
Sprecher, Arno

Working Paper — Digitized Version

A competitive exact algorithm for assembly line balancing

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 449

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Sprecher, Arno (1997) : A competitive exact algorithm for assembly line
balancing, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 449,
Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/177310

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/177310
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 449

A Competitive Exact Algorithm

for Assembly Line Balancing 1

Arno Sprecher

July 1997

©Do not copy, publish or distribute without authors' permission.

Arno Sprecher, Institut für Betriebswirtschaftslehre, Christian-Albrechts-Universität zu Kiel, Ols-

hausenstraße 40, 24098 Kiel, Germany.

Email: Sprecher@bwl.uni-kiel.de

WWW : http://www.wiso.uni-kiel.de/bwlinstitute/prod

FTP : ftp://www.wiso.uni-kiel.de/pub/operations-research

'Supported by the Deutsche Forschu ngsgemeinschaft

Abstract

In this paper we present a branch-and-bound algorithm for solving the simple assembly line

balancing problem of type 1 (SALB-1). The algorithm relies on the precedence tree guided enu-

meration seherne introduced for solving a broad class of resource-constrained project scheduling

Problems. The general enumeration seherne ranks among the most powerful algorithms for solving

the well-known Single- and multi-mode resource-constrained project scheduling problem.

By reformulating the SALB-1 as a resource-constrained project scheduling problem with a Single

renewable resource the availability of which varies with time, the problem can be solved with the

general algorithm. Only minor adaptations are necessary to implement an efficient a ssembly line

balancing procedure. Taking into account SALB-1 specific Information, the transparency of the

enumeration scheme allows to generalize classical dominance concepts from Jackson and Johnson

substantially.

The procedure has been coded in C and implemented on a personal Computer. The computational

results indicate that the algorithm can compete with the best algorithms currently available for

solving the SALB-1.

Keywords: Assembly Line, Project Scheduling, Resource Constraints, Model, Branch-and-Bound,

Heuristic, Computational Results.

1 Introduction

The assembly line balancing problem considers the assignment of tasks of different durations to stations

(cf. Baybars [1], Hoffmann [5], Jackson [6], Johnson [7], Scholl and Klein [14]). Precedence relations

between some of the tasks impose a partial ordering, reflecting which task has to be completed before

others. The precedence relations can be depicted by an acyclic network with exactly one source and

sink. The tasks are related to the assembly of a produet to be performed at consecutive stations.

A conveyor belt moves the produet from Station to Station. At the stations the assigned tasks have

to processed within the cycle time, i.e., within the time the conveyor stops at the Station, or, as in

automotive industry within the time the produet moves within the Station. Given the cycle time the

produetion rate, i.e., the number of produets to be finished per period, is fixed, and vice versa. In

the simple assembly line balancing problem (SALB) the processing times of the tasks are known in

advance and cannot be split between different stations.

Two types of the SALB are mainly considered: First, the SALB of type-1 (SALB-1) is involved with

the minimization of the number of stations for a given cycle time. If, e.g, the stations are manned

by a worker, the objective can be interpreted as the minimization of labor costs, too. Second, in the

SALB of type-2 (SALB-2) the number of stations is fixed and the produetion rate is to be maximized,

1

or equivalently, the cycle time is to be minimized (cf. [8]).

We are concerned with the SALB-1. The problem is dealt with an adaptation of a simple and general

algorithm developed for the resource-constrained project scheduling problem (RCPSP) with multiple

modes. We describe how to model the SALB-1 as an RCPSP with a Single mode and a Single resource

of time varying availability. Moreover, we discuss differences and similarities of the SALB-1 and the

RCPSP. The basic branch-and-bound algorithm for the RCPSP is adapted to solve the SALB-1 and

enhanced by seaxch reduction schemes. The transparency of the enumeration process allows us to

extend classical SALB-1 specific dominance rules from Jackson (cf. [6]) and Johnson (cf. [7]). The

effect is substantial. Moreover, some bounds proposed in the literature have been strengthened and

reduced in their complexity.

We proceed as follows: In Section 2 we briefly recapitulate the basic terminology of assembly line

balancing. Moreover, the formal definition of the SALB-1 is presented. In Section 3 we summarize

the RCPSP, and then model the SALB-1 in Section 4 as a single-mode resource-constrained project

scheduling problem with a Single renewable resource the availability of which varies with time. In

Section 5 we present the branch-and-bound algorithm. The basic enumeration scheme is presented in

Subsection 5.1, and the concepts for search tree reduction are discussed in Subsection 5.2. Differences

and similarities between the SALB-1 and RCPSP are studied. In Section 6, we, first, recapitulate the

bounds developed for the SALB-1, and, second, give some hints to strengthen their effect and reduce

their computational complexity. In Section 7 we reveal the results of our computational analysis.

Finally, in Section 8 we draw our conclusions for future research.

2 The SALB-1

We consider the assembly (production) of a product that can be decomposed into J tasks. The

tasks have deterministic processing times tj, j = 1,..., J, and are, due to technological requirements,

partially ordered by precedence relations. The precedence relations are described by the sets of

predecessors Vj of the tasks j, j = 1,..., J, indicating that a task j may not be processed before all

the tasks h, h £ Vj, are completed. The related graph can be depicted by an acyclic task-on-node

network where the nodes represent the tasks and the arcs the precedence relations. We assume that

the tasks are numerically labeled, i.e., a task always has a higher number than all its predecessors.

W.l.o.g. the network has exactly one source j = 1 and one sink j = J. The Start and finish task have,

w.l.o.g, a zero duration. The tasks have to be assigned to linearly ordered stations.

For a given upper bound V on the number of stations, we denote the set of tasks assigned to Station v,

2

i.e., the load of Station v by LSV, v = 1,... ,V. If two tasks i and j with i £ Vj are assigned to

stations v and v, i.e., i € LSV and j E LSy then v < v is required. The processing time of a Station

v is determined by the sum of processing times of the tasks assigned to the Station v, it is denoted as

PT(LSV). The processing time of the stations is limited by the cycle time c. Given the produetion

rate, we can calculate the cycle time c, and vice versa. The objective is the minimization of the

produetion costs given by the number of stations. The parameters are summarized in Table 1.

J : number of ta sks

tj : processing time of ta sk j

V : upper bound on the number of stations

Vj (Sj) : set of immediate predecessors (successors) of task j

Vj (Sj) : set of predecessors (successors) of ta sk j w ithin the transitive closure of the network

c : cycle time

Table 1: Problem Parameters - SALB-1

Obviously, the problem is infeasible, if there is a task having a processing time which exceeds the cycle

time c. Otherwise, an upper bound V on the minimal number of stations is given by the number of

tasks to be performed, i.e., V = J. Since feasibility can be easily verified, we can use it and introduce

binary variables Xjv, j = 1,..., J, v — 1,..., V,

1 , if task j is assigned to Station v

0 , otherwise.

and obtain the mathematical programming formulation displayed in Table 2 (cf. [3], [4], [22], [10]).

