
Drexl, Andreas; Frahm, Johannes; Salewski, Frank

Working Paper — Digitized Version

Audit-staff scheduling by column generation

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 464

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Drexl, Andreas; Frahm, Johannes; Salewski, Frank (1997) : Audit-staff scheduling
by column generation, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität
Kiel, No. 464, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/177322

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/177322
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 464

Audit-Staff Scheduling

by Column Generation

A. Drexl, J. Frahm, F. Salewski

November 1997

© Do not copy, publish or distribute without authors' permission.

Andreas Drexl, Johannes Frahm, Frank Salewski
Institut für Betriebswirtschaftslehre, Lehrstuhl für Produktion und Logistik
Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24118 Kiel
ema.il: {Drexl, jf, Salewski}®bwl. uni-kiel. de

URL: http: //www. wiso. uni-kiel. de/bwlinst itute/Prod
ftp://ftp.wiso.uni-kiel.de/pub/operations-research

Abstract

When scheduling its audit-staff, the Management of an auditing firm encompasses
a number of decisions. These may be grouped into several categories which differ
markedly in terms of organizational echelon involved, length of the planning horizon
and the planning periods, degree of aggregation of the audit tasks, degree of detail
of the required Information, and decision objective. In this paper we consider the
medium-term problem the focus of which is to assign teams of auditors to the en-
gagements. It constructs a schedule by determining the workload per auditor and
week over a planning horizon of between three and twelve months. The objective
of the model is to maximize the sum of the preferences of all assigned teams. As
restrictions job completion, precedence and resource constraints have to be met.

The problem is formulated as a set partitioning problem. We solve the LP-
relaxation of the set partitioning problem by column generation in order to compute
tight upper bounds. Fortunately, the upper bounds obtained with the column gener­
ation approach are much tighter than those obtained by solving the LP-relaxation of
a 'Standard' project scheduling model formulation. Furthermore, the column gener­
ation process is an order of magnitude faster than solving the LP-relaxation of the
Standard model formulation. Finally, the optimal Solution of the continuous relax-
ation of the set partitioning problem is integral frequently and, hence, we have an
optimal Solution of the overall integer programming problem.

KEYWORDS: AUDIT-STAFF SCHEDULING, ASSIGNMENT OF TEAMS OF AUDIT­
ORS TO ENGAGEMENTS, SET PARTITIONING/COLUMN GENERATION

1 Introduction

When scheduling its audit-staff, the management of an auditing firm encompasses a num­
ber of decisions. These may be grouped into several categories which differ markedly
in terms of organizational echelon involved, length of the planning horizon and the plan­
ning periods, degree of aggregation of the audit tasks, degree of detail of the required
Information, and decision objective. However, traditional audit-staff scheduling models
(Balachandran and Zoltners 1981, Chan and Dodin 1986, Gardner, Huefner, and Lofti
1990, Dodin and Chan 1991, Drexl 1991, Dodin, Elimam, and Rolland 1996, Dodin and
Elimam 1997) are single-level models which try to construct a direct assignment of aud­
itors to tasks and periods. To facilitate algorithmic treatment, all these models are more
or less gross simplifications of practica! planning situations.

These observations led us to conduct a survey among the 200 biggest certified public
accountant (CPA) Arms in Germany. Based upon its results we formulated an hierarchical
model (Salewski and Drexl 1993, Salewski 1995) comprising three levels: The medium-
term planning assigns teams of auditors to the engagements; it constructs a schedule by
determining the workload per auditor and week over a planning horizon of between three
and twelve months. The medium-to-short-term planning disaggregates the results of the
first level for one week and all auditors; the outcome is a schedule for each auditor that
Covers — on the basis of periods of four hours — all engagements in which he is involved

1

in the considered week. The short-term planning is based upon the results of the second
level for one week and one engagement; it assigns the auditors involved in the auditing of
that engagement to the corresponding audit tasks and schedules these tasks to periods of
one hour. Here, we will focus on the first, that is, the medium-term level.

The paper is organized as follows: In Section 2 we dehne the problem formally and
investigate where it is positioned in the context of audit-staff/project scheduling. In
Section 3 the problem is reformulated as a set partitioning problem with an exponential
number of columns. The LP-relaxation of this model can be solved to optimality by
column generation. Next we show in Section 4 that the columns of the the LP-relaxation
can be efficiently computed by means of a shortest path model. The description of the test
bed is provided in Section 5. Section 6 presents the results of an in-depth computational
study. Finally, Section 7 provides a brief summary, along with our conclusions.

2 Problem Setting

The Medium-Term Audit-Staff Scheduling Problem (MASSP) may be characterized by
the following assumptions (cp. Salewski, Schirmer, and Drexl 1997 also):

• A firm employs one or more auditors, which have to audit one or more engagements
within a given planning horizon of normally 13, 26, or 52 weeks.

