
Drexl, Andreas; Kimms, Alf

Working Paper — Digitized Version

Sequencing JIT mixed-model assembly lines under station
load- and part usage-constraints

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 460

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Drexl, Andreas; Kimms, Alf (1997) : Sequencing JIT mixed-model assembly
lines under station load- and part usage-constraints, Manuskripte aus den Instituten
für Betriebswirtschaftslehre der Universität Kiel, No. 460, Universität Kiel, Institut für
Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/177320

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/177320
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 460

Sequencing JIT Mixed-Model

Assembly Lines Under Station Load—

and Part Usage—Constraints

Andreas Drexl and Alf Kimms

November 1997

© Do not copy, publish or distribute without authors' permission.

Paper presented at the Workshop on Scheduling in Computer- and
Manufacturing-Systems, Schloß Dagstuhl/Germany, June 1997.

Andreas Drexl, Alf Kimms
Institut für Betriebswirtschaftslehre, Lehrstuhl für Produktion und Logistik
Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24118 Kiel
email: {Drexl, Kimms}Obwl.uni-kiel.de
URL: http://www.wiso.uni-kiel.de/bwlinst itute/Prod

ftp://ftp.wiso.uni-kiel.de/pub/operations-research

Abstract

In the past several years, there has been growing interest in the problem of se­
quencing mixed-model assembly lines. So far most research concentrated on the
'level scheduling problem' while only some papers have been published on the 'car se-
quencing problem'. The subject of the level scheduling problem is to derive 'smooth'
production schedules while the car sequencing problem takes sequencing constraints
related to Station loads and part usages into account. The former in general is
a difficult optimization problem while for the latter even the feasibility problem is
WP-complete.

This paper presents a nonlinear integer programming model which Covers both
the balancing requirements of level scheduling and the constraints of car sequencing.
For the Solution of the problem we present a set partitioning/column generation ap-
proach. Solving the LP-relaxation of this model by column generation provides tight
lower bounds for the optimal objective function value.

KEYWORDS: MIXED-MODEL ASSEMBLY LINES, JUST-IN-TIME PRODUCTION,
STATION LOAD-/PART USAGE-CONSTRAINTS, SET PARTITIONING/COLUMN GEN­
ERATION

1 Introduction

In many assembly systems, products are mounted on a conveyor belt. Operators or Install­
ation teams move along with the belt while working on a product. In general, an operator
can work on a product only when it is at his Station. If the operator does not finish work on
a product before it leaves his Station, there are two alternative approaches for completing
what so far has not been done. Usually, in the U.S., utility workers are employed to finish
work left undone by the primary operator. In Japan, the operator pushes a stop button
whenever he is unable to finish his work. Clearly, the management philosophy behind such
distinct approaches is quite different. Anyway, it is desirable to distribute products with
high work content evenly in order to reduce the risk of conveyor stoppage or the cost for
utility work (cp., for instance, Tsai 1995).

Mixed-model assembly lines with negligible change-over between the products enable
diversified small-lot production. Jüst-in-Time (JIT) production methods of the 'pull'
variety can be used to control such systems. The use of JIT methods makes it possible
to satisfy customers' demands for several products without holding large inventories and
without incurring large shortages.

When several models of the same general product have to be assembled on one common
line the underlying design problem has two components: (i) a long-term planning problem
called line balancing and (ii) a short-term planning problem known as model sequencing.
In the line balancing problem, the tasks required to assemble the product have to be
allocated to Workstations. Each Station has to be designed, tooled and equipped with
respect to the tasks assigned to it and, hence, the allocation is based more on Strategie than
operational issues. An analysis of these topics can be found in, for instance, Thomopoulos
1967, Scholl 1995, and van Zante-de Fokkert and de Kok 1997.

1

In the model sequencing problem, the shop floor is the focus of attention where we have
to decide about the specific order in which the different models have to be launched onto
the line. Usually, the demand rate of the models varies and the problem must be solved
periodically.

Due to the pull nature of JIT systems, once the sequence of the models is fixed at
the final assembly level, the production schedules at all preceeding levels are inherently
fixed also. Therefore, the major problem to be solved as a prerequisite for the effective
utilization of JIT systems is to determine the sequence in which the different models have
to be scheduled at the final assembly level.

In general, the final assembly level consists of several stations where each is serviced
by a part feeder (cp. the shop floor layout of a final assembly line in Figure 1) or one
feeder provides parts for several stations (cp., e.g., Sumichrast and Clayton 1996). In
such production environments we have to take care about the Station loads and about the
part usages which both are a function of the sequence.

In practice, usually subsequences consisting of, for instance, six copies are used in a
cyclic manner. These subsequences work 'reasonable good' and they evolve by experience,
not by analysis. However, oftenly problems arise because of neglecting interdependencies
between consecutive subsequences. The methods developed in this paper allow to evaluate
subsequences consisting of about 20 copies in an analytical way. Hence, the contribution
of our work shall be to reduce the number and the amount of problems arising because of
not considering interdependencies between consecutive subsequences.

Figure 1: Final Assembly Line — Shop Floor Layout

\ i 1 i i 1

part
feeder

1

part
feeder

2

part
feeder

3

1 1 1 1 1 1

work
Station

1

work
Station

2

work
Station

3

Many assembly lines, such as those in the automobile industry, have dozens or hun-
dreds of stations the Performance of which is affected by customer-selected options on the
products assembled. However, most assembly line sequencing algorithms developed for
situations where the various options require significantly different amounts of processing
time cannot consider so many stations or options effectively. Then the analytical methods

2

of Rachamadugu and Yano 1994 which compute a "criticality index" for selecting stations
shall be used.

In addition to balancing and sequencing, there are several relevant issues such as lead
times, work in process/kanbans, etc. which have to be considered also in order to design
and operate JIT systems efficiently; we refer to the work by Bitran and Chang 1987,
Krajewski, King, Ritzman, and Wong 1987, and Berkley 1992.

