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Abstract 

In this paper we consider the resource-constrained project scheduling problem 
(RCPSP) with makespan minimization as objective. We propose a new genetic al-
gorithm approach to solve this problem. Subsequently, we compare it to two genetic 
algorithm concepts from the literature. While our approach makes use of a permuta-
tion based genetic encoding that contains problem-specific knowledge, the other two 
procedures employ a priority value based and a priority rule based representation, 
respectively. Then we present the results of o ur thorough computational study for 
which a Standard set of project instances has been used. The outcome reveals that 
our procedure is the most promising genetic algorithm to solve the RCPSP. Finally, a 
priority rule based random sampling procedure known from the literature serves as a 
further benchmark. We show that our genetic algorithm yields better results than this 
sampling approach. 

Keywords: Project Management and Scheduling, Resource-Constraints, Genetic 
Algorithms, Computational Results. 

1 Introduction 

Within the classical resource-constrained project scheduling problem (RCPSP), the activ-
ities of a project have to be scheduled such that the makespan of the project is minimized. 
This problem arises within project management Software as well as within systems for pro-
duction planning and scheduling. The currently most powerful exact procedures have been 
presented by Brucker et al. [2], Demeulemeester and Herroelen [5, 6], Mingozzi et al. [22], 
and Sprecher [26]. However, they are unable to find optimal schedules for highly resource-
constrained projects with 60 activities or more. Hence, in practice heuristic algorithms 
to generate near-optimal schedules for larger projects are of special interest. Recently, an 
evaluation study (see Kolisch and Hempel [16] and Kolisch [15]) showed that commercial 
Software packages for project management generate schedules with an average deviation of 
4.3 % to 9.8 % from the optimal Solution for projects with up to 30 activities. These rather 
disappointing results indicate the need for (fast) heuristics to obtain better near-optimal 
schedules which should be implemented in Software packages. 

Recently proposed heuristic algorithms for the RCPSP include the following: Kolisch 
[13] d evelops three new priority rules for the parallel scheduling scheme and tests them in 
a single-pass environment. Kolisch [14] compares some good priority rules within both the 
serial and the parallel scheduling scheme and reports experiences with sampling procedures. 
Kolisch and Drexl [17] introduce a so-called adaptive search procedure which applies a 
scheduling scheme and priority rules after analyzing the project instance at hand. Baar et 
al. [1] develop two tabu search approaches. Lee and Kim [20] compare a genetic algorithm 
(GA), a simulated annealing heuristic, and a tabu search method. Cho and Kim [3] improve 
the simulated annealing procedure of Lee and Kim [20]. Kohlmorgen et al. [12] summarize 
their experiences with an Implementation of a GA for the RCPSP on parallel processors. 
For the more general RCPSP with multiple execution modes (MRCPSP), GAs have been 
proposed by Özdamar [24], Hartmann [8], and Mori and Tseng [23]. 

The purpose of this paper is to introduce a new GA approach for solving the RCPSP and 
to compare it to two existing GA concepts for this problem class. The three procedures are 
based on different genetic encodings and encoding-specific genetic Operators. We proceed 
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as follows: Section 2 provides a description of the RCPSP. Section 3 introduces the new 
GA which makes use of a permutation based representation. Sections 4 and 5 summarize 
two GA approaches from the literature which employ a priority value and a priority rule 
based encoding, respectively. Section 6 gives the results of our in-depth computational 
experiments. Finally, Section 7 states some conclusions. 

2 Problem Description 

We consider a project which consists of J activities (Jobs) labeled j = 1Due to 
technological requirements, there are precedence relations between some of the jobs. These 
precedence relations are given by sets of immediate predecessors Pj indicating that an 
activity j may not be started before all of its predecessors are completed. Analogously, Sj 
is the set of the immediate successors of activity j. The transitive closure of the precedence 
relations is given by sets of (not necessarily immediate) successors Sj. The precedence 
relations can be represented by an activity-on-node network which is assumed to be acyclic. 
We consider additional activities j = 0 representing the Single source and j = J + 1 
representing the Single sink activity of the network. 

With the exception of the (dummy) source and (dummy) sink activity, each activity 
requires certain amounts of (renewable) resources to be performed. The set of resources 
is referred to as K. For each resource k G K the per-period-availability is constant and 
given by Rk- The processing time (duration) of an activity j is denoted as pj, its request 
for resource k is given by rjk• Once started, an activity may not be interrupted. W.l.o.g., 
we assume that the dummy source and the dummy sink activity have a duration of zero 
periods and no request for any resource. 

