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Abstract: Lufthansa Technical Training GmbH (LTT) performs training courses for Lufthansa AG 
as well as for several other internation al airlines. Cours es of about 670 different types are offered of 
which several hundred take place each year. The course scheduling problem faced by LT T is to de-
velop a yearly schedule which maximizes the profit margin incurred while meeting a variety of 
complex precedence, temporal, and resource-related constraints. A "good" operational schedule should 
also meet a number of additional subordinate objectives. We formalize the problem and describe a 
heuristic scheme along with several priority rules, as well as a local search method to determine well-
suited weights for weighted composite rules. The operational planning Situation of 1996 served as our 
major test instance; additional test instanc es were constructed by modifyin g this data. Several compu-
tational experiments were carried out to evaluate th e Performance of the algori thms. It tumed out that 
the best so-found schedule is substantially better in terms of the profit margin incurr ed than the Solu
tion manually constructed by LTT. 

Keywords: COURSE SCHEDULING; AVIATION; TRAINING; HEURISTICS; LOCAL SEARCH 

1. Introduction 

Lufthansa AG, the German national flag carrier, currently has about 40,000 employees and is 

one of the largest employers in the country. Almost every fourth of them is engaged in the 

technical area that is responsible for the checks, maintenance, and overhauls necessaxy to 

maintain a high Standard of safety. The training of its technical staff is entrusted to Lufthansa 

Technical Training GmbH (LTT). Apart from Lufthansa Technik AG, the technical depart-

ments of numerous other airlines are customers of LTT. About 670 different theoretical and 

practical course types are offered, lasting from a few days up to one year and covering areas 

such as aircraft maintenance, overhauls, or inspector training. To satisfy all (or at least most) 

customer requests, each year several hundred courses of different types are held in Offices in 

Frankfurt, Hamburg, and Berlin. 

The manual construction of an operational course schedule for the LTT is an extraordinarily 

tedious and time-consuming task that each year monopolizes two employees for several weeks 

and results in a plan taking several square meters of paper. Due to the long time this process 

takes, it is virtually impossible to apply different planning strategies and assess the resulting 

schedules. This, however, would be desirable since usually not all requested courses take 

place, mostly due to scarce instructor capacities. It was conjectured that the ability to come up 

with several alternatives would allow to select better schedules than those manually 

constructed. 

In Section 2 we briefly survey the open literature on related problem fields. We formalize the 

course scheduling problem (CSP) as faced by LTT in terms of a mathematical model in 

Section 3. Section 4 presents an algorithmic construction scheme together with different 

priority rules. Section 5 provides computational results analyzing the effect of the priority 

rules, focussing on the actual operational LTT data of 1996. Section 6 concludes the paper 

with some final remarks. 
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2. Literature Review 

Within the last 15 years, a variety of articles has been published on problems located within 

the area of educational scheduling. Virtually all articles gravitate around two problem fields 

(Figure 1), viz. school timetabling (de Gans 1981; Abramson 1991; Cangalovic, Schreuder 

1991, 1992; Hertz 1992; Alvarez-Valdes et al. 1994; Costa 1994) and academic course sched

uling (Tripathy 1984; Aubin, Ferland 1989; Kang, White 1992; Sampson et al. 1995). One 

might conjecture that the CSP and the above problem settings are rather closely related. 

However, the majority of problems covered in the literature differ in some fundamental 

aspects from the CSP: 

• Most timetabling or academic course scheduling problems are adapted to non-profit orga-

nizations such as schools, Colleges, or universities. None of these organizations is seeking 

to maximize the profit margin arising from a schedule. 

• Both timetabling and academic course scheduling intend to find periodic schedules; these 

have to be repeated at regulär intervals which are relatively small, e.g. one week. In con-

trast, a Solution of the CSP represents a non-periodic schedule for a much longer planning 

horizon, e.g. one year. 

• For many of the problems discussed even the associated feasibility problem is (strongly) 

NP-complete, owing to the combination of scarce resources and a fixed planning horizon 

within which all courses (lessons, lectures) have to be scheduled. For the CSP in contrast, 

there exists a trivial feasible Solution for each instance, viz. to schedule no course at all, 

since requested courses may be rejected. 

Educational Scheduling 

Figure 1: Professional Course Scheduling Is One Discipline of Educational Scheduling 

An exception to these findings is provided by the work of Eglese, Rand (1987) who address 

the scheduling of conference seminars. The problem they consider is to find an assignment of 

periods and participants to seminars which covers all participants and meets a number of con-

straints essentially representing scarce room resources. However, since all seminars have a 
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uniform duration of one period each Seminar is scheduled as a whole. Each seminar can only 

be held by one Speaker rather than by a group of alternative speakers. Finally, no precedence 

or temporal constraints are part of the problem. Hence, also the approach of Eglese, Rand is 

not applicable to the CSP. Other than that, only very little research has been documented on 

related scheduling problems. 

Summarizing, we may infer that the CSP substantially differs from problems in seemingly 

related fields such as timetabling or academic course scheduling (for more details cf. Haase et 

al. (1997)). We therefore consider the CSP to be in a separate problem field which we term 

professional course scheduling (Figure 1). 

3. Model 

3.1. Symbols and Definitions 

The model formulation we propose here is founded on concepts from project scheduling; an 

alternative formulation in terms of a knapsack model is given in Haase, Latteier (1996). Each 

course is interpreted as a project consisting of a number of component Jobs (basically corre-

sponding to lessons) which are to be scheduled subject to specific temporal and resource con

straints. Hence, the CSP can be regarded as a multi-project scheduling problem. Still, we will 

see that there are some strings attached to this problem, which make it differ from Standard 

resource-constrained project scheduling problems. The CSP can be couched as follows. 

Courses: N courses of CT different course types are to be scheduled within a fixed planning 

horizon of T periods; T comprises all periods available for training, i.e. all lessons of each 

workable day, taking into account weekends and holidays. Each course comprises a specific 

number of jobs, each representing one training lesson (Figure 2) and thus having a length of 

one period, and a fictitious job to be explained below. W.l.o.g. we assume that all jobs of a 

course n are consecutively indexed and have a lower index than any job belonging to a course 

n' > n. The total number of jobs is J. Let denote fn (ln) the first (last) job of course n. 

Resources: Each course requires certain scarce resources such as instructors or rooms. Let 

denote RP the set of training rooms and R^ the set of customers having filed course type 

requests. The (renewable) capacity of any such resource r e RP u R? in period t is given by 

crt. The Interpretation of the (renewable) room capacity is straightforward; the (renewable) 

customer capacity states the number of customer staff allowed to be trained at the same time 

(participant quota). Further, demand for each course type c is specified by each customer r € 

R^ in terms of the number of intended participants (some of these may be zero). Accordingly, 

let denote R^ := R? x {1,...,CT} the set of customer-course type resources such that each r e 
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R"fy represents a specific customer with demand for a specific course type. The 

(nonrenewable) capacity cr for each such r denotes the number of intended participants. Fi-

nally, Rx denotes the set of all instructors. The (renewable) capacity of instructor r e Rx in 

period t is given by crt while its (nonrenewable) capacity within the complete planning 

horizon is denoted by cr; the former (binary) capacity specifies whether an instructor is 

available for instruction in a period, whereas the latter provide capacity for the actual 

instructing lessons as well as preparation periods for these lessons. 