• Each engagement is made up of one or more phases, e.g. preliminary, intermediate,
and final audit, which in turn can be decomposed into one or more subphases. Some
subphases may not be executed before the completion of certain others (predecessors).
More exactly: the phases of each engagement as well as the subphases of each phase
must be processed in a strictly linear Order which implies that each subphase except
of the first subphase of the first phase of each engagement possesses exactly one
predecessor. Work on some phases may not commence before a specific release
time, or may have to be completed by a certain deadline.

• The availability of some auditors may be restricted in certain periods, e.g. due to
holidays or vacation. In addition, for some periods a dient may want to limit the
time during which the auditing takes place (maximum processing time), e.g. due to
vacation periods or stock-taking activities.

• Often an engagement could be audited by several alternative audit teams (modes).
Different team compositions will result in difFerent auditor processing times. Usually
some modes will be preferable to others: Factors infiuencing the suitability of an
auditor for a specific engagement are e.g. qualification level, industry experience,
familiarity with the clients business, and degree of difficulty of the audit tasks. The
preferability of a mode as a whole may e.g. be linked to the total processing time
needed. Hence, a preference value will be assigned to each mode.

• Finally, mode-dependent minimum and maximum time-lags may be given between
subsequent subphases (which thus belong to the same engagement).

2

The objective then is to assign the overall best-suited teams to the engagements (mode
assignment with maximization of preferences), and to determine when the individual sub-
phases are to be executed (subphase scheduling).

The problem parameters of the MASSP are summarized as follows:
A
E

Cat

Det

&ep
Gepsma

eP
Me

Pe
Qepsp's'm

Qepsp's'm

sev

K eps

number of auditors, indexed by a
number of engagements, indexed by e
preference value corresponding to the processing of
engagement e in mode m
capacity of auditor a in period t
maximum processing time of engagement e in period t
deadline of phase (e,p)
time auditor a needs to process subphase (e,p,s) in mode m
(capacity usage)
release time of phase (e,p)
number of modes of engagement e, indexed by m
number of phases of engagement e, indexed by p
minimum (finish-to-start) time-lag between subsequent
subphases (e,p,s) and (e,p',s') when processing e in mode m
maximum (finish-to-start) time-lag between subsequent
subphases (e, p, s) and (e,p',sf) when processing e in mode m
number of subphases of phase (e,p), indexed by 5; w.l.o.g. each
subphase has a duration of one period
number of periods, indexed by t
set of all immediate predecessors of subphase (e,p, s)

Note, precedence relations expressed via Veps exist only between subphases belonging
to the same engagement. This characteristic is called 'isolating' in Salewski, Schirmer,
and Drexl (1997).

The problem under consideration is formulated as a binary optimization problem in
Salewski, Schirmer, and Drexl (1997). Furthermore, it is shown, that the MASSP is
a special case of the more general project scheduling problem with resource and mode
identity constraints. In addition, it is proven that the (feasibility variant of the) MASSP
is (strongly A^-complete) strongly A^-hard. In order to keep this paper self-contained
we reproduce the project scheduling-based binary optimization model in Appendix A.

Throughout this paper we make use of the illustrative example which is provided in
Appendix B.

3 Set Partitioning Model

The basic idea is to iteratively compute sequences for each of the engagements by means
of a shortest (in fact a longest) path model. From the set of sequences on hand those are
chosen via a set partitioning model which respect the capacity constraints of the auditors
(in the LP-relaxation). A description of basic column generation techniques can be found
in, e.g., Bradley, Hax, and Magnanti 1977.

3

In order to describe the set partitioning model formally we use the following parameters
and variables:

e(i) : engagement e column i is associated with
Se : set of columns representing sequences for engagement e, index i

bgiat : 1, if engagement e is processed within sequence i by auditor a and
finished in period t

c, : objective function coefficient of sequence i related to engagement e(i)
yi : 1, if sequence i is part of the optimal Solution (0, otherwise)

Based on these definitions the (restricted) master problem can be stated by equations
(l)-(4) as a set partitioning model.

max^^Cit/i (1)
e=l i 6<S'-

s.t. ^2 yi = 1 e = l,...,£ (2)
ies*

E
Yjlübeiatyi < Cat Q = 1, . . . , A, t = 1, . . . , T (3)
e=l ieS«

yi € {0,1} e = l ,...,E,ieSe (4)

The objective (1) is to select a subset of columns at minimum costs. Equations (2)
make exactly one sequence per engagement to be part of the Solution, while inequalities
(3) require to respect the capacity constraints of the auditors in each of the periods of the
planning horizon. Finally, restrictions (4) define the decision variables to be binary-valued.

4 Shortest Path Model

For each tupel of engagement and mode (e, m), sequences are computed by solving shortest
path problems. Apparently, these constraints essentially render each (e, m) subgraph,
l < e < E, l<m< Me, to consist of nodes solely (cp. Figure 1 also).