The parameters are assumed to be nonnegative and integer valued. The objective is to 
determine a schedule with minimal makespan such that both the precedence and resource 
constraints are fulfilled. Mathematical programming formulations of the RCPSP have been 
given by e.g. Demeulemeester and Herroelen [5, 6], Mingozzi et al. [22], and Sprecher [26]. 

3 Permutation based Genetic Algorithm 

3.1 Basic Scheine 

Introduced by Holland [11], genetic algorithms (GAs) serve as a heuristic meta strategy to 
solve hard optimization problems. For an introduction into GAs, we refer to Goldberg [7]. 
In this section we propose a new GA approach for the RCPSP. 

The GA starts by Computing an initial population, i.e. the first generation. We assume 
that the initial population contains POP individuals where POP is an even integer. After 
Computing the fitness values of the individuals, the population is randomly partitioned into 
pairs of individuals. To each resulting pair of (parent) individuals, we apply the crossover 
operator to produce two new (children) individuals. Subsequently, we apply the mutation 
Operator to the genotypes of the newly produced children. After determining the fitness of 
each child individual, we add the children to the current population, leading to a population 
size of 2 • P OP. Finally, applying the selection operator to reduce the population to its 
former size, we obtain the next generation. The algorithm stops if a prespecified number 
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of generations which is denoted as GEN or a given time limit is reached. Clearly, at most 
POP • GEN different individuals (and related schedules) are calculated. 

3.2 Individuais and fitness 

In the first GA variant to be examined, an individual I is represented by an activity 
sequence j[,..., jj. This job sequence is assumed to be a precedence feasible permutation 
of the set of activities, that is, we have {j/,..., jj} = {!,...,«/} and P-i C {0, j[,j-^} 
for z — 1, • •., J • 

Each genotype is related to a uniquely determined schedule (phenotype) which is com-
puted using the following serial scheduling scheme: First, the dummy source activity is 
started at time 0. Then we schedule the activities in the order that is prescribed by the 
sequence j(,.. .,jj. Thereby, each activity is assigned the earliest feasible start time. Note 
that the result is an active schedule, cf. Kolisch [14]. That is, no activity can be left shifted 
without violating the constraints (for a formal definition of active schedules cf. Sprecher et 
al. [27]). The fitness of an individual I is given by the makespan of the related schedule. 
Consider the project instance shown in Figure 1 and the individual displayed in Figure 2 
(a). Applying the serial scheduling procedure described above leads to the schedule given 
in Figure 3. The fitness of this individual is 13. 

The initial population is computed as follows: Starting with the empty job sequence, 
we obtain a precedence feasible job sequence by repeatedly applying the following step: 
The next activity in the job sequence is randomly taken from the set of those currently 
unselected activities all non-dummy predecessors of which have already been selected for 
the job sequence. In addition to this random algorithm, we have tested another variant 
which determines the initial population with a sampling procedure as described by Kolisch 
[14]. More precisely, we employ a good priority rule, in our case the latest finish time rule 
(LFT), to derive probabilities which are used to select the next activity for the job sequence. 

Notice that, while each individual is related to a unique schedule, a schedule can be 
related to more than one individual. In other words, there is some redundancy in the search 
space as distinct elements of the search space (i.e. genotypes) may be related to the same 
schedule. Consider again the project instance of Figure 1 and the genotype of Figure 2 
(a). Obviously, we obtain a different genotype by exchanging activities 1 and 6 in the 
job sequence. However, both genotypes are related to the same schedule, i.e. the schedule 
displayed in Figure 3. 

3.3 Crossover 

We consider three different crossover variants for the permutation based encoding. They are 
similar to the general crossover technique described by Reeves [25] for permutation based 
genotypes, with the difference that our encoding takes precedence relations into account. 

The first crossover Operator is called one-point crossover. We consider two individuals 
selected for crossover, a mother M and a father F. Then we draw a random integer q with 
1 < q < J• Now two new individuals, a daughter D and a son 5, are produced from the 
parents. We first consider D which is defined as follows: In the job sequence of D, the 
positions i = 1,..., q are taken from the mother, that is, 
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Figure 1: Project instance 
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The job sequence of positions t = g + l,in D is taken from the father. However, the 
Jobs that have already been taken from the mother may not be considered again. We obtain 

j? '•= ik where k is the lowest index such that j'f £ {jf,..., j^}. 