Modes: Since most lessons can be held by different instructors and courses can include differ

ent participants, we represent alternative ways of performing courses by defining for each job j 

a number Mj of modes in which it can be processed. In addition, for each job j there is a set Sj 

£ {1,...,T} of start periods; a job may begin only in one of these periods. For each job j proc

essed in mode m, the (renewable) per-period usage of a resource r e Rx u RP u R^ is speci-

fied by while the (nonrenewable) total consumption of a resource r e Rx u is 

specified by k^j^r 

Participants: For each course n, a fictitious job serves to handle all requirements related to 

participants (this job is not depicted in Figure 2); w.l.o.g. we use fn+l to denote it. Its 

(nonpreemptable) duration equals the duration of course n which, owing to the number of 

weekends and holidays comprised, depends on the period t e Sj in which n begins. Each of its 

modes represents a feasible composition of participants from one or several customers where 

participants are assigned to only one course at a time. 

Topics: Lessons on the same subject are combined to topics if they require the same instructor 

qualifications and training facilities. To represent these requirements, we introduce instructor 

and room groups; each such group is a set of resources which are equivalent in the sense that 

they can be used altematively to meet the requirements of a topic. The set of all instructor 

groups is denoted by GT, the set of all room groups by GR. With each instructor group g e 

GT we associate a set of instructors Rg c Rx and with each room group g e GR a set of 

roomsRgcRP. 

Blocks: Topics in tum are aggregated to blocks (Figure 2). There are B blocks, each consist-

ing of several consecutive jobs of the same course. Let denote fy (Ty) the first (last) job of 

block b and fbn (lbn) the first (last) block of course n. For educational and legal reasons, 

precedences exist between some blocks. For each course type, a so-called Standard sequence 

of blocks is known, which meets all precedence requirements and performs well under practi

ca! considerations. Each block b is associated with a set of instructor groups G^ c GT and a 

set of room groups GPy (= GR, which consist of the groups associated with the topics of the 

block. Therefore, the set of instructors which may be involved in a block can be derived from 
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RTb= URg (1 <b<B) (1) 
geG^b 

W.l.o.g. these groups can be assumed to be disjoint; so, each combination of block b and 

(instructor or room) group g implicitely defines a topic. The requirement %g of a block b for a 

group g specifies the workload of a topic, e.g. the number of instructor lessons required. 

Loosely speaking, each job j of a block b contributes a share of k^j^r to %g if it is processed 

in mode m and if resource r belongs to group g. The requirement can be met by each instructor 

or room in the respective group. However, the number of different instructors in a group g 

which may be used for block b is limited by a maximum number myg; e.g. by setting myg = 1 

this allows to guarantee that all lessons of a topic are held by the same instructor. 

courses 

blocks 

N 

Y wAm 

n 

CD-H 
JL 

H "E 

T > ' > r > ' > ' y 
jobs • [U0-• • •-• •-• • •-• 0 0D - 0- SD 

Figure 2: The Relation between Courses, Blocks, and Jobs 

0 

Fees and costs: The fees pnm due from a course n depend on the mode assigned to the par-

ticipant job fn+l. In addition to instructors which belong to the staff, tutors (qualified 

technical Lufthansa personnel or former LTT instructors) can be used for certain topics; both 

incur costs. Instructor cost arises only if instructors are used away from their home bases, it is 

composed of a fixed part reflecting transportation and opportunity cost (for working hours lost 

to traveling), and a variable part representing accommodation and expenses; (variable) tutor 

cost is due since tutors are paid per lesson taught. To summarize this for modelling purposes, 

using an instructor r e in a block b incurs fixed cost of t^r whereas conducting a job j in 

mode m entails variable cost of t®jm. 

Exclusion sets: Specific combinations of job, mode, and Start period can be mutually conflict-

ing. To exclude such conflicts, we introduce for each such triple (j, m, t) an exclusion set 

Ejmt> consisting of all conflicting triples (j", m', t') which may not be scheduled along with it. 

The concept of exclusion sets is a rather powerful Instrument since it allows to formulate a 

variety of different constraints which otherwise would require separate constraint types. 

• Each job can be forced to be processed in at most one combination of mode and Start pe

riod, i.e. either once or not at all. 



Simultaneous (parallel) execution of jobs can be prevented by including all triples of the 

respective jobs having identical or overlapping start periods. 

Parameter Definition 

B Number of blocks, indexed by b 

Cj. Total capacity of (nonrenewable) resource r 

Cjt Per-period capacity of (renewable) resource r 
CT Number of course types, indexed by c 

djt Duration of job j when started in period t 
Ejmt Exclusion set of job j when performed in mode m and started in period t 

fn On) First (last) job of course n 

fb (i"b) Rrst (last) job of block b 

ff (lf ) F'rst (last) job of frame f 

fbn (lbn) First (last) block of course n 

F Number of job frames, indexed by f 

G1^ (GPjj) Set of instructor (room) groups available for block b 

GT (GR) Set of instructor (room) groups, indexed by g 

If Set of infeasible jobs of frame f 

J Number of jobs, indexed by j 

kö. ^v. ) Per-period usage (total consumption) of renewable (nonrenewable) reso urce r 
jmr jmr required to perform job j in mode m 

myg Maximum number of resources of resource group g usable for block b 

Mj Number of modes, indexed by m 
N Number of courses, indexed by n 

Pnm Pees from holding course n in mode m of job fn+1 

rjjg Requirement of block b for resource group g 

RT (RP, R7, R7Y) Set of instructors (rooms, customers, customer-course type resources) 

Rg Set of resources contained in resource group g, indexed by r 

RTb Set of instructors assignable to block b 

Sj Set of start periods of job j, indexed by t 

t^bj- Fixed cost incurred by assigning instructor r in block b 

tCöjm Variable cost incurred by performing job j in mode m 

T Number of periods, indexed by t 

Table 1: Parameters ofthe CSP 

Precedence relations can be modelled by including into the exclusion sets the violating 

mode-start period combinations of the immediate predecessors. 
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• Travel or rest times of instructors can be taken into account by excluding all conflicting 

triples where the amount of travel or rest times is unsufficient. 

