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Abstract I extend and generalize the work of Kruschwitz and Löffler (BuR—

Business Research 2(2):171–178, 2009). I find that, with a zero risk-free rate, the

implicit price of capital gains tax payments is zero. I provide conditions in

stochastic discount factor language when a capital gains tax has no effect on asset

prices for the case of a zero risk-free rate. A sufficient condition for price equality

with a zero risk-fee rate is that agents consume the same in any state with and

without taxes. Equilibria exist that guarantee equal consumptions, and they imply

the same portfolio rules that Kruschwitz and Löffler (BuR—Business Research

2(2):171–178, 2009) find for the CAPM. Furthermore, for an exogenous non-zero

risk-free rate, I show that exponential utility with multivariate normal payoffs, as

well as linear marginal utility leave prices unchanged. Equilibrium prices are

independent of capital gains taxes in those cases. However, total wealth of agents is

different between the tax and the no-tax economy.
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1 Introduction

I build on the work of Kruschwitz and Löffler (2009) who assumed a single-period

mean-variance capital asset pricing model (CAPM) with a flat tax on capital gains

and tax transfers back to investors. They find that prices in a world with taxes on

returns are the same as prices in a world without taxes if the risk-free rate is zero or

investors have constant absolute risk aversion mean-variance utility. Instead of

regarding a mean-variance CAPM as in Kruschwitz and Löffler (2009), I construct a

model with agents that value expected utility over consumption, i.e., a consumption

CAPM with heterogeneous agents. The fundamental results from Kruschwitz and

Löffler (2009) also hold for such economies, but I find important extensions.

First, I look at economies with consumption at two times, and I examine the

effect of the risk-free rate on asset pricing. I find that a non-zero risk-free rate leads

to non-zero prices of tax payments. Even though not traded, prices of tax payments

can be constructed from tradeable assets. For a zero risk-free rate capital gains taxes

and the respective transfer payments have a zero (implicit) price. I construct two

economies that have agents with equal endowments with shares of financial assets

and consumption goods, equal utility functions and payoffs. I impose a tax on

capital gains on one economy. I show that, for any tax economy, there is a no-tax

economy with equal prices. This holds for two economies in which individual

consumption of agents in one economy is the same as the consumption in the other

economy in every state. Then, the stochastic discount factor in the no-tax economy

of any agent is the same as in the tax economy. Since taxes are not priced this leads

to the same asset prices in both economies. Furthermore, I obtain the same portfolio

rule as in Kruschwitz and Löffler (2009). This rule makes consumption profiles of

investors equal in both economies with a zero risk-free rate. It follows that this rule

is not just applicable to mean-variance CAPM economies but also to economies

with expected utility maximizing agents, and in which a risk-free asset is traded and

has a zero return. Without a zero risk-free rate price equality does not generally

hold. For linear marginal utility it can be shown that it never holds.

I also regard the case of economies with consumption only in the future. In this

case the risk-free rate is exogenous. For a zero risk-free rate price equality can be

obtained again. For a non-zero risk-free rate, I show that exponential utility and

multivariate normal payoffs lead to a pair of economies with equal prices. It is only

necessary to pick equal prices of the risk-free assets in both economies. In contrast

to Kruschwitz and Löffler (2009), who use mean-variance utility arguments, I use

SDF arguments to derive this result. Furthermore, I show that aggregate wealth after

initial consumption in the no-tax economy is different to the one in the tax

economies - even though prices are the same. In the tax economy aggregate wealth

is different from wealth in the no-tax economy by the price of aggregate transfer

payments, which do not have zero prices as with a zero risk-free rate. The portfolio

rule for risky assets is again the same as the one proposed in Kruschwitz and Löffler

(2009). However, the rule for the risk-free asset differs. Furthermore, I find that

utility functions that lead to marginal utility linear in consumption also lead to price

equality. The reason here is that individual pricing equations can easily be
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aggregated to a pricing equation that does not depend on the tax rate. With nonlinear

marginal utility prices cannot generally be obtained since aggregation regularly does

not lead to a pricing equation that is independent from the tax rate.

I contribute to the asset pricing literature that is especially concerned with tax

effects on asset pricing. Much of the literature is concerned with the classic mean-

variance CAPM such as Kruschwitz and Löffler (2009) and Eikseth and Lindset

(2009), who consider tax transfers back to the investors. Sialm (2006), in turn, uses

a representative agent model with an uncertain tax on consumption and tax

transfers. He finds that aggregate consumption and therefore marginal utility growth

is not affected when all taxes are transferred back. With certain and constant taxes

there would not be an effect on asset prices versus no taxes. Brennan (1970) is a

classic paper that incorporates various personal tax rates into the CAPM to arrive at

pre-tax expected returns, but it does not consider transfers. Wiese (2007) builds on

Brennan’s work to develop a model that reflects the German tax code. I especially

include SDF and consumption arguments into my analysis in the fashion of

Cochrane (2014).

In Sect. 2, I introduce the basic economy without taxes and the economy with a

flat and certain tax rate on capital gains. In the following Sect. 3, I show that for

every no-tax economy there is a tax economy with equal asset prices in the cases

when the risk-free rate is zero. When consumption only takes place in the future and

therefore the risk-free rate is exogenous, equal prices are obtained when agents have

exponential utility with normal consumption or when they have linear marginal

utility. I continue to discuss the results and the limitations of the analyses in Sect. 4,

where I also provide a simple numerical example. I conclude in Sect. 5.

2 The two basic economies

2.1 The basic finance economy without taxes

Payoff space I model an endowment economy with financial assets. The economy

exists at dates t ¼ 0, when decisions are made and initial consumption takes place,

and at t ¼ 1, when payoffs are paid out and consumed. I add to the model of

Kruschwitz and Löffler (2009) consumption at t ¼ 0. I denote Xr as an N � S matrix

of tradeable, risky and elementary payoffs, in which N is the number of payoffs and

S the number of possible states at t ¼ 1. With elementary or basic payoffs, I mean

non-redundant payoffs. Non-redundant, in turn, means that any single elementary

payoff cannot be constructed through linear combinations of other payoffs. This

matrix is augmented by a risk-free payoff X0, which is also non-redundant, so that,

X ¼ ðX0 XrÞ0 is an N þ 1 � S matrix of non-redundant payoffs. Thus, the payoff

space is spanned by N elementary risky asset payoffs and a risk-free payoff. The

number of states S can be greater than the number of assets so that an incomplete

market is possible. I use the subscript s for individual states and the subscript j for

the different financial assets so that the payoff j pays Xjs in state s. To simplify

notation, I put time subscripts only when necessary, such as for consumption, which
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is possible at t ¼ 0 and at t ¼ 1. I use all random variables as row vectors of

dimension 1 � S. Constants such as prices of a single asset j, denoted pj, can also be

written as a 1 � S vector of constant values.

Characterization of the agents and their maximization problems There are i ¼
1; . . .; I agents in the economy. Agents are rational and have the same complete set

of information, i.e., they know the distributions of the payoffs. They are

characterized through a time separable utility function uið�Þ over consumption and

through initial (pre-trade) portfolio holdings �ni. At date t ¼ 1 and in state s agent i

consumes cis units of a composite consumption good. One unit of a consumption

good has a price of one at all times so that a payoff of one can buy exactly one unit

of the consumption good. To address random variables such as agent i’s

consumption or the j’th payoff at t ¼ 1, I leave out the subscript s for states and

write ci1 and Xj, respectively. I denote �ci0 the endowment of agent i with

consumption goods at time t ¼ 0.

Agents maximize expected utility of consumption,

max
ci0;ci1

E biuiðci1Þ½ � þ uiðci0Þ; ð1Þ

subject to the budget constraints at t ¼ 0,

�n0ipþ �ci0 ¼ n0ipþ ci0 ð2Þ

and at t ¼ 1

cis ¼ n0iXs; ð3Þ

for s ¼ 1; . . .; S: I use all collections of prices and asset weights as column vectors. I

denote E½�� the expected value at time zero of its argument, p ¼
ðp0 p1 � � � pj � � � pNÞ0 is the price vector of the N þ 1 assets, ni ¼
ðni0 ni1 � � � nij � � � niNÞ0 is a vector of after-trade portfolio weights (I use �ni for pre-

trade portfolios.), bi the subjective time discount factor (or impatience factor), and

uið�Þ the utility function. The expected value operator with a single random variable

means a probability inner product. With a random variable z that means

E½z� ¼
PS

s¼1 pszs, in which ps is the probability of state s. For prices I mostly use the

short notation so that pj is the price of a payoff Xj. When necessary, I also use prices

as operators to make more clear what is priced, for example pj ¼ pðXjÞ is again the

price of the payoff j. Furthermore, I use the subscript r to refer only to the risky

assets pr ¼ ð p1 � � � pj � � � pNÞ0 and nir ¼ ðni1 � � � nij � � � niNÞ0, the subscript zero

is related to the risk-free asset.1 The utility function is differentiable and strictly

monotonously increasing at a decreasing rate. Therefore, any additional unit of

consumption adds to utility, and it is optimal to consume all of the payoffs, which

justifies to write the budget constraints as equalities (Lengwiler 2004, p. 52). The

equality of the budget constraints allows to substitute out consumption and to restate

the maximization problem with respect to the portfolio weights and initial

consumption.