Since we have only one finishing task the objective (1) realizes the minimization of the number of

stations. (2) ensures that each task is assigned to exactly one Station. (3) guarantees, that the sum

of the processing times of the tasks assigned to one Station does not exceed the cycle time c. The

precedence relations are taken into account by (4).

Note, we have assumed that the tasks assigned to one Station have to be performed consecutively.

Therefore, the precedence relations between a task h and a task j, h 6 Vj, that are not taken into

account by assigning task h to a lower numbered Station than task j, have to be considered by first

processing task h and then task j at the Station the tasks are assigned to. Due to numerically labeling

of the network, the tasks assigned to one Station can be precedence feasibly arranged by ordering them

with respect to increasing labels.

V

I V=1
Minimize Z(x) = • x jv (1)

s.t.

V
]V^XjV = \ j -1,...,J (2)
V = l

Y^tjXjv<c V = 1,..., V (3)
j=l
V V
^2 V • x hv < ^ v • Xjv j = 2,..., J,h G Vj (4)
U=1 v=l
Xjy G {0, 1} j= 1) • • •) J) V = Ii • • •) V (5)

Table 2: The Simple Assembly Line B alancing Problem of Ty pe 1 - SALB-1

3 The RCPSP

In this section we briefly summarize the RCPSP with time-varying availability. The model will be

used in the following section to formulate the SALB-1 as an RCPSP.

We consider a project which consists of J activities (jobs, tasks). Due to technological requirements

precedence relations between some of the activities enforce that an activity j, j = 2,..., J, may not

be started before all its predecessors h, h G Vj, are finished. The structure of the project is depicted

by a so-called activity-on-node (AON) network where the nodes and the arcs represent the activities

and precedence relations, respectively. The network is acyclic and numerically labeled, that is an

activity j has always a higher number than all its predecessors. W.l.o.g. activity 1 is the only start

activity (source) and activity J is the only finish activity (sink). Both have a zero duration and do

not request any resource.

Performing activity j, j = 1,..., J, takes dj periods and may not be preempted. Each period the

activity is processed it requires certain amounts of the renewable resources. The set of renewable

resources is denoted by R. Considering a horizon, that is, an upper bound T on the project's makespan,

we have an available amount of Krt units of renewable resource r, r G R , in period t, t = 1,,T.

An activity j uses kjT units of renewable resource r, r G R, each period the activity is in process.

The parameters are summarized in Table 3 and assumed as integer-valued. The objective is to find a

makespan minimal schedule that meets the constraints imposed by the precedence relations and the

limited resource availabilities.

4

#r, >0
kjr > 0

T

dj

R

J number of activities

duration of ac tivity j

set of r enewable resources

upper bound on the project's makespan

number of un its of re newable resource r, r € R, available in period t, t = 1,... ,T
number of u nits of ren ewable resource r, r € R, used by activity j each period it is

in process

Vj (Sj) : set of immediate predecessors (successors) of activity j

ESj (EFj) : earliest Start time (finish time) of activi ty j, calculated neglecting resource usage
LSj (LFj) : latest Start time (finish time) of activity j, calculated by neglecting resource usage

and taking into account the upper bound T on the project's duration

Table 3: Problem Parameters - RCPSP

Given an upper bound T on the project's makespan we can use the precedence relations to derive

time windows, i.e. intervals [EFj, LFj], with earliest finish time EFj and latest finish time LFj,

containing the precedence feasible completion times of activity j, j = 1,..., J, by traditional forward

and backward recursion as performed by the metra potential method (MPM). Analogously, the interval

[ESj. LSj] bounded from below and above by the earliest start time ESj and the latest start time LSj,

respectively, can be calculated to reflect the possible precedence feasible start times.

Using the time windows derived we can now state the problem as a linear program. It was similarly

presented by Talbot (cf. [20]). We use binary decision variables Xjt, j = 1,..., J, t = EFj,..., LFj,

The model is presented in Table 4 and referred to as the RCPSP. Since there is exactly one finish

activity, the objective function (6) realizes the minimization of the project's makespan. Constraints

(7) ensure that exactly one completion time is assigned to each activity. The precedence relations are

taken into account by (8). (9) guarantees, that the per-period availabilities of the renewable resources

are not exceeded.

The RCPSP can be easily modified to include alternative ways of activity execution. The duration of

the so-called modes is a discrete function of the quantities of the resource used (cf. [20]).

We can now reformulate the SALB-1 as a single-mode resource-constrained project scheduling problem,

where the cycle time is reflected by a Single renewable resource.

Xjt — <
1 , if activity j is completed at the end of period t

0 , otherwise.

5

LFj
Minimize $(rr) = * " xJt

t=EFj

s.t.

LFi

(6)

LF,

52 *;t = 1

t=EFj
LFh

Ys t 'xht<]£ (< ~
t=EFjl t=EFj

j min{t+dj-l,LFj}
VI kjr
j=l <7=max{f ,-EFy}

Xji e {0, 1}

j — 1, . . . , «7

j = 2,..., J, h € Vj

r G R , t = 1,... ,T

j = 1,..., J, t = EFj,, LFj

(7)

(8)

(9)

(10)

Table 4: The Resource-Constrained Project Scheduling Problem - RCPSP

4 The RCPSP Formulation of the SALB-1

Each task j, j — 1 ,...,J, is considered as an activity, the durations of which are given by the

corresponding processing times. The precedence relations between the activities are the ones, induced

by the one-to-one correspondence of the tasks and the activities. We define T := V • (c + 1) and

introduce a Single renewable resource, i.e.,# = {1} with an availability of

0 , if t = v{c + l),u = 1,..., V

1 , otherwise

Each activity j, j = 1,..., J, uses one unit of resource 1 each period it is in process, i.e., kji = 1. The

resource availability for c = 5 and V = 4 is displayed in Figure 1. The objective is the minimization

of the makespan of the newly derived project scheduling problem.

Kit

Ku = "

1
Station 1 Station 2 Station 3 I I

0 5 10 15 20 25

Figure 1: Resource Availability in the RCPSP Formulation of the SALB-1 - c = 6, V = 4

Station 4

The essential attribute is the time-varying supply. Since no unit of the renewable resource 1 is available

in the periods t, t = v(c + 1), v = 1,..., V, and, moreover, each activity j, j = 1,..., J, uses one unit

6

of the resource 1, the activities have to be performed in intervals [(v — 1) • (c + 1) + 1, v • (c + 1) — 1],

v = 1,..., V. From an optimal Solution of the related project scheduling problem one can easily derive

an optimal Solution of the assembly line balancing problem. The activities are assigned to the stations

related to tlie intervals the activities are completed (performed) in.