The problem dealt with in this paper may be characterized also as a one machine
sequencing (or scheduling) problem with difficult sequencing constraints and with irregulär
criteria (which are not monotone in the job completion times). A survey of recent results
for this area can be found in Hoogeven, Lenstra, and van de Velde 1997.

The exposition of our work is as follows: In Section 2 we review previous work. Section
3 introduces a set partitioning/column generation approach for the mixed-model assembly
line sequencing problem under Station load- and part usage constraints. The computa-
tional evaluation is presented in Section 4. Section 5 outlines some of the special cases
covered by the set partitioning/column generation model. In addition, some extensions
are discussed also. Finally, Section 6 provides a summary and an outlook for future work.

2 Review of Previous Work

In this section first we describe one of the fundamental models developed for level schedul­
ing and discuss related work. Second, we present a formal model of the car sequencing
problem.

Throughout the paper we use the following basic notation:
V : set of variants, index v

Dv : set of copies (demand) to be produced of variant v\ for the sake of simplicity
the copies are represented by numbers, i.e. Dv = {1,..., |D„|}, index t

T : total production volume (periods, cycles), i.e. T = {1,..., J2vev | AJ|},
index t

2.1 Level Scheduling

The focus of most of the work done over the past years in JIT sequencing was on scheduling
Problems with penalties for both earliness and tardiness. Baker and Scudder 1989 give
a comprehensive review of earlier research in this area. The main objective of another
important class of scheduling problems considered in JIT production is the minimization
of rates with which processes within a system supply their Outputs. The main idea to
achieve this is keeping the quantity of each product manufactured per unit time as close
as possible to the demand for that product per unit time.

As outlined by Kubiak 1993 a JIT system, because being a pull system, initiates a
supply process only if there is is another process that requires the supplying process'
Output (raw material, part, subassembly). Consequently, the final assembly line is the
focus of scheduling.

Miltenburg 1989 has formulated the problem as a nonlinear integer programming prob­
lem where the objective is to minimize the total deviation of actual production from the

3

desired production rates. He developed an exact algorithm with exponential (in the number
of products) worst case complexity, and, in additon, two heuristicprocedures. Miltenburg,
Steiner, and Yeomans 1990 propose a dynamic programming algorithm whose run time
is also exponential in the number of products. Kubiak and Sethi 1991, 1994 subsequently
developed an optimization algorithm that solves the problem and its extensions in polyno-
mial time in the total demand for all products produced on the line over a given planning
horizon. Similarly, Inman and Bulfin 1991 proposed a formulation which can be solved to
optimality by ordering the copies according to the earliest due date (EDD) rule.

In order to describe the approach by Inman and Bulfin 1991 formally we use the
following parameters and variables:

ideal position of copy i G Dv of variant v G V
xVti : positive integer denoting the period in which copy i G Dv of variant v G V

is scheduled

A formal definition of the ideal positions fVli,v G V,i G Dv, is given by equation (1).

1/2) \T\/\DV\ (1)

Based on these definitions the level scheduling model can be stated by the eypressions
(2H5).

min £ (i„,i - (2)
i;6 V i€Dv

s.t. xv>i+1 > xV)i + 1 V G V,i G Dv \ {|D^|} (3)

xv,i f v €V,i € Dv, v' G V, i' G Dv>, (v, i) ^ (v\ i') (4)

xv>i G T veV,ieDv (5)

The objective (2) minimizes the sum of deviations of the scheduled periods from the
ideal ones. Inequalities (3) restrict the decision variables to be monotically increasing
from copy to copy for each variant. Constraints (4) require the variables to be pairwise
disjoint while (5) defines the domain of the variables. Clearly, constraints (4) are not in
the Standard format of integer programs. They simply require that exactly one unit can be
produced in each period. Inman and Bulfin 1991 observe that the model (2)-(5) describes
a single machine scheduling problem with penalties for both earliness and tardiness, where
each copy of a product is a separate job and is the due date of Job (v,i). They prove
that the level scheduling model (2)-(5) can be solved to optimality by ordering the copies
according to the EDD rule.

For illustrative purposes consider the instance given in Table 1 having \V\ = 6 variants
and a planning horizon of |T| = 14. Note that the first two columns and rows two to five
can be skipped for the moment. For this instance the ideal positions are reproduced in
Table 2. Finally, Table 3 provides the optimal level schedule with an objective function
value of 10.8 (disregard rows three to six until later). Note, in this instance option o = 3
could be deleted because |Z)2| + |Dg| = 3 < i/3 = 3.

A practica! example of balancing the production of Coronas at Toyota is given by
Monden 1983. 250 sedans, 125 hardtops, and 125 wagons must be produced within an

4

eight-hour production shift which essentially means that one car leaves the shop floor
every minute. A balanced production schedule would be sedan, wagon, sedan, hardtop,
sedan, wagon, sedan, hardtop, etc.

Apparently, the level scheduling model (2)-(5) does not take care about the work
contents of the products which might be different. Hence, it neither allows to control the
risk of conveyor stoppage nor enables to reduce the cost for Utility work.

Recently, some other level scheduling topics have been addressed in the literature.
First, the min-max criterion has been the subject of research instead of the min-sum
criterion in the paper of Steiner and Yeomans 1993. Second, Steiner and Yeomans 1994
study the Pareto optimality Version of the problem which has both, the min-sum and
the min-max objective. Finally, multi-level approaches can be found in Miltenburg and
Goldstein 1991, Miltenburg and Sinnamon 1992, Steiner and Yeomans 1996, and Kubiak,
Steiner, and Yeomans 1997.

2.2 Car Sequencing

The subject of the so-called 'car sequencing' approach (cp. Parello, Kabat, and Wos 1986
and Parello 1988) also is to derive schedules for the final assembly line. In contrast to
level scheduling it is based on the assumption that the different options (i.e. parts such as
engines, transmissions, accelerators, number of doors) required by the different variants do
affect Station loads and that the implied part demand for the Output of the feeder process
has to be taken into account also. More precisely, the goal is to produce a sequence for
the final assembly level while taking maximal Station loads (capacities) and implied part
usages explicitely into account via sequencing constraints. Clearly, to look at Station loads
reduces the risk of stopping the conveyor while the part usage aspect avoids shortages.