1 Without too much abuse of notation, I also use the subscript zero for consumption at t ¼ 0.
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The risk-free asset is in zero net supply
PI

i¼1 ni0 ¼ 0. Therefore, I define a vector

of aggregate asset holdings n ¼
PI

i¼1 ni, which is n0 ¼ ð0 1 1 � � � 1Þ because the

risk-free asset is in zero net supply.

Equilibrium The equilibrium is given through a vector of prices p, consumption

profiles ci0; ci1 and portfolios ni for i ¼ 1; . . .; I so that each agent maximizes utility

subject to his budget constraint, given prices p. Furthermore, the market for the

consumption good clears:
PI

i¼1 �ci0 ¼
PI

i¼1 ci0 and
PI

i¼1 cis ¼ n0Xs for s ¼ 1; . . .; S.

Financial assets are in positive net supply and markets clear so that
PI

i¼1 nij ¼PI
i¼1 �nij ¼ 1 for j ¼ 1; . . .;N and

PI
i¼1 ni0 ¼ 0 for the risk-free asset. I assume that

at least one equilibrium exists. Notice that equilibrium prices imply the absence of

arbitrage opportunities (Lengwiler 2004, p.50).

Pricing equations I write the agent’s optimization problem in terms of a

Lagrangian:

Li ¼ E biuiðci1Þ½ � þ uiðci0Þ � kiðn0ipþ ci0 � �n0ip� �ci0Þ; ð4Þ

where ki is a Lagrange multiplier. I substitute in Eq. (3) and take the partial

derivatives with respect to portfolio weights and to initial consumption. Combining

the results I obtain,

p ¼ E Xbi
u0iðci1Þ
u0iðci0Þ

� �

: ð5Þ

I denote more compactly,

mi ¼ bi
u0iðci1Þ
u0iðci0Þ

ð6Þ

as agent i’s stochastic discount factor (SDF). Using this, I can price any single

payoff Xj through:

pj ¼ E miXj

� �
: ð7Þ

Here the expected value means that probabilities are induced to the inner product of

Xj and mi: E½miXj� ¼
PS

s¼1 psmiXjs. Through trading, agents find a price vector on

which everyone agrees, i.e., p ¼ E½miX� for i ¼ 1; . . .; I, and which maximizes

utility.

In complete markets, X is a square matrix with full rank, i.e., there are as many

basic assets as states. The equation p ¼ E½miX� can be written as: p ¼ Xji, in which

state prices are: jis ¼ misps for s ¼ 1; . . .; S and ps are objective probabilities of

states s. When X has full rank, there is a unique solution for ji. Since probabilities

are objective probabilities, there is a unique SDF, i.e., every agent has the same

SDF. It also follows that the state price vector can be expressed as a linear

combination of basis assets and therefore lies in the payoff space. The same is true

for the SDF.2

2 For properties of the SDF under different assumptions such as market incompleteness, see (Cochrane

2005, pp. 61–73).
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With incomplete markets, i.e., with S[N þ 1, X does not have full rank. The

system of equations p ¼ Xji has less equations than unknowns so that there is more

than one solution to the system. That means state prices and SDFs among agents

may differ.

Pricing a risk-free payoff of one, I define the risk-free rate as Rf ¼ 1=E½mi� ¼
1=p0 for i ¼ 1; . . .; I. The term Rf is the gross risk-free rate: Rf ¼ 1 þ rf . Thus, the

pricing Eq. (7) can be restated as:

pj ¼
EðXjÞ
Rf

þ Covðmi;XjÞ; ð8Þ

in which Covðmi;XjÞ is the covariance between the SDF and the payoff. As stated in

Cochrane (2014), in incomplete markets the SDFs of agents mi can differ and do not

have to be within the payoff space. But there is one SDF m within the space of

tradeable assets that prices all assets. This SDF is the probability induced projection

of all of the agents’ SDFs onto the payoff space. The relation between the unique

SDF within the payoff space and any individual SDF is mi ¼ mþ �i, where �i is an

error term orthogonal to the (probability induced) payoff space and therefore does

not influence prices: pj ¼ EðmiXjÞ ¼ Eððmþ �iÞXjÞ ¼ EðmXjÞ, because Eð�iXjÞ ¼ 0

holds for all payoffs of the payoff space (Cochrane 2005, p. 66). The unique SDF

within the payoff space can be used to price all payoffs but it will not necessarily

lead to a possible portfolio rule for all agents, i.e., to a consumption profile that is

within the payoff space. In complete markets the SDF is the same for every agent. In

the standard CAPM, which does not require complete markets, the SDF is a linear

combination of the market return: m ¼ aþ bRM , where RM is the return on the

market portfolio and a and b are constants (Cochrane 2005, p. 152). In those two

cases the single SDF leads straightforwardly to consumption rules within the payoff

space.

2.2 The finance economy with taxes

I introduce another economy that has, compared to the no-tax economy, equal utility

functions of agents uið�Þ, equal impatience factors bi, and an equal (pre-tax)

distribution of payoffs of financial assets X. The initial or pre-trade portfolios of

agents with shares of assets are also the same, as well as the agents’ perfect

information about the payoff distributions. I introduce taxes on capital gains. To

account for possible differences in prices, after-trade portfolios, and consumption

profiles from the ones in the no-tax economy, I add an asterisk to them. Prices of

taxed payoffs are denoted as, p�sj ¼ p�ðXs
j Þ and prices of pre-tax payoffs are denoted

as, p�j ¼ p�ðXjÞ.
Taxes I define the tax base as the difference between the payoff and the price of

the payoff: Xjs � p�sj , in which p�sj is the price of the after-tax payoff, i.e., of the

payoff Xs
js ¼ Xjs � Tjs ¼ Xjs � sðXjs � p�sj Þ, in which Tjs are taxes on the asset j ¼

0; 1; . . .;N in states s ¼ 1; . . .; S. Any observed prices reflect possible tax effects.

Investors consider the taxes they have to pay on the payoff when pricing the asset. I

use s 2 ð0; 1Þ as the tax rate and also as a superscript to denote after-tax
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figures when necessary. The tax rate is certain, constant, and the same for all agents.

This is a simplification since tax rates can be observed to have an uncertain element

and they often depend on certain characteristics of agents such is their income.3

Introducing an uncertain tax rate may introduce an additional covariance as well as

an expectation into the pricing equation. An agent i pays capital gains taxes at the

amount Tis ¼ s
PN

j¼0 n
�
ijðXjs � p�sj Þ ¼ sn�0i ðXs � p�sÞ, and they receive transfer

payments Qis ¼ sxin
0ðXs � p�sÞ for i ¼ 1; . . .; I, in which xi is the share of total

tax revenues that is transferred to agent i with
PI

i¼1 xi ¼ 1. Transfer payments are

predetermined amounts, i.e., they cannot be influenced by the agents. Positive and

negative capital gains are taxed the same way. I discuss issues of this simplified tax

system versus more realistic tax systems in Sect. 4. Aggregate tax payments are

Ts ¼
PI

i¼1 Tis. They must be equal to aggregate transfer payments: Ts ¼ Qs.

Individual transfer payments can also be written as Qis ¼ xiTs.
4

The introduction of taxes and transfers does not introduce any new basic asset so

that the payoff space is the same as in the no-tax economy. Any tax payment

Tjs ¼ Xjs � sðXjs � p�sj Þ ¼ Xjsð1 � sÞ þ sp�sj is just a linear combination of the pre-

tax payoff Xj and a risk-free payoff.