5 A Branch-and-Bound Algorithm for the SALB-1

As the RCPSP formulation of the SALB-1 in Section 4 suggests the problem can be considered as an

RCPSP with a single resource with time-varying availabilities and activities using one unit each period

they are in process. That is, only the resource availabilities and resource usages have to be generated

appropriately and the problem can be solved by any RCPSP-algorithm capable of dealing with the

time varying availabilities (cf. [16], [17], [18]). However, clearly, the foregoing is not reasonable,

since unnecessary tests of obviously infeasible start times and unnecessary Updates of the resource

availabilities of the general scheme would reduce the efficiency substantially.

Therefore, we adapt our RCPSP-algorithm to make use of the special structure of the SALB-1. Before

we describe the algorithm and study the modifications in detail, we refer to some basic terms borrowed

from project scheduling. If necessary to emphasize the difference between RCPSP and SALB-1 specific

considerations we will use the term activity for the RCPSP and the term task for the SALB-1.

As for the RCPSP the search for an optimal Solution is guided by the precedence tree introduced by

Patterson et al. (cf. [11]). The nodes of the precedence tree correspond to the nodes of the branch-

and-bound tree. The root node 1 of the tree is given by the single starting task and the leaves are

copies of the only finishing task. The descendants of a node j within the precedence tree are built

by the tasks that are eligible after scheduling the tasks on the path leading from the root node 1 to

node j. Thereby, a task is called eligible, if all its predecessors are scheduled. Analogously to the

algorithm for the RCPSP we use the set ACSi to refer to the set of tasks currently scheduled up to

level i. Assuming that passing the nodes j, j = 1,..., i, means scheduling the tasks gj, j = 1,..., i,

related to the nodes we obtain the set of eligible tasks on a level i, namely YJ, a s follows:

Fl :=

ACS\ :=

Yi+i •=

ACSi+i \=

In the literature the eligible tasks are sometimes called available tasks (cf. [14]). However we stay

{1}

{5i} = {1}

%\W U{&€ Sgi-, Vk c ACSi} i = 1, • • •, j ~ 1

ACSiU{gi+\} i = — 1

7

with the term eligible for not getting confused with the resource availability. Moreover, we assume

the eligible set to be sorted w.r.t. increasing labels.

For a given upper bound T on the minimal makespan of the RCPSP we obtain a bound on the latest

finish (start time) of the activities by the backward pass from MPM-calculation. The calculation takes

into account the upper bound by defining the latest finish times LFj of the only finishing activity J

through LFj =T. For the SALB-1 we can adapt the foregoing to derive bounds on the latest possible

stations that can be assigned to the tasks (cf. e.g. Scholl and Klein [14]). Given an upper bound V

on the number of stations in the optimal Solution, we can derive the precedence relation based bound

on the latest possible Station LPSj assignable to task j, j = 1,..., J, without exceeding the total

requirements of V stations. We use the set of successors Sj of task j, j = 1,..., J, within the

transitive closure of the network and determine the minimum workload WLj to be processed after

task jr, j = 1,..., J, is assigned to a Station

WLj =
lesj

The bounds are then determined by

LPSj =

V — ((tj + WLj) div c) + 1 if (tj + WLj) mod c = 0

and (tj + WLj) div c > 0

V — ((tj + WLj) div c) + 0 otherwise

where "div" and "mod" denote the integer division and the modulus, respectively. In Section 6 we

will show how to use the SALB-1 specific bounds to reduce the latest possible Station.

5.1 The Enumeration Scheme

Before we explicitly State the algorithm, we give a brief summary of the enumeration scheme: The

algorithm assigns exactly one task to a Station per node of the branch-and-bound tree. A task is firstly

considered for assignment when it is eligible. The eligible tasks are studied in order of increasing labels.

The task is assigned to the most recently opened Station, if the load currently assigned to the Station

allows so, or, otherwise, a newly opened Station. Backtracking is performed if the Station that has to

be assigned to a task violates the upper bound imposed by its latest possible Station, or if no untested

eligible task is left on the current level. On this level the next eligible task is selected. If tracking back

leads to level 0 the optimal Solution has been computed.

The algorithm we are going to present is an adaptation of an algorithm proposed for the RCPSP

(cf. [17], [18]). The symbols and definitions used to describe the SALB-1 algorithm are given in

Table 5.

8

i : level index

i* : lowest level where a task assigned to a Station violates the bound, imposed
by the new latest possible Station induced through adaptation after finding an
improved Solution

Yi set of eligible ta sks on level i

;"""(%) minimum processing time of the eligible tasks of level i

Ni cardinality of the set %

Ni index of the element from the eligible set YJ which is currently considered

YiNi the JVj'th element of the set of eligible tas ks on level i

set of tas ks that have been assigned to a Station (are unassigned) up to level i

9i task currently assigned or considered on level i

Vi Station task Qi is currently assigned to

Pi the position currently assigned to task within Station Vi

Ci idle time (unused cycle time) of Station v, after task is assigned to it

ST, (CTJ relative start (completion) time of task g, assigned on level i to Station Vi

l« lowest level on which a task is assigned to Station v

FTSV first task assigned to Station v

LSV load of Station v, i.e., the set of tasks to be processed at Station v

PT(LSV) processing time of the load LSV of Sta tion v, i.e., the sum of the processing
times of th e tasks assigned to Station v

IT(LSV) idle time of Station v induced by the load LSV

?(^&)(J(Z,&)) set of predecessors (successors) of the tasks out of load LSV of Station v assigned
to Station v

WLj minimum workload that has to be processed after task j is assigned to a Station

LPSj latest possible Station assignable to task j if a t most V stations are required

Table 5: Symbols and Definitions Used in the SALB-1-Algorithm

The basic enumeration scheine for solving the SALB-1 is displayed in Table 6. We contrast the SALB-

1 algorithm with the RCPSP algorithm (cf. [17], [18]). Step 4, Step 7, and Step 8, are of particular

interest.

Step 4 determines the Station the task currently considered has to be assigned to. We contrast

with Step 4 of the RCPSP algorithm. The RCPSP algorithm determines the earliest precedence and

resource feasible start time. The start time is not less than the one of the most recently scheduled

activity and does not exceed the latest start time. The SALB-1 algorithm determines the lowest

un-fully loaded Station having enough idle time for additionally processing the current task. The

Station is not less than the one most recently opened and does not exceed the latest possible Station.