The central part of the car sequencing approach shall be explained by means of the
following example (which is of relevance in the final assembly of cars): Assume that 60%
of the cars manufactured on the line require the option 'sun roof'. Moreover, assume that
five cars (copies) pass the Station where the sun roofs are installed during the time for the
Installation of a single copy. Then, three operators (Installation teams) are necessary for
the Installation of sun roofs. Hence, the capacity constraint of the final assembly line for
the option 'sun roof' is three out of five in a sequence, or "3 : 5" for short. Constraints
with respect to the used parts can be dervied similarly.

In order to describe the car sequencing model formally we use the following parameters
and variables:

0 : set of options, index o
aVt0 : 1, if variant v € V requires option o € 0 (0, otherwise)

H0 : N0 : at most Ha out oi N0 successively sequenced copies may require option
o e 0

T0 : set of constrained periods for option o € 0,
i.e. T0 = T \ {|T| — N 0 + 2,..., |T|}

Qf0 set of forward-constrained periods for option o € 0 w.r.t. period t,
i-e. Qt = + N0-1}

xV}t : 1, variant v € V is assigned to period t G T (0, otherwise)

5

Table 1: Instance 1 — Data

o H0 : N0 v = 1 v = 2 u = 3 u = 4 v = 5 u = 6

1 2 : 3 X X X X
2 2 : 4 X X
3 3 : 5 X X
4 2 : 6 X X

\DV\ 4 1 2 2 2 3

Table 2: Instance 1 — Ideal Positions

u \DV\ i

1 4 1.75 5.25 8.75 12.25
2 1 7.00
3 2 3.50 10.50
4 2 3.50 10.50
5 2 3.50 10.50
6 3 2.30 7.00 11.60

Table 3: Level Schedule of Instance 1 — Optimal Solution with Objective 10.8

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14
V 1 6 3 4 5 1 2 6 1 3 4 5 6 1

o = 1 X X X X X X X X
o = 2 X X X X
o = 3 X X X
o = 4 X X X X X X

Table 4: Car Sequence of Instance 1 — Feasible Solution

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14
V 1 1 2 3 5 3 1 4 6 5 6 6 1 4

0=1 X X X X X X X X
o = 2 X X X X

© II CO

X X X

o II X X X X X X

6

Based on these definitions the car sequencing model can be stated as a constraint
satisfaction problem by expressions (6)-(9).

53 xv,t — i teT (6)
v6V

53 Xv<t ~ \^v V € V (7)

(8) yi ®V,T ^ Ho
"6V r€Q+0

€ {0,1} v € V,t € T

o € 0,£ € T0

(9)

Equations (6) are assignment constraints, i.e. exactly one copy has to be produced
in each period. Inequalities (7) require to manufacture the prespecified number of copies
of each product. Inequalities (8) restrict sequences to be feasible only if the UH0 : iV0"
constraints are fulfilled. Finally, constraints (9) define the decision variables to be binary.

We 'extracted' the car sequencing model (6)-(9) out of the verbal description and the
codes given in Parello, Kabat, and Wos 1986, Dincbas, Simonis, and van Hentenryck 1988,
and Parello 1988. Note, the car sequencing model (6)-(9) is «VP-complete (cp. problem
MP1 in Garey and Johnson 1979).

Recall instance 1 (cp. Table 1) where in addition to what was needed in the level
scheduling context column two and rows two to five are of relevance now. (Note, an ' x'
indicates which variants require which options.) Without surprise, a closer look at the
optimal level scheduling Solution for this instance (cp. Table 3) reveals that it is infeasible
within the periods 2 < t < 4 with respect to the sequencing constraints imposed by
option 1 and in the periods 1 < t < 6,4 < i < 9,6 < i < 11, and 9 < t < 14 with
respect to the sequencing constraints imposed by option 4. Table 4 provides a feasible car
sequencing Solution for this instance.

The car sequencing model (6)-(9) pays attention to the work contents of the products.
Hence, it allows to control the risk of conveyor stoppage or — depending on the preferences
of management — enables to control the cost for utility work. Note, the car sequencing
model does not require to define upstream and downstream Station limits explicitely. In
other words, it is not necessary to state whether the problem setting confines to what
is called open or closed Station. This is advantageous because in practice there is in
general some degree of freedom in this aspect which sometimes makes a clear distinction
between open and closed difficult. Furthermore, it is not necessary to model the upstream
and downstream movements of the Operators explicitely in order to control the risk of
conveyor stoppage or the cost for utility work; cp., e.g., Yano and Rachamadugu 1991,
Bard, Shtub, and Josh 1994, Tsai 1995, Bolat 1997, and Kim, Hyun, and Kim 1996.

In the case where each of the stations in series has a finite capacity buffer blocking of
the line may also occur if one of the buffers is füll. If the amount of storage needed is a
function of the sequence imposed then sequencing has to take care of this type of blocking
also. A related assembly line sequencing problem with blocking due to finite capacity
buffers has been studied in McCormick, Pinedo, Shenker, and Wolf 1989.

7

So far, only very few papers are dedicated to the car sequencing model. Constrained
logic programming approaches have been proposed by Parello, Kabat, and Wos 1986,
Dincbas, Simonis, and van Hentenryck 1988, Parello 1988, and Drexl and Jordan 1995.
Unfortunateley, the Performance of these approaches in general is totally disappointing.
Drexl and Jordan 1995 provide limited computational results based on an Implementation
in the constraint programming language CHARME. The result is that even very small
instances might take minutes on a fast Workstation. As shown in this reference also, to
use Standard MlP-solvers is impractical, too.

At the end of this section we have the following intermediate result: While the level
scheduling model Covers 'smoothing' capabilities which are very relevant in a JIT envir-
onment the car sequencing model provides equations which suitably address constraints
imposed on Station loads and on part usages. Consequently, to combine both features
within one single model — which is the subject of the remainder of the paper — gives a
very interesting approach of practical importance which has not been studied before. Un-
fortunately, this combination comes up with an A/'P-hard optimization problem. Hence,
to compute tight lower bounds, the focus of the next section, is of primary concern.