Frames: Another means to restrict scheduling of conflicting jobs is job frames. Each frame f 

is associated with a first job ff, a last job lf, and a set of jobs If for which processing 

between start of the first and completion of the last job is infeasible. Here, all such jobs belong 

to the same course. Note that a frame has an effect if and only if its first and last job are 

actually scheduled. With respect to the practica! Situation at hand, job frames serve to 

guarantee e.g. that between the first and the last lesson of one block no lesson of another block 

is scheduled. 

The parameters used are summarized (in alphabetical order) in Table 1. W.l.o.g. all Parame

ters are assumed to be nonnegative integers. 

3.2. Model Formulation 

Using the above conceptualization, the assignment of modes and periods to jobs can be repre-

sented by binary variables xjmt (1 < j < J; 1 < m < Mj; t € Sj) where 

f 1 if job j is performed in mode m and started in period t 
XJmt = { 0 otherwise (2) 

and assignment of instructors to blocks by binary variables ybr (1 < b < B; r € RTb) where 

f 1 if instructor r is assigned to (at least) one job of block b 

otherwise ^ 

Now the CSP can be expressed in terms of the following model: 

Maximize 

N Mf„+i B J Mj 
Z(%)= % %Pnm Xxf„+l,m,t-X X* br-Ybr ~X Xxjmt (4) 

n=l m=l teSfn+1 b=lreRTb j=l m=l teSj 

subject to 

5>j.m.t.<|Ejmt| (l-xjmt) (l<j<J; l<m<Mj;te Sj) (5) 

Mfn In M j 
On "fn +1)' % Xxfnmt=X X Xxjmt (l<n<N) (6) 

m=l teSfn j=fn m=l teSj 



Mj u+dif.u"1 Mff Mif 
XX I>>.s|lfK2-I>ftms-Xxifm») (l£f£F;SeSff;ueSff) CT) 
jelf m=l t=s m-1 m—1 

teSj 

Ä Mj . _ % 
X J XkV» Xxjmi 2'bg X Xxfbmt (l£b<B;ge G^b u GPb) (8) 

reRg j=fb m=I teSj m=l teSjb 

Tb Mj 
X X* jmrIxjmt<(Tb-fb + l)-ybr (1 <b<B;re RTb) (9) 
j=fb m=l teSj 

Iybr^mbg (1 <b<B;g€ G\) (10) 

reRg 

J Mj 
XX^jmr Xxjmu^crt (r € RX U RP U R?; 1 < t <: T) (11) 
j=lm=l ueSj 

u<t 
u+dju>t 

J Mj 
X X^jmr % xjmt ^ Cr (r € RX U R^) (12) 
j=lm=I teSj 

xjmte (0' 1} (1 <j<J; 1 <m<Mj;te Sj) (13) 

ybre {0, 1} (i <b<B;re RTb) (14) 

The objective function (4) maximizes the total profit margin, calculated as the cumulated fees 

of all scheduled courses less all incurred costs. Constraints (5) - (7) formulate the temporal 

restrictions. Constraints (5) ensure for each job that no element of the corresponding exclusion 

set is scheduled. By appropriately instantiating these sets, each job is assigned at most one 

combination of mode and start period. Constraints (6) guarantee that only complete courses 

are scheduled. Constraints (7) relate to the job frames: The term in parentheses becomes zero 

for at most one combination of start periods s of the frame's first and u of the frame s last job. 

fr that case, none of the jobs j e If can be scheduled within the interval [s, u+d^u -1]; other-

wise, constraints (7) have no effect. Constraints (8) - (12) represent the appropriate resource 

restrictions. Constraints (8) ensure for each block that all requirements for instructor and room 

groups are met. Each such group corresponds to a specific topic to be taught within the block. 

If the block is not scheduled, which due to (6) is indicated by its first job, constraints (8) 

remain without effect; otherwise, the requirements of all topics of the block have to be 

satisfied by the jobs constituting the block, i.e. a feasible combination of modes for the jobs 
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must be scheduled. If an instructor r is used in at least one job of block b then the correspond-

ing variable yt,r is set to one by constraints (9); otherwise, it takes value zero due to (4). Con-

straints (10) limit the number of different instructors to be used within the same block. 

Renewable and nonrenewable capacities of all resource types are respected due to constraints 

(11) and (12). 

4. Solution Method 

4.1. Algorithmic Scheme 

The above model is based on concepts from the field of project scheduling and in this way, the 

CSP can be regarded as a multi-project scheduling problem. One might therefore wonder 

whether Standard project scheduling algorithms can be applied. Yet, some specific characteris-

tics apply to this problem, which differ from the Standard assumptions of project scheduling 

and can be summarized as follows. 

• Each course can either be scheduled as a whole or not at all. 

• All courses scheduled must be completed within the fixed planning horizon. 

• In addition to conventional precedence relations, some jobs have to be scheduled main-

taining a minimum time-lag between them. Also, for each course there is a maximum 

time-lag between first and last scheduled job, ensuring course compactness. 

• The start of some jobs is restricted to a set of feasible start periods. 

• The objective is to maximize the profit margin induced by a schedule. 

We therefore describe a tailored algorithmic scheme for the CSP which can be categorized as a 

priority rule-based construction method. It employs a serial scheduling scheme (Kelley 1963) 

and uses deterministic priority rules to solve selection or assignment conflicts. Partial course 

schedules, starting from the empty one, are augmented in a stage-wise fashion until all courses 

have been considered. We use two sets, viz. the set of completed courses which have already 

been feasibly scheduled, and the set of remaining courses. In each stage, a specific priority 

rule serves to select exactly one of the remaining courses. We then examine combinations of 

start period, block sequence, and assignable resources until a feasible one is found. In that 

case, the course is scheduled in that combination and resource capacities are updated 

accordingly; otherwise it fails. Once a course is scheduled, this assignment remains fixed. We 

should emphasize that the algorithmic scheme, though applicable to the CSP, is adjusted to the 

specific Situation found at LTT, namely by using tutors and preferring the Standard block 

sequence. 
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In order to examine combinations in a systematic way, we distinguish four levels within each 

stage. Each level is associated with a subspace of the search space spanned by the above com

binations and can be described in terms of two characteristics. The first one determines the 

instructors which might be assigned to a topic: Either the staff of all Offices or only those of 

the performing office, i.e. the office where the course is to be held, are considered. The second 

one determines the sequences in which the blocks of a course may be performed: Either only 

the Standard sequence or all feasible sequences are considered. Table 2 presents the levels and 

the corresponding realizations of the defining characteristics. 

Proceeding in this way ensures low travel cost because possibilities to use less expensive 

instructors from the performing office are examined first. As an additional benefit the 

algorithm becomes very fast since usually a high percentage of courses can be scheduled in 

Standard sequence; note that with increasing level also the number of combinations to be 

examined increases. However, this procedure does not guarantee the minimum cost 

combination for a course to be found since the search on each stage follows a first-fit strategy, 

i.e. the search terminales with the first feasible combination found. 