9

Step 1: (Initialization)
ACSo := 0; So := 0; v0 = 1; Po = 0; c0 := c; ST0 := 0; CT0 := 0; Vi := {0}; i := 1; Yx := {!};
N\ := 1; iVi := 0; gi := 0;

Step 2: (Select next untested descendant)
If Ni < Ni then Nt := Ni + 1; fli := YiNi; goto Step 4;

Step 3: (One-level backtracking)
i := i - 1; if i = 0 then STOP; eise goto Step 2;

Step 4: (Determine (not fully loaded) Station)
if (t9i < Ci-i) and (^_i < LPSgi) then v{ := Ui_i; Pi :=pi_i +1; c, := ; STi = CTi_i;

CTi = CTi_i + <9i := -4C<Si_i U {gj;
eise if (uf_i < LPSgi) then v{ := v{-2 + 1; p{ = 1; d := c - t9i; ST{ = 0; CTi = t9i;
ACSi := ACSi-i U {gi}; eise goto Step 3

Step 5: If (i = J) then goto Step 7;
Step 6: (Update the eligible set)

i := i + 1; calculate the new descendant set Yi := U {fc € S9i_,\Vk Q ACSi-i}-,
Ni := \Yi\\ Ni := 0; goto Step 2;

Step 7: (Store Solution and adjust bounds)
Store Solution %, Vj, pj ,STj, CTj = 1,..., J;
Set V = vj; LPSj := - (LPSj — V + 1), j — 1 ,... ,J\

Step 8: (Calculate lowest indexed level producing a bound violation)
i* := min{fc € {1,..., J};% > LPS9k};

Step 9: (Variable-stage backtracking)
i* := i* - pi- +1; i = i*; goto Step 2;

Table 6: Basic Algorithm for the SALB-1

More precisely, if the duration tgi of task gi currently considered at most equals the idle time Cj_i of

the Station Vj_i task (%_i is assigned to, and, moreover, Vj_i is at most equal to the latest possible

Station LPSgi task gt-\ can be assigned to, then gi is assigned to Station Vi = Vi-\. Otherwise, if

feasible, i.e., Vi-1 < LPSgi, gi is assigned to a newly opened Station Vi = Vj_i + 1. After the task is

assigned to Station u*, t he idle time c% of Station Vi is computed. We additionally compute the relative

start time STi and the relative completion time CTi of task gi at Station Uj. The quantities will be

used later for describing the bounding rules. If the task currently considered cannot be assigned to

a Station without producing a bound violation backtracking is performed.

Step 7 stores beside the quantities memorized for the RCPSP, i.e., the (relative) start time STj and

completion time CTj, additionally the relative position pj and the Station Vj of task gj, j = 1,..., J-

Moreover, the bounds imposed by the latest possible Station are adapted similarly as in the RCPSP

algorithm. Note, after finding an improved Solution having V = vj stations we can adapt the bounds

10

to guarantee that from there on only solutions employing less than V stations are generated.

Step 8 performs backtracking to the lowest level where the new bounds are violated. More precisely

we can track pi• — 1 further steps back, since the task producing the violation has to a be assigned to

a Station less than Vi*. The level we return to is the one where the first task is assigned to Station ut».

Note, if we assume, that the stations are maximally loaded (cf. Theorem 2, Subsection 5.2) then we

can track p,- levels back.

In the following subsection we will describe the search tree reduction schemes we have employed to

make the basic scheme efficient. Some are borrowed from the literature and others extend them (cf.

Jackson [6], Johnson [7], Scholl and Klein [14]).

5.2 Search Tree Reduction

The first rule which is presented is a preprocessing rule. It can be implemented via input data adjust-

ment without effect on the enumeration scheme. Moreover, it can be used by any algorithm solving

the problem at hand. The rule extends the task duration incrementing rule from Johnson (cf. [7]) and

gains its effect with lower bounds, e.g. LB1, LBi, and LB6, which we will present later (cf. Section 6).

Theorem 1 (Extended Johnson-Rule I, Extended Task Duration Incrementing, Preprocessing)

The processing time tg of task g, that cannot share the cycle time with any neighbor or precedence in-

dependent task g, g ^ g, i.e., tg + tg > c for all g 6 (Pg U Sg) U ({1,..., J} — (V g U Sg)), can be

incremented to tg = c without influence on the set of feasible solutions.

For the representation of the further rules we will make use of the term sequence Seqi = [gi,..., #] to

refer to a sequence of tasks produced by the algorithm of Table 6 by successively assigning a Station

to the tasks gi,... ,gi. If the loads of the stations 1,... ,v are considered, we denote the sequence by

Seqi = [LS\,..., LSV\. It will help to recall the RCPSP formulation of the SALB-1 (cf. Section 4)

when considering the search tree reduction schemes.

Note, the schedules of the RCPSP-formulation, which relate to a sequence are semi-active (cf. [19]) by

construction. That is, in the corresponding RCPSP schedule the start time of none of the tasks can

be reduced by one period without violation of the precedence and resource constraints, or delaying

another task. For the RCPSP the following rule is a variant of the global left-shift rule (cf. [18]).

It guarantees, in combination with the previous Statement, that only active (cf. [19]) corresponding

schedules are generated. Thereby, an RCPSP schedule is active, if the start time of no task can be

reduced - at all - without violation of the precedence and resource constraints, or delaying another

task.

11

For the SALB-1, it states that only maximally loaded stations are generated on intermediate levels.

Theorem 2 (Jackson-Rule I, Maximum Load)

Let Seqi = [g\, • • • ,gi \ be the sequence of tasks currently considered to be continued. If there is an

assignable task g, g G Yi+1, with tg < q, then none of the tasks g, g € Yi+1, with tg > q has to be

chosen on level (i + 1) to continue the sequence Seqi•

Clearly, since maximality of the load of a Station depends on the tasks previously assigned, it is no

absolute attribute. That is, one and the same load can be maximal within a certain sequence and not

within an other.

The following rule coincides with the set-based dominance used in resource-constrained project schedul­

ing (cf. [17]). It compares the current sequence with one previously studied. If the same tasks can

be found in both sequences, and, moreover, the current sequence uses at least the same number of

stations as the one analyzed earlier, then the current sequence is dominated.

Theorem 3 (Set-Based Dominance)

Let Seqi — [5 1, • • •, g%] be t he sequence currently considered to be continued. If a previously evaluated

sequence Seqi = [<7i>--->Si] has the same set of assigned tasks, i.e., (a) ACS{Seqi) = {51,...,<%} =

{g1,..., </j} = ACS(Seqi) and (b) Uj • c + CT, > üj • c + CT,-, then the continuations of Seqi are

dominated by continuations of Seqi-

Clearly, instead of the more elegant, but time consuming, description given in (6), we use the more

efficient two step comparison, where, first the number of stations, and second, if necessary, the utilized

processing time of the last Station are compared.

The sets related to a partial assignment can be coded by the binaries of an unsigned integer (array)

and stored in a binary level related tree. Using the fact that the number of bits set to 1 in an integer

(array) representing a set of assigned tasks of the same level are equal, fast binary tree search can be

realized.