Characterization of the agents and their maximization problems Any agent

maximizes expected utility of after-tax (and transfers) consumption,

max
c�
i0
;c�

i1

E½uiðc�i1Þ� þ uiðc�i0Þ; ð9Þ

subject to the budget constraints at t ¼ 0

�n0ip
�s þ �ci0 ¼ n�0i p

�s þ c�i0 ð10Þ

and at t ¼ 1

c�is ¼ n�0i ðXs � sðXs � p�sÞÞ þ Qis; ð11Þ

for s ¼ 1; . . .; S. The variable n�i is a vector of after-trade portfolio weights. I denote

financial wealth that is left after initial consumption as W�Fs
i ¼ n�0i p

�s and total

financial wealth after initial consumption, i.e., financial wealth including transfers as

W�F
i ¼ W�Fs

i þ p�ðQiÞ.
Equilibrium The equilibrium is given through a vector of prices p�s, consumption

profiles c�i0; c
�
i1 and portfolios n�i for i ¼ 1; . . .; I so that each agent maximizes utility

subject to his budget constraint, given prices p�s. Furthermore, the market for the

consumption good clears:
PI

i¼1 �ci0 ¼
PI

i¼1 c
�
i0 and

PI
i¼1 c

�
is ¼ n�0Xs for

s ¼ 1; . . .; S. That this holds comes from the fact that taxes are just redistributions

3 See for example Sialm (2006) for a theoretical treatment of tax rate uncertainty on asset prices and

Sialm (2009) for an econometric treatment.
4 A case when agents receive transfers exactly at the amount they pay taxes is when Tis ¼ Qis or

sn�0i ðXs � p�sÞ ¼ sxin
0ðXs � p�sÞ. This implies ðn�0i � xin

0ÞðXs � p�sÞ ¼ 0. Since ðXs � p�sÞ includes

risky assets, it cannot be a zero matrix. The vector n�0i � xin
0 is a vector of zeros for n�0i ¼ xin

0, which is

a very special case. With the risk-free asset in zero net supply this requires the first element of n�i be zero

and all of the remaining elements be equal to the constant xi. If the risk-free asset is in positive net

supply, all elements of n�i must be equal to xi.
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and do not change aggregate values. Financial assets are in positive net supply and

clear so that
PI

i¼1 n
�
ij ¼

PI
i¼1 �nij ¼ 1 for j ¼ 1; . . .;N, and

PI
i¼1 n

�
i0 ¼ 0 for the risk-

free asset.

Pricing equations The first-order conditions lead to a similar pricing equation as

for the no-tax economy, except that after-tax payoffs are priced:

p�sj ¼ E m�
i X

s
j

h i
: ð12Þ

The after-tax risk-free payoff is Xs
0 ¼ X0 � sðX0 � p�s0 Þ ¼ 1 � sð1 � p�s0 Þ, and the

after-tax risk-free rate is:

R�s
f ¼ 1 � sð1 � p�s0 Þ

E m�
i ð1 � sð1 � p�s0 ÞÞ

� � ¼ 1

E½m�
i �
¼ 1 � sð1 � p�s0 Þ

p�s0

: ð13Þ

The second equality follows from the fact that 1 � sð1 � p�s0 Þ is a constant, which

can be taken out of the expectations in the denominator and therefore cancels with

the term in the numerator. The third equality just restates that the denominator is

actually the price of the cash flow Xs
0 ¼ 1 � sð1 � p�s0 Þ. The pre-tax risk-free rate is

then,

R�
f ¼ 1

E m�
i ð1 � sð1 � p�s0 ÞÞ

� � ¼ 1

p�s0

: ð14Þ

Using R�
f ¼ 1=p�s0 the after-tax return can also be written as R�s

f ¼ 1 þ r�f ð1 � sÞ. If

the risk-free rate is not taxed, it is R�
f ¼ 1=E½m�

i �. Notice that since the risk-free asset

is traded, every agent agrees upon the risk-free rate. It follows that the expected

individual SDFs must be equal, which, in turn, are equal to the expected SDF within

the payoff space: E½m�� ¼ E½m�
i � for i ¼ 1; . . .; I.

In an economy with capital gains taxes, the expectations of the SDFs E½m�
i � play a

special role. This is summarized in the following proposition:

Proposition 1 Assume an asset j with a pre-tax payoff Xj, and with an after-tax

payoff Xs
j with positive prices. Capital gains are taxed at a certain tax rate

s 2 ð0; 1Þ. Assume further that 1=E½m�
i �[ s. The prices of the pre-tax payoff p�j and

of the after-tax payoff p�sj are only equal as long as E½m�
i � ¼ 1 for i ¼ 1; . . .; I. With

E½m�
i � greater (less) than one the price of the after-tax payoff p�sj is greater (less)

than the price of the pre-tax payoff p�j .

Proof After tax payoffs are defined as Xs
j ¼ ð1 � sÞXj þ sp�sj . The respective price

of this payoff is:

p�sj ¼ E½m�
i X

s
j � ¼ E½m�

i ðð1 � sÞXj þ sp�sj Þ�
¼ ð1 � sÞE½m�

i Xj� þ sp�sj E½m�
i �:

ð15Þ

This can be rewritten as:

122 Business Research (2018) 11:115–148

123



p�sj ¼ p�j ð1 � sÞ þ sp�sj E½m�
i �; ð16Þ

which can be rearranged to:

p�sj ¼
p�j ð1 � sÞ

1 � sE½m�
i �
: ð17Þ

Thus, when E½m�
i � ¼ 1, the tax terms cancel and prices of the pre-tax payoff and the

one of the after-tax payoff are the same. In any other case the prices are not the

same. Equation (17) shows further that for E½m�
i �[ 1, it follows that ð1 � sÞ=ð1 �

sE½m�
i �Þ[ 1 so that p�sj [ p�j and vice versa. Equation (17) also shows that, given

E½m�
i �, i.e., the price of a payoff of one in every state, one can derive prices of pre-

tax from after-tax payoffs and vice versa. The condition 1=E½m�
i �[ s ensures that

the denominator of Equation (17) is positive. h

I assume that 1=E½m�
i �[ s holds throughout the paper.

Notice that those pre-tax-after-tax price relations use an SDF of the tax economy

m�
i . Any relations to the SDFs of the no-tax economy, i.e., to mi, are still to be

obtained.

Notice also that E½m�
i � ¼ 1 implies that E

u0iðc�i1Þ
u0
i
ðc�

i0
Þ

h i
¼ 1=bi. Expected growth of

marginal utility of consumption is exactly equal to the inverse of the impatience

factor. Higher growth implies a lower risk-free rate and lower growth a higher one.

A simple log-normal model such as in (Cochrane 2005, pp. 10–12) allows for more

interpretations of the risk-free rate in terms of consumption growth. In this case the

risk-free rate is low when expected consumption growth is low or impatience is low,

i.e., when beta is high.

The prior proposition has several implications.

Corollary 1 When the risk-free rate is not taxed, then, according to Eq. (13),

R�
f ¼ 1=E½m�

i �, and it follows that E½m�
i � ¼ 1 and r�f ¼ 0 are equivalent for all

i ¼ 1; . . .; I. Furthermore, E½m�
i � greater (less) than one is equivalent with the risk-

free rate r�f being less (greater) than zero.

Corollary 2 When the risk-free rate is taxed, then, according to Eq. (13),

R�s
f ¼ 1=E½m�

i �, and E½m�
i � ¼ 1 and r�sf ¼ 0 are equivalent for all i ¼ 1; . . .; I.

Furthermore, E½m�
i � greater (less) than 1 is equivalent with the after-tax risk-free

rate r�sf being less (greater) than zero.

Corollary 3 In the case of a zero risk-free rate, the tax on capital gains has a zero

price. From the above proposition follows that pre- and after-tax prices are the

same, i.e., p�sj ¼ p�j � p�ðTjÞ ¼ p�j , so that p�ðTjÞ ¼ 0. Furthermore, whether the

risk-free rate of return is taxed as well does not matter when it is zero because taxes

on that asset would also be zero.

In the following section, I continue to analyze equilibrium effects, i.e., how taxes

affect prices and quantities in the no-tax and the tax economy.
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3 Asset prices and portfolios in the no-tax and the tax economy

3.1 General conditions for price equality

I use the endowment economies, the one without and one with a tax on capital gains,

that I have outlined in the prior section. I explore the general conditions under which

prices are the same in the two economies.5

I continue to state the general conditions for asset prices be equal. I start with

individual pricing equations and then continue with aggregate pricing equations and

projections.

3.1.1 Individual pricing equations

Proposition 2 Asset prices in the no-tax and in the tax economy are equal, i.e.,

p ¼ p�s, if and only if:

E½miX� ¼ E m�
iX

R�s
f

R�
f

� �

; ð18Þ

for i ¼ 1; . . .; I.