Level Instructing Staff Considered / Block Sequences Considered 

1 Staff of performing office / Standard sequence 

2 Staff of performing office / All other sequences 
3 Complete staff / Standard sequence 
4 Complete staff / All other sequences 

Table 2: Levels of the Algorithmic Scheme 

Since the capacity of tutors is virtually unlimited, employing them allows to overcome short-

ages of instructing capacity which otherwise might make certain courses impossible to sched

ule. We distinguish two strategies: The first is to regard tutors as ordinary instructors (TUO); 

usage of tutors is rated by the appropriate (high) costs and is only possible at levels 3 and 4. 

TUO is a local strategy as it considers only the course to be scheduled and assigns the lowest 

cost instructors. This implies a reduction of the Solution space since assignments, once fixed, 

will not be changed and tutors can only be used in specific topics. Therefore, we propose a 

second, global strategy where tutors are preferred whenever possible (TUP); so they can be 

assigned at all four levels. A so-constructed schedule can be improved afterwards by a 

straightforward procedure that replaces tutors in topics where (less costly) instructors are still 

available. Employing more tutors also allows to schedule more courses than the rather restric-

tive TUO strategy. To summarize, TUP seems to be more Atting for situations with a high 

workload and thus a low Service level, whereas TUO seems adequate when facing low work-
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loads such that a high Service level can be achieved using staff only. 

Table 3 lists the additional notation used to formulate the algorithmic scheme which in tum is 

presented in Table 3. We refrain from discussing the (rather straightforward) algorithmic 

scheme in detail and restrict ourselves to filling in the gaps within the scheme. In Step 1, 

remaining (instructor and room) capacities rcr are initialized according to 

rcr .'= cr (r e Rx) (15) 

T 
rcr :=: Xcrt (r € Rf) (16) 

t=l 

Notation Definition 

I Level of algorithmic scheme 
m Mode tuple 

rcr Remaining capacity of resource r 

rdr Remaining demand for resource r 

SOCC Set of completed courses 

SOFMTnl { Set of feasible mode tuples course n at level 1 w.r.t. period tuple t 

SOFPTnls Set of feasible period tuples course n at level 1 w.r.t. start period s 

SOFSPn Set of feasible start periods of course n 

SORC Set of remaining courses 

s Start period 

t Period tuple 

Table 3: Notation Used in the Algorithmic Scheme 

while remaining (instructor and room) demand rdr is calculated by apportioning the demand 

for each resource group among the corresponding resources, i.e. 

rir:= 2 X £ Z A (rsR^uRP) (17) 
neSO/?Cb=fbn geG^uOg reRg I S| 

Priority rules for selecting courses in Step 2 and start periods in Step 4 will be discussed in the 

next section. 

In Step 4, the set SOFPTnls of feasible period tuples for a course n starting in period s is 

determined on level 1 by considering all tuples t = ((fn'tfn)>---'(ln'tln)) which assign to the 
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first job fn the period s, to all other jobs j (fn+l < j < ln) a start period tj (tj e Sj). Each such 

tuple is feasible iff it respects the corresponding exclusion sets, heeds all frames within the 

course, and - if on level 1 or 3 - schedules the course jobs in Standard sequence. 

With the subordinate goal of adherence to Standard sequence in mind also for levels 2 and 4, 

we select in Step 5 the period tuple having the least deviation from Standard sequence. Since 

the Standard sequence entails the least possible duration of a course, this deviation can be 

measured in terms of the start periods of the course's jobs. Consider tuples 
t = ((fn,tfn),—,(ln,tin)) and t'=((fn,t'fn ),...,(ln,t'fn)): We say that the former has less 

deviation from Standard sequence iff there is a job j (fn < j < ln) such that tj < t'j and tj = t'j for 

all i (fn <i <j-l). 

Step 1: (Initialize) 
SORC := {1,...,N}; SOCC := 0; 
calculate rcr, rdr (reRTuRP); 
xjmt := 0 (l<j<J; l<m<Mj; te Sj); 
ybr := 0 (l<b<B; reRT); 

Step 2: (Select course) 
if SORC = 0 then goto Step 8; 
select n e SORC by course selection rule; 
SORC := SORC \ {n}; 
1 := 0; 

Step 3: (Set level) 
if 1 = 4 then begin update rdr (re RxuRP); goto Step 2; end; 
1:=1+ 1; 

SOFSPn := Sfn; 

Step 4: (Select start period) 
if SOFSPn = 0 then goto Step 3; 
select s 6 SOFSPn by start period selection rule; 
SOFSPn := SOFSPn\{s}; 
compute SOFPTnls; 

Step 5: (Select job sequence) 
if SOFPTnis = 0 then goto Step 4; 

select t e SOFPTnis; 

SOFPTnis := SOFPTnis \{t}; 

Step 6: (Check sequence feasibility) 
compute SOFMTnii > 

if SOFMTni t = 0 then goto Step 5; 
select m e SOFMTnjj; 
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Step 7: (Schedule course) 
xjmjtj := 1 (fiÄNn: mje m; tje t); 

update ybr (fbn<b<lbn; re RT); 

update rcr, rdr (re RxuRP); 
SOCC := SOCC u {n}; 
goto Step 2; 

Step 8: (Evaluate schedule) 
compute objective function value; 

In Step 6, the set SOFMT^j of feasible mode tuples for a course n with period tuple t is 

determined on level 1 by considering all tuples m=((fn,mfn),..., (ln,mjn)) which assign to 

each job j a mode mj. Each such tuple is feasible iff resource requirements of the topics are 

satisfied, the maximum number of resources (instructors) usable is respected, travel and 

resting times are considered, availability of all resources is verified, and to each topic only 

instructors compatible with current level and applied tutor strategy are assigned. Selection of a 

mode tuple capitalizes on the fact that all blocks of the same course are mutually independent 

with respect to resource requirements as well as travel and resting times. Hence, mode 

selection can be done separately for each block and the participant job. To achieve a high 

profit margin, a mode tuple where the mode of the participant job offers the maximum 

number of participants is selected for the latter. Blocks are considered in the sequence induced 

by the period tuple already selected. Within a block, we start mode selecting with the topic 

with most required instructors; ties are resolved by selecting the topic with longest duration. 

Under tutor strategy TUP, all available tutors are assigned first, followed by staff instructors 

in order of increasing cost; under strategy TUO, instructors and tutors are considered in that 

order. In any case, among these as well as among the room resources those resources having 

the lowest load factor are preferred, where the load factor expresses the ratio of remaining 

demand to remaining capacity. In case of similar load factors (difference smaller than 15%), 

that resource having more remaining capacity is preferred. 

Step 7 Updates remaining instructor and room capacities by 

Table 4: Algorithmic Scheme 

(re R?) (18) 

rcr := rcr - % k«? 
j=f„ 

(re RP) (19) 
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Remaining demand is updated according to (17). 