Obviously, we would achieve the same effect with the labeling scheme developed by Schräge and Baker

(cf. [15]). The scheme assigns each task a label, such that each precedence feasible subset of the set

of tasks has a corresponding unique integer. The integer number is defined by the sum of the labels

assigned to the elements of the set. Using the integer as an array index the precedence feasible subset

can be accessed very quickly. Unfortunately, the number of precedence feasible subsets is considerably

larger than the number of precedence feasible subsets to be necessarily generated.

12

Therefore, it seems to be more appropriate to employ the set-based dominance instead of the labeling

scheme by Schräge and Baker. However, although the set-based dominance requires only a fraction of

the memory used by the labeling scheme, the requirements are extremely high. That is, we need rules

that perform comparison pruning without excessive use of memory.

The three Solution characteristics we present in the following are partly covered by the set based

dominance. However, they can easily be incorporated into the basic enumeration scheme defming

an a priori reduction of the search space. Therefore, no additional effort is necessary to proof the

assumptions of set based dominance. Moreover, only low memory requirements make them favorable

if the number and the size of the set of assigned tasks to be stored grows too large. The first rule is

implicitly used by Johnson (cf. [7]) in his enumeration scheme:

Theorem 4 (Solution Characteristic I)

The SALB-1 has an optimal Solution where the labels of the tasks consecutively assigned to the same

Station are monotonically increasing, i.e., gi > gi+\ implies Vi < fj+i, or equivalent, it is gi < gi+i

unless Vi < Vi+\.

Proof: Consider an optimal Solution. Since the tasks are numerically labeled, two tasks gt+\ and

gt+2, gi+i > gi+2, assigned to the same Station can be interchanged without violating the precedence

constraints, exceeding the cycle time or increasing the number of stations related to the Solution. •

Note, if set-based dominance pruning is employed then the memory requirements are reduced by

Solution Characteristic I. In contrast, the memory requirements induced by the labeling scheme by

Schräge and Baker remain unchanged, since the memory is allotted before the enumeration is started.

It is sensible to combine the modification of the enumeration scheme due to the Jackson-Rule I and the

Solution Characteristic I. We abbreviate the minimum processing time of the tasks out of the eligible

set Yi to tmin(Yi), i.e., tmin{Yi) = min{tj,j 6 Yj}. The combination is captured in the following

remark:

Remark 1 (Combination of Jackson-Rule I and Solution Characteristic I)

Let Seqi = [<?i, • • •, be the sequence currently considered to be continued. If the minimum processing

time tmin(Yi+\) is at most equal to unused cycle time c, of the Station Vi task gi is assigned to, i.e.,

tmin{Yi+1) < a, then only the tasks g, g = Ki+i.jv, N = Ni,.. .,Nt+i with tg<a have to be tested on

level (i + 1).

Proof: Let g be a task fulfilling the assumptions. If tgi+1 > <H hol ds then Station vt is not maximally

loaded. If Ni+i < Ni holds then either Station v{ is not maximally loaded, or the labels consecutively

13

assigned to Station V{ are not monotonically increasing. •

The following Statement transfers the idea of monotonicity of the labels of the tasks assigned to the

same Station to monotonicity of the first tasks assigned to different stations. The derived rule Covers

other portions of set-based dominance pruning and strengthens the first Station dominance introduced

by Johnson (cf. [7]) as well as the simple permutation rule presented by Scholl and Klein (cf. [14]). In

our formulation we assume the enumeration to be reduced in accordance with Solution Characteristic I.

Theorem 5 (Solution Characteristic II)

Let V* be the optimal number of stations of a SALB-1. The SALB-1 has an optimal Solution where

the labels of the first tasks FTSV assigned to stations v, v = 1,..., V*, are monotonically increasing

unless precedence constraints require the contrary. That is, for v, v, v < v, it is

(a) FTSy < FTSV or (b) V(LSv) g LSV U A CSi-~\.

Proof: Let Seqj — [L5"i,..., LSy] be an optimal Solution. If condition (a) or (b) holds for

the entire Solution, we are done. Otherwise we select the lowest index v and related index v for

which neither (a) nor (b) holds. We rearrange the sequence of workloads to the feasible sequence

Seqj = [LS\,... ,LSy-i,LSv, LSy,LSv+i,. • • ,L Sv-i,LSv+i,... ,LSV*]. The sequence Seqj has, due

to the ordering of Y{, been previously studied. Repetitively applying the procedure leads to an optimal

Solution fulfilling the requirements. •

The rule is simply implemented. First, in Step 4, if the current decision is to close a Station v with

respect to sequence Seqi = [Z,5i, • • •, LSV] for the first time, then the set of predecessors V(LSv) of

Station load LSV is determined, and conditions (a) and (b) are checked. If neither (a) nor (b) holds

we trace back.

Note, whereas the first Station dominance introduced by Johnson (cf. [7]) states, that a Station load

once built for the first Station, need not be built for a later Station, the modification by Scholl and

Klein (cf. [14]) identifies two consecutive Station loads that can be interchanged by using an efficient

sufficient condition for interchangeability, i.e., (*) max{j E LSV} < min{j G LSV-1}. However, since

interchangeability might occur although (*) is violated Solution Characteristic II has a stronger effect

than the Simple Permutation Rule from Scholl and Klein.

Remark 2

Tabing into account search tree reduction in accordance with Solution Characteristic II is equivalent

14

to employ: A load SLy once built for a Station v to continue sequence Seq = [SLh..., SLV-2] need

not be b uilt for a Station v,v<v, to continue Seq = [SLUSLV.U SLy,... ,SLV-1].

Roughly speaking Solution Characteristics I and II consider the Arrangement of tasks within stations

and the arrangement of entire Station loads. The following rule analyzes interchangeability of tasks

between different stations. Again, further portions of the set-based dominance pruning are covered.

Theorem 6 (Solution Characteristic III)

The SALB-1 has an optimal Solution where no task gi assigned to a Station Vi can be interchanged

with a task assigned to Station with g%~k > gi and < Vi without violating the precedence

constraints or exceeding the cycle time at Station or Station

Similar to the realization of Solution Characteristic II the assumptions are checked when it is decided

to close a Station Vi, that is, if the Station is maximally loaded. If for a task g G LSVi there is a

task with (a) > g, (b) < vu (c) IT(LSVi)) + tg > Jig._kt (d) IT{LSvgi_k)+t9i_k > tg,

(e) Vn C ACSi-k-i, (f) Sgi_k fl ACSt_Pi = 0, then we can trace back. Conditions (a) and (b) indicate

a violation of the monotonicity of task labels, (c) and (d) ensure that the cycle time is not exceeded

if the task and task gt are interchanged, (e) and (f) preserve precedence feasibility.

