = 1 

K,p(h) - and ^e,p(i) < t(j) (h,j G A fem — release dates) (10) 
Se,P{h) > t{h) and Se,p(j) > t(j) (h,j G M em — deadlines) (11) 

Figure 1: Preliminary Shortest Path Graph — e = 2 and m — 2 

The following comments shall be made with respect to Figure 1 and, in addition, Figure 2: 

• The nodes (1,0,0) and (1,4,14), where we set 4 = Se,pe +1 = ^21 +1 and 14 = T +1, 
are dummy source and sink nodes, respectively. 

• The nodes (1,1,5), (1,2,5) and (1,3,5) are dotted, because D25 = 0 does not allow 
to schedule these subphases in period t = 5, and, hence, they can be eliminated. 
Clearly, incident arcs have not to be considered also. 

• There must be no arc connecting nodes (1,1,3) and (1,2,7) because of the maximal 
time lag. 
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• The dashed nodes (1,2,3), (1,3,3) and (1,3,4) cannot be reached because of minimal 
time-lags and, henceforth, are eliminated. 

• There is no outgoing arc from the dashed nodes (1,1,7) and (1,2,7) because of min­
imal time lags in connection with the deadline. Removing node (1,2,7) in turn 
produces node (1,1,6) to have no successor node and, hence, it can be eliminated 
also. Similarly, for node (1,2,4). Likewise, the dashed node (1,3,6) has no ingoing 
arc and can be eliminated too. 

• Summarizing, Figure 2 provides the reduced shortest path graph where all the dotted 
and dashed nodes and the incident (dashed) arcs have been eliminated. 

Figure 2: Reduced Shortest Path Graph — e = 2 and m = 2 

Now we are going to explain how the arc weights are calculated. Without loss of gen-
erality, consider any engagement-mode-tupel (e,m), i.e. subgraph of the overall shortest 
graph. Furthermore, consider any pair of related nodes h € Af6™ and j € Afem of the re­
duced shortest path (sub-)graph and, hence, the arc (h,j) € Aem connecting both nodes. 
Now, let denote 

< original weight of arc (h,j) 6 A*"1 

updated weight of arc (h,j) E Aem 

dual variable associated with the one sequence per engagement constraipt 
(2), fie € IR 
dual variables associated with the capacity constraints (3), 7ra< > 0 
1, if arc (h,j) £ Aem is element of the shortest path (0, otherwise) 

Then equation (12) formally defines the original weight deff of the arcs. Obviously, 
all arcs have to be initialized to zero except the arcs emanating from the single source 
node q — ( 1,0,0). This way the constant preference vem for each engagement-mode-tupel 
(e,m) is taken into account appropriately. 

Finally, equation (13) explains how to calculate the weights gl™ of all arcs (h,j) € -4em 

taking the dual variables nat into account. 
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A 
9hj dfrj 22 22 ^e,p(A),s(A),m,o ^a,t(h) 

0=1 (h,j)eA'm 
(13) 

Then the objective function of the shortest path model for engagement e can be stated 
by equation (14). 

Note that the shortest path graph is acyclic with node weights g^1 € R. Because of 
the topological structure, the shortest path problems are solvable in linear time. 

Apparently, pricing out occurs if max{Ze 11 < e < E} < 0. This is accomplished 
by Computing the shortest path in the overall shortest path graph comprising all the 
engagements. In our Implementation, we compute at most E columns per iteration, one 
for each engagement e with Ze > 0 (multiple pricing). 

A step—by-step description of the overall set partitioning/column generation algorithm 
shall now be given where we use the following Dotation: 

1. Initialize<Se,e = 1 

2. Solve the LP-relaxation of the set partitioning model SPP(S); e = 0. 

3. e = e + 1. 

4. Solve C(7(e); if Zf?^ > 0 then set S = S U (|S| + 1). 

5. If e < E then go to Step 3. 

6. If at least one e € {1,..., E} with > 0 has been computed then go to Setp 2. 

Apparently, our algorithm generates at most E columns per iteration (multiple pricing). 
In Section 6 we will show, that this variant produces slightly more columns than the single 
pricing (i.e. one column per iteration) counterpart but is faster on the average because 
less LPs have to be solved. 