In order to simplify the presentation we relabel the nodes h <— (/>, s, t) and j <- (/>', s', t')
similarly to what is done in equation (15) in Appendix A. Obviously, this relabeling has
to be done for each (e, m) subgraph. Now, let denote

•A/"*"1 : set of nodes of the graph associated with engagement e and mode m
set of arcs of the graph associated with engagement e and mode m
phase p node j € Nem is associated with
subphase g node j € Afem is associated with
period t node j E Mem is associated with

Aem

P(j)
sli)
t(j)

Figure 1 illustrates the preliminary shortest path graph for enagement e = 2 and mode
m — 2 of the instance provided in Appendix B. This shortest path graph shows that — for
a given tupel (e, m) — two nodes (p(h), s(h), t(h)) and (p{j),s(j),t(j)) are connected by

4

an arc only if the conditions (6) to (11) are met. Note that nodes can be connected only
if h and j belong to the same engagement e ('isolating' precedence structure — cp. (5))
and if they are processed in the same mode.

(e,p(h),s(h)) € K,p(j),»(j) (precedence relations) (5)

t{j) ~ t(h) > qe,p(h),s(h),p(j)Aj),rn. + 1 (h,j G A em, h G Ve lP(j)tS(j) — min time lag) (6)
t(j) - t(h) < ?e,p(A),s(A),p(i),s(i),m + 1 (h,j G A em, h € %.,%),,(;) ~ max time lag) (7)

A
ke,p(h),s(h),m,a < De,t(h) (& G N*™ — maximum processing time) (8)

0 = 1
A

22 ke,p(j),s(j),m,a < De,t(j) {j G N* ™ — maximum processing time) (9)
0 = 1

K,p(h) - and ^e,p(i) < t(j) (h,j G A fem — release dates) (10)
Se,P{h) > t{h) and Se,p(j) > t(j) (h,j G M em — deadlines) (11)

Figure 1: Preliminary Shortest Path Graph — e = 2 and m — 2

The following comments shall be made with respect to Figure 1 and, in addition, Figure 2:

• The nodes (1,0,0) and (1,4,14), where we set 4 = Se,pe +1 = ^21 +1 and 14 = T +1,
are dummy source and sink nodes, respectively.

• The nodes (1,1,5), (1,2,5) and (1,3,5) are dotted, because D25 = 0 does not allow
to schedule these subphases in period t = 5, and, hence, they can be eliminated.
Clearly, incident arcs have not to be considered also.

• There must be no arc connecting nodes (1,1,3) and (1,2,7) because of the maximal
time lag.

5

• The dashed nodes (1,2,3), (1,3,3) and (1,3,4) cannot be reached because of minimal
time-lags and, henceforth, are eliminated.

• There is no outgoing arc from the dashed nodes (1,1,7) and (1,2,7) because of min­
imal time lags in connection with the deadline. Removing node (1,2,7) in turn
produces node (1,1,6) to have no successor node and, hence, it can be eliminated
also. Similarly, for node (1,2,4). Likewise, the dashed node (1,3,6) has no ingoing
arc and can be eliminated too.

• Summarizing, Figure 2 provides the reduced shortest path graph where all the dotted
and dashed nodes and the incident (dashed) arcs have been eliminated.

Figure 2: Reduced Shortest Path Graph — e = 2 and m = 2

Now we are going to explain how the arc weights are calculated. Without loss of gen-
erality, consider any engagement-mode-tupel (e,m), i.e. subgraph of the overall shortest
graph. Furthermore, consider any pair of related nodes h € Af6™ and j € Afem of the re­
duced shortest path (sub-)graph and, hence, the arc (h,j) € Aem connecting both nodes.
Now, let denote

< original weight of arc (h,j) 6 A*"1

updated weight of arc (h,j) E Aem

dual variable associated with the one sequence per engagement constraipt
(2), fie € IR
dual variables associated with the capacity constraints (3), 7ra< > 0
1, if arc (h,j) £ Aem is element of the shortest path (0, otherwise)

Then equation (12) formally defines the original weight deff of the arcs. Obviously,
all arcs have to be initialized to zero except the arcs emanating from the single source
node q — (1,0,0). This way the constant preference vem for each engagement-mode-tupel
(e,m) is taken into account appropriately.

Finally, equation (13) explains how to calculate the weights gl™ of all arcs (h,j) € -4em

taking the dual variables nat into account.

6

A
9hj dfrj 22 22 ^e,p(A),s(A),m,o ^a,t(h)

0=1 (h,j)eA'm
(13)

Then the objective function of the shortest path model for engagement e can be stated
by equation (14).

Note that the shortest path graph is acyclic with node weights g^1 € R. Because of
the topological structure, the shortest path problems are solvable in linear time.

Apparently, pricing out occurs if max{Ze 11 < e < E} < 0. This is accomplished
by Computing the shortest path in the overall shortest path graph comprising all the
engagements. In our Implementation, we compute at most E columns per iteration, one
for each engagement e with Ze > 0 (multiple pricing).

A step—by-step description of the overall set partitioning/column generation algorithm
shall now be given where we use the following Dotation:

1. Initialize<Se,e = 1

2. Solve the LP-relaxation of the set partitioning model SPP(S); e = 0.

3. e = e + 1.