Proof I start with the vector of after-tax prices. Similar to the derivation of

Eq. (17) for a single price, the price vector is given by:

p�s ¼ E½m�
iX

s� ¼ E½m�
i ðð1 � sÞXs þ sp�sÞ�

¼ ð1 � sÞE½m�
iX� þ sp�sE½m�

i �:
ð19Þ

This can be rearranged to,

p�s ¼ 1 � s
1 � sE½m�

i �
E½m�

iX�: ð20Þ

From Eq. (13) we know that R�s
f ¼ 1=E½m�

i �. Substituting that into the prior equation

I obtain:

p�s ¼ 1 � s
1 � s=R�s

f

E½m�
iX�: ð21Þ

I multiply the numerator and the denominator by R�s
f , which yields:

p�s ¼ R�s
f ð1 � sÞ
R�s

f � s
E½m�

iX�: ð22Þ

The denominator is R�s
f � s ¼ 1 þ r�f ð1 � sÞ � s ¼ ð1 � sÞ þ r�f ð1 � sÞ ¼

R�
f ð1 � sÞ, so that the 1 � s terms cancel. This leads to:

5 Notice that price equality concerns the tradeable financial assets. Transfer payments are not tradeable

and do not belong to financial assets.
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p�s ¼ E m�
iX

R�s
f

R�
f

� �

; ð23Þ

which I set equal to p ¼ E½miX� to obtain the condition in the proposition. h

Corollary 4 From Eq. (14), i.e., from the fact that R�
f ¼ 1=p�s0 , and from Rf ¼

1=p0 as well as from price equality of the risk-free assets follows that the risk-free

rate in the no-tax economy is equal to the pre-tax risk-free rate in the tax economy:

Rf ¼ R�
f . Furthermore, Rf ¼ R�

f implies E½mi� ¼ E½m�
i � and vice versa, which

follows from the definition of the risk-free rates.

For example from a pre-tax risk-free gross rate of return greater one, i.e., R�
f [ 1,

follows that the after-tax rate is less than the pre-tax rate: R�s
f \R�

f ¼ Rf . After

accounting for taxes, agents would require less return than they would in the no-tax

economy. They value a unit payoff more than in the no-tax economy. For a zero

risk-free rate pre- and after-tax rates are the same so that the valuation of a unit

payoff would not change.

Corollary 5 Equation (18) can also be rewritten in terms of covariances:

E½X�
Rf

þ Covðmi;XÞ ¼
E½X�
R�

f

þ Covðm�
i ;XÞ

R�s
f

R�
f

: ð24Þ

With Rf ¼ R�
f from Corollary 4, I simplify to obtain:

Covðmi;XÞ ¼ Covðm�
i ;XÞ

R�s
f

R�
f

; ð25Þ

for i ¼ 1; . . .; I.

Furthermore, Proposition 2 implies a condition that guarantees that the

proposition holds.

Corollary 6 The relation of the individual SDFs

m�
i

R�s
f

R�
f

¼ mi ð26Þ

for i ¼ 1; . . .; I is sufficient to obtain price equality for all assets.

This relation constitutes a strong assumption in that the SDF of any agent in the

tax economy is proportional to the SDF of an equal agent in the no-tax economy in

every state. I assume the agents’ preferences to be the same in both economies so

that a comparison makes sense. That means the agents’ individual impatience

factors and the parameters and functional form of their utility functions are the

same. That also means it is consumption at t ¼ 0 and consumption in the different

states at t ¼ 1 that determine the SDFs and possible differences in the SDFs of the

two economies. Equation (26) can be restated as:

u0iðci1Þ ¼ fu0iðc�i1Þ; ð27Þ

in which f ¼ u0iðci0Þ=u0iðc�i0ÞR�s
f =R�

f is a constant that collects the ratio of the risk-

free rates and the first derivatives of the utility functions of consumption at t ¼ 0.

Business Research (2018) 11:115–148 125

123



This relation shows that Eq. (26) implies that marginal utility at t ¼ 1 be

proportional.

With a zero risk-free rate the condition in Eq. (18) simplifies to,

E½miX� ¼ E m�
iX

� �
; ð28Þ

and m�
i ¼ mi is sufficient to fulfill this condition, which is the same as condition (26)

for a zero risk-free rate. Notice that the above conditions are derived from the price

equations, which, in turn, are the rearranged first order conditions, i.e., the opti-

mality conditions, of the agents. Thus making those equations hold guarantees

optimality. Together they form an aggregate pricing equation.

3.1.2 Aggregate pricing equation

To obtain an aggregate demand function, I sum the individual equations of the form

p�su0iðc�i0Þ ¼ E½biu0iðc�i1ÞXs
r � over all agents. Rearranging for prices I obtain:

p�s ¼ E

PI
i¼1 biu

0
iðc�i1ÞXs

rPI
i¼1 u

0
iðc�i0Þ

" #

: ð29Þ

The aggregate SDF is then:

ma� ¼
PI

i¼1 biu
0
iðc�i1ÞPI

i¼1 u
0
iðc�i0Þ

: ð30Þ

This aggregate SDF prices all assets just as good as the individual SDFs. Given

utility functions, it may help to find an aggregate pricing function.

Consumption, be it individual or aggregate, must lie within the payoff space.

Even with taxes, when there are non-tradeable transfer payments, those payments

can be replicated by tradeable payments because they are linear functions of

tradeable payments. If marginal utility is linear in consumption, the quadratic utility

case, all individual SDFs must lie within the payoff space. Since there can only be

one SDF within the payoff space, all individual SDFs must be the same.

Furthermore, it is well-known that this SDF can be written as a linear function in

terms of aggregate consumption c0 and c1, when all agents have the same time

discount factor. Appendix B shows a derivation. I come back to this important

special case later.

3.1.3 Projections of SDFs

As pointed out in Sect. 2.1, there is a unique SDF within the payoff space that prices

all assets, and which is related to the individual SDFs through m ¼ mi þ �i, with �i
being an error term orthogonal to the probability induced payoff space (for the tax

economy with an asterisk, respectively).

Proposition 3 Asset prices in the no-tax and in the tax economy are equal, i.e.,

p ¼ p�s, if and only if:
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E½mX� ¼ E m�X
R�s

f

R�
f

� �

; ð31Þ

in which m and m� are the SDFs in the payoff space in the no-tax and the tax

economy, respectively.

Proof I use the relations m ¼ mi þ �i and m� ¼ m�
i þ ��i with errors orthogonal to

the probability induced payoff space, i.e., E½�iX� ¼ 0 and E½��iXs� ¼ 0 for all i. The

price vector of the tax economy is:

p�s ¼ E½m�
iX

s� ¼ E½ðm� � ��i ÞXs�
¼ E½m�Xs� � E½��iXs�
¼ E½m�Xs�:

The term E½��iXs� is zero since the error term is orthogonal to the payoff space. For

the no-tax economy the derivation is similar. The remainder is similar to the proof

of Proposition 2. h

Since the error terms do not affect the pricing of the assets, the corollaries follow

just as before.

Corollary 7 Corollaries 4–6 also follow for the SDF within the payoff space, i.e.,

for m and m�.

3.1.4 Budget constraints and market clearing

So far I have found a necessary and sufficient condition for price equality in

Proposition 2 and a sufficient condition in Corollary 6. For an actual equilibrium

allocation, budget constraints have to be met and markets need to clear as well. In

the following, a tax and an equivalent no-tax economy will compared, which are in

equilibrium. Thus, apart from meeting conditions of price equality the budget

constraints and market clearing need to hold, so that this step is also included in the

following analyses.

I will continue as follows: under the assumptions that the no-tax economy is in

equilibrium, I will derive sufficient conditions for the existence of a tax equilibrium

with prices equal to the ones in the no-tax economy. To do that, I will draw on the

conditions established herein.

3.2 Economies with consumption at t ¼ 0 and t ¼ 1

3.2.1 A zero risk-free rate and equal consumptions in both economies

In the following I will show that, with a zero risk-free rate, for an equilibrium in the

no-tax economy there exists an equilibrium in the tax economy in which agents

circumvent redistribution through the capital gains tax and through the transfer

payments using the same portfolio rule as in Kruschwitz and Löffler (2009). As
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Kruschwitz and Löffler (2009) point out, equilibria need not be unique so that other

equilibria may exist that are not consistent with such an allocation.

From the prior section it is obvious that with a zero risk-free rate R�s
f =R�

f ¼ 1.

Then, the equality m�
i ¼ mi for i ¼ 1; . . .; I is sufficient to obtain price equality,

since Corollary 6 is met. Since consumption at the different dates is the only

variable argument in the SDFs of the agents, it is clear that equal consumption of

agents in both economies leads to equal SDFs. This follows from observation of

Eq. (27).

It remains to show that there is a portfolio rule that makes equal consumption

possible. Budget constraints have to hold and markets have to clear. I show that the

portfolio rule that ensures equal consumption is the same as the one in Kruschwitz

and Löffler (2009).