4.2. Course Selection Rules 

We will now tum our attention to several priority rules which can be incorporated into this 

scheme. Each combination of the scheme with one course and one start period selection rule 

defines one algorithm for the Csp. In the sequel, we describe some mies for selecting the next 

course to be scheduled. While the first rule tries to improve the objective function value in a 

greedy fashion, the other ones represent different ways of quantifying how difficult a specific 

course is to schedule. Given a decision set D of selection candidates, we denote the priority 

value for each candidate d e D by v(d); whether the minimum or the maximum priority value 

determines the selectee is indicated by extremum e {min, max}. 

- Highest Profit Margin (HPM) 

Since the foremost objective is to maximize the profit margin incurred by a schedule, this 

rule selects the course offering the highest profit margin. Let m*n denote a mode of the 

participant job of course n with maximum number of participants. 

v(n) = Pnm*n extremum = max (n e SORC) (20) 

- Longest Duration (LDN) 

Based on the experience from manual scheduling, the duration of a course, which can easily 

be derived from the number of jobs, is a meaningful indicator of the difficulty of scheduling 

a particular course. 

v(n) = ln - fn + 1 extremum = max (n e SORC) (21) 

• Number of Topics (NOT) 

A large number of topics within a course implies that additional instructor groups need to be 

considered, possibly incurring additional travel and resting times, and thus making the con

struction of feasible schedules more difficult. The number TNn of topics of a course can be 

determined by accumulating the number of required instructor groups per block, i.e. 

TNn:= X GTb| (1 <n<N) (22) 
b=fbn 

v(n) = TNn extremum = max (n € SORC) (23) 
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- Least Feasible Start Periods (LFSP) 

The less start periods are available for a course, the less flexible it can be scheduled. The 

number of start periods provides a unique discriminative potential because it allows - in con-

trast to all other measures considered - to distinguish courses of the same type. 

v(n) = |sfn | extremum = min (n e SORC) (24) 

- Average Instructors per Topic (AIPT) 

The availability of instructors plays the most important role for the difficulty of a CSP-

instance. The more instructors can be assigned to a topic, the 1 arger the probability that the 

required staff is available. AIPT states the average number of instructors that can be 

employed within a topic of a course: 

1 2 hl 
b—fbn 

v(n) = extremum = min (n € SORC) (25) 
TNn 

- Average Load Factor per Topic (ALFT) 

The load factor lfr of an instructor r is defined as 

lfr := —£• (r e RT; rcr > 0) (26) 
rcr 

and the average load factor avg_lfg of an instructor group g as 

Elf, 
reRg 

avg_lfg := — ^ (g e GT) (27) 
|r|r eRg Arcr >o| 

Note that if all instructors in the instructor group of a topic have a remaining capacity of zero 

the course cannot be scheduled. The average load factor per topic is calculated as follows: 

lb„ 

£ I>g-lfg 

v(n) = b=fbn ggGTb extremum = max (n e SORC) (28) 
TNn 
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4.3. Start Period Selection Rules 

Two rules dealing with the selection of the next start period to be examined are described. 

- Effective Course Duration (ECD) 

This rule explicitly considers the subordinate objective of minimizing the effective course 

duration, specified by the duration of the participant job of the course. 

v(s) = df +1 s extremum = min (s e SOFSPn) (29) 

- Already Scheduled Load (ASL) 

A more promising strategy could be to choose those start periods that hold higher remaining 

capacities with respect to instructors and room. Therefore, this rule prefers periods with a 

low number of lessons scheduled for the completed courses. 

B Tb Mj 
v(s)= X X X Xxjmt extremum = min (s e SOFSPn) (30) 

b=lj=?b m=l teSj 
s<t<s+dfn+1)S 

Table 5 summarizes all priority rules introduced so far (in alphabetical Order) and gives a 

characterization in terms of some straightforward criteria (Kolisch 1995). 

Priority Selecting Static vs.. Local vs. Simple vs. 
Rule Dynamic Global Composite 

AIPT course S L S 
ALFT course D G S 
ASL start period D G S 
ECD start period S L S 
HPM course S L S 
LDN course S L S 
LFSP course S L s 
NOT course S L s 

Table 5: Classification ofthe Priority Rules 



17 

4.4. Composite Rules and Local Search 

As can be seen from Table 5, all above rules can be characterized as simple priority rules. 

However, since usually more than one course of each type has to be scheduled into an opera-

tional plan, all these rules have the inherent deficiency that many courses of the same type 

may have the same or similar priority values. In that case, the discriminative potential of such 

rules is limited. To overcome this deficiency, it is straightforward to combine several different 

informations and compose them into one priority value. This motivates the application of 

composite selection rules. 

Given a decision set D, then let for each de D denote vj(d) (1 < i < I) priority values derived 

from different rules i and ßj (ßj e [-1, 1]) the (exponential) weight accorded to rule i. Now, 

we can define a composite rule in general as 

v(d) = nv.(d)ß' extremum = max (de D) (31) 

Note that this definition includes the special case of a simple rule for I = 1. We should empha-

size that for each priority rule i, the corresponding weight allows to vaiy the influence of the 

rule as well as whether candidates with high or with low priority values are to be preferred. 

On one hand, ßj e (0, 1] implies extremum = max and increasing values tend to pronounce 

the differences between the courses. On the other hand, ßj e [-1,0) implies extremum = min 

and increasing values tend to reduce the differences between the courses. For ßj = 0, all 

candidates receive the same priority value. To illustrate the general applicability of this 

concept, we demonstrate a combination of the rules HPM and LFSD with weights of ßj = 1 

and ßß = -0.5. 

- Weighted Profit Margin and Start Periods (WPMSP) 

Other composite rules are introduced below (cf. Section 5.3) because they were derived 

drawing from the results of the Performance evaluation of the simple rules. 

It is easy to see that combining rules producing priority values from different domains may 

overemphasize the influence of one rule. Suppose for instance that rule NOT produces priori-

ties from {1,...,10} while HPM returns values from {2000,...,20000}, then a composite rule 

with identical weights will essentially behave like HPM. If we assume all I employed rules to 

yield positive values and to have the same decision set D, we can counter this effect by scaling 

the priority values to the interval [0, 1] by 

i=l 

extremum = max (n e SORC) (32) 
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min{vi(d')|d'el>} 
if extremum, = minimum 

vj(d) := « 
vi(d) 

Vj(d) if extremum; = maximum 

(1 <i<I;de D) (33) 

max{vj(d')|d'e Z)} 

Since (33) transforms the priority values of all rules i with extremum; = min to values with 

extremum; = max, it suffices to consider only ßj e [0, 1]. Each specific algorithm, derived 

from above algorithmic scheme by incorporating priority rules for the selection of courses and 

start periods, can be regarded as a mapping from the problem to the Solution Space. Since all 

priority rules are employed in a deterministic manner, each weighting vector (ßi,.--,ßl) can be 

seen to encode one particular Solution. 