3 Integrated Level Scheduling/Car Sequencing

This section is dedicated to the computation of lower bounds for the combined level
scheduling/car sequencing problem. The lower bounds are calculated by solving the LP-
relaxation of a restricted master problem via column generation. The use of column
generation techniques is neat because the master problem is a set partitioning model with
an exponential number of columns. For an introduction to column generation cp. e.g.
Bradley, Hax, and Magnanti 1977.

3.1 Set Partitioning/Column Generation

The basic idea is to iteratively compute sequences for each of the variants by means
of a shortest path model. From the set of sequences on hand those are chosen by the
set partitioning model which respect the H0 : N0 sequencing constraints (in the LP-
relaxation).

In order to describe the set partitioning model formally we use the following parameters
and variables:

v(k) : variant v € V column k is associated with
Sv : set of columns representing sequences for variant v 6 V,

i.e. Sv = {k | v(k) = u}, index k
K,i,k,t = 1, if copy i 6 Dv of variant v € V is assigned to period t € T

within sequence k where v(k) = v (0, otherwise)
Fv(k),i,t : squared deviation of copy i € Dv(k) of variant v(k) within sequence

k from its ideal position fv(k),i
cjt : objective function coefficient of sequence k related to variant v(k),

i.e. Cfc = J2ieDvW 12(67 >(k),i,t
yk : 1, if sequence k is part of the optimal Solution (0, otherwise)

8

A formal definition of the functions Fv(k),i,t is given by equation (10).

Fv(k),i,t = (t~ fv(k),i f • K(k),i, k,t (10)

Based on these definitions the (restricted) maater problem can be stated by equations
(11)—(15) as a set partitioning model.

min E E (11)
v£V Jfees»

s-t. 53 Vk — 1 v € V (12)

53 53 53 yk = i t € T (13)
v€V i£Dv fces»

EE E E <tv,obv,i,k,Tyk < H0 oeO,teT0 (14)
v£V i$Dv k$Sv

yk € {0,1} fceiws" (15)

The objective (11) is to select a subset of columns at minimum costs. Equations (12)
make exactly one sequence per variant to be part of the Solution, while equations (13)
require to assign exactly one copy of any variant to each period. Finally, restrictions (14)
are the sequencing constraints.

Figure 2: Instance 1 — Basic Structure of the Shortest Path Graph for Variant 1

' i

H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

3.2 Shortest Path Model

For each variant v G V sequences are computed by solving shortest path problems. Fig­
ure 2 illustrates the (shortest path) graph for variant 1 of instance 1 with \D\ | = 4 and

9

\T\ = 14. Diagonal (horizontal) arcs denote the decision (not) to produce a copy of variant
1. This (shortest path) graph with source node (left bottom) and sink node (top
right) Covers all the possibilities to assign four copies to the 14 available periods.

In order to describe the shortest path model formally we use the following parameters
and variables:

or. = set of backward-constrained periods for option o € 0 w.r.t. period t, or. =
i.e. Qt>0 = {i-iV0 + l)...)t}nTl,

Nv : set of nodes of the graph associated with variant v € V,
i.e. Nv = {(i, t) | i 6 Dv U {0}, t E |T| — \DV | + «}}

Ev : set of arcs of the graph associated with variant v € V, i.e. Ev = €
Nv x Nv | (h = (i - 1 ,t — l)and j = (%,<))or (^ = (i,t — l)andj = («,<))

: original weight of arc (h,j) € Ev

A„ . dual variable associated with the one sequence per variant constraint (12),
€ IR

: dual variable associated with the one variant per period constraint (13),
Hi € IR

0,t • dual variable associated with the H0 : N0 constraint (14), 7r0ii > 0

a'L : updated weight of arc (h,j) € Ev

xh,j : 1, if arc (h,j) € Ev is element of the shortest path (0, otherwise)

Equation (16) formally defines the original weights of arcs (h,j) 6 Ev. Equation
(17) explains how to calculate the arc weights taking the dual variables and 7T0it into
account.

M _ f 0 > h — (i,t 1),j — (i,t) . .
'3 \ (* - /v,i)2 » h = 1),j = (i,t)

f<;=° , h = = (i,t)
h'3 1 dl,j ~t*t~ Eoeo °v,o £T€<3-0 Vo,r , h = (i - 1, t - l),j = (i, t) ('

Based on these definitions the objective function of the shortest path model for variant
v can be stated by equation (18).

Zv = min ffhjxXj- A„ (18)
(hJ)eE»

Note that the shortest path graph is acyclic with node weights . 6 1R . Because of
the topological structure, the shortest path problems are solvable in linear time.

Finally, pricing out occurs if min{Zv | v € V} > 0. This is accomplished by Computing
the shortest path in the overall shortest path graph comprising all the variants. Figure 3

10

shows what the overall shortest path graph is all about for the case of two variants. We
just add a source node and a sink node connect the variant-specific shortest path
graphs to the source and sink node and count for the (constant) dual variables as shown
in Figure 3. In our Implementation, we compute at most |V| columns per Iteration, one
for each variant v € V with Zv < 0.

Figure 3: Overall Shortest Path Graph for Two Variants

If we apply the column generation technique to instance 1 given in Table 1 then the
optimal Solution of the LP-relaxation of the set partitiong model is integral — and hence
we are done. Table 5 provides the optimal Solution with an objective function of about 24
— which is more than twice as large as in the unconstrained case.

Table 5: SPP/CG Sequence of Instance 1 — Optimal Solution with Objective 24.305

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14
V 1 4 6 5 3 6 1 1 2 3 5 6 4 1

0=1 X X X X X X X X

lo
 II to

X X X X
0 = 3 X X X

II o X X X X X X

Unfortunately, the size of the shortest path graph is growing exponentially in terms of
Dv, v 6 V, and T. Fortunately, simple techniques allow to reduce the size of the shortest
path graph in a preprocessing stage.