4. Solve C(7(e); if Zf?^ > 0 then set S = S U (|S| + 1).

5. If e < E then go to Step 3.

6. If at least one e € {1,..., E} with > 0 has been computed then go to Setp 2.

Apparently, our algorithm generates at most E columns per iteration (multiple pricing).
In Section 6 we will show, that this variant produces slightly more columns than the single
pricing (i.e. one column per iteration) counterpart but is faster on the average because
less LPs have to be solved.

(14)

S : current set of columns, i.e. S = U ... U Se U ... U
SPP(S) : (restricted) maater problem/set partitioning model defined for set S

CG(e) : column generation/shortest path model for engagement e

^ca(e) '• optimal objective function value of CG(e) defined for the current set
of columns S

Algorithm

7. Stop.

7

5 Test Bed

The set of instances which is used for experimental purposes is identical to the one defined
in Salewski, Schirmer, and Drexl (1997). In order to keep this paper self-contained we
outline in the following the procedure followed for generating a sample of test instances
of practical relevance. We also describe the design of an extensive experimental study
conducted, along with the definitions of the Performance measures used to evaluate the
results of the study.

Even in current literature, the systematic generation of test instances does not receive
much attention. For the well-researched field of project scheduling, Kolisch, Sprecher, and
Drexl (1995) report that "very little research concerned with the systematic generation of
benchmark instances has been published. [...] most efforts are only briefly described."

Generally, two possible approaches can be found adopted in literature when having to
come up with test instances. First, practical cases. Their strength is their high practical
relevance while the obvious drawback is the absence of any systematic structure allowing
to infer any general properties. Even the 110 instances of the widely known Patterson-
set (Patterson 1984), which have become a quasi benchmark in project scheduling, have
been collated from different sources, rather than being generated from a systematic design.
Thus, even if an algorithm performs good on some practice cases, it is not guaranteed
that it will continue to do so on other instances as well. Second, artificial instances. Since
they are generated randomly according to predefined specifications, their plus lies in the
fact that Atting them to certain requirements such as given probability distributions poses
no problems. A detailed such procedure for generating project scheduling instances has
been proposed by Kolisch, Sprecher, and Drexl (1995)European Journal of Operational
Research. However, they may reflect situations with little or no resemblance to any prob­
lem setting of practical interest. Hence, an algorithm performing well on several such
artificial instances may or may not perform satisfactorily in practice.

Therefore, we decided to devise a combination of both approaches, thereby attempting
to keep the strengths of both approaches while avoiding their drawbacks. Within the cited
survey among the 200 biggest CPA firms in Germany, we asked the respective official in
charge of staff planning (if existent) or one of the firm's partners to provide details about
length of planning horizon, number of auditors, number and structure of audit engage-
ments, auditor working capacities (working hours per day or week) and possible variations
therein (e.g. due to vacation, training), etc. In addition, we carried out Interviews with
several experts in the field of auditing to clarify our understanding of the peculiarities
of the auditing sector. Then, to ensure a systematic and consistent generation of the in­
stances, for each of the parameters of the MASSP a domain and a discrete distribution
function on the domain were defined, based upon the survey and the interview results.
From these definitions, a test bed of representative instances was generated randomly,
using a Classification scheme to build instances with specific properties. In this way we
tried to construct instances reflecting the specifics of audit-staff scheduling in the industry
as closely as possible, yet to employ a systematic design for the generation procedure.

We assumed that only two instance-related factors do have a major influence on the
Performance of a Solution method, viz. the size and the tractability of the instance attemp-

8

ted. Although the size of an instance is determined by the length of the planning horizon,
the number of subphases, and the number of modes, Statistical analyses of the survey res­
ults found all these to depend on the length of the planning horizon. In the sequel, three
types of instances will be distinguished with respect to their size: the planning horizon
equals 13 weeks for small instances (13 weeks with up to 30 auditors and 95 engagements),
26 weeks for medium-size instances (with up to 55 auditors and 280 engagements), and
52 weeks for large instances (with up to 125 auditors and 880 engagements). In addition,
very small instances (13 weeks with up to 6 auditors and 10 engagements) were generated.
While these instances are too small to bear practical relevance, they can be solved to
optimality with Standard MlP-solvers and thus can be used as benchmarks.

The tractability of an instance intends to reflect how easy or difficult it is to solve. In our
study, the auditor capacities are assumed to be the only factor influencing the tractability
of an instance: the higher the auditor capacities are, the easier the corresponding instance
is ceteris paribus to solve since its Solution space becomes larger. Accordingly, the auditor
capacities are calculated from the average expected demand, adjusted by a multiplicative
factor RS (resource strength). Throughout this work, three types of instances will be
distinguished with respect to their tractability: easy instances where RS is taken equal to
3.5, medium instances where RS equals 2.5, and hard instances where RS is 1.5.

Clearly, the Performance of an algorithm cannot be evaluated from running it on in-
feasible instances. It is therefore noteworthy that, in spite of the strong Af'P-completeness
of the associated feasibility problem, it was possible to rig up the design of the (complic-
ated) generation procedure in a way guaranteeing that for each constructed instance there
exists at least one provably feasible Solution.