As a result, the relative positions in the parents' job sequences are preserved. While 
this definition obviously ensures that each activity appears exactly once in the resulting job 
sequence, the following theorem shows that also the precedence assumption is fulfilled. 

Theorem 1 If applied to precedence feasible parent individuals, the one-point crossover 
operator for the permutation based genetic encoding results in a precedence feasible offspring 
genotype. 

Proof. Let the genotypes of the parents M and F fulfill the precedence assumption. We 
assume that the child individual D produced by the crossover operator is not precedence 
feasible. That is, there are two activities jf and j® with 1 < i < k < J and jf? € P-D . 
Three cases can be distinguished: 

Gase 1: We have i,k < q. Then activity jf is before activity jj? in the job sequence of 
M, a contradiction to the precedence feasibility of M. 

Gase 2: We have i, k > q. As the relative positions are maintained by the crosssover 
operator, activity jf is before activity in the job sequence of F, contradicting the 
precedence feasibility of F. 

Gase 3: We have i < q and k > q. Then activity jf is before activity jj? in the job 
sequence of M, again a contradiction to the precedence feasibility of M. • 

The son S of the individuals M and F is computed similarly. However, the positions 
1 of the son's job sequence are taken from the father and the remaining positions are 
determined by the mother. Obviously, Theorem 1 holds for both offspring individuals D 
and 5. 

The second crossover operator is an extension of the one-point variant, called two-
point crossover. Here, we draw two random integers q\ and % with 1 < q\ < qi < J. 
Now the daughter individual D is determined by taking the job sequence of the positions 
i = 1,..., qi from the mother, that is, 

The positions i = q\ + 1,..., qi are derived from the father: 

jf := j£ where k is the lowest index such that jjf ^ {if,..., j[L i). 

The remaining positions i = <72 + 1> • • • > J are again taken from the mother, that is, 

jf := jjf where k is the lowest index such that jjf 1}. 

The son individual is computed analogously, taking the first and third part from the 
father and the second one from the mother. Obviously, Theorem 1 can easily be extended 
to the two-point crossover. Observe also that fixing 92 = J leads to the one-point variant 
which therefore is a special case of the two-point crossover. 
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The third crossover type is called uniform crossover. Here, the daughter D is de-
termined as follows: We draw a sequence of random numbers Pi € {0,1}, i' = 1,..J. For 
each position i = 1,..J we take the activity from the mother, if we have pi = 1, that is, 

jf := jjf where k is the lowest index such that jjf £ {if, • • •, jE-i}-

Otherwise, if pi = 0, the activity is derived from the father's job sequence: 

jP := j[ where k is the lowest index such that j)f ^ {if,.. •, 

The son S is computed using an analogous procedure which takes the i-th job from the 
father if pi = 1 and from the mother otherwise. Note that the uniform crossover generalizes 
the two-point variant: Fixing pi = 1 for i E {1, • • •, <?i> <72 + 1> • • •) J} and pi = 0 for 
i € {gi +1,..., 92} leads to the definition of the daughter in the two-point crossover. With 
arguments similar to those used in the proof of Theorem 1, one can show that also the 
uniform crossover produces precedence feasible offspring. 

3.4 Mutation 

Given a permutation based individual I, the mutation operator modifies the related job 
sequence as follows: For all positions i = — 1, activities jf and j-+l are exchanged 
with a probability of Pmutation, if the result is a job sequence which fulfills the precedence 
assumption. 

The mutation operator may create job sequences (i.e. gene combinations) that could not 
have been procuced by the crossover operator. However, it should be noted that performing 
a mutation on an individual does not necessarily change the related schedule. This is due to 
the redundancy in the genetic representation: For example, interchanging two activities in 
the job sequence which have the same start time changes the individual, but not the related 
schedule. 

3.5 Selection 

We consider four alternative selection Operators which follow a survival-of-the-fittest strategy 
as similarly described by e.g. Michalewicz [21]. The first one is a simple ranking method: 
We keep the POP best individuals and remove the remaining ones from the population (ties 
are broken arbitrarily). 