3.3 Shortest Path Graph Reduction

The number of potential columns |<S"| o f variant v is defined by

in = (m) - M ISI)

11

is the number of potentiell columns of the master problem.
Figure 4 explains the basic idea of the shortest path graph reduction techniques by

means of an instance with |T| = 16 and \DV\ = 6. Paths which correspond to an in-
sequence production of more than H0 out of N0 copies can be eliminated without affecting
the set of feasible solutions. Figure 4 shows via dotted arcs that different H0 : N0 con­
straints drop different subsets of arcs and nodes. Note, the shortest path graph reduction
technique can be applied during a preprocessing stage and needs not be done over and
over again.

Figure 4: Instance 2 — Shortest Path Graph Reduction — |T| = 16, \DV\ = 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 t

More formally, let us define a 0-1-valued function Sv : Nv —» {0,1} which assigns the
value zero to a node if this node (and arcs pointing to/from that node) can be deleted
from the shortest path graph associated with variant v G V. Since a variant v G V may
require several options o € 0,8V can be defined as

*«(»»<) = II
ogO

u G V, (i, t) € Nv (19)

where 5Vi0 : Nv -» {0,1} are 0-1-valued functions each of which, in analogy to 8V,
yields zero, if a node (i,t) G Nv can be deleted due to a restriction on option o G O. We
define

= otherwise .€V,M6Ä-,.€0 (20)

12

In turn, 5^0 : Nv -» {0,1} is a 0-1-valued function which reveals those nodes in the
upper left part of the graph that can be deleted. Likewise, 8%0 : Nv -> {0,1} is a 0-1-
valued function that indicates which nodes in the lower right part can be deleted. These
functions are defined by (21) and (22) for all v (E V,(i,t) 6 Nv and o € O. [orj denotes
the greatest integer smaller than or equa! to a.

The reduction of the size of the shortest path graph is important because of three
reasons: First, although requiring only a linear number of steps, solving smaller shortest
path problems is faster than solving larger ones. Second, updating superfluous arcs of
the shortest path graph would just waste CPU-time. Third, generating columns of the
set partitioning model which subsequently are suppressed by the H0 : N0 constraints
(14) increases the size of the set partitioning model and, hence, the time to solve its
LP-relaxation.

4 Computational Evaluation

The approach presented in this paper explores a new area, hence, no established test-
bed is available. Therefore, first, we elaborate on the instances which are used in our
computational study. Second, numerical results shall be presented.

4.1 Instance Generation

Even in current literature, the systematic generation of test instances does not receive much
attention. Generally, two possible approaches can be found adopted in literature when
having to come up with test instances. First, practica! cases. Their strength is their high
practica! relevance while the obvious drawback is the absence of any systematic structure
allowing to infer any general properties. Thus, even if an algorithm performs good on some
practica cases, it is not guaranteed that it will continue to do so on other instances as well.
Second, artificial instances. Since they are generated randomly according to predefined
specifications, their plus lies in the fact that Atting them to certain requirements such as
given probability distributions poses no problems. However, they may reflect situations
with little or no resemblance to any problem setting of practica! interest. Hence, an
algorithm performing well on several such artificial instances may or may not perform

13

satisfactorily in practica. Because of the unavailability of practical cases we must choose
the second approach here.

The generator we used in our computational study was designed such that the instances
have two properties:1 First, each instance has at least one feasible Solution which is the
result of the instance generation. This is an important aspect, because to compute lower
bounds for an instance which does not have any feasible Solution would make no sense.
Clearly, having an initial feasible Solution provides an initial upper bound also. Second,
each instance comprises a non-trivial example of the integrated level scheduling/car se­
quencing variety. Non-triviality is assured by requesting each option 'as often as possible'.
We decided to use T, O, H0 • N0 as input and to produce V, Dv, and the matrix (a„,0) as
Output.

The basic working principle of the generator is best illustrated by the use of the ex­
ample given in Table 6. The first column specifies the input while columns 2 to 12 provide
the Output. More precisely, the Ha : Na constraints of each option are considered separ-
ately. Taking option o — 1 as an example we get row UH\ : AV' of Table 6. The procedure
fills in as many options ' x' as possible which — ceteris paribus — makes the H0 : N0

constraints more difficult to maintain. We drop the first 2 = min{#0 | o € O} columns
(because here every row has an entry 'x') and generate |T| + min{/7„ | o € 0} columns
in total. Finally, we identify identical columns which gives the number of variants V and
thus the number of copies \DV\ for each variant v € V. For the example of Table 6 we get
|y| = 5, |D„| = 2,v € V, and

(0 1 1 >
1 1 0
1 0 0
0 1 0

u 1 u

(o«,o) —

For experimental purposes we used the following testbed:

. |0| e {3,5,7}

• |T| € {10,15,20,30,40,50}

• {H0 : N0} £ 4:5
1:7

7:8
2:8

3:4
1:6

6 : 7
2:7

2:3
3 : 8

5: 6}
1 : 5})

Note, the 'grouping' of the H0 : N0 constraints by semicolons is done with respect to
the numbers of options \0\ € {3,5,7}. In total we have 3 x 6 x 2 = 36 instances.

Note that the choice of the set {H0 : N0} specifies two subsets of sequencing constraints
with a different difficulty of finding feasible solutions. More precisely, as shown in Table 7
the H0 : N0 constraints along the main diagonal comprise those constraints which are easy
to maintain while those in the top right corner are very difficult to ascertain. In what
follows we will refer to both as : N0 — easy' and lH0 : N0 — hard', respectively.

'AU the instances used in this study are available in the internet via anonymous ftp (ftp://ftp.wiso.uni—
kiel.de/pub/operations-research/cars-jit).