Due to the computational effort required to attempt a sample of all sizes, the scope of
the experiment was limited to include only small and very small instances. Furthermore,
for instances of these sizes lower and upper bounds are available from literature in order
to benchmark the results obtained with the set partitioning/column generation approach.

6 Computational Results

The methods described earlier have been imlemented using AMPL (cp. Fourer, Gay,
and Kernighan 1993) and the CPLEX callable library (cp. Bixby and Boyd 1996) on
an IBM RS 6000 F40 Workstation with 192 MB RAM.

Each instance has been solved starting with E initial columns, one for each engagement
e. The computational results of our experiments are summarized in Tables 1 and 2. The
CPU-times required by our experiments are summarized in Tables 3 and 4. The symbols
have the following meaning:

9

identification number of instances
instances whose tractability is easy (likewise medium and hard)
best feasible Solution (lower bound) known so far (computed with the
tabu search procedure of Salewski 1996)
objective function value computed by column generation
column generation Solution integral
optimal objective function value of the LP-relaxation of the model
(16) to (22) (upper bound)
CPU-time in sec required by the CPLEX solver for the
column generation process (without AMPL times)
CPU-time in sec required by CPLEX for the Solution of the
LP-relaxation of the model (16) to (22)

The result tables can be interpreted as follows:

• The set partitioning/column generation approach produces an integral Solution for
almost all of the 30 very small instances. These results verify the lower bounds
produced with tabu search to be very good also. Moreover, the LP-relaxation of the
model (16) to (22) is tight for the very small instances.

• For the small instances only one data set can be solved to optimality by the column
generation approach. Eight (one) of the easy (medium) instances are (is) solved to
optimality also because the lower and the column generation-based upper bounds
coincide.

• In general the upper bounds produced by set partitioning/column generation are far
better than the upper bounds of the model (16) to (22). This is due to the following
fact: In the LP-relaxation of the model (16)-(22) implicitely the constraints (21)
imposed by the maximum processing times Det per engagement e and per period
t are relaxed also. On the other hand, these constraints are taken into account by
conditions (8) and (9) when constructing the shortest path graph, and, hence, cannot
be relaxed implicitely when solving the LP-relaxation of the set partitioning model.

• While the LP-relaxation of the model (16) to (22) can be solved in zero sec for the
very small instances, the small ones already require a considerable amount of CPU-
time. Especially for the hard instances the CPU-times increase drastically while the
quality of the upper bounds deteriorates.

Table 5 shows the sizes of the last master problems in terms of the columns generated.
Apparently, for the small instances the number of columns generated increases with in-
creasing problem hardness. That is, easy instances need less columns than the medium
ones which in turn need less than the hard ones.

For getting the results presented so far, we generated at most E columns per iteration,
one for each enagement e with Ze > 0 (multiple pricing). To reveal that this is indeed a
good idea, we also show some results when we generated at most one column per iteration
which is determined by the overall shortest path (single pricing). Table 6 shows the figures

no. :
easy :
LB :

CG :
• :

UB :

CG :

LP :

10

easy medium hard
no. LB CG UB LB CG UB LB CG UB

1 43 43* 43 43 43* 43 43 43* 43
2 35 35* 35 35 35* 35 35 35* 35
3 44 44* 44 44 44* 44 43 43.81 43.81
4 44 44* 44 44 44* 44 44 44* 44
5 45 45* 45 45 45* 45 45 45* 45
6 41 41* 41 40 40.9 41 39 39.74 40.82
7 47 47* 47 47 47* 47 47 47 47
8 44 44* 44 44 44* 44 44 44 44
9 40 40* 40 40 40* 40 40 40* 40

10 47 47* 47 47 47* 47 47 47* 47

Table 1: Computational Results — Very Small Instances

easy medium hard
no. LB CG UB LB CG UB LB CG UB

1 302 302 304.70 297 300.20 303.60 264 291.36 296.94
2 299 299 304.71 292 297.97 303.67 274 288.78 297.91
3 542 543 543 510 541.62 541.95 433 511.64 524.85
4 180 180 184 173 179.60 184 162 170.63 176.75
5 298 298 299.75 295 298 299.75 267 293.59 296.15
6 434 434 434 420 432.09 433.03 386 418.85 424.34
7 751 751 753 750 751 753 666 742.87 747.16
8 317 317 319.97 309 317 319.97 278 307.50 316.45
9 380 380 380 380 380 380 357 378.05 378.93

10 414 414* 414 413 414 414 363 403.29 409.07

Table 2: Computational Results — Small Instances

easy medium hard
no. CG LP CG LP CG LP

1 0.28 0.00 0.28 0.00 0.51 0.00
2 0.21 0.00 0.20 0.00 0.37 0.00
3 0.20 0.00 0.17 0.00 0.21 0.00
4 0.28 0.00 0.24 0.00 0.47 0.00
5 0.26 0.00 0.28 0.00 0.39 0.00
6 0.36 0.00 0.50 0.00 0.80 0.00
7 0.45 0.00 0.51 0.00 0.69 0.00
8 0.38 0.00 0.44 0.00 0.57 0.00
9 0.52 0.00 0.57 0.00 1.02 0.00