Note, if the tasks are labeled with respect to the processing times, such that i < j implies U > tj or

i G Vj then the Extended Jackson rule provided by Scholl and Klein is enhanced (cf. [14]).

Clearly, one can extend the considerations to interchangeability of subsets of Station loads SSLy C SLy

and SSLV C SLV, v < v, with min{j G SSLy} > min{j G SSLV}. However, serious effort is necessary

to find the subsets and verify (the adapted) assumptions.

6 Lower Bounds for the SALB-1

In this section we will summarize the lower bounds developed for the SALB-1. We strengthen the

effect and reduce the complexity of some of them. For a more thorough discussion we refer to [13].

For convenience we denote the set of tasks by J.

The first bound LBl is derived by neglecting the precedence relations, and, moreover, assuming that

all the stations but at most one are fully loaded. We use [z] to denote the lowest integer that is at

least equal to x and determine

LB1(J) = ^2 h div c + min{ ^ tj mod c, 1} =
j€J

Z2 ti/c = \LBl(J)] .

15

By building the sum of processing times before the enumeration is started, and decrementing the sum

after the assignment of a task the bound can be realized with constant effort.

The second bound LB2 and the third bound LB3 have been introduced by Johnson (cf. [7]). Both

bounds relax the precedence relations too, and, thus, can be used for bin packing problems as well.

They key idea is to use portions of the cycle time to measure the processing times of the tasks instead

of the number periods. Döing so, a task can, e.g., have a duration which is (a) less than a half of

the cycle time, (b) equal to a half of the cycle time, or (c) larger than a half of a cycle time. Given

the Classification of the durations, the tasks from (a) are excluded from further consideration. The

tasks from (b) can only share a Station with another single task of (b), and the tasks of (c) have to

be assigned to a Station on their own. As introduced by Scholl (cf. [13], pp. 43), we use the interval

notation J [Oc, , J |ßC, |c|, J ^c, ycj, to refer to the set of tasks out of J, the processing times

of which belong to the intervals [Oc, ^cj, j^c, ^cj, ^c, ycj, and obtain

6B2(J) J
1 1
2C' 2° +r k H II=fiB2('7)i •

The third bound LBZ relies on the idea of measuring the durations in thirds of cycle time. With

similar arguments as above we obtain

LB3(J) = [i- J
1 1 '
3C' 3° 4 J

1 2 A
3C' 3 y

2
+ 3 J

2 2 '
3°'3C

4 JI je; \c

= \LB3(J)].

A general formula when measuring the duration in fractions 1/h, h = 2,..., \of the cycle

time has been developed by Johnson (cf. [7]).

Note, as mentioned by Scholl (cf. [13], p. 44), the bound is of complexity Ö(\J\). However, if used

during the enumeration, the effort necessary can be reduced substantially. Before the enumeration

Starts one (1) classifies the tasks in accordance with the intervals specified above, and (2) determines

the power of the sets. During the enumeration, (1) if a task is assigned to a Station, the power of the

sets it belongs to is decremented, (2) if a task is removed from a Station, the power of the set the task

belongs to is incremented. Consequently, only constant effort is necessary to evaluate the formulae

during enumeration.

The fourth bound LBA is Scholl's (cf. [13], pp. 44) extension of Bound Argument 4 from Johnson

([7]). The idea is to relax the SALB-1 to a single machine scheduling problem. We summarize the

outline from Scholl. The tasks are considered as Jobs that have to be processed consecutively on a

single machine. The processing time of Job j is pj = tj/c, j = 1,..., J. After processing a Job j on

the machine a certain amount of time has to pass before the job can be considered as finished. The

16

minimize amount of time is referred to as tail of job j and denoted as rij. Again the objective is to mir

the makespan. Given that the tasks are labeled in order of non-increasing tails, i.e., n; > rii+1,

i = 1,..., \J\ - 1, the minimal makespan is LB4(J) = + EiUMl = \LB4(J)]. We

compute the tails similar to Scholl. Adding the fact that the tails can be rounded to the next integer

- which is expressed by the first case of the following distinctions - if t he task the successors of which

are studied cannot share a Station with any of its successors, we obtain

nj i

LBl(Sj) , if pj + ps > 1 for

all s G < Si nj4

nj 2 =

LBl(Sj) , otherwise

LB2(Sj) , if pj +ps > 1 for

all s G SJ

LB4(Sj) , if pj -I- p s > 1 for

all s G S i

LB2(Sj) , eise if pj > \ or

LB2(Sj) <£ N

rijz

LB4(Sj) , otherwise

LBZ(Sj) , if Pj + pa > 1 for

all s G S j

LBi(Sj) , eise if pj > |

LB3(Sj) - | , otherwise LB2(Sj) — \ , otherwise

Taking into account that the network has a dummy starting and a dummy finishing task, we can

recursively calculate the tails as proposed by Scholl (cf. [13], page 46). Analogously, by replacing

the (transitive) successors through the (transitive) predecessors, we can compute the heads aj, j =

1,..., J. Using the heads and tails we obtain a lower bound for the single machine scheduling problem

with heads and tails Z = max^=1{aj +pj + rij}. This bound is then used as Scholl's (cf. [13], page

48) generalized bound LB4.' .

Now, for a given bound V, we can employ the tails to recalculate the latest possible Station LPSj,

derived in Section 5, a task j can be assigned to. It is

LPSj(V) := j — 1,..., J (11)
V , if rij = 0

V + 1 — \pj + nj] , otherwise

In addition to Scholl and Klein ([14]), who used the bound only for the root problem, we implicitly

utilized the results of the computation of LB4' as given in (11), and thus, at least partly, use LB4

during enumeration. More precisely, before a task gi is assigned to a Station Vi, it is checked if the

Station number exceeds the currently valid latest possible Station, i.e., if Vi > LPSgi, then, assuming

maximally loaded stations, we can track back to the level were the last task is assigned to Station

Vi - 1.

The fifth bound LB5 (cf. [14]) additionally needs the earliest possible Station which is determined

17

EPSj :=

as follows

1 ,if«j = 0 i = 1) j (12)

\a,j + pf\ , otherwise

We obtain

LB5 = mm{V>0;LPSj(V)>EPSj,j = l,.-.,J}

The sixth bound LB6 has been developed by Berger et al. (cf. [2]). It can be described in five

steps. In step 1, the tasks are sorted with respect to non-increasing durations. In step 2, the tasks

are grouped in the classes J (0; ±c], J ßc; £c], J (^c; }c]. In step 3, beginning with the longest

task, the tasks out of J ^c; ycj are assigned to separate stations. In step 4, beginning with the

shortest task, the tasks out of J (|c; ̂ c] are tried to be assigned to the stations opened up to now.