(14) 

S : current set of columns, i.e. S = U ... U Se U ... U 
SPP(S) : (restricted) maater problem/set partitioning model defined for set S 

CG(e) : column generation/shortest path model for engagement e 

^ca(e) '• optimal objective function value of CG(e) defined for the current set 
of columns S 

Algorithm 

7. Stop. 
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5 Test Bed 

The set of instances which is used for experimental purposes is identical to the one defined 
in Salewski, Schirmer, and Drexl (1997). In order to keep this paper self-contained we 
outline in the following the procedure followed for generating a sample of test instances 
of practical relevance. We also describe the design of an extensive experimental study 
conducted, along with the definitions of the Performance measures used to evaluate the 
results of the study. 

Even in current literature, the systematic generation of test instances does not receive 
much attention. For the well-researched field of project scheduling, Kolisch, Sprecher, and 
Drexl (1995) report that "very little research concerned with the systematic generation of 
benchmark instances has been published. [...] most efforts are only briefly described." 

Generally, two possible approaches can be found adopted in literature when having to 
come up with test instances. First, practical cases. Their strength is their high practical 
relevance while the obvious drawback is the absence of any systematic structure allowing 
to infer any general properties. Even the 110 instances of the widely known Patterson-
set (Patterson 1984), which have become a quasi benchmark in project scheduling, have 
been collated from different sources, rather than being generated from a systematic design. 
Thus, even if an algorithm performs good on some practice cases, it is not guaranteed 
that it will continue to do so on other instances as well. Second, artificial instances. Since 
they are generated randomly according to predefined specifications, their plus lies in the 
fact that Atting them to certain requirements such as given probability distributions poses 
no problems. A detailed such procedure for generating project scheduling instances has 
been proposed by Kolisch, Sprecher, and Drexl (1995)European Journal of Operational 
Research. However, they may reflect situations with little or no resemblance to any prob­
lem setting of practical interest. Hence, an algorithm performing well on several such 
artificial instances may or may not perform satisfactorily in practice. 

Therefore, we decided to devise a combination of both approaches, thereby attempting 
to keep the strengths of both approaches while avoiding their drawbacks. Within the cited 
survey among the 200 biggest CPA firms in Germany, we asked the respective official in 
charge of staff planning (if existent) or one of the firm's partners to provide details about 
length of planning horizon, number of auditors, number and structure of audit engage-
ments, auditor working capacities (working hours per day or week) and possible variations 
therein (e.g. due to vacation, training), etc. In addition, we carried out Interviews with 
several experts in the field of auditing to clarify our understanding of the peculiarities 
of the auditing sector. Then, to ensure a systematic and consistent generation of the in­
stances, for each of the parameters of the MASSP a domain and a discrete distribution 
function on the domain were defined, based upon the survey and the interview results. 
From these definitions, a test bed of representative instances was generated randomly, 
using a Classification scheme to build instances with specific properties. In this way we 
tried to construct instances reflecting the specifics of audit-staff scheduling in the industry 
as closely as possible, yet to employ a systematic design for the generation procedure. 

We assumed that only two instance-related factors do have a major influence on the 
Performance of a Solution method, viz. the size and the tractability of the instance attemp-

8 



ted. Although the size of an instance is determined by the length of the planning horizon, 
the number of subphases, and the number of modes, Statistical analyses of the survey res­
ults found all these to depend on the length of the planning horizon. In the sequel, three 
types of instances will be distinguished with respect to their size: the planning horizon 
equals 13 weeks for small instances (13 weeks with up to 30 auditors and 95 engagements), 
26 weeks for medium-size instances (with up to 55 auditors and 280 engagements), and 
52 weeks for large instances (with up to 125 auditors and 880 engagements). In addition, 
very small instances (13 weeks with up to 6 auditors and 10 engagements) were generated. 
While these instances are too small to bear practical relevance, they can be solved to 
optimality with Standard MlP-solvers and thus can be used as benchmarks. 

The tractability of an instance intends to reflect how easy or difficult it is to solve. In our 
study, the auditor capacities are assumed to be the only factor influencing the tractability 
of an instance: the higher the auditor capacities are, the easier the corresponding instance 
is ceteris paribus to solve since its Solution space becomes larger. Accordingly, the auditor 
capacities are calculated from the average expected demand, adjusted by a multiplicative 
factor RS (resource strength). Throughout this work, three types of instances will be 
distinguished with respect to their tractability: easy instances where RS is taken equal to 
3.5, medium instances where RS equals 2.5, and hard instances where RS is 1.5. 