10 0.52 0.00 0.44 0.00 0.83 0.00

Table 3: CPU-Times — Very Small Instances

11

easy medium hard
no. CG LP CG LP CG LP

1 3.42 2.92 5.30 4.51 10.81 11.35
2 3.12 1.99 4.66 2.32 7.91 8.95
3 9.69 6.85 15.88 15.24 33.81 80.85
4 1.61 0.92 3.05 1.34 3.67 2.49
5 2.72 2.22 5.54 3.54 10.88 9.56
6 4.33 3.63 5.45 8.45 11.38 23.28
7 6.22 10.56 10.81 17.01 62.92 146.95
8 2.49 2.71 5.53 6.33 15.79 18.41
9 4.24 2.81 3.26 3.78 10.75 9.25

10 3.36 3.51 6.94 4.35 19.96 20.30

Table 4: CPU-Times — Small Instances

no. easy medium hard
1 123 143 200
2 121 130 198
3 224 279 374
4 80 100 115
5 123 141 215
6 168 195 261
7 285 328 484
8 120 138 217
9 169 165 240

10 165 202 274

Table 5: Size of the Last Master Problem — Small Instances

no. easy medium hard
1 126 142 186
2 126 139 180
3 214 252 333
4 81 96 107
5 127 141 202
6 173 191 253
7 296 320 428
8 127 139 203
9 169 175 217

10 168 187 262

Table 6: Size of the Last Master Problem — Small Instances — One Column Per Iteration

12

for the size of the last master problem. Comparing this with Table 5 in general less columns
have to be generated. Unfortunately, the run-time upon termination is much shorter when
more than just one column is generated per iteration. This is due to the fact that far more
LPs have to be solved in the case of single pricing. Hence, multiple pricing is advantageous.

7 Summary and Conclusions

When scheduling its audit-staff, the management of an auditing firm encompasses a num­
ber of decisions. These may be grouped into several categories which differ markedly
in terms of organizational echelon involved, length of the planning horizon and the plan­
ning periods, degree of aggregation of the audit tasks, degree of detail of the required
Information, and decision objective. However, traditional audit-staff scheduling models
are single-level models which try to construct a direct assignment of auditors to tasks
and periods. To facilitate algorithmic treatment, all these models are more or less gross
simplifications of practical planning situations.

In this paper, we introduce an audit-staff scheduling model which comprises many fea-
tures being important with respect to audit management in practice. For dealing with this
model, a set partitioning/column generation approach is developed. The LP-relaxation
of the set partitioning problem is solved by column generation in order to compute tight
upper bounds. Frequently, the Solution of the continuous relaxation is integral and, hence,
an optimal Solution is obtained.

Acknowle dgement

This work was done with partial support from the Deutsche Forschungsgemeinschaft. Fur-
thermore, we are indepted to Knut Haase who motivated us to start thinking about audit-
staff scheduling and column generation.

References

[1] BALACHANDRAN, B.V. AND A.A. ZOLTNERS (1981), "An Interactive Audit-Staff
Scheduling Decision Support System", The Accounting Review, Vol. 56, pp. 801-812.

[2] BARTUSCH, M., R.H. MÖHRING, AND F.J. RADERMACHER (1988), "Scheduling
Project Networks with Resource Constraints and Time Windows , Annais of Opera­
tions Research, Vol. 16, pp. 201-240.

[3] BlXBY, N. AND E. BOYD (1996), Using the CPLEX Callable Library, CPLEX Op-
timization Inc., 7710-T Cherry Park, Houston.

[4] BRADLEY, S.P., A.C. HAX, AND T.L. MAGNANTI (1977), Applied Mathematical

Programming, Addison-Wesley, Reading.

13

[5] CHAN, K.H. AND B. DODIN (1986), "A Decision Support System for Audit-StafF
Scheduling with Precedence Constraints and Due Dates", The Accounting Review,
Vol. 61, pp. 726-733.

[6] DODIN, B. AND K.H. CHAN (1991), "Application of Production Scheduling Meth-
ods to External and Internal Audit Scheduling", European Journal of Operational
Research, Vol. 52, pp. 267-279.

[7] DODIN, B. AND A.A. ELIMAM (1997), "Audit Scheduling with Overlapping Activit-
ies and Sequence Dependent Setup Costs", European Journal of Operational Research,
Vol. 97, pp. 22-33.

[8] DODIN, B., A.A. ELIMAM AND E . ROLLAND (1996), "Tabu Search in Audit Schedul­
ing", Working Paper, Universityof California/Riverside.

[9] DREXL, A. (1991), "Scheduling of Project Networks by Job Assignment", Manage­
ment Science, Vol. 37, pp. 1590-1602.

[10] FOURER, R., D.M. GAY AND B.W. KERNIGHAN (1993), AMPL — A Modelling
Language for Mathematical Programming, The Scientific Press, San Francisco.