Before I turn to the portfolio rule, I will make some remarks. With equal

individual SDFs, i.e., with m�
i ¼ mi for i ¼ 1; . . .; I, and with a zero risk-free rate,

which makes prices of taxes and transfers zero, asset prices in both economies must

be the same and pre-tax prices are equal to after-tax prices: p ¼ p�s ¼ p�. Asset

prices in the tax economy are p�s ¼ E½m�
iX

s� ¼ E½m�
i ðX� TÞ�. Using this and

noting that E½miT� ¼ 0, it follows that p�s ¼ E½m�
iX

s� ¼ E½m�
i ðX� TÞ� ¼

E½miX� ¼ p. With equal initial portfolios equal prices imply that agents have the

same financial wealth after initial consumption in both economies:

WF
i ¼ W�Fs

i ¼ W�F
i .

Agents receive the same utility as in the no-tax economy. With a zero price of

taxes the initial budget constraints of the agents are also equal to the ones of the no-

tax economy. Thus, agents maximize utility and obey their budget constraints.

I continue to construct the portfolio rule so that consumption is equal in both

economies and that markets clear. With equal initial portfolios and wealth, i.e.,

agents have the same initial characteristics in both economies, equal consumption

means that an optimum in the no-tax economy is equivalent to an optimum in the

tax economy.

Initial consumption is just a constant, which is set equal for any agent in both

economies. Consumption at t ¼ 1 needs more attention.

Proposition 4 Given equal prices in the tax and the no tax economy,

consumptions at t ¼ 1 of all agents i ¼ 1; . . .; I are the same in both economies if

and only if risky portfolios of all agents i for the no-tax and the tax economy are

related through

nir ¼ n�rið1 � sÞ þ xisnr; ð32Þ

and weights on the risk-free assets are related through

n0i ¼ n�0ið1 � sÞ þ sðWF
i � xiW

FÞ: ð33Þ

Proof Consumption of any agent i at t ¼ 1 in the no-tax economy is simply

ci1 ¼ n0iX. Consumption in the tax economy is;
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c�i1 ¼ n�0i ðX� sðX� pÞÞ þ xisn
0ðX� pÞ: ð34Þ

I use the no-tax price notation because, p ¼ p�s must hold for the portfolios that are

implied. Every investor consumes the same in both economies if ci1 ¼ c�i1 or

n0iX ¼ n�0i ðX� sðX� pÞÞ þ xisn
0ðX� pÞ: ð35Þ

Since WF
i ¼ n�0i p and WF ¼ n0p, I restate the equation as:

n0iX ¼ n�0i ð1 � sÞXþ sWF
i þ xisn

0X� xisW
F: ð36Þ

For complete markets given n�i there is a unique solution for ni since X is a square

matrix of full rank. For incomplete markets the system of equations is overdeter-

mined, i.e., a system with more equations (number of states) than unknowns

(number of portfolio weights). Overdetermined systems need not have a perfect

solution at all.6 However in this case there is a unique perfect solution, which will

be verified below. I separate into risky and constant parts, which leads to:

ni0 þ n0irXr ¼ n�0i0ð1 � sÞ þ sWF
i � xisW

F þ ðn�0ir ð1 � sÞ þ xisn
0
rÞXr: ð37Þ

Now, simple observation shows that,

n0ir ¼ n�0ir ð1 � sÞ þ sxin
0
r; ð38Þ

in which the vector n0r is the same as n0 without the first element, i.e., a vector of

ones, and

ni0 ¼ n�i0ð1 � sÞ þ sðWF
i � xiW

FÞ ð39Þ

is a solution to the system of equations. Systems of linear equations can have zero,

one or infinitely many solutions. I found that there is at least one solution to this

system of linear equations. It is also exactly one since the payoffs in the matrix X
are linearly independent, so that infinitely many solutions are not possible. h

This is the same relation of shares of risky assets that Kruschwitz and Löffler

(2009) propose for the mean-variance CAPM with taxes on capital gains, with

transfers, and with a zero risk-free rate, to obtain equilibria at equal prices in a tax

and a no-tax economy. Since I do not assume any specific utility function that would

imply the mean-variance CAPM, I conclude that their proposition for portfolio

weights is not limited to the mean-variance CAPM.

In the CAPM, I can further simplify because every investor holds the market

portfolio7 so that all elements within the vectors nir and n�ir are equal, i.e., ni1 ¼
ni2 ¼ � � � ¼ nij ¼ � � � ¼ niN and n�i1 ¼ n�i2 ¼ � � � ¼ n�ij ¼ � � � ¼ n�iN .

6 One can still obtain an approximate solution in the least squares sense (see also Williams 1990).
7 Kruschwitz and Husmann (2012, pp. 186–189) present the Tobin Separation Theorem together with the

Mutual Fund Theorem, which state that every investor holds a share of the market portfolio and of the

risk-free asset.
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3.2.2 The case of linear marginal utility

A special case is marginal utility linear in consumption of all agents, i.e., something

like u0iðci1Þ ¼ ai þ bici1, and equal time discount factors b ¼ bi for all i. Then, all

individual SDFs are equal and lie within the payoff space. With equal time discount

factors, the SDF depends on aggregate consumption in t ¼ 0 and t ¼ 1 and some

constants (see Appendix B). In equilibrium agents consume all what they have since

it is optimal to do that. Aggregate consumption must be the same in the no-tax and

the tax economy, because agents are given the same endowments, and pre-tax

payoffs are the same. Thus, for linear marginal utility and equal time discount

factors the SDF(s) are the same in the no-tax and the tax economy. Given zero risk-

free rates, asset prices must be the same as well. An example of this case for

quadratic utility is given in Sect. 4.2.1. Furthermore, with equal SDFs in both

economies, if the risk-free rate is not zero, there is no price equality, because

Proposition 2 does not hold anymore.8

3.3 Economies with consumption only at t ¼ 1

3.3.1 General remarks

I continue to look at economies that have no time zero consumption. Kruschwitz

and Löffler (2009) limit their analysis to this kind of economies. In this case the

risk-free rate is assumed to be exogenous to the economy. It is not the result of the

trade-off of current and future consumption as in the model with consumption at

t ¼ 0 and at t ¼ 1, because consumption at t ¼ 0 does not take place.9 I also

simplify to assume that all of the agents have a time discount factor of 1.

An agent’s maximization problem is:

max
c�
i1

E½uiðc�i1Þ�; ð40Þ

subject to the budget constraints at t ¼ 0

�ni0p
�s
0 þ �n0irp

�s
r ¼ n�i0p

�s
0 þ n�0irp

�s
r ð41Þ

and at t ¼ 1

c�i1 ¼ n�i0ðX0 � sðX0 � p�s0 ÞÞ þ n�0ir ðXr � sðXr � p�sr ÞÞ þ xisn
0
rðXr � p�sr Þ: ð42Þ

As in Kruschwitz and Löffler (2009), I rearrange the time zero budget constraint for

the quantity of the risky asset to obtain:

8 With m ¼ m�, in which I leave out the subscript since all individual SDFs are the same, the equation in

Proposition 2 turns into E½mX� ¼ E mX
R�s

f

R�
f

h i
, a statement which is not true for non-zero r�f .

9 The definitions in terms of prices of a pre- or after tax cash flow of one still hold: R�s
f ¼ 1�sð1�p�s

0
Þ

p�s
0

and

R�
f ¼ 1

p�s
0

.
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n�i0 ¼ 1=p�s0 �ni0p
�s
0 þ �n0irp

�s
r � n�0irp

�s
r

� �
; ð43Þ

and substitute this expression into the one for consumption and solve the maxi-

mization problem to obtain:

E u0iðc�i Þ ðX0ð1 � sÞ þ sp�s0 Þp�sr =p�s0 ð�1Þ þ Xrð1 � sÞ þ sp�sr
� �� �

¼ 0: ð44Þ

The equation can be restated as:

E u0iðc�i Þ Xs
r � p�sr R

�s
f

� �� �
¼ 0 ð45Þ

so that rearrangement leads to,

p�sr ¼ E½u0iðc�i ÞXs
r �

R�s
f E u0iðc�i Þ½ � ; ð46Þ

with the SDFs m�
i ¼

u0iðc�i Þ
R�s

f
E u0

i
ðc�

i
Þ½ �. An apparent question is whether and in which cases

ci ¼ c�i for all i would lead to price equality. In this case the SDFs can be rewritten

as m�
i ¼

u0iðciÞ
R�s

f
E u0

i
ðciÞ½ �. Multiplying by R�s

f =R�
f gives m�

i

R�s
f

R�
f

¼ u0iðciÞ
R�

f
E u0

i
ðciÞ½ �. SDFs in the no-

tax economy are mi ¼ u0iðciÞ
RfE u0

i
ðciÞ½ �. Since the risk-free rate is exogenous, I set R�

f ¼ Rf ,

i.e., p�s0 ¼ p0 as it is done in Kruschwitz and Löffler (2009). Now the condition in

Eq. (26) holds and prices must be equal. Notice that with consumption only at t ¼ 1,

equal consumption does not lead to equal SDFs, but rather to proportional SDFs.