The second variant, the proportional selection, can be viewed as a randomized version 
of the previously described ranking technique. Let /(/) be the fitness of an individual 7, 
and let V denote the current population, that is, a list containing the individuals. Note that 
we use a list of individuals instead of a set because we explicitly allow two (or more) distinct 
individuals with the same genotype in a population. We restore the original population size 
by successsively removing individuals from the population until POP individuals are left, 
using the following probability: Denoting with /best = min{/(7) | / 6 V} the best fitness in 
the current population, the probability to die for an individual 1 is given by 

6 



Next, we consider two versions of the tournament technique. In the 2-tournament 
selection, two different randomly chosen individuals h and /2 compete for (temporary) 
survival. If individual /j is not better than individual /2, i.e. /(/i) > /(/2), then it dies 
and is removed from the population (again, ties are broken arbitrarily). This process is 
repeated until POP individuals are left. 

Finally, the 3-tournament selection extends the previously described method by ran­
domly selecting three individuals Ji, I2, and I3. If we have f(Ii) > f(I2) and /(/i) > /(/3), 
individual Ii is removed from the population. Again, this step is repeated until POP indi­
viduals are left. 

4 Priority Value based Genetic Algorithm 

This section is devoted to a GA which makes use of a priority value based encoding as 
similarly used by Lee and Kim [20] within their GA for the RCPSP. We employ the priority 
value representation into the basic GA scheme that was used for the permutation based GA. 
This allows us to obtain comparable results when evaluating the GA approaches. We also 
make use of the selection operator variants here that have been defined for the permutation 
based GA as they are not encoding specific. In the following, the priority value based 
representation and the related crossover and mutation Operators are discussed. 

4.1 Individuals and fitness 

In this GA approach, an individual / is represented by a sequence of priority values I = 
pvi,.. .,pvj. For each priority value of activity j = 1,..., «7, we have pvj € [0,1]. This 
encoding equals the one employed by Lee and Kim [20]. In contrast to their approach 
which employs a parallel scheduling scheme to derive the schedule related to an individual, 
however, we employ a serial scheme similar to that used for the permutation based encoding. 
We do so because it has been shown by Kolisch [14] that a serial scheme yields better results 
when a large number of schedules is computed for one project instance. This is due to the 
fact that using the parallel scheme, one might exclude all optimal solutions from the search 
space while the search space of the serial scheme always contains an optimal schedule. 

Hence, given an individual /, the related schedule is computed as follows: After starting 
the dummy source activity at time 0, we determine the set EJ of the eligible activities, 
that is, those activities the predecessors of which are already scheduled. Then we schedule 
the eligible activity j with the highest priority value pvj = max {pv- | i 6 EJ} as early 
as possible such that neither the precedence nor the resource constraints are violated. Re-
peatedly scheduling an unscheduled activity, we obtain a feasible active schedule. Again, 
the fitness of an individual is defined as the makespan of the related schedule. Consider 
again the instance of Figure 1. The example individual displayed in Figure 2 (b) is related 
to the schedule of Figure 3. 

Each individual I of the initial population is determined by randomly drawing a priority 
value pvj € [0,1] with a uniform distribution for each activity j = 1,..., J. 

As was the case for the permutation based encoding, there is some redundancy in the 
search space also for the priority value based representation. We consider again the indi­
vidual shown in Figure 2 (b). Clearly, setting for example pv2 = 0.93 instead of 0.64, we 
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obtain a different individual. However, both individuals are related to the same schedule, 
namely the one of Figure 3. 

4.2 Crossover 

This encoding allows us to employ Standard crossover Operators. Again, we consider two 
individuals selected for crossover, a mother M and a father F, from which two offspring 
individuals are computed. In the following, we only define the daughter D. As for the 
permutation based representation, the son S is computed analogously to the daughter's 
definition. 

For the one-point crossover, we draw a random integer q with 1 < q < J. The first q 
positions of daughter individual D are taken from the mother while the remaining ones are 
defined by the father, that is, for each i = 1,..., J we have 

D_jpvi*i if % E 
^ \ pvf, if i € {g+1,J}. 

Similarly to the permutation based encoding, we have considered the two-point cros­
sover in addition to the one-point variant defined above. We draw two random integers q\ 
and q2 wi th 1 < gi < g2 < J and obtain for each i — 1,..., J 

pvf = < 
pvf, if i € {l,...,gi} 
pvf, if i e {gi + l, —, g2} 
pvf, if i € {g2 + !>•••) J}-

Finally, for the uniform crossover, we draw a sequence of random numbers p, € {0,1}, 
i = 1,..., J. Then we set for each i = 1,..., J 

>? = { v„ pVi , if pi = 1 
^Vl ' pvf , otherwise. 