Clearly, the Performance of an algorithm cannot be evaluated from running it on in-
feasible instances. It is therefore noteworthy that, in spite of the strong Af'P-completeness 
of the associated feasibility problem, it was possible to rig up the design of the (complic-
ated) generation procedure in a way guaranteeing that for each constructed instance there 
exists at least one provably feasible Solution. 

Due to the computational effort required to attempt a sample of all sizes, the scope of 
the experiment was limited to include only small and very small instances. Furthermore, 
for instances of these sizes lower and upper bounds are available from literature in order 
to benchmark the results obtained with the set partitioning/column generation approach. 

6 Computational Results 

The methods described earlier have been imlemented using AMPL (cp. Fourer, Gay, 
and Kernighan 1993) and the CPLEX callable library (cp. Bixby and Boyd 1996) on 
an IBM RS 6000 F40 Workstation with 192 MB RAM. 

Each instance has been solved starting with E initial columns, one for each engagement 
e. The computational results of our experiments are summarized in Tables 1 and 2. The 
CPU-times required by our experiments are summarized in Tables 3 and 4. The symbols 
have the following meaning: 
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identification number of instances 
instances whose tractability is easy (likewise medium and hard) 
best feasible Solution (lower bound) known so far (computed with the 
tabu search procedure of Salewski 1996) 
objective function value computed by column generation 
column generation Solution integral 
optimal objective function value of the LP-relaxation of the model 
(16) to (22) (upper bound) 
CPU-time in sec required by the CPLEX solver for the 
column generation process (without AMPL times) 
CPU-time in sec required by CPLEX for the Solution of the 
LP-relaxation of the model (16) to (22) 

The result tables can be interpreted as follows: 

• The set partitioning/column generation approach produces an integral Solution for 
almost all of the 30 very small instances. These results verify the lower bounds 
produced with tabu search to be very good also. Moreover, the LP-relaxation of the 
model (16) to (22) is tight for the very small instances. 

• For the small instances only one data set can be solved to optimality by the column 
generation approach. Eight (one) of the easy (medium) instances are (is) solved to 
optimality also because the lower and the column generation-based upper bounds 
coincide. 

• In general the upper bounds produced by set partitioning/column generation are far 
better than the upper bounds of the model (16) to (22). This is due to the following 
fact: In the LP-relaxation of the model (16)-(22) implicitely the constraints (21) 
imposed by the maximum processing times Det per engagement e and per period 
t are relaxed also. On the other hand, these constraints are taken into account by 
conditions (8) and (9) when constructing the shortest path graph, and, hence, cannot 
be relaxed implicitely when solving the LP-relaxation of the set partitioning model. 

• While the LP-relaxation of the model (16) to (22) can be solved in zero sec for the 
very small instances, the small ones already require a considerable amount of CPU-
time. Especially for the hard instances the CPU-times increase drastically while the 
quality of the upper bounds deteriorates. 

Table 5 shows the sizes of the last master problems in terms of the columns generated. 
Apparently, for the small instances the number of columns generated increases with in-
creasing problem hardness. That is, easy instances need less columns than the medium 
ones which in turn need less than the hard ones. 

For getting the results presented so far, we generated at most E columns per iteration, 
one for each enagement e with Ze > 0 (multiple pricing). To reveal that this is indeed a 
good idea, we also show some results when we generated at most one column per iteration 
which is determined by the overall shortest path (single pricing). Table 6 shows the figures 

no. : 
easy : 
LB : 

CG : 
• : 

UB : 

CG : 

LP : 
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easy medium hard 
no. LB CG UB LB CG UB LB CG UB 

1 43 43* 43 43 43* 43 43 43* 43 
2 35 35* 35 35 35* 35 35 35* 35 
3 44 44* 44 44 44* 44 43 43.81 43.81 
4 44 44* 44 44 44* 44 44 44* 44 
5 45 45* 45 45 45* 45 45 45* 45 
6 41 41* 41 40 40.9 41 39 39.74 40.82 
7 47 47* 47 47 47* 47 47 47 47 
8 44 44* 44 44 44* 44 44 44 44 
9 40 40* 40 40 40* 40 40 40* 40 