Having laid this groundwork, we now describe a local search method which systematically 

determines weights guiding the computational effort to promising regions of the search space 

(cf. Haase 1996). The method is an iterative procedure which in each Iteration constructs a 

number of solutions. If the best so-found Solution is better than the incumbent best one, the 

search process is intensified in the surrounding region; otherwise, the procedure terminales. 

The method proceeds by spanning an I-dimensional grid over the parameter space by defining 

a set of equidistant points. In each iteration, this grid, which initially Covers the entire 

parameter space [0,1 ]I, is refined to ever smaller subspaces. For each gridpoint, one Solution is 

constructed. The number of gridpoints to be examined is pre-set by a parameter o > 2, the so-

called number of steps. Let for each iteration denote Lßj and Ußj the lower and upper bound 

of the parameter subspace of rule i, then the so-called step-width Aj of rule i is defined for 

each iteration as 

One iteration of the procedure starts off with ßj = 0, Lßj = 0, and Ußj = 1 for each rule i and 

determines a Solution. It then increments ßj by its step-width Aj and constructs a second Solu

tion, and so on, until eventually ß; = Ußp Then ßj is reset to Lßj whereas ßi_i is incremented 

by A%_%. W hen also ßj_i has reached its upper bound, it is reset to its lower bound while ß%_2 

is incremented by AJ_2 and so forth. The number of gridpoints considered per iteration is (er + 

l)1. If the incumbent best Solution could not be improved in an iteration, the algorithm halts. 

Otherwise, let denote ß*j that weight of rule i which produced the best Solution in that itera

tion; then new bounds are calculated from 

Aj := (Ußj - Lßj) / o (l<i<I) (34) 

Lßj := max{0, ß*j - Aj (a-l)/a} (l<i<I) (35) 

Ußj := min{ 1, ß*j + Aj -(a-l)/a} (1 <i<I) (36) 
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the step-widths Aj of all rules are updated according to (34), and the next Iteration starts. 

ß2 

0 

Figure 3: Exemplary Application ofLocal Search Method 

Figure 3 illustrates the procedure for I = 2, o = 2, ß*j = 1/3, and ß*2 = 2/3 where • denotes 

the best weighting vector of one Iteration and the shaded area the parameter subspace searched 

in the next Iteration. 

5. Performance Analysis 

5.1. LTT Operational Instance 

Since the foremost intention of this project was to provide efficient solutions for the planning 

Situation of LTT, we applied our algorithms to the operational data of 1996. Acquisition of 

this data required substantial effort. Nearly all available data was available only in written 

form. A considerable part of the data, such as fixed and variable travel cost, had to be gathered 

for the first time. Another part, such as Information on requirements of different course types, 

had to be restructured completely since the parameters presented in Section 3.1 are much more 

detailed than the Information existing so far. A complete description of the operational 

instance of 1996 used, to which we refer as LTT96, would be beyond the scope of this contri-

bution. Therefore, we restrict the presentation to some characteristics (cf. Table (6)). 

T CT N IRTI \GT\ |RP| IGRI |R?I 

3,000 79 164 82 122 3 3 6 

Table 6: LTT Operational Instance - General Characteristics 

ii 
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The number of periods T arises from 250 working days, each comprising a day and a night 

shift of six lessons each. Customers demand only complete courses; the number of training 

days requested totals 3,318. Courses have on average a number of 55 start days; the majority 

of courses is required to be held within a certain month. The average number of vacation days 

per instructor is about 36 days while the average size of an instructor group is 3.4. The max 

number of courses of the same type is nine. Some statistics on the distribution of number of 

blocks and duration over the courses are shown in Tables (7) and (8). 

Number of blocks 1-4 5-8 9-12 13-16 17-20 Average 

Count of courses 56 11 53 32 12 9.19 

Table 7: LTT Operational Instance - Numbers of Blocks 

Duration (days) 1-10 11-20 21-30 31-40 41-50 51-57 Average 

Count of courses 64 23 39 24 12 2 20.23 

Table 8: LTT Operational Instance - Durations 

5.2. Additional Test Instances 

An experimental evaluation of algorithms aiming at producing scientifically valid insight has 

to be based on a representative sample of test instances. However, providing the required data 

tumed out to be a time-consuming and costly task. Efferts to reproduce problem instances of 

past years failed due to the prohibitive cost involved to collect the planning data and to recon-

struct and evaluate the corresponding manually constructed schedules. The special structure of 

the problem prevented utilizing a general-purpose instance generator. Due to the complexity 

of the problem, the development and implemention of a dedicated instance generator was 

considered beyond the scope of this project. Hence, we choose to modify the operational 

instance LTT96 appropriately to derive additional realistic test instances. 

For the purposes of this study we assumed the load factor LF of the instructing staff to be the 

only factor influencing the tractability of an instance. Basically, the staff load factor could be 

determined from dividing the total demand by the total working capacity of all staff instruc

tors. However, this measure could be severely distorted if some instructors are in negligible 

demand (as is the case in LTT96). Therefore, we calculate LF as the average of the instructor 

load factors lfr over all instructors r (re Rx) as defined in (26). The staff load factor of LTT96 

is 0.44. Since all courses of LTT96 had successfully been scheduled manually by LTT, we 

classified the operational instance as easy and used its LF-value as stepping stone for classify-
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ing Csp-instances in general. Throughout this work, we distinguish three types of instances 

with respect to their tractability: easy instances where 0.0 < LF < 0.6, medium instances where 

0.6 < LF < 0.8, and hard instances where 0.8 < LF < 1.0. 

Tractability Average 
LF 

Minimum 
LF 

Maximum 
LF 

Average Number 
of Training Days 

Easy 0.48 0.42 0.52 1,988 
Medium 0.75 0.65 0.86 3,093 
Hard 0.99 0.87 1.19 4,027 

Table 9: Test Instances 

For each of these three classes, ten instances were generated on which the algorithms were 

tested. Staff qualification structure, instructor and room group composition, and course types 

were directly adopted from LTT96. Vacation days for the instructors were generated ran-

domly. The planning horizon was restricted to six months. Variation between different in

stances was achieved by randomly generating course demand. Starting with no courses 

initially, courses were built by drawing random values for course type, performing office, start 

periods, and profit margin until the desired tractability was reached. The probabilities used 

were derived from the characteristics of LTT96. An overview of the test instances is provided 

in Table 9. Note that under this procedure the number of training days to be scheduled and 

thus the size of the instances increases linearly with the tractability since the staff capacity is 

identical for all instances. 