4.3 Mutation 

The mutation for the priority value based encoding is defined as follows: Given an individual 
/, we modify the related priority value sequence as follows: For all positions i = 1,..., J, 
a new priority value pvj e [0,1] is drawn with a probability of pmutation- Clearly, the result 
is always a feasible priority value sequence. Obviously, the mutation operator may create 
priority values (i.e. genes) that did not occur in the population before. Again, however, 
performing a mutation on an individual does not necessarily change the related schedule 
due to the redundancy discussed above. 

5 Priority Rule based Genetic Algorithm 

In this section, we describe a GA based on a priority rule representation. A similar GA 
has been proposed by Özdamar [24] for the multi-mode extension of the RCPSP. Like the 
priority value based one, also this GA employs the basic scheme and the selection operator 
variants that have been used for the permutation based GA. Next, the priority rule encoding 
and the related crossover and mutation Operators are provided. 
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5.1 Individuals and fitness 

In this GA variant, an individual / is given by a sequence of priority rules pr{,.. .,prj with 

pr! € {LFT, LST, MTS, MSLK, WRUP, GRPW} 

for each position i = 1,..., J. Each of these six priority rules has been suggested in the 
literature and shown to produce good schedules for the RCPSP, we refer to the study recently 
performed by Kolisch [14]. Table 1 contains a brief mathematical definition for each priority 
rule. Here, LFTj denotes the latest finish time of activity j. It can be determined using 
traditional backward recursion from an upper bound on the project's makespan. Finally, 
with fj we denote the earliest precedence and resource feasible finish time of activity j in 
the current partial schedule. Within the WRUP rule which has been developed by Ulusoy 
and Özdamar [28], we have employed the weights that performed best in their study. 

Whereas Özdamar [24] employs a parallel scheme to transform an individual into a 
schedule, we use a serial scheme for the same reason as the one given in the previous 
section. First, we start the dummy source activity at time 0. Second, we compute the 
set of the eligible activities and use priority rule pr[ to select the eligible activity with the 
highest priority. The selected activity is started at the earliest precedence and resource 
feasible time. Repeatedly scheduling an unscheduled activity, we obtain a feasible active 
schedule. The fitness of an individual is again given by the makespan of the related schedule. 
Considering the project instance of Figure 1, the schedule related to the example genotype 
of Figure 2 (c) is again the one of Figure 3. 

Each individual I of the initial generation is determined by randomly selecting one of 
the six priority rules for pr-, i = 1,..., J. 

Like the two previously described genetic representations, also the priority rule based 
encoding contains some redundancy. Consider again the example individual of Figure 2 (c). 
Replacing the ßrst priority rule in the sequence (LFT) with e.g. the GRPW rule, we otain 
a different genotype which is, however, also related to the schedule of Figure 3. 

While the search spaces for the other two encodings always contain an optimal Solution, 
this is not the case for the priority rule based representation. For the sake of shortess, 
we do not give a detailed counterexample, mentioning only that in some cases none of 
the employed priority rules may select an activity that must be scheduled next in order 
to obtain an optimal schedule from the current partial schedule. This drawback could be 

Priority rule formula 
LFT latest finish time min LFTj 
LST latest start time min LFTj — pj 
MTS most total successors max fSj\ 
MSLK minimum slack min LFTj - fj 
WRUP weighted resource utilisation 

and precedence max 0.7\Sj\ + 0.3 YlkeK rjk/Rk 
GRPW greatest rank positional weight max Pj + Eies,- Pi 

Table 1: Good priority rules 
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overcome by adding a priority rule which allows any eligible activity to be selected, namely 
the random rule (RAND). However, we did not employ the RAND priority rule because it 
seems to be incompatible with the GA paradigm: Obviously, selecting an activity with the 
RAND rule may contribute to the fitness if, by chance, this activity continues the current 
partial schedule in an advantageous way. However, the RAND rule itself does not contain 
specific Information that is worth to be inherited. 

5.2 Crossover 

We can employ Standard crossover Operators similar to those used for the priority value 
encoding. The definitions of the one-point, two-point, and uniform crossover for the priority 
rule respresentation are obtained from replacing pvj by prf in the respective definitions for 
the priority value encoding. 

5.3 Mutation 

For the priority rule based encoding, the mutation operator is defined as follows: For each 
Position i= 1,..., J of an individual /, a new priority rule 

prf e {LFT, LST, MTS, MSLK, WRUP, GRPW} 

is randomly drawn with a probability of Pmutation- Again, due to the redundancy described 
above, performing a mutation on a genotype does not necessarily change the related sched­
ule. 