10 47 47* 47 47 47* 47 47 47* 47 

Table 1: Computational Results — Very Small Instances 

easy medium hard 
no. LB CG UB LB CG UB LB CG UB 

1 302 302 304.70 297 300.20 303.60 264 291.36 296.94 
2 299 299 304.71 292 297.97 303.67 274 288.78 297.91 
3 542 543 543 510 541.62 541.95 433 511.64 524.85 
4 180 180 184 173 179.60 184 162 170.63 176.75 
5 298 298 299.75 295 298 299.75 267 293.59 296.15 
6 434 434 434 420 432.09 433.03 386 418.85 424.34 
7 751 751 753 750 751 753 666 742.87 747.16 
8 317 317 319.97 309 317 319.97 278 307.50 316.45 
9 380 380 380 380 380 380 357 378.05 378.93 

10 414 414* 414 413 414 414 363 403.29 409.07 

Table 2: Computational Results — Small Instances 

easy medium hard 
no. CG LP CG LP CG LP 

1 0.28 0.00 0.28 0.00 0.51 0.00 
2 0.21 0.00 0.20 0.00 0.37 0.00 
3 0.20 0.00 0.17 0.00 0.21 0.00 
4 0.28 0.00 0.24 0.00 0.47 0.00 
5 0.26 0.00 0.28 0.00 0.39 0.00 
6 0.36 0.00 0.50 0.00 0.80 0.00 
7 0.45 0.00 0.51 0.00 0.69 0.00 
8 0.38 0.00 0.44 0.00 0.57 0.00 
9 0.52 0.00 0.57 0.00 1.02 0.00 

10 0.52 0.00 0.44 0.00 0.83 0.00 

Table 3: CPU-Times — Very Small Instances 
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easy medium hard 
no. CG LP CG LP CG LP 

1 3.42 2.92 5.30 4.51 10.81 11.35 
2 3.12 1.99 4.66 2.32 7.91 8.95 
3 9.69 6.85 15.88 15.24 33.81 80.85 
4 1.61 0.92 3.05 1.34 3.67 2.49 
5 2.72 2.22 5.54 3.54 10.88 9.56 
6 4.33 3.63 5.45 8.45 11.38 23.28 
7 6.22 10.56 10.81 17.01 62.92 146.95 
8 2.49 2.71 5.53 6.33 15.79 18.41 
9 4.24 2.81 3.26 3.78 10.75 9.25 

10 3.36 3.51 6.94 4.35 19.96 20.30 

Table 4: CPU-Times — Small Instances 

no. easy medium hard 
1 123 143 200 
2 121 130 198 
3 224 279 374 
4 80 100 115 
5 123 141 215 
6 168 195 261 
7 285 328 484 
8 120 138 217 
9 169 165 240 

10 165 202 274 

Table 5: Size of the Last Master Problem — Small Instances 

no. easy medium hard 
1 126 142 186 
2 126 139 180 
3 214 252 333 
4 81 96 107 
5 127 141 202 
6 173 191 253 
7 296 320 428 
8 127 139 203 
9 169 175 217 

10 168 187 262 

Table 6: Size of the Last Master Problem — Small Instances — One Column Per Iteration 
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for the size of the last master problem. Comparing this with Table 5 in general less columns 
have to be generated. Unfortunately, the run-time upon termination is much shorter when 
more than just one column is generated per iteration. This is due to the fact that far more 
LPs have to be solved in the case of single pricing. Hence, multiple pricing is advantageous. 

7 Summary and Conclusions 

When scheduling its audit-staff, the management of an auditing firm encompasses a num­
ber of decisions. These may be grouped into several categories which differ markedly 
in terms of organizational echelon involved, length of the planning horizon and the plan­
ning periods, degree of aggregation of the audit tasks, degree of detail of the required 
Information, and decision objective. However, traditional audit-staff scheduling models 
are single-level models which try to construct a direct assignment of auditors to tasks 
and periods. To facilitate algorithmic treatment, all these models are more or less gross 
simplifications of practical planning situations. 