However, in equilibrium, the budget constraints have to hold as well. If and only

if the portfolio rules derived in the prior part hold, will there be equal consumptions

in both economies. It turns out that this only holds for a zero risk-free rate. To show

this, I start with the budget constraint in the no-tax economy denoted as in Eq. (43),

and I substitute in Eq. (32). This leads to,

n0i ¼ �n0i þ ð�n0ir � n�0ir ð1 � sÞ þ xisn
0
rÞ
pr
p0

ð47Þ

Now, I use the budget constraint n�0i ¼ �n0i þ ðn�0ir � �n0irÞpr=p0 rearranged to �n0i ¼
n�0i � ðn�0ir � �n0irÞpr=p0 and WF ¼ n0rpr and substitute both into the prior equation,

which leads to,

n0i ¼ n�0i þ s n�0irpr � xiW
F

� � 1

p0
ð48Þ

¼ n�0ið1 � sÞ þ s WF
i � xiW

F
� � 1

p0

: ð49Þ

Notice that this is different from Eq. (33) when p0 is not 1, i.e., when the risk-free

rate is not zero. Thus, portfolio rules consistent with equal consumptions of agents

cannot be obtained when prices are equal in both economies.

Even though this path is closed, there are some cases when price equality can be

obtained. However, consumptions are not equal anymore. Notice that for a zero

Business Research (2018) 11:115–148 131

123



risk-free rate the equal consumption approach still leads to price equality the same

way as in the model with initial consumption.

3.3.2 Multivariate normal payoffs and exponential utility

If the risk-free rate is not zero, condition (18) has to hold to make prices in the no-

tax and the tax economy equal. Kruschwitz and Löffler (2009) discover that for the

CAPM with constant absolute risk aversion (CARA), for every no-tax economy

there is a tax economy with equal prices. They use arguments from a mean-variance

utility approach. I use exponential utility, which is a CARA utility, and normal

consumption, which lead to the CAPM (Cochrane 2005, pp. 154–155), and SDF

arguments to derive the result that CARA utility together with multivariate normal

payoffs works to obtain for every no-tax economy a tax economy with the same

prices. I will keep the risk-free asset in zero net supply. With multivariate normal

payoffs, I have to relax the assumption of a finite and discrete payoff space.

I use exponential utility of the form:

uiðciÞ ¼ � expð�aiciÞ
ai

; ð50Þ

in which ai [ 0 is agent i’s coefficient of absolute risk aversion.

Consumption is a linear combination of multivariate normal payoffs so that

consumption is normal as well. Therefore, I rewrite the expected value in the

maximization condition as:

E½uiðc�i1Þ� ¼ � expð�aiE½c�i1� þ 0:5a2
i Varðc�i1ÞÞ

ai
; ð51Þ

with the budget constraints as in Eqs. (41) and (42). I maximize with respect to asset

weights to obtain the first-order conditions. For risky assets I obtain:

ð1 � sÞE½Xr� þ sp�sr � p�sr
X0 � sðX0 � p�s0 Þ

p�s0

� aið1 � sÞXðð1 � sÞn�ri þ xisnrÞ ¼ 0;

ð52Þ

in which X is the covariance matrix of the payoffs of risky assets. Using R�s
f ¼

X0�sðX0�p�s
0
Þ

p�s
0

and cancelling the 1 � s terms leads to,

E½Xr� � p�sr R
�
f � aiX ð1 � sÞn�ri þ xisnr

� �
¼ 0; ð53Þ

which can be rearranged for portfolio weights,

n�ri ¼
1

1 � s
1

ai
X�1ðE½Xr� � p�sr R

�
f Þ � xisnr

� 	

: ð54Þ

The equation shows that individual portfolio weights depend on the tax rate s, the

coefficient of absolute risk aversion ai, and the share in transfer payments xi.

Rearranging and summing Eq. (53) over all agents leads to,
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E½Xr� � p�sr R
�
f

� �XI

i¼1

1

ai
¼ Xnr: ð55Þ

This is the same as Equation (26) in Kruschwitz and Löffler (2009) when

�
PI

i¼1
2
ai
¼
PI

i¼1

UiE½c�
UiVarðcÞ

holds, in which UiE½c� is the derivative of a mean-variance

utility function with respect to the expected value of consumption and UiVarðcÞ is the

first derivative of a mean-variance utility function with respect to the variance of

consumption.10 Notice that Eq. (51) is a mean-variance utility function. The

derivatives with respect to the expected value and the variance of consumption are

UiE½c� ¼ expð�aiE½c�i1� þ 0:5a2
i Varðc�i1ÞÞ and UiVarðcÞ ¼ � expð�aiE½c�i1�þ

0:5a2
i Varðc�i1ÞÞ0:5ai. It follows that

UiE½c�
UiVarðcÞ

¼ � 2
ai

. Summing this expression over

agents shows that �
PI

i¼1
2
ai
¼
PI

i¼1

UiE½c�
UiVarðcÞ

holds. It turns out that the ratio
UiE½c�
UiVarðcÞ

only

depends on the coefficient of absolute risk aversion ai. Notice that Kruschwitz and

Löffler (2009) state that this ratio depends on the individual agents’ variances of

consumption and that this is also stated in Meyer (1987) and Lajeri-Chaherli and

Nielsen (1993). However in those two sources the ratios presented are a bit different

in that the denominator uses the derivative of the mean-variance utility function

with respect to standard deviation, i.e.,
UiE½c�
UiStdðcÞ

, in which Stdð�Þ stands for standard

deviation. For the case at hand this derivative yields UiStdðcÞ ¼
� expð�aiE½c�i1� þ 0:5a2

i Varðc�i1ÞÞStdðc�i1Þai. It follows that
UiE½c�
UiStdðcÞ

¼ � 1
Stdðc�

i1
Þai, which

actually does depend on the standard deviation of consumption.

It turns out that for exponential utility with multivariate normal payoffs, capital

gains taxes under the tax system described herein do not influence asset prices at all.

As Eq. (55) shows, all of the tax terms and dependencies on the tax rate disappear in

the aggregate pricing equation. That leads to the following proposition:

Proposition 5 In the tax-economy set up above, in which agents have exponential

utility and in which consumption only takes place at t ¼ 1, the product p�sr R
�
f , i.e.,

the ratio p�sr =p
�s
0 , does not depend on the tax rate. Furthermore, the corresponding

no-tax economy will have the same product as the tax-economy p�sr R
�
f ¼ prRf , i.e.,

the same ratio p�sr =p
�s
0 ¼ pr=p0.

Proof I rearrange Eq. (55) to

p�sr R
�
f ¼ E½Xr� �

Xnr
PI

i¼1
1
ai

: ð56Þ

The rhs of this equation is exactly the same for the no-tax economy. The same rhs

for both economies must lead to the same lhs. h

10 There is a minor typo in Equations (25) and (26) in Kruschwitz and Löffler (2009). In Equation (25)

the mathematical sign in front of the variance term should be positive as in Equations (13) and (16).

Equation (26) has to be adjusted accordingly.
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Notice that the relation p�sr R
�
f ¼ prRf just follows from the model. However,

price equality is only there if the R�
f ¼ Rf . Otherwise, prices would only be

proportional but not equal. Since consumption takes place only at t ¼ 1 the risk-free

rate does not say something about the trade-off of consumption today versus

consumption tomorrow. It is exogenous to the economy and will be chosen so that

prices of risk-free assets are equal.

Corollary 8 Asset prices are equal in the tax and the no-tax economy set up

above, with exponential utility, multivariate normal payoffs and with consumption

only at t ¼ 1, when R�
f ¼ Rf , i.e., when p�s0 ¼ p0.

Proposition 6 Given equilibrium prices, risky portfolios of all agents i for the no-

tax and the tax economy are related through,

nir ¼ n�rið1 � sÞ þ xisnr; ð57Þ

and risk-free weights are related through,

n0i ¼ n�0ið1 � sÞ þ sðWF
i � xiW

FÞ 1

p0

: ð58Þ

Proof Equation (54) for a zero tax rate shows that the equation for the no-tax case

is,

nri ¼
1

ai
X�1 E½Xr� � prRfð Þ: ð59Þ

Regarding the tax case, Eq. (54) can be rearranged to,

nri
�ð1 � sÞ þ xisnr ¼

1

ai
X�1 E½Xr� � p�sr R

�
f

� �
: ð60Þ

From Proposition 5 we know that p�sr R
�
f ¼ prRf , and it follows that the rhs of

Eqs. (59) and (60) are equal. Thus, the lhs of the two equations are equal as well.