6 Computational Results 

6.1 Experimental Design 

In this section we present the results of the computational studies concerning the genetic 
algorithms introduced in the previous sections. The experiments have been performed on a 
Pentium-based IBM-compatible personal Computer with 133 MHz clock-pulse and 32 MB 
RAM. The procedures have been coded in ANSI C, compiled with the GNU C Compiler 
and tested under Linux. 

We used a set of Standard test problems constructed by the project generator ProGen 
which has been developed by Kolisch et al. [18]. They are available in the project scheduling 
problem library PSPLIB from the University of Kiel. For detailed Information the reader 
is referred to Kolisch and Sprecher [19]. 

In our study, we have used the problem sets containing instances with 30 and 60 non-
dummy activities. The duration of a non-dummy activity varies between 1 and 10 periods. 
We have four renewable resources. For each problem size, a set consists of 480 instances 
which have been systematically generated by varying three parameters: network complexity, 
resource factor, and resource strength. The network complexity reflects the average number 
of immediate successors of an activity. The resource factor is a measure of the average 
number of resources requested per job. The resource strength describes the scarceness of 
the resource capacities. These parameters are known to have a big impact on the hardness 
of a project instance, cf. Kolisch et al. [18]. 

10 



The set with 30 non-dummy activities currently is the hardest Standard set of RCPSP-
instances for which all optimal solutions are known, cf. Demeulemeester and Herroelen [6]. 
In what follows we report the average percentage deviation from the optimal makespan. 
However, for some of the instances with 60 activities, only heuristic solutions are known. 
In these cases, we give the average percentage deviation from the best lower and upper 
bounds as reported in the library PSPLIB at the time this research was performed. The 
lower bounds were computed by Baar et al. [1] and Heilmann and Schwindt [10]. The upper 
bounds were obtained by Kolisch and Drexl [17], Kohlmorgen et al. [12], and Baar et al. [1]. 

6.2 Configuration of the Genetic Algorithms 

Crucial for the success of a GA is an appropriate choice of good genetic Operators and 
adequate parameter settings, usually on the basis of computational experiments. We report 
the outcome of our study to determine the best GA configuration only for the suggested 
permutation based GA approach of Section 3 and for the instance set with 30 non-dummy 
activities, because the results for the other GAs and the other instance set are similar. For 
each instance, 1,000 schedules were computed. 

Table 2 reports the average and the maximal deviation from the Optimum, the percentage 
of instances for which an optimal Solution was found, and the computation time in seconds for 
different combinations of alternative genetic Operators. A mutation probability of 0.05, the 
two-point crossover strategy, and the ranking method for selection perform best. The two-
point crossover operator appears to be capable of inheriting building blocks that contributed 
to the parents' fitness (for much larger projects, even more than two cuts may probably 
be advisable). In contrast, the uniform crossover operator (which yields good results for 
Problems with a different structure such as e.g. the multidimensional knapsack problem, 
cf. Chu and Beasley [4]) does not seem to be well suited for sequencing problems. A 
randomized selection strategy seems to be advantageous only if a much larger number of 
individuals is considered. 

Pmutation crossover selection av. dev. max. dev. optima,! CPU-sec 
0.01 two-point ranking 0.64% 9.7% 77.5% 0.54 
0.05 two-point ranking 0.54 % 7.9% 81.5% 0.54 
0.10 two-point ranking 0.56 % 8.6% 80.4% 0.55 
0.05 one-point ranking 0.65 % 9.7% 77.5% 0.54 
0.05 two-point ranking 0.54 % 7.9 % 81.5% 0.54 
0.05 uniform ranking 0.66 % 8.6% 79.6 % 0.76 
0.05 two-point ranking 0.54 % 7.9% 81.5% 0.54 
0.05 two-point proportional 0.62 % 7.7% 78.5% 0.60 
0.05 two-point 2-tournament 0.63 % 9.3% 79.0% 0.54 
0.05 two-point 3-tournament 0.59 % 7.3% 80.9 % 0.54 

Table 2: Alternative genetic Operators— permutation based GA, 1,000 schedules, J — 30 

Table 3 shows that a population size of 40 and 25 generations is the best parameter 
relationship when calculating 1,000 individuals (i.e. schedules). Finally, Table 4 shows that 

11 



it pays to use a random sampling method instead of a pure random procedure to determine 

the initial population. 