14

Table 6: Instance Generation — Input and Output

|T| = 10 t 1 2 3 4 5 6 7 8 9 10
\0\ = 3 V 1 2 3 4 5 5 1 3 2 4
Hi : Ni = 2 : 3 X X X X X X X X
H% : N2 = 4:5 X X X X X X X X X X
H3 : N3 = 3 : 6 X X X X X X

Table 7: Degree of Difficulty — H0 : N0

N0

1 2 3 4 5 6 7 8

1 X X X X X
2 X X X
3 X X

Ho
4 X

Ho
5 X
6 X
7 X
8

Table 8: Instance 1 — Initial Columns

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14
v = 1 1 1 1 1
v = 2 1
v = 3 1 1
u = 4 1 1
u = 5 1 1
u = 6 1 1 1

15

4.2 Computational Results

The methods described earlier have been imlemented in GNU C using the CPLEX callable
library (LP-solver; cp. Bixby and Boyd 1996) on a 200 MHz Pentium Pro machine with
128 MB main memory.

Each instance has been solved starting with \V\ initial columns, one for each variant
v G V. Furthermore, the incidence vector u G V, has been initialized according to
equation (23). Table 8 shows what the outcome of equation (23) is for the instance in
Table 1. Finally, an initial feasible Solution is computed with the Big M method.

Table 9 provides the lower and Upper bounds obtained in our experiments. The entries
within each cell have the following meaning:

• The symbol indicates that the method yields a binary feasible Solution, that is,
we have an optimal Solution.

• The symbol "o" indicates that the method does not yield a binary feasible Solution.
However, solving the master problem with all generated columns and with binary
constraints gives a feasible Solution with identical objective function value. Thus,
again the methods provides the optimal objective function value.

• A value "X%" means that the method does not give a binary feasible Solution.
However, solving the master problem with all generated columns and with binary
constraints leads to a feasible Solution. The gap between upper and lower bound
(UB and LB) is X = 100 • UB£^B. We conjecture that large gaps are due to poor
upper bounds.

• A value "X%" means again that the method does not find a binary feasible Solution.
Unfortunately, the master problem with all generated columns and with binary con­
straints is either not feasible or cannot be solved within reasonable time. Thus the
only available upper bound is the one given by the instance generator. Again, X is
the gap between upper and lower bound. We are highly convinced that large gaps
are due to poor upper bounds.

Table 10 provides Information about the size of the last master problem. A value in
this table is the ratio of the number of generated columns and the number of all possible
columns, i.e.

(23)

100 1^1

16

Table 9: Lower and Upper Bounds

|0| = 3 \0\ = 5 |0| = 7 \0\ = 3 \0\ = 5 |0| = 7
\T\ = 10 • • • 18% # #
\T\ = 15 0 • • 0 # 6%
|rj = 20 151% • 0 14% 49% 12%
jrj = 30 71% 246% 100% # 167% 98%
\T\ = 40 • 281% 76% 255% 302% 122%
|r| = so 314% 148% 124% 497% 168% 91%

H0 : N0 — easy Ha : N0 — hard

Table 10: Size of the Last Master Problem — Percentages

0\ = 3 \0\ = 5 \0\=7 \0\ = 3 |0| = 5 O

II

|r| = io 11.11 29.30 68.00 14.55 17.88 66.40
\T\ = 15 1.48 6.56 37.56 2.11 1.72 8.04
|T| = 20 0.12 0.51 4.88 0.15 0.10 1.47
|T| = 30 0.00 0.00 0.03 0.00 0.00 0.02
|T| = 40 0.00 0.00 0.00 0.00 0.00 0.00
|T| = 50 0.00 0.00 0.00 0.00 0.00 0.00

H0 : N0 — easy Ho : N0 — hard

Table 11: Size of the Last Master Problem — Absolute Numbers
\0\ = 3 \0\ = 5

r-II Ö
 \0\ = 3 |0| = 5 O

II

\T\ = 10 40 63 85 40 54 83
\T\ = 15 92 120 169 68 115 135
| T\ = 20 198 206 274 119 165 241
\T\ = 30 444 611 569 283 384 498
|T| = 40 1,209 971 1,129 478 637 735
|T| = 50 2,240 2,293 1,409 1,616 1,180 1,179

H0 : N0 — easy Ho : N0 — hard

17

Table 12: Run-Time Performance

\0\ = 3 \0\ = 5 PI = 7 O

II CO
 II O

t— Ii

\T\ = 10 0.03 0.06 0.10 0.03 0.03 0.03

\T\ = 15 0.19 0.27 0.62 0.08 0.18 0.18

\T\ = 20 0.88 1.11 2.36 0.31 0.53 1.05

\T\ = 30 9.31 22.17 24.14 2.41 5.97 9.28

\T\ = 40 119.78 124.15 256.86 19.56 28.45 39.19
\T\ = 50 1,073.94 2,447.47 415.50 355.15 161.90 147.25

H0 : N0 — easy H0 : N0 — hard

Table 13: Run-Time Performance — One Column Per Iteration

\0\ — 3 01 = 5 \0\ = 7 \0\ = 3 \0\ = 5 |0| = 7

|r| = 10 0.06 0.15 0.26 0.05 0.06 0.08
\T\ = 15 0.39 0.69 1.10 0.12 0.26 0.49
\T\ = 20 2.77 4.08 6.35 0.56 1.14 2.65
|T| = 30 24.92 63.36 67.71 5.17 14.52 18.38
|T| = 40 321.76 430.19 845.16 19.74 68.85 92.11
|T| = 50 1,605.81 >3,600.00 1,826.72 389.31 270.07 335.89

H0 : N0 — easy Ho : N0 — hard

Table 14: Size of the Last Master Problem — Percentages — One Column Per Iteration

\0\ — 3 \0\ — 5

t-II \0\ — 3 \0\ = 5 O

II

|T| = 10 10.00 24.19 47.20 13.82 13.91 43.20
\T\ = 15 1.32 5.51 22.00 1.51 1.15 6.19
|r| = 20 0.13 0.50 3.97 0.15 0.08 1.19
\T\ = 30 0.00 0.00 0.03 0.00 0.00 0.03

II o

0.00 0.00 0.00 0.00 0.00 0.00
|T| = 50 0.00 0.00 0.00 0.00 0.00 0.00

H0 : N0 — easy Ho : N0 — hard

18

The value 0.00 in the table means that the size actually is below 0.005%. We see
that especially for large instances only a very small percentage of all potential columns is
generated. This proves that column generation indeed pays off for our problem. Table 11
shows the size of the last master problem also, now in absolute figures. The run-times
measured in CPU-seconds are provided in Table 12.