[11] GARDNER, J.C., R.J. HUEFNER, AND V. LOFTI (1990), "A Multiperiod Audit Staff
Flanning Model Using Multiple Objectives: Development and Evaluation", Decision
Sciences, Vol. 21, pp. 154-170.

[12] KOLISCH, R., A. SPRECHER, AND A. DREXL (1995), "Characterization and Gen­
eration of a General Claas of Resource-Constrained Project Scheduling Problems",
Management Science, Vol. 41, pp. 1693-1703.

[13] PATTERSON, J.H. (1984), "A Comparison of Exact Approaches for Solving the
Multiple Constrained Resource, Project Scheduling Problem", Management Science,
Vol. 30, pp. 854-867.

[14] PRITSKER, A.A.A., W.D. WATTERS, AND P.M. WOLFE (1969), "Multiproject
Scheduling with Limited Resources: A Zero-One Programming Approach", Manage­
ment Science, Vol. 41, pp. 93-108.

[15] NEUMANN, K. AND J. ZHAN (1995), "Heuristics for the Minimum Project-Duration
Problem with Minimal and Maximal Time Lags under Fixed Resource Constraints",
Journal of Intelligent Manufacturing, Vol. 6, pp. 145-154.

[16] SALEWSKI, F. (1995), Hierarchische Personaleinsatzplanung in Wirtschaftsprüfungs­
gesellschaften, Physica, Heidelberg.

[17] SALEWSKI, F. (1996), Tabu Search Algorithms for Project Scheduling Under Resource
and Mode Identity Constraints, IFORS 14th Triennial Meeting, Vancouver, July 9.

14

[18] SALEWSKI, F. AND A. DREXL (1993), "Personaleinsatzplanung in Wirtschafts-
priifungsgesellschaften — Bestandsaufnahme und konzeptioneller Ansatz", Zeitschrift
für Betriebswirtschaft, Vol. 63, pp. 1357-1376.

[19] SALEWSKI, F., A. SCHIRMER, AND A. DREXL (1997), "Project Scheduling under
Resource and Mode Identity Constraints: Model, Complexity, Methods, and Applic­
ation", European Journal of Operational Research, Vol. 102, S. 88-110.

Appendix A: Project Scheduling-based Mathematical

Programming Formulation

To simplify the mathematical formulation of the problem, we perform some preliminary
computations. First, the indices e, p, s are replaced by

e—1 Pg' p—1
j = g{e, p,s)=^2Y, -V + 2] S*v' + J (15)

e'=l p'=1 p'=l

Thus, the parameters , Qepsp' s'm? Qepsp* s'm and faepsma. become Qjj'm? ^Ijj'm and
kjma. Then, let denote /e = g(e, 1,1) the first and le = g(e, Pe, Sepr) the last subphase of
each engagement e. Further, the maximum lags can be transformed into minimum lags
(with a corresponding update of Vj) (cf. Bartusch, Möhring, and Radermacher 1988), and
from the time-lags, the release times, and the deadlines earliest and latest finish times
EFj and LFj can be computed, respectively.

Figure 3: Chain Structure of Time Lags

Note that our problem setting Covers not only the Standard type of time-lags, namely
minimum time-lags, but also the less common maximum time-lags. These can easily
be converted into minimum time-lags using the transformation introduced in Bartusch,
Möhring, and Radermacher (1988). It is quite obvious that the presence of maximum lags

15

tends to render scheduling problems even more difficult. In fact, to our knowledge there
are only very few results so far on the Performance of Solution procedures for this kind of
Problems (cf. e.g. Neumann and Zhan 1995). The presence of minimum and maximum
time-lags between subsequent subphases, along with their special sequence, which arises
from the above mentioned decomposition process, imply for each engagement a chain
structure of the time lags as illustrated in Figure 3, where each node has the format
e,p,s . Each structure may be seen as being composed of arc-disjoint cycles of length 2,

one between first and second subphase, one between second and third one, and so forth
up to the last cycle between last but one and last subphase. Finally, recall from Section 2
that precedence relations exist only between subphases belonging to the same engagement,
a characteristic denoted as 'isolating'.

Now, the assignment of subphases to modes and periods can be represented by binary
variables Xjmt = 1, if subphase j is performed in mode m and completed in period t
(xjmt = 0, otherwise). This allows to formulate a binary program — using the general
framework given in Pritsker, Watters, and Wolfe (1969) — as follows:

E Me LFu
maX 23 23 V'm 2 Xhmt (16)

e=l m=l t=EFje

Me LFU

S.t.) ' xftmt — 1 e = 1, . . .,£? (17)
m=l t=EFf,

LFU LFj

23 23 '
t=EF/e t=EFj

Me LFj> M, LFj

m=l t=EFji
(19)

BFJ f 6 Vj
E lt _

22 22 23 kjma Xjmt < cat t _!' (20)
e=l m=l j-ft

t€{EFj,...,LFj>

m=1 i=U.

e = 1,...