POP GEN av. dev. max. dev. optimal CPU-sec 

50 20 0.56% 11.1 % 80.8% 0.54 

40 25 0.54 % 7.9% 81.5% 0.54 

20 50 0.79 % 9.2% 76.5% 0.54 

Table 3: Impact of population size — permutation based GA, 1,000 schedules, J = 30 

Initial population av. dev. max. dev. optimal CPU-sec 
random sampling (LFT) 0.54% 7.9% 81.5% 0.54 
random 0.99 % 10.5 % 70.8 % 0.52 

Table 4: Impact of initial population — permutation based GA, 1,000 schedules, J = 30 

In the further computational studies, the three GAs make use of the best configuration 
determined here. That is, they apply a mutation probability of 0.05, a two-point crossover, 
the ranking selection, and the relationship of population size and number of generations given 
above. Recall, however, that the sampling procedure to determine the initial population is 
only employed in our permutation based GA. The other two approaches make use of a pure 
random procedure. 

6.3 Comparison of the Approaches 

In this subsection, we present the experimental results obtained from the comparison of the 
proposed GA of Section 3 with the GA approaches described in Sections 4 and 5. 

The first numerical results to be presented are obtained from the project instance set 
with 30 activities where 1,000 individuals (i.e. schedules) are computed for each instance. 
Table 5 gives the average and the maximal deviation from the Optimum, the percentage of in­
stances for which an optimal Solution was found, and the computation time in seconds. The 
permutation based encoding yields better results than the priority value based representa­
tion while both outperform the priority rule encoding. Also observe that the permutation 
based GA results in the lowest computation times. This is because we have to determine 
eligible activities and apply priority rules only for the first generation, when Computing the 
schedule related to permutation based individuals. 

Next, we examine the question whether the three representations are well suited for 
application in genetic algorithms. Clearly, we have two possibilities to use a given encoding: 
First, we can randomly generate a number of solutions, say 1,000, and choose the best one. 
Second, we can randomly generate only a few solutions, say 40, then apply the genetic 
Operators over 25 generations, and choose the best among the resulting 1,000 solutions. 
Note that the former (random) procedure can be viewed as a GA with a population size of 
1,000 and only one generation, that is, the initial one. Thus, the genetic Operators are not 
applied there. The results of the random procedures for the encodings are listed in Table 
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GA av. dev. max. dev. optimal CPU-sec 
permutation 0.54% 7.9% 81.5% 0.54 
priority value 1.03 % 10.8% 70.6 % 0.64 
priority rule 1.38% 17.7 % 70.6 % 0.91 

Table 5: Comparison of genetic algorithms — 1,000 schedules, J = 30 

6. Comparing them to those of Table 5, we observe that the "real" GAs clearly outperform 
the corresponding random procedures if the permutation and priority value encodings are 
considered. However, for the priority rule encoding, there are only slight differences between 
randomly generating 1,000 schedules on the one hand and randomly generating only 40 and 
applying the genetic Operators over 25 generations on the other hand. Hence we can deduce 
that the priority rule encoding is not well suited for genetic algorithms to solve the RCPSP 
while the other two representations are. Observe also that the initial population of the 
permutation based GA is computed using a random sampling method. That is, the random 
procedure for the permutation encoding listed in Table 6 is in fact a sampling algorithm. 
Comparing Tables 5 and 6, we see that it is better to determine only 40 schedules using the 
random sampling procedure and then apply the genetic Operators over 25 generations, than 
to compute all 1,000 schedules with the random sampling method. 

Encoding av. dev. max. dev. optimal CPU-sec 
permutation 0.82% 8.1% 76.5% 0.78 
priority value 1.69% 16.9% 66.9 % 0.66 
priority rule 1.41 % 16.2% 69.8% 0.93 

Table 6: Comparison of encodings in random procedures — 1,000 schedules, J = 30 

Up to this point, we have used a fixed number of schedules to be determined by the 
algorithms. However, the resulting computation times are different, see Table 5. Clearly, 
when using a heuristic procedure in practice, it is important to obtain good schedules 
within a reasonable amount of CPU time. Therefore we have additionally tested the three 
GA variants with time limits, but without bounding the number of schedules. As a further 
benchmark, we use a good sampling procedure known from the literature (cf. Kolisch [14]) 
which is based on the randomized LFT priority rule. 