In this paper, we introduce an audit-staff scheduling model which comprises many fea-
tures being important with respect to audit management in practice. For dealing with this 
model, a set partitioning/column generation approach is developed. The LP-relaxation 
of the set partitioning problem is solved by column generation in order to compute tight 
upper bounds. Frequently, the Solution of the continuous relaxation is integral and, hence, 
an optimal Solution is obtained. 
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Appendix A: Project Scheduling-based Mathematical 

Programming Formulation 

To simplify the mathematical formulation of the problem, we perform some preliminary 
computations. First, the indices e, p, s are replaced by 

e—1 Pg' p—1 
j = g{e, p,s)=^2Y, -V + 2] S*v' + J (15) 

e'=l p'=1 p'=l 

Thus, the parameters , Qepsp' s'm? Qepsp* s'm and faepsma. become Qjj'm? ^Ijj'm and 
kjma. Then, let denote /e = g(e, 1,1) the first and le = g(e, Pe, Sepr) the last subphase of 
each engagement e. Further, the maximum lags can be transformed into minimum lags 
(with a corresponding update of Vj) (cf. Bartusch, Möhring, and Radermacher 1988), and 
from the time-lags, the release times, and the deadlines earliest and latest finish times 
EFj and LFj can be computed, respectively. 

Figure 3: Chain Structure of Time Lags 

Note that our problem setting Covers not only the Standard type of time-lags, namely 
minimum time-lags, but also the less common maximum time-lags. These can easily 
be converted into minimum time-lags using the transformation introduced in Bartusch, 
Möhring, and Radermacher (1988). It is quite obvious that the presence of maximum lags 
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tends to render scheduling problems even more difficult. In fact, to our knowledge there 
are only very few results so far on the Performance of Solution procedures for this kind of 
Problems (cf. e.g. Neumann and Zhan 1995). The presence of minimum and maximum 
time-lags between subsequent subphases, along with their special sequence, which arises 
from the above mentioned decomposition process, imply for each engagement a chain 
structure of the time lags as illustrated in Figure 3, where each node has the format 
e,p,s . Each structure may be seen as being composed of arc-disjoint cycles of length 2, 

one between first and second subphase, one between second and third one, and so forth 
up to the last cycle between last but one and last subphase. Finally, recall from Section 2 
that precedence relations exist only between subphases belonging to the same engagement, 
a characteristic denoted as 'isolating'. 

Now, the assignment of subphases to modes and periods can be represented by binary 
variables Xjmt = 1, if subphase j is performed in mode m and completed in period t 
(xjmt = 0, otherwise). This allows to formulate a binary program — using the general 
framework given in Pritsker, Watters, and Wolfe (1969) — as follows: 

E Me LFu 
maX 23 23 V'm 2 Xhmt (16) 

e=l m=l t=EFje 

Me LFU 

S.t. ) ' xftmt — 1 e = 1, . . .,£? (17) 
m=l t=EFf, 

LFU LFj 

23 23 ' 
t=EF/e t=EFj 

Me LFj> M, LFj 

m=l t=EFji 
(19) 

BFJ f 6 Vj 
E lt _ 

22 22 23 kjma Xjmt < cat t _!' (20) 
e=l m=l j-ft 

t€{EFj,...,LFj> 

m=1 i=U. 

e = 1,... 

e = 1,.. .,E 1—4 +
 

<
 

II 

m = 1,. • •,Me 

e = 1,.. .,E <
 

II ••Je 

II Ö ;A 
t = 1,... ,T 

e = 1,... ,,E 
a = 1,.. .,A 

II ,T 

II .,E 
3 — fet • • 
m = 1,.. .,Me 

II Es
 

3
) ..., LFj 

(21) 

(22) 

The objective function (16) maximizes the total team preference over all engagements. 
Due to (17) it suffices to include only one subphase of each engagement in (16). The choice 
of the first one is arbitrary. The subphase completion constraints (17) stipulate that the 
first subphase of each engagement is completed exactly once in one of its modes. The 
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mode identity constraints (18) guarantee for each engagement that if the first subphase is 
completed then the other subphases will be completed as well, and in the same mode as 
the first one. Thus, (17) and (18) combine to ensure that all subphases of each engagement 
will be processed in the same mode, and that all of them will be completed. The temporal 
constraints (19) represent the precedence order on the subphases and enforce respection 
of the time-lags between them. The auditor capacity constraints (20) assure that for 
no auditor his per-period workload exceeds his capacity. In this regard, each auditor is 
treated as a renewable resource. The engagement capacity constraints (21) guarantee that 
for no engagement and no auditor the maximum per-period processing time is exceeded. 
In this regard, each engagement is treated as a renewable resource. 