The stations are considered in Order of non-decreasing idle times. The tasks that can be assigned are

named Jass (je; ±c], the remaining tasks Junass (je; ±c] out of J (±c; |c] are too much or too long

to fit in one of the currently opened Station. But, two of them can share a newly opened Station, and

we get a preliminary bound

PLB =

The preliminary bound can be improved. In step 5, we consider the integers s out of the interval

|0; . For any of these integers a task j, j G J (s, |cj, can only be added to a Station related to

tasks out of Junass ^cj Jj c — sj. The idle time of these stations is considered. If the idle time

suffices to schedule the tasks out of J (s, |cj, then the prelimiary bound PLB remains unchanged,

otherwise the bound is increased by appying LB1 to the remaining overhead. Considering all the s,

s € [0, je), we use the maximum increment to improve the preliminary bound PLB to LBQ(J).

The seventh bound LB1 has been developed by Scholl (cf. [13]) who considers the problem of

minimizing the cycle time for a given number of stations. For an initially given number of stations V

a lower bound c(V) for the cycle time is determined. If the lower bound c(V) exceeds the actual cycle

time, then V is incremented by one, and the procedure is repeated, otherwise the current V is a lower

bound. Scholl determined the bound c(V) as follows: First, all the tasks are labeled with respect to

non-increasing order, i.e., U > i,+x, i = 1,..., n — 1. Second, assuming that J > V tasks have to be

assigned, a lower bound on the cycle time is ty + ty+1\ assuming that J > 2 • V tasks have to be

assigned a lower bound on the cycle time is t2y_x + t2y + t2V+v and so on. In general we obtain,

_ k

c(F) = max{Y,tk.v+1^k = 1,...,L(J- 1)/VJ}
i=0

18

This bound has only been used for the root-problem. As initial value for V we employed the maximum

of the bounds LB1,..., LB6.

7 Computational Results

The algorithm has been coded in GNU C and implemented on a personal Computer (66 MHz, 80486

dx) under the Linux operating system. From the bounds described in Section 6 we applied the bound

LB = max.{LBi,LBz,LBz,LB[,LBr„LB?nLBy}

to the root problem. The bounds LB\, LB2 and LB$ have been used during the enumeration whenever

a Station is decided to be closed because it is maximally loaded. The bound LB4 has been implic-

itly utilized through the adaptation of the latest possible Station after finding an improved Solution.

Clearly, before determining the bounds we have applied the extended task incrementing rule. More­

over, the backtrack level after finding an improved Solution with V stations can be reduced further.

We assume that the latest possible Station LPSj of task J has been adapted, dehne

LBX(ÄCSiv-x) := max{LB\(MSiv-l),LB2i^lv-l),LBZ(ÄeSiv-X)} v = l...V,

and obtain

i = min{lv — l, (v — 1) + LBX(ACSiv-i) > LPSj, v = l...V}

as an (improved) variable backtrack level. Furthermore, the enumeration scheme employs all the search

tree reduction schemes presented in Subsection 5.2, but the Set-Based Dominance (cf. Theorem 3).

Instead Solution Characteristic I, II and III are utilized to exclude dominated assignments from further

continuation. Obviously, doing so, reduces the memory requirements substantially.

Before the enumeration has been started the tasks have been relabeled with the respect to the maxi­

mum duration rule (cf. Subsection 5.2). As first and second tie-breaker we used the minimum latest

possible Station and the minimum task label, respectively.

The enumeration (simultaneously) considers the (relabeled) original and the (relabeled) reversed prob­

lem. The reversed problem is obtained from the original problem through the reversal of the precedence

relations, i.e., task j becomes task + = in the reversed problem and a predecessor h,

h £ "Pj, becomes a successor of task j in the reversed problem. Afterwards the tasks are relabeled

in accordance with the priority rule. The enumeration switches every 500.000 node evaluations from

the examination of the original problem to the examination of the reversed problem, and back after

further 500.000 node evaluations.

19

Set Combined Talbot et al. Hoffmann Scholl

no prob. 269 64 50 168

Alg. FAB EUR SAL FAB EUR SAL FAB EUR SAL FAB EUR SAL

opt. 179 194 224 64 64 64 48 47 48 80 96 125

Ä 0.95 0.72 0.46 0.00 0.00 0.00 0.25 0.34 0.25 1.44 1.05 0.67

£max 7.69 12.00 7.69 0.00 0.00 0.00 7.69 7.69 7.69 7.14 12.00 4.55

cpü[sec.] 175.9 199.1 98.6 0.2 5.3 0.2 48.8 78.4 40.4 267.1 293.9 145.9

Alg. Adapted General Sequencing Algorithm (AGSA)

opt. 243 64 48 144

Ä 0.25 0.00 0.25 0.33

£max 7.69 0.00 7.69 4.55

cpü[sec.] 65.9 0.2 24.8 98.1

Table 7: Computational Results with Time Limit 500 Seconds

The computational results are compared with Scholl and Kleins (cf. [14]) Implementation of EUREKA

(cf. [5]), FABLE (cf. [7]), and SALOME (cf. [14]), where SALOME is the best algorithm currently

available. All the algorithms have been implemented by Scholl in Borland Pascal 7.0 under the DOS

operating system and run on a personal Computer (80486 dx, 66 Mhz).

The comparison is displayed in Table 7 and Table 8. Table 7 reveals the results on different problems

sets, the Talbot-set (64 instances), the Hoffmann-set (50 instances), and the Scholl-set (168 instances).

Due to duplications of several instances the combined set has only 269 instances (cf. [12]). The number

of tasks ränge between 8 and 297. For a given time limit of 500 seconds, the number of problems

that have been optimally solved (opt.), the average deviations A, the maximum deviations Ama:c,

and the average CPU-time cpu[sec.] are displayed. The average deviations are determined through

the deviation from Optimum - where known, and the lower bound otherwise. The results show that

the adapted general sequencing algorithm (AGSA) can compete quite well with the (special purpose)

developments FABLE, EUREKA and SALOME. On the combined set AGSA solves more instances,

produces a lower average deviation from the Optimum, and requires less CPU-time than the other

algorithms. Three instances out of the Scholl-set have been solved for the first time.