For the weight on the risk-free asset, I use the budget constraint of Eq. (43) but

for the no-tax economy, and I substitute in Eq. (32). This leads to,

n0i ¼ �n0i þ �n0ir � n�0ri ð1 � sÞ � xisn
0
r

� � pr
p0

ð61Þ

I use the relations �n0i þ �n0irpr=p0 ¼ WF
i =p0 and WF ¼ n0rpr and substitute both into

the prior equation, which leads to:

n0i ¼ WF
i

1

p0

� n�0ri ð1 � sÞ pr
p0

� xisW
F 1

p0
ð62Þ

Now, I add a constructive zero in the form of n�0ið1 � sÞp0=p0 � n�0ið1 � sÞ and

rearrange to obtain the weight on the risk-free asset from the proposition,

n0i ¼ n�0ið1 � sÞ þ sðWF
i � xiW

FÞ 1

p0

: ð63Þ

h
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The portfolio rule for risky assets is the same as for the case with the zero risk-

free rate and equal consumption and it is the same as the one presented in

Kruschwitz and Löffler (2009) for the constant absolute risk aversion case. Different

from Kruschwitz and Löffler (2009) I find that one only needs equal prices of the

risk-free assets and price equality of risky assets follow. The weight on the risk-free

assets is now different from the one presented before (Eq. 33) in that the price of the

risk-free asset appears in the equation. That means individual consumptions of

agents are not equal in the no-tax and the tax economy. The budget constraints are

used in constructing portfolio rules and the resulting portfolio rules sum over agents

to one for risky assets and to zero for the risk-free assets. It follows that budget

constraints are met and markets clear.

From Eq. (26) we know that m�
i

R�s
f

R�
f

¼ mi is a sufficient condition to obtain price

equality for the tax and the no-tax economy. However, the converse does not have to

be true. There may be other relations of SDFs that also lead to price equality.

However, under the specifications made in this section price equality also leads to

m�
i

R�s
f

R�
f

¼ mi.

Proposition 7 For the type of economy set up herein, given equality of prices of a

tax and a no-tax economy, the condition in Eq. (26) holds.

Proof To use the SDF language I use the budget constraint (43) in the

consumption part of Eq. (40) and take derivatives with respect to n�ir. I obtain:

0 ¼ E½u0iðc�i1ÞðXs
r � R�s

f p�sr Þ�. I rearrange the expression to,

p�sr ¼ E
u0iðc�i1Þ

R�s
f E½u0iðc�i1Þ�

Xs
r

� �

; ð64Þ

in which m�
i ¼

u0iðc�i1Þ
R�s

f
E½u0

i
ðc�

i1
Þ� is the stochastic discount factor. Without taxes the SDF is

mi ¼ u0iðci1Þ
RfE½u0iðci1Þ�

. I start with the SDFs of the tax economy and rewrite them to obtain:

m�
i ¼

u0iðc�i1Þ
R�s

f E½u0iðc�i1Þ�

¼ expð�aic�i1Þ
R�s

f E½expð�aic�i1Þ�

¼ expð�aic�i1Þ
R�s

f expð�aiE½c�i1� þ 0:5a2
i Varðc�i1ÞÞ

:

ð65Þ

The second equality uses the first derivative of the utility function (50) with respect

to consumption. The third equality uses the fact that consumption is normally

distributed. Consumption from Eq. (42) consists of a risky part c�i1r and a risk-free

part c�i1f : c�i1 ¼ c�i1r þ c�i1f , in which c�i1r ¼ ðn�0ir ð1 � sÞ þ xisn0rÞXr and

c�i1f ¼ n�0ðX0 � sðX0 � p�s0 ÞÞ þ sn�0irp
�s
r � xisn0rp

�s
r . From Eq. (32) we know that the

risky part of consumption in the tax and the no-tax economy are equal for any agent:

c�i1r ¼ ci1r. That also means that Varðc�i1Þ ¼ Varðci1Þ. Using that I rewrite the SDF to
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m�
i ¼

expð�aici1rÞ expð�aic�i1f Þ
R�s

f expð�aiE½ci1r�Þ expð�aiE½c�i1f �Þ expð0:5a2
i Varðci1ÞÞ

¼ expð�aici1rÞ
R�s

f expð�aiE½ci1r�Þ expð0:5a2
i Varðci1ÞÞ

:

ð66Þ

In the second equality the expð�aiE½c�i1f �Þ terms cancel out. That leads to,

R�s
f

R�
f

m�
i ¼

expð�aici1rÞ
R�

f expð�aiE½ci1r�Þ expð0:5a2
i Varðci1ÞÞ

: ð67Þ

The SDF of the no-tax economy can be written as:

mi ¼
u0iðci1Þ

RfE½u0iðci1Þ�

¼ expð�aici1Þ
RfE½expð�aici1Þ�

¼ expð�aici1Þ
Rf expð�aiE½ci1� þ 0:5a2

i Varðci1ÞÞ

¼ expð�aici1rÞ expð�aici1f Þ
Rf expð�aiE½ci1r�Þ expð�aiE½ci1f �Þ expð0:5a2

i Varðci1ÞÞ

¼ expð�aici1rÞ
Rf expð�aiE½ci1r�Þ expð0:5a2

i Varðci1ÞÞ
:

ð68Þ

With price equality Rf ¼ R�
f so that Eq. (68) is equal to Eq. (67). h

Some remarks on wealth are appropriate. It turns out that aggregate consump-

tions are the same in both economies because aggregate payoffs are the same.

However, individual consumptions differ as was noted before. Consumption is also

valued differently so that wealth differs between the economies. For example an

agent i would value aggregate wealth as follows:

W�F ¼ Eðm�
i c1Þ ¼ Eðmic1Þ

R�
f

R�s
f

¼ WF R�
f

R�s
f

: ð69Þ

Equation (69) shows that, with a positive risk-free rate, wealth in the tax economy is

greater than in the no-tax economy. Individually, equal initial portfolio holdings and

price equality imply that the values of the pre-trade portfolios are the same in the

tax-economy and the no-tax economy:

�n0ip
�s ¼ �n0ip: ð70Þ

The increased aggregate wealth in the tax economy is due to transfer payments. I

price the sum of the after-tax portfolio payoff n�
0
i X

s and transfer payments

Qi ¼ xisn0rðXr � prÞ, which is an agent’s total wealth, i.e., the tradeable and the

nontradeable part of wealth:
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W�F
i ¼ n0ip

�s þ xisn
0
r

p�sr R
�
f

R�s
f

� p�sr
R�s

f

� 	

¼ W�Fs
i þW�Fs xisr�f

R�s
f

ð71Þ

¼ W�Fs
i þWF xisr�f

R�s
f

ð72Þ

Notice that due to price equality n0rp
�s
r ¼ WF ¼ W�Fs.

To obtain price equality agents must value the after-tax payoffs in the tax

economy equally to the untaxed payoffs in the no-tax economy. For this reason the

different values of total wealth must result.

3.3.3 Marginal utility linear in consumption

I treat the case of marginal utility linear in consumption, i.e., marginal utility of the

form u0iðciÞ ¼ ai þ bici. That implies a quadratic utility function. Integration yields

uiðciÞ ¼ aici þ 0:5bic
2
i þ di, in which di is a constant. The constant di just shifts the

utility function up or down and has no impact on marginal utility. To have risk-

averse agents the second derivative has to be negative, which leads to,

u00i ðciÞ ¼ bi\0.11 I additionally assume that consumption is nonnegative (ci � 0)

and less than or equal to bliss point consumption at ci � cbi ¼ �ai=bi, which is the

extremum of the utility function. Since bi\0, for a positive bliss point, ai must be

positive as well. Those conditions also ensure positive marginal utility

(ai þ bici [ 0).

For an important special case of marginal utility bi ¼ �1, so that ai ¼ cbi is the

bliss point consumption. Agents have quadratic utility of the form:

uiðciÞ ¼ �0:5ðci � cbi Þ
2: ð73Þ

This leads to marginal utility linear in consumption of the form,

u0iðciÞ ¼ cbi � ci: ð74Þ

I use this specification for the tax economy in Eq. (44) and simplify to obtain:

E½ðcbi � c�i ÞðXr � p�sr =p
�s
0 Þ� ¼ 0: ð75Þ

Summing over agents leads to,

E½ðcb � c�ÞðXr � p�sr =p
�s
0 Þ� ¼ 0: ð76Þ

This leads to the following proposition:

Proposition 8 In the tax-economy set up above, in which agents have quadratic

utility and in which consumption only takes place at t ¼ 1, the product p�sr R
�
f , i.e.,

the ratio p�sr =p
�s
0 , does not depend on the tax rate. Furthermore, the corresponding

11 With risk-loving agents it is hard to ensure the existence of equilibrium because of non-convexity of

preferences. Araujo et al. (2014) show examples of equilibria of economies with risk-averse and risk-

loving agents.
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no-tax economy will have the same product as the tax-economy p�sr R
�
f ¼ prRf , i.e.,

the same ratio p�sr =p
�s
0 ¼ pr=p0.