Table 7 displays the average deviations from the optimum obtained for the instances 
with J = 30 from four different time limits. The permutation based GA performs best for 
all time limits while the priority rule based GA yields the worst results. Note especially 
that the deviation of the permutation based GA is two times lower than that of the priority 
rule based GA for a time limit of 0.5 seconds while it is more than four times lower for 4 
seconds. That is, the proposed GA is not only the best for small time limits, its superiority 
also further increases when the computation time is increased. 

Next, we have performed the same experiment on the set of instances with 60 activities. 
As for some instances optimal solutions are currently unknown, we measure the deviations 
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Algorithm type 0.50 sec 1.00 sec 2.00 sec 4.00 sec 

GA permutation 0.71 % 0.45% 0.37% 0.24% 

GA priority value 1.16 % 0.88% 0.69% 0.54 % 

GA priority rule 1.51 % 1.33% 1.21 % 1.13% 

sampling LPT 1.00 % 0.77 % 0.66% 0.55% 

Table 7: Average deviations w.r.t. time limit — J = 30 

from the best known lower and upper bound here. The results can be found in Tables 8 
and 9, respectively. Again, the permutation based GA performs best for all time limits. In 
contrast to the instances with J — 30, however, here the priority rule based GA outperforms 
the priority value GA and the sampling approach. This Observation can be explained as 
follows: Selecting «7 = 60 instead of J = 30 results in a much larger search space. Within 
the same time limit, only a much smaller portion of the search space can be examined. 
Therefore, the strategy to combine several good priority rules corresponds to examining 
only potentially promising regions of the search space. However, the restriction to the 
regions identified by the priority rules is disadvantageous for smaller projects and/or higher 
computation times (or, of course, faster Computers). Also keep in mind that the priority 
rule based GA hardly exploits the advantages of the genetic Operators, cf. again Tables 5 
and 6. 

Algorithm type 0.50 sec 1.00 sec 2.00 sec 4.00 sec 
~GÄ permutation 5.30% 4.73 % 4.37% 4.16 % 

GA priority value 7.60% 6.60% 6.17% 5.70% 
GA priority rule 5.92% 5.50% 5.18% 4.96% 
sampling LPT 6.08 % 5.77 % 5.63 % 5.39 % 

Table 8: Average deviations from best lower bound w.r.t. time limit — J = 60 

Algorithm type 0.50 sec 1.00 sec 2.00 sec 4.00 sec 
GA permutation 1.42% 1.10% 0.79 % 0.59 % 
GA priority value 3.61% 2.88% 2.24% 1.79 % 
GA priority rule 2.07 % 1.80% 1.52 % 1.34% 
sampling LPT 2.27% 1.99 % 1.82 % 1.62 % 

Table 9: Average deviations from best upper bound w.r.t. time limit — J = 60 

We remark here that most of the best known upper bounds for the hard instances were 
computed by Kohlmorgen et al. [12] w ith their parallel GA approach. Using a massively 
parallel Computer with 16k processing units, they had 16,384 individuals per generation, 
while our GA could not evaluate more than 4,000 individuals altogether within 4 seconds 
when applied to the instances with 60 activities. Thus, it is not surprising that the best 
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known upper bounds are on the average 0.59 % better than our results (cf. Table 9). Never-
theless, it should be mentioned that the schedules for 3 of the 480 instances with 60 activities 
found by our GA (with a time limit of 4 seconds) were better than those reported in the 
library PSPLIB at the time this research was performed. 

7 Conclusions 

We have proposed a genetic algorithm (GA) for solving the classical resource-constrained 
project scheduling problem (RCPSP). The representation is based on a precedence feasible 
permutation of the set of the activities. The genotypes are transformed into schedules using 
a serial scheduling scheme. Among several alternative genetic Operators for the permutation 
encoding, we chose a ranking selection strategy, a mutation probability of 0.05, and a two-
point crossover operator which preserves precedence feasiblity. The initial population was 
determined with a randomized priority rule method. In order to evaluate our approach, 
we have compared it to two GA concepts from the literature which make use of a priority 
value and a priority rule representation, respectively. As a further benchmark, a priority 
rule based random sampling procedure also known from the literature was tested. Our 
in-depth computational study revealed that our GA outperformed the other GAs as well 
as the sampling approach. This outcome suggests to apply our GA to real-world project 
scheduling problems. In fact, we have obtained promising results for a medical research 
project documented in [9]. 
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