Table 8 shows the number of problems optimally solved, the average deviation, the maximum deviation,

and the average CPU-time for time limits of 50, 100, 250, and 1000 seconds. Within all the time limits

the results of AGSA compare quite well with the ones of FABLE, EUREKA and SALOME. Note,

AGSA solves within a time limit of 100 seconds more problems, i.e. 230, than the best algorithm

20

Time Limit 50 sec. 100 sec. 250 sec. 1000 sec.
Alg. FAB EUR SAL FAB EUR SAL FAB EUR SAL FAB EUR SAL
opt. 169 183 209 170 187 213 177 190 216 181 199 227
Ä 1.10 0.81 0.61 1.07 0.76 0.58 0.98 0.76 0.54 0.91 0.64 0.43

max 8.82 12.00 7.69 8.82 12.00 7.69 7.69 12.00 7.69 7.69 12.00 7.69
cpu[sec.] 19.7 23.5 13.0 38.2 44.4 23.8 91.5 103.6 54.2 340.8 377.6 177.4
Alg. Adapted General Sequencing Algorithm (AGSA)

opt. 221 230 238 247
Ä 0.46 0.38 0.29 0.23
^max 7.69 7.69 7.69 7.69
cpü[sec.] 12.6 20.3 39.4 107.9

Table 8: Computational Results with Different Time Limits

currently available - SALOME - can solve within 1000 seconds, i.e., 227. Moreover, the average

deviation within 100 seconds for AGSA, 0.38%, is less than the one produced by SALOME within

1000 seconds, 0.43%. This should balance the different platforms and show the competitiveness of

AGSA.

The problems that could not be solved to optimality within 1000.00 seconds have been proposed by

Arcus (set 2), Bartholdi (set 2), Lutz (set 2), Mukherjee, Scholl, and Wee/Magazine (cf. [14]). The

assembly projects consist of 111, 148, 89, 94, 297, and 75 tasks.

8 Conclusions

We have presented an adapted version of a general algorithm for solving the simple assembly line

balancing problem of type-1. The algorithm is guided by the precedence tree, which has successfully

employed to solve a wide ränge of resource-constrained project project scheduling problems.

Through the transparency of the precedence tree guided scheine classical dominance concepts provided

by Jackson and Johnson can be enhanced substantially. The Solution characteristics provided allow

to Substitute memory intensive set-based dominance pruning through the application of low memory

requiring characteristics. The computational results show that the algorithm can compete with the

best algorithms currently available for solving the SALB-1.

The results indicate that it could be of interest to study the effect of other adaptations for solving

further variants of the assembly line balancing problem. Moreover, since, in contrast to Claims made

21

in the literature, there are several problems which have less than 100 tasks that could not be solved

to optimality by neither AGSA nor SALOME, it is useful to know the limits of the best Solution

procedure available so far. A generator of instances similar to ProGen (cf. [9]) could help to find the

limits. Moreover, a proper set of characterized projects can help to study the effect of search tree

reduction schemes and thus accelerate the development. Additionally, the sets would help to make

algorithms more comparable even if different platforms are used.

Acknowledgments: I am grateful to Armin Scholl who provided the instances as well as his source

codes of EUREKA, FABLE and SALOME.

References

[1] BAYBARS, I. (1986): A survey of exact algorithms for the simple assembly line balancing problem.

Management Science, Vol. 32 , pp. 909-932.

[2] BERGER, H.; J.-M. BOURJOLLY; G. LAPORTE (1992): Branch-and-bound algorithms for the multi-

product assembly line balancing problem. European Journal of O perational Research, Vol. 58, pp. 215-

222.

[3] BOWMAN, E.H. (1960): Assembly line balancing by linear programming. Operations Research, Vol. 8,

pp. 385-389.

[4] DREXL, A. (1990): Fließbandaustaktung, Maschinenbelegung und Kapazitätsplanung in Netzwerken -

Ein integrierender Ansatz. Zeitschrift für Betriebswirtschaft, Jg. 60, pp. 53-70.

[5] HOFFMANN, T. R. (1992): EUREKA: A hybrid system for assembly line balancing. Management Science.

Management Science, Vol. 3 8, pp. 39-47.

[6] JACKSON, J .R. (1956): A Computing procedure for a line balancing problem. Management Science, Vol.

2, pp. 261-271.

[7] JOHNSON, R.V. (1988): Optimally balancing Iarge assembly lines with 'FABLE'. Management Science,

Vol. 34, pp. 240-253.

[8] KLEIN, R. AND A. SCHOLL (1996): Maximizing the production rate in simple assembly line balancing

- A branch and bound procedure. European Journal of Operational Research, Vol. 91, pp. 367-385.

[9] KOLISCH, R .; A. SPRECHER AN D A. DREXL (1995): Characterization and generation of a general class

of re source-constrained project scheduling problems. Management Science, Vol. 41, pp. 1693-1703.

[10] PATTERSON, J.H. AND J .J. ALBRACHT (1975): Assembly-line balancing: Zero-one programming with

Fibonacci search. Operations Research, Vol. 23, pp. 166-172.

22

[11] PATTERSON, J.H.; R. SLOWINSKI; F .B. TALBOT A ND J. WEGLARZ (1989): An algorithm for a general

class of precedence and resource constrained scheduling problems. In: Slowinski, R. and J. Weglarz

(Eds.): Advances in project scheduling. Elsevier, Amsterdam, pp. 3-28.

[12] SCHOLL, A. (1993): Data of assem bly line balancing problems. Research Report, No. 16/93, Technische

Hochschule Darmstadt, Germany.

[13] SCHOLL, A. (1995): Balancing and Sequencing of Assembly L ines. Physica-Verlag, Heidelberg.

[14] SCHOLL, A . AND R. KLEIN (1996): SALOME: A bidirectional branch and bound procedure for assembly

line balancing. To appear in: INFORMS Journal on Computing.

[15] SCHRÄGE, L . AND K .R. BAKER (1978): Dynamic programming of sequencing problems with precedence

constraints. Operations Research, Vol. 26, pp. 444-459.

[16] SPRECHER, A. (1994): Resource-constrained project scheduling: Exact methods for the multi-mode

case. Lecture Notes in Economics and Mathematical Systems, No. 409, Springer, Berlin.

[17] SPRECHER, A. (1996): Solving the RCPSP Efficiently at Modest Memory Requirements. Manuskripte

aus den Instituten für Betriebswirtschaftslehre, No. 425, Kiel .

[18] SPRECHER, A. AND A . DREXL (1996): Solving Multi-Mode Resource-Constrained Project Scheduling

Problems by a Simple, General and Powerful Sequencing Algorithm. To appear in: European Journal of

Operational Research.

[19] SPRECHER, A.; R. KOLISCH AND A . DREXL (1995): Semi-active, active and non-delay schedules for

the resource-constrained project scheduling problem. European Journal of O perational Research, Vol.

80, pp. 94-102.

[20] TALBOT, F.B. (1982): Resource-constrained project scheduling with time-resource tradeoffs: The non-

preemptive case. Management Science, Vol. 28, pp. 1197-1210.

[21] TALBOT, F .B. AND J H. PATTERSON (1978): An efficient integer programming algorithm with network

cuts for solving resource-constrained scheduling problems. Management Science, Vol. 24, p p. 1163-1174.

[22] WHITE, W.W. (1961): Comments on a paper by Bowman. Operations Research, Vol.9, pp. 274-276

23