For getting the results presented so far, we generated at most | V| columns per Iteration,
one for each variant v with Zv < 0. To reveal that this is indeed a good idea, we also show
the results when we generated at most one column per iteration which is determined by
the overall shortest path. Table 13 provides the run-times while Table 14 shows the figures
for the size of the last master problem. Comparing this with Table 12 and Table 10 the
run-time upon termination is much shorter when more than just one column is generated
per iteration. The price we have to pay for this is that slightly more columns are generated
in total.

5 Special Gas es and Extensions

In what follows we will point to some special cases covered by the model formulation. In
addition, an important extension will be outlined also.

(i) We conjecture that the approach described in this paper is valid for many functions
Fv,iti which can be 'locally' computed which means that F^t only depends on copy i but
not on other copies. Important special cases are where FVyi,t is the /p-norm for —oo < p <
oo. Note that this Situation covers absolute deviations and weighted earliness/tardiness
for p = 1 also. Note also, that some values p don't make sense, e.g. p G [0,1).

Clearly, in practice the decision maker has to chose an appropriate value for p. Then
the question arises how robust optimal solutions are with respect to changing values of p.
Table 15 shows for instance 1 optimal objectives Z(p) for different values of p. Apparently,
even more interesting than what is presented in Table 15 would be to know how sensitive
optimal sequences are with respect to changes of p.

(ii) If we replace the min-sum criterion through a min-max objective (/p-norm for
p = oo) then only minor changes of the set partitiong/column generation approach and
of the shortest path model are required. Note, however, that in the presence of H0 : N0

constraints a min-max objective seems to be of minor relevance.
(iii) The approach covers also the Situation where the work load of a Station stems from

more than one option. Consider the Situation presented in the first six rows of Table 16.
Assume that the load of a Station depends on both the options o = 2 and o = 3. Similarly,
the load of another Station may jointly depend on the options o = 2 and o = 4. Then
we generate two additional options o = 6 and o = 7. An added option gets a x if and
only if variant v requies both options. Then each sequencing constraint Ha : Na of the
newly generated options must express the maximal workload as a function of the number
of successively sequenced copies requiring both options.

19

Table 15: Stability of Optimal Solutions With Respect to p

1 p | 1 2 3 4 5

1 z(p) 16.00 24.31 43.65 85.98 179.37

Table 16: Instance 3 — Data

o H0 : N0 v = 1 v = 2 II CO

v — 4 v — 5

1 2 : 3 X X X
2 3 : 4 X X X X
3 3 : 7 X X X
4 2 : 6 X X
5 4 : 5 X X

6
7

2 : 8
2 : 9 X

X
X

X

6 Summary and Future Work

Mixed-model assembly lines with negligible change-over between the products enable di-
versified small-lot production. Just-in-Time (JIT) production methods of the pull variety
can be used to control such systems. The use of JIT methods makes it possible to satisfy
customers' demands for several products without holding large inventories and without in-
curring large shortages. In assembly systems, products usually are mounted on a conveyor
belt. Operators move along with the belt while working on a product. An operator can
work on a product only when it is at his Station. If the operator does not finish work on
a product before it leaves his Station, there are two alternative approaches for completing
what so far has not been done. Usually, in the U.S., utility workers are employed to finish
work left undone by the primary operator. In Japan, the operator pushes a stop button
whenever he is unable to finish his work. Obviously, the management style behind such
distinct approaches is quite different. Anyway, it is desirable to distribute products with
high work content evenly in order to reduce the risk of conveyor stoppage or the cost for
utility work.

This paper presents a nonlinear integer programming model which covers both the
balancing requirements of level scheduling and the constraints of car sequencing. Hence,
it allows to control the risk of conveyor stoppage or — depending on the preferences of
management — enables to control the cost for utility work while producing 'smooth' JIT
schedules. For the Solution of the problem we specify a set partitioning/column generation
approach. Solving the LP—relaxation of this model by column generation pro vi des tight
lower bounds for the optimal objective function value.

As already mentioned in the introduction, in practice usually subsequences consisting

20

of only a few copies are used in a cyclic manner. The methods developed in this paper allow
to compute lower bounds for instances having up to 50 copies, while for up to 20 copies
in general we get feasible, oftenly optimal sequences. Hence, considerable improvements
have been achieved.

Future research should be directed towards the development of local search methods
which allow to compute feasible solutions for large-size problem instances. Furthermore,
branch-and-price methods (cp. Barnhart, Johnson, Nemhauser, Savelsbergh, and Vance
1997) and exact branch-and-cut/row and column generation methods (cp. for instance
van den Akker 1995) shall be the subject of research.

References

[1] BAKER, K.R., SCUDDER, G.D. "Sequencing with earliness and tardiness penalties: a
review". Operations Research, 38:22-36, 1990.

[2] BARD, J.F., SHTUB, A., JOSH, S.B. "Sequencing mixed-model assembly lines to level parts
usage and minimize line length". International Journal of Production Research, 32:2431-
2454, 1994.

[3] BARNHART, C., JOHNSON, E.L., NEMHAUSER, G.L., SAVELSBERGH, M.W.P., VANCE,
P.H. "Branch-and-price: column generation for huge integer programs". Operations Re­
search, 1997 (to appear).

[4] BERKLEY, B.J. "A review of the kanban production control research literature". Production
and Operations Management, 1:393-411, 1992.

[5] BITRAN, G.R., CHANG, L. "A mathematical programming approach to a deterministic
Kanban system". Management Science, 33:427-441, 1987.

[6] BIXBY, N., BOYD, E. Using the CPLEX Callable Library. CPLEX Optimization Inc.,
7710-T Cherry Park, Houston, TX, 1996.