5.3. Computational Results 

In the sequel, we describe the design and results of three experiments. Due to the lack of 

appropriate exact methods, and with the size of operational instances foreclosing the use of 

Standard solvers, Optimum solutions to compare the heuristically found solutions are not avail

able. An upper bound for each instance could be derived from summing up the fees of all 

courses. Yet, especially for the hard instances it is impossible to schedule all courses due to 

limited instructor capacities, so the total fees achieved may be substantially lower. Even for 

the easy instance LTT96, the Optimum objective function value is considerably less than the 

above bound since for some of the courses instructors from other Offices are mandatory, 

incurring travel cost which in tum reduces the Solution value. Therefore, given a Solution for a 

particular instance, we use its percentage deviation from the best known Solution as a 

Performance measure. 
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Recall that the above algorithmic scheme allows to incorporate different instantiations of 

course selection rule, start period selection rule, and tutor strategy. In the first experiment, we 

performed one run for each combination of (simple) course selection rule (cf. Section 4.2), 

start period selection rule (cf. Section 4.3), and tutor strategy (cf. Section 4.1). In addition, we 

we selected the next course to be scheduled by a pure random sampling rule (RND) assigning 

the same probability to each course in the decision set (Baker 1974). The results of applying 

RND are derived from averaging the outcome of 100 runs. The complete results, in terms of 

above mentioned percentage deviations, are shown in Tables 10 - 13, where the course selec

tion rules are listed in the top row while the respective tutor strategy (TUP or TUO) and start 

period selection rule (ASL or ECD) tested are noted below the table. 

Tutor strategy TUO is outperformed by TUP for all algorithms. Since courses may not be 

modified once they are scheduled, TUP uses less of the scarce instructor capacities in the first 

place by assigning more tutors than TUO does. With respect to the selection of start periods, 

ASL outperforms ECD in about 80% of the cases. This advocates to select the start periods 

considering the available capacities; yet more tuned rules might produce better results since 

ASL is a rather coarse measure. Regarding the course selection, rules WPMSP, HPM, and 

LDN perform best whereas ALFT does not better than pure random sampling. All algorithms 

become less efficient with decreasing tractability of the instances attempted. 

Motivated by the promising Performance of the composite course selection rule WPMSP, in a 

second experiment we examined another composite rule, made up of four simple ones, namely 

HPM, LDN, LFSP, and AIPT. The first two were chosen because of their good Performance 

in the first experiment, LFSP since it is the only rule that distinguishes between different 

courses of the same type, and AIPT because it differentiates between courses that bring in the 

same amount of fees. The weights accorded to these four rules were determined by the local 

search method with a number of steps <y = 3. Also, due to the above results, from now on start 

periods were selected exclusively by ASL while tutors were handled only by TUP. The results 

of the second experiment are reported in Table 14, where the percentage deviation of the best 

Instance Class WPMSP HPM LDN NOT LFSP AIPT ALFT RND 

LTT96 4.46 4.60 6.04 2.48 6.05 5.14 3.78 6.81 
Easy 2.58 2.25 2.55 5.36 6.27 5.93 8.32 7.50 
Medium 4.10 4.44 4.67 6.54 9.19 9.20 11.62 11.23 
Hard 4.87 4.93 6.54 8.65 9.20 11.41 12.42 11.22 

Average 3.87 3.90 4.63 6.71 8.15 8.73 10.56 9.88 

Table 10: Percentage Deviations of Priority Rules 
- All Instances, All Course Selection Rules, TUP, ASL 
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Instance Class WPMSP HPM LDN NOT LFSP AIPT ALFT RND 

LTT96 4.18 5.06 6.08 8.16 8.92 5.11 12.04 11.00 
Easy 2.67 3.44 3.47 3.76 6.17 5.00 7.89 7.62 
Medium 4.73 5.14 5.58 6.89 11.09 9.19 13.31 12.26 
Hard 4.98 5.03 6.81 7.73 10.52 10.21 14.05 12.36 

Average 4.13 4.56 5.31 6.19 9.25 8.04 11.76 10.76 

-
Table 11: Percentage Deviations of Priority Rules 
All Instances, All Course Selection Rules, TUP, ECD 

Instance Class WPMSP HPM LDN NOT LFSP AIPT ALFT RND 

LTT96 7.88 11.45 9.40 7.95 13.31 8.71 15.85 14.10 

Easy 6.80 6.84 6.10 9.39 12.83 10.82 13.62 14.20 

Medium 13.69 14.62 15.57 14.60 18.78 19.34 21.39 21.11 

Hard 15.87 15.98 18.13 18.30 20.91 22.05 24.20 22.97 

Average 11.98 12.45 13.14 13.90 17.37 17.12 19.61 19.25 

-
Table 12: Percentage Deviations of Priority Rules 
All Instances, All Course Selection Rules, TUO, ASL 

Instance Class WPMSP HPM LDN NOT LFSP AIPT ALFT RND 

LTT96 10.33 10.42 9.57 11.93 15.80 11.22 17.78 15.62 

Easy 7.24 7.09 6.57 9.15 12.00 11.11 14.34 14.14 

Medium 13.92 15.08 16.16 15.23 20.06 19.36 22.23 21.21 

Hard 16.49 16.78 18.67 19.63 20.50 22.29 25.02 22.73 

Average 12.48 12.90 13.66 14.58 17.47 17.38 20.44 19.24 

Table 13: Percentage Deviations of Priority Rules 
- All Instances, All Course Selection Rules, TUO, ECD 

found Solution compared to the best known one, the percentage of demand actually met, the 

percentage of courses scheduled in Standard sequence, the average number of iterations 

required, and the computation times (using an implementation in Borland C on a 486DX, 100 

MHz personal Computer) are given. 
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Instance Class Minimum Service Level Courses in Iterations CPU-Time 
Deviation (%) (%) Standard Required (s) 

Sequence (%) 

LTT96 0.00 100.00 95.12 7.0 4,499.0 

Easy 0.00 99.76 99.45 3.6 1,801.2 

Medium 0.00 92.87 90.62 3.2 4,541.0 

Hard 0.00 82.99 89.43 4.6 11,196.0 

Table 14: Results ofLocal Search Method 
-AllInstances, (HPM, LDN, LFSP, AIPT), TUP, ASL, o = 3 

Using this composite rule produced the best Solution for each instance attempted, hence the 

deviations are zero. As on the other hand the deviations of all simple rules grow with 

increasing intractability, we infer that the local search method becomes more efficient on 

harder instances. Note that for the easy instances even the algorithms using simple course 

selection rules achieved very high Service levels. The computation times of the composite 

algorithm are about six times higher on the hard than on the easy instances, although the hard 

instances comprise on average only twice as much training days as the easy ones (cf. Table 9). 