e = 1,.. .,E 1—4 +

<

II

m = 1,. • •,Me

e = 1,.. .,E <

II ••Je

II Ö ;A
t = 1,... ,T

e = 1,... ,,E
a = 1,.. .,A

II ,T

II .,E
3 — fet • •
m = 1,.. .,Me

II Es

3
) ..., LFj

(21)

(22)

The objective function (16) maximizes the total team preference over all engagements.
Due to (17) it suffices to include only one subphase of each engagement in (16). The choice
of the first one is arbitrary. The subphase completion constraints (17) stipulate that the
first subphase of each engagement is completed exactly once in one of its modes. The

16

mode identity constraints (18) guarantee for each engagement that if the first subphase is
completed then the other subphases will be completed as well, and in the same mode as
the first one. Thus, (17) and (18) combine to ensure that all subphases of each engagement
will be processed in the same mode, and that all of them will be completed. The temporal
constraints (19) represent the precedence order on the subphases and enforce respection
of the time-lags between them. The auditor capacity constraints (20) assure that for
no auditor his per-period workload exceeds his capacity. In this regard, each auditor is
treated as a renewable resource. The engagement capacity constraints (21) guarantee that
for no engagement and no auditor the maximum per-period processing time is exceeded.
In this regard, each engagement is treated as a renewable resource.

Table 7 summarizes the instances and, in addition, states the problem size in terms of
the number of binary variables of the model formulation (16) to (22).

size # weeks # auditors # engagements ^variables
very small 13 6 10 10,400

small 13 30 95 98,800
medium-size 26 55 280 728,000

large 52 125 880 5,948,800

Table 7: Instance Characteristics

Appendix B: Illustrative Example

Throughout this paper we make use of the instance provided in Tables 8, 9, 10, 11, 12,
and 13, respectively. Note, the index i serves to interrelate the precendence relations with
respect to Tables 11 and 12.

E = --4,T=13,A = 6

Mi = 5, Mg = 3, M3 = 8, M4 = 2
f, = 11 1

° II II 11

Sn — 1, S12 — 5, if>2l — 3, »$41 — S51 = 1
cat = 96, a = 1,... ,6,t = 1, • • ,13

Det II O

CG II 1—>

Ib
. II 1—>

, 13, £>25 = 0

Table 8: Instance Data — Basic Parameters

17

e/m 1 2 3 4 5 6 7 8

1 4 5 9 2 1
2 10 4 2
3 7 6 6 5 2 5 2 1
4 5 7

Table 9: Instance Data — Preference Values vem

e/p 1 2
1 1 7 ^ep
2 3
3 6
4 5
1 2 12 &ep
2 7
3 8
4 6

Table 10: Instance Data — Release Times Aep and Deadlines Sep

Vm = 0 V2u = 0 V311 = 0 ^411 = 0
1=1 i = 2 » = 3 lO II TT II

e = 1 ={(1,1,1)} Vl22 = {(1,2,1)} %„ = {(1,2,2)} Vi24 = {(1,2,3)} %„ = {(1,2,4)}
* = 6 t = 7

e = 2 V212 = {(2,1,1)} V213 = {(2,1,2)}

Table 11: Instance Data — Predecessors Vep3

i/rn 1 2 3 4 5 e
1 5/13 0/13 0/13 1/13 1/13 1
2 0/0 -1/13 -1/13 0/0 0/0
3 -1/13 -1/13 -1/13 0/0 0/0
4 -1/13 -1/13 -1/13 0/0 0/0
5 -1/13 -1/13 -1/13 0/1 0/0
6 0/1 0/2 0/0 2
7 0/0 0/0 0/0

Table 12: Instance Data — Minimal/Maximal Time Lags qWs'm/gepspVm

18

a 1 2 3 4 5 6
*11110 e = 1 m = 1

*1251a
*1112a 36 16 8 16 8 TO = 2
*1212a 8 40 40 40
*1222a

*1252a
*1113a 32 28 16 40 40 m = 3
*1213a 40 8 16 40 4
*1223a

*1253a
*1114a 40 m = 4

*1214«
*1224a 16
*1234« 40
*1244« 40
*1254a 8
*1115a 16 TO = 5

*1215a 32
*1225a 24
*1235a 16
*1245a 16
*1255a 40

e = 2 TO = 1 *2111« e = 2 TO = 1

*2131«
*2112a 40 8 24 m = 2

*2122a 8 16 40 16
*2132a 24 8 40 24
*2113a 40 8 40 12 m = 3

*2123a 40 8 40 40
*2133« 32 16 8 24

e = 3 m=l *3111« e = 3 m=l

*3112a 24 40 8 8 TO = 2

*3113a 40 24 24 TO = 3

*3114a 8 40 40 TO = 4

*3115a 16 32 24 TO = 5

*3116« 40 40 TO = 6

*3117a 16 8 TO = 7

*3118a 40 40 20 40 TO = 8

*41IIa e = 4 TO = 1

*4112a 40 TO = 2

Table 13: Instance Data — Capacity Usages kepama (Missing Entries Are

19