[7] BOLAT, A. "Efficient methods for sequencing minimum job sets on mixed model assembly
lines". Naval Research Logistics, 44:419-437,1997.

[8] BRADLEY, S.P., HAX, A.C., MAGNANTI, T.L. Applied Mathematical Programming.
Addison-Wesley, Reading, 1977.

[9] DINCBAS, M., SIMONIS, H., VAN HENTENRYCK, P. "Solving the car-sequencing problem
in constraint logic programming". In Proceedings of the European Conference on Artificial
Intelligence (ECAI-88), 290-295. München, 1988.

[10] DREXL, A., JORDAN, C. "Materialflußorientierte Produktionssteuerung bei Varianten­
fließfertigung". Zeitschrift für betriebswirtschaftliche Forschung, 47:1073-1087,1995.

[11] GAREY, M.R., JOHNSON, D.S. Computers and Intractability A Guide to the Theory of
NP-Completeness. Freeman and Company, San Francisco, 1979.

21

[12] HOOGEVEN, J.A., LENSTRA, J.K., VAN DE VELDE, S.L. "Sequencing and scheduling:
an annotated bibliography". In DELL'AMICO, M., MAFFIOLI, F., MARTELLO, S., editors,
Annotated Bibliographies in Combinatorial Optimization. John Wiley & Sons, New—York,
1997 (to appear).

[13] INMAN, R.R., BULFIN, R.L. "Sequencing JIT mixed-model assembly lines". Management
Science, 37:901-904,1991.

[14] KIM, Y.K., HYUN, C.J., KIM, Y. "Sequencing in mixed model assembly lines: a genetic
algorithm approach". Computers & Operations Research, 23:1131-1145,1996.

[15] KRAJEWSKI, L.J., KING, B.E., RITZMAN, L.P., WONG, D.S. "Kanban,MRP, andshaping
the manufacturing environment". Management Science, 33:39-57,1987.

[16] KUBIAK, W. "Minimizing Variation of production rates in just-in-time systems: asurvey".
European Journal of Operational Research, 66:259-271,1993.

[17] KUBIAK, W., SETHI, S. "A note on 'Level schedules for mixed-model assembly lines in
just-in-time production systems' ". Management Science, 37:121-122, 1991.

[18] KUBIAK, W., SETHI, S. "Optimal just-in-time schedules for flexible transfer lines". The
International Journal of Flexible Manufacturing Systems, 6:137-154, 1994.

[19] KUBIAK, W., STEINER, G., YEOMANS, J.S. "Optimal level schedules for mixed-model,
multi-level just-in-time assembly systems". Annais of Operations Research, 69:241-259,
1997.

[20] MCCORMICK, S.T., PINEDO, M.L., SHENKER, S ., WOLF, B. "Sequencing in an assembly
line with blocking to minimize cycle time". Operations Research, 37:925-935,1989.

[21] MILTENBURG, G.J. "Level schedules for mixed-model assembly lines in just-in-time pro­
duction systems". Management Science, 35:192-207,1989.

[22] MILTENBURG, G .J., GOLDSTEIN, T. "Developing production schedules which balance part
usage and smooth production loads for just-in-time production systems". Naval Research
Logistics, 38:893-910, 1991.

[23] MILTENBURG, G.J., SINNAMON, G. "Algorithms for scheduling mixed-model just-in-time
production systems". IIE Transactions, 24:121-130,1992.

[24] MILTENBURG, G.J., STEINER, G., YEOMANS, J.S. "A dynamic programming algorithm
for scheduling mixed-model, just-in-time production systems". Mathematical and Computer
Modelling, 13(3):57-66,1990.

[25] MONDEN, Y. Toyota Production Systems. Industrial Engineering and Management Press,
Norcross, GA, 1983.

[26] PARELLO, B D. "CAR WARS: The (almost) birth of an expert system". AI Expert, 3:60-64,
1988.

[27] PARELLO, B D., KABAT, W.C., Wos. L. "Job-shopscheduling using automated reasoning:
a case study of the car-sequencing problem". Journal of Automated Reasoning, 2:1-42,1986.

22

[28] RACHAMADUGU, R.M.V., YANO, C A. "Analytical tools for assembly line design and
sequencing". IIE Transactions, 26(2):2-10,1994.

[29] SCHOLL, A. Balancing and Sequencing of Assembly Lines. Physica, Heidelberg, 1995.

[30] STEINER, G., YEOMANS, J.S. "Level schedules for mixed-model, just-in-time processes".
Management Science, 39:728-735, 1993.

[31] STEINER, G., YEOMANS, J.S. "A bicriterion objective for levelling the schedule of a mixed-
model, JIT assembly process". Mathematical and Computer Modelling, 20(2): 123-134,1994.

[32] STEINER, G., YEOMANS, J.S. "Optimal level schedules in mixed-model, multi-level JIT
assembly systems with pegging". European Journal of Operational Research, 95:38-52,1996.

[33] SUMICHRAST, R.T., CLAYTON, E.R. "Evaluating sequences for paced, mixed-model as­
sembly lines with JIT component fabrication". International Journal of Production Research,
34:3125-3143,1996.

[34] THOMOPOULOS, N.T. "Line balancing-sequencing for mixed-model assembly". Manage­
ment Science, 14:B59-B75, 1967.

[35] TSAI, L.-H. "Mixed-model sequencing to minimize utility work and the risk of conveyor
stopping". Management Science, 41:485-495,1995.

[36] VAN DEN AKKER, J.M. LP-Based Solution Methods for Single-Machine Scheduling Prob­
lems. PhD-Thesis, Eindhoven University of Technology, 1995.

[37] VAN Z ANTE-DE FOKKERT, J .I., DE KOK, T.G. "The mixed and multi model line balanacing
problem: a comparison". European Journal of Operational Research, 100:399-412,1997.

[38] YANO, C.A., RACHAMADUGU, R .M.V. "Sequencing to minimize work overload in assembly
lines with product options". Management Science, 37:572-586, 1991.

23