This higher computational effort is caused by two effects. First, for hard instances the number 

of courses scheduled in a non-standard sequence is higher: For these courses, at least level 1, 

and possibly also levels 2 and 3, of the algorithmic scheme failed, increasing computation 

times. Second, also the number of failed courses is higher: For these courses, all four levels 

failed, driving the computation times even higher. 

Iteration Minimum 
Deviation (%) 

Average 
Deviation (%) 

Solutions 
Scheduling All 
Courses (%) 

1 1.55 3.92 1.95 
2 0.69 3.26 15.23 
3 0.67 1.94 79.30 
4 0.36 1.60 78.90 
5 0.12 1.28 82.03 
6 0.00 1.10 77.21 
7 0.00 1.07 79.87 

Table 15: Results ofLocal Search Method 
- LTT96, (HPM, LDN, LFSP, AIPT), TUP, ASL, o = 3 



25 

Table 15 provides a more detailed look into the local search method: its Performance in the 

second experiment is examined separately for each Iteration it took on LTT96. The percentage 

deviation for the best Solution found and as an average over all solutions found, along with the 

percentage of schedules which comprise all requested courses are given for each Iteration. 

These results indicate the capability of the method to find good operational schedules. 

In a third experiment, carried out on LTT96, we investigated another eight composite course 

selection rules, made up of promising combinations of three simple rules. In this case, we had 

the local search method search a finer grid with o = 8, amounting to 729 solutions per Itera

tion. Since the weight vector of the best Solution found in the previous experiment was (ßyPM 

= 0.04, ßLi)N = 0-04» ßLFSP = 0.81, ß^iPT = 0.8), we considered mostly combinations includ-

ing the latter two rules. The rules used and the corresponding results are summarized in Table 

16. 

Employed Rules Maximum Average Solutions with All CPU-Time 
Deviation (%) Deviation (%) Courses Included (%) (s) 

HPM, LFSP, AIPT 0.42 1.67 99.72 15,145 

LDN, LFSP, AIPT 0.44 2.73 45.81 15,009 

LFSP, AIPT, ALFT 0.48 1.95 100.00 46,759 

HPM, NOT, LFSP 0.81 2.76 0.00 27,492 

HPM, NOT, AIPT 1.02 2.76 0.14 16,615 

HPM, LDN, ALFT 1.44 3.84 0.00 30,302 

HPM, NOT, ALFT 1.67 3.99 0.00 18,343 

NOT, LSFP, ALFT 1.76 4.31 0.00 19,550 

Table 16: Results of Local Search Method 
- LTT96, TUP, ASL, a = 8 

Clearly, rules LFSP and AIPT demonstrate the best Performance. Note from columns two and 

three that an increase of the maximum profit margin is accompanied by an increase of the 

average profit margin over the examined part of the Solution space. This consolidates the 

hypothesis that the local search method indeed determines parameter subspaces corresponding 

to "good" regions of the Solution space. Indeed, this advocates storing such parameter 

subspaces and using them as starting regions when tackling planning instances of future years. 

In column four, the service level is reported. These numbers are of high significance for the 

operational planning of LTT since a high service level is an important requirement for achiev-

ing and maintaining market share. With regard to this objective, rules LFSP and AIPT pro-

duce the best results. Since we deal with a problem of long-term planning, computation times 
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as given in the last column seem to be acceptable. Still, it is noteworthy that another 

experiment with a course selection rule composed of the two best-performing simple rules of 

the previous experiment, viz. LFSP and AIPT, and (7 = 3 produced a schedule with deviation 

of only 0.6% off the best known Solution value within 330 seconds. 

Finally, we compare our best Solution for LTT96, as obtained in the third experiment, to the 

schedule the LTT planners constructed manually. Table 17 summarizes some characteristic 

measures of both schedules. The gap between an Upper bound of DM 1,432,800, which has 

been calculated as indicated above, and the actually found objective function value is about 

25% for the manually and 7% for the algorithmically constructed Solution. Since all courses 

could be scheduled successfully in both solutions, this gap, which amounts to about DM 

275,000, can only be imputed to differing travel and tutor costs. As can be seen from rows 

three and four, the travel cost incurred by the manual schedule is substantially higher whereas 

the algorithmic schedule uses about twice as much tutors as the one of LTT. These findings 

demonstrate the suitability of the level scheme and the tutor strategy TUP which begins to 

check all possibilities to schedule courses without having to assign rather expensive 

instructors from other Offices. This Interpretation is supported by the findings in rows six and 

seven. Since about 93% of all courses are performed in Frankfurt, the extent to which staff 

from the other two offices in Hamburg (HAM) and Berlin (BER) are used is a meaningful 

indicator of the travel cost entailed. It turns out that the manual schedule makes about four 

times as much use of such instructors as the algorithmic one. The last two rows provide some 

insight into the workload distribution of the staff. On average, the number of days accorded to 

instructors is about the same for both schedules but the LTT-schedule assigns more than 10% 

more lessons to them than our schedule. Clearly, this is due to the higher use our schedule 

makes of tutors. 

LTT Algorithm 

Total profit margin 1,061,747 1,336,919 
Fixed travel cost 108,800 16,000 
Variable travel cost 238,733 32,361 
Tutor cost 23,520 47,520 

Avg. number of days assigned (staff HAM/BER) 44.13 11.2 
Avg. number of lessons assigned (staff HAM/BER) 224.2 54.77 
Avg. number of days assigned (all staff) 71.24 69.03 
Avg. number of lessons assigned (all staff) 367.66 330.11 

Table 17: Best Algorithmic vs. Manually Constructed Schedule 
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6. Summary and Outlook 

In this contribution, we dealt with the course scheduling problem faced by LTT. We devel-

oped a heuristic algorithmic scheme and presented several simple priority rules to be incorpo-

rated into the scheme as well as a local search method able to determine well-suited weights 

for weighted composite rules. The operational planning Situation of 1996 served as our major 

test instance; additional test instances were constracted by modifying this data. Several com-

putational experiments were carried out to evaluate the Performance of the algorithms. It 

turned out that the best so-found schedule is substantially better in terms of profit margin 

incurred than the Solution manually constracted by LTT. Also, the time required to construct 

an operational schedule is heavily reduced by the algorithms presented. However, ongoing 

analysis will have to show whether the algorithmically derived solutions can be implemented 

without modifications. For example, the balanced distribution of preparation times and several 

other restrictions of minor importance have not been considered explicitly in our model. 

An important issue for the practical usability of this work is the Integration of the algorithms 

into a decision support system with database access and comfortable interactive dialogue fea-

tures. Also, the algorithms will have to be complemented by re-scheduling procedures to 

adapt schedules to short-term changes. Benefits expected from such a system include increase 

of profit margin and reduction of travel cost and times, faster and thus less costly generation 

of operational schedules, usage of resources closer to capacity, ability to react more flexible to 

short-term changes, and Provision of detailed Statistical Information for planners, staff, and 

customers. The development of such a system is in progress. 
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