Table 7 summarizes the instances and, in addition, states the problem size in terms of 
the number of binary variables of the model formulation (16) to (22). 

size # weeks # auditors # engagements ^variables 
very small 13 6 10 10,400 

small 13 30 95 98,800 
medium-size 26 55 280 728,000 

large 52 125 880 5,948,800 

Table 7: Instance Characteristics 

Appendix B: Illustrative Example 

Throughout this paper we make use of the instance provided in Tables 8, 9, 10, 11, 12, 
and 13, respectively. Note, the index i serves to interrelate the precendence relations with 
respect to Tables 11 and 12. 

E = --4,T=13,A = 6 

Mi = 5, Mg = 3, M3 = 8, M4 = 2 
f, = 11 1

° II II 11 

Sn — 1, S12 — 5, if>2l — 3, »$41 — S51 = 1 
cat = 96, a = 1,... ,6,t = 1, • • ,13 

Det II O
 

CG II 1—>
 

Ib
. II 1—>

 

, 13, £>25 = 0 

Table 8: Instance Data — Basic Parameters 
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e/m 1 2 3 4 5 6 7 8 

1 4 5 9 2 1 
2 10 4 2 
3 7 6 6 5 2 5 2 1 
4 5 7 

Table 9: Instance Data — Preference Values vem 

e/p 1 2 
1 1 7 ^ep 
2 3 
3 6 
4 5 
1 2 12 &ep 
2 7 
3 8 
4 6 

Table 10: Instance Data — Release Times Aep and Deadlines Sep 

Vm = 0 V2u = 0 V311 = 0 ^411 = 0 
1=1 i = 2 » = 3 lO II TT II 

e = 1 ={(1,1,1)} Vl22 = {(1,2,1)} %„ = {(1,2,2)} Vi24 = {(1,2,3)} %„ = {(1,2,4)} 
* = 6 t = 7 

e = 2 V212 = {(2,1,1)} V213 = {(2,1,2)} 

Table 11: Instance Data — Predecessors Vep3 

i/rn 1 2 3 4 5 e 
1 5/13 0/13 0/13 1/13 1/13 1 
2 0/0 -1/13 -1/13 0/0 0/0 
3 -1/13 -1/13 -1/13 0/0 0/0 
4 -1/13 -1/13 -1/13 0/0 0/0 
5 -1/13 -1/13 -1/13 0/1 0/0 
6 0/1 0/2 0/0 2 
7 0/0 0/0 0/0 

Table 12: Instance Data — Minimal/Maximal Time Lags qWs'm/gepspVm 
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a 1 2 3 4 5 6 
*11110 e = 1 m = 1 

*1251a 
*1112a 36 16 8 16 8 TO = 2 
*1212a 8 40 40 40 
*1222a 

*1252a 
*1113a 32 28 16 40 40 m = 3 
*1213a 40 8 16 40 4 
*1223a 

*1253a 
*1114a 40 m = 4 

*1214« 
*1224a 16 
*1234« 40 
*1244« 40 
*1254a 8 
*1115a 16 TO = 5 

*1215a 32 
*1225a 24 
*1235a 16 
*1245a 16 
*1255a 40 

e = 2 TO = 1 *2111« e = 2 TO = 1 

*2131« 
*2112a 40 8 24 m = 2 

*2122a 8 16 40 16 
*2132a 24 8 40 24 
*2113a 40 8 40 12 m = 3 

*2123a 40 8 40 40 
*2133« 32 16 8 24 

e = 3 m=l *3111« e = 3 m=l 

*3112a 24 40 8 8 TO = 2 

*3113a 40 24 24 TO = 3 

*3114a 8 40 40 TO = 4 

*3115a 16 32 24 TO = 5 

*3116« 40 40 TO = 6 

*3117a 16 8 TO = 7 

*3118a 40 40 20 40 TO = 8 

*41IIa e = 4 TO = 1 

*4112a 40 TO = 2 

Table 13: Instance Data — Capacity Usages kepama (Missing Entries Are 
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