Proof Since aggregate consumptions are the same in the tax and the no-tax

economy, i.e., c� ¼ c, the term p�sr =p
�s
0 in Eq. (76) also does not depend on a tax

rate. h

Quadratic utility implies a mean-variance utility function and the CAPM. It was

not mentioned in Kruschwitz and Löffler (2009) as producing equilibria with equal

prices. However, the term
PI

i¼1

UiE½c�
UiVarðcÞ

is also independent from the tax rate for

quadratic utility. Taking expectations of Eq. (73) and expanding the quadratic

expression leads to,

E½uiðciÞ� ¼ �0:5E½c2
i � þ cbi E½ci� � 0:5cb2

i ð77Þ

¼ �0:5VarðciÞ � 0:5E½ci�2 þ cbi E½ci� � 0:5cb2
i : ð78Þ

It follows that
UiE½c�
UiVarðcÞ

¼ 2ðE½ci� � cbi Þ and
PI

i¼1

UiE½c�
UiVarðcÞ

¼ 2ðE½c� � cbÞ. Aggregating c�i

this way would lead to aggregate consumption in the tax economy, i.e., to c�. But

aggregate consumptions are the same so that
PI

i¼1

UiE½c�
UiVarðcÞ

¼
PI

i¼1

UiE½c��
UiVarðc�Þ

or

2ðE½c� � cbÞ ¼ 2ðE½c�� � cbÞ.
This can be generalized to any function with marginal utility linear in

consumption:

Proposition 9 In the tax-economy set up above, in which agents have utility that

leads to linear marginal utility and in which consumption only takes place at t ¼ 1,

the product p�sr R
�
f , i.e., the ratio p�sr =p

�s
0 , does not depend on the tax rate.

Furthermore, the corresponding no-tax economy will have the same product as the

tax-economy p�sr R
�
f ¼ prRf , i.e., the same ratio p�sr =p

�s
0 ¼ pr=p0.

Proof A single agent’s pricing equation is:

p�sr =p
�s
0 ¼ E½ðai þ bic

�
i ÞXr�

ai þ biE½c�i �
: ð79Þ

I aggregate in a fashion similar to Appendix B

p�sr =p
�s
0 ¼ E Xr

PI
i¼1

ai
bi
þ c

PI
i¼1

ai
bi
þ E½c�

" #

; ð80Þ

The remainder is the same as in the proof of Proposition 8. h

For the portfolio rule it suffices to look at consumption, since marginal utility is a

simple linear function of consumption. I use the budget constraint (43) in Eq. (42),

which leads to,
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c�i ¼ �ni0X
s
0 þ

1

p�s0

ð1 � sÞð�n0ir � n�0ir Þ þ s�n0ir

� 	

p�sr

þ ðn�0ir ð1 � sÞ þ xisn
0
rÞXr � xisn

0
rp

�s
r

ð81Þ

The term n�0ir ð1 � sÞ þ xisn0r attached to Xr shows that the portfolio rule for risky

asset shares is the same as in Proposition 6. Substituting that into the budget con-

straint also leads to one for the risk-free asset as in Proposition 6. Thus, budget

constraints are considered and markets clear as before.

3.4 Other utility functions

The cases presented before led to aggregate pricing functions that were independent

from the tax rate. Therefore, together with the convenience that the price of the risk-

free asset can be chosen, asset prices are the same in the tax and the no-tax

economy. For other utility functions, which lead to nonlinear marginal utility,

aggregation does not generally lead to an aggregated SDF that is linear in aggregate

consumption. For example for power utility of the form uiðciÞ ¼ ðciÞ1�ai=ð1 � aiÞ
marginal utility is c�ai

i . Aggregation leads to
PI

i¼1 c
�ai
i , which does not generally

allow a statement in terms of aggregate consumption. Thus, if I use consumption in

the tax economy c�i , the tax terms remain in the pricing equation, and prices remain

dependent on taxes.

4 Discussion of the results and limitations of the analyses

4.1 Some general remarks

I begin with a general discussion of the results especially with regard to the results

derived in Kruschwitz and Löffler (2009). I show in particular that the results in

Kruschwitz and Löffler (2009), which are derived for mean-variance optimizing

agents, also hold for agents maximizing expected utility over consumption. I

additionally stress the result, that a zero risk-free rate leads to tax payments with a

price of zero. That makes pre- and after-tax prices as well as wealth before and after

taxes and transfers equal. For expositional reasons, I chose to compare an economy

with a tax rate of zero and one with a non-zero tax rate. However, the argumentation

above can be carried out for any pair of different tax rates. There is no need that one

has to be zero. That should be already clear from the fact that to obtain price

equality in the tax and the no-tax economy it does not matter what the value of s is.

A zero risk-free rate leads to zero prices of capital gains taxes.12 By the same

token, one could argue that a risk-free rate going to zero makes prices of tax

payments going to zero as well. This suggests that price distortions through the tax

can be reduced and even be eliminated through changing the risk-free rate towards

12 A zero risk-free rate is difficult to obtain. Even though rates are currently very low especially in

Europe, this is not the usual condition. There are many further issues such as that we only observe proxies

of risk-free rates and that those rates usually have a non-flat term structure.
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to zero. However, there are some problems with this argumentation. First, when

there is the possibility of more than one equilibrium, one cannot be sure that the

introduction of capital gains taxes or a change of the tax rate will lead to the

equilibrium that corresponds to the equilibrium before the change and therefore

leaves prices unchanged. Kruschwitz and Löffler (2009) also mention that the

CAPM typically has several equilibria with different price vectors. They show that

there exists at least one equilibrium with an unchanged price vector when taxes are

introduced. The CAPM does not rely on complete markets so that there is no market

completeness that would contribute to a unique solution. For the case herein, if there

is a single solution, the portfolio changes derived herein are consistent with price

equality and with the same consumption streams of agents before and after the tax

rate change. The second problem is that the argumentation of making the risk-free

rate zero leaves the question open on how this is done. If the risk-free rate is

exogenous to the economy, one can leave all else equal and change the rate towards

zero to reduce price distortions. However, if the risk-free rate is endogenous one

cannot just change the risk-free rate leaving all else equal. Then, there exist some

more fundamental causes that change the risk-free rate.

In practice, the tax system is much more complex than the one set up here. For

example, the tax system outlined here is symmetric in the way that positive and

negative capital gains are taxed equally. This is crucial to obtain the result of a zero

price of taxes with a zero risk-free rate. In the U.S. negative capital gains can be

deducted from taxes only up to 3000 USD and there need to be taxes paid in the first

place to have something to deduct the losses from.13 Introducing more periods and

tax losses that can be carried forward complicates the analysis even more. Thus, a

more realistic tax system at least weakens the conclusions drawn here. The

consequences of a more realistic tax code show scope for future research on the

topic.

For the model with consumption at t ¼ 0 and t ¼ 1 the risk-free rate is

endogenous. I show that with linear marginal utility, there can never be price

equality for a risk-free rate not equal to zero. This is because the prices of the risk-

free assets differ in the tax and the no-tax economy. However, when consumption

takes place only at t ¼ 1 so that the risk-free assets’ prices are exogenous and

chosen to be equal, price equality can be established for linear marginal utility as

well.

Without a zero risk-free rate but with exponential utility (CARA utility) and

multivariate normal payoffs there is again an equilibrium that is consistent with

unchanged prices. Exponential utility implies constant absolute risk aversion and

increasing relative risk aversion (IRRA) (Lengwiler 2004, p. 92). This utility

specification is convenient because together with the normality assumption it leads

to the CAPM. But it is not how we think about the characteristics of economic

agents. Decreasing absolute risk aversion (DARA) and constant relative risk

aversion (CRRA) seem intuitively and empirically to be more realistic (Lengwiler

2004, p. 87).

13 For further reference on rules for the treatment of capital gains and losses in the U.S. see https://www.

irs.gov/taxtopics/tc409.html.
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Having noted this, and looking at the current situation with relatively low real

and nominal rates in Europe and the U.S., I will provide a simple numerical example

on asset price distortions through different capital gains tax rates and different risk-

free rates.

4.2 A simple example with quadratic utility and consumption at t ¼ 0

and t ¼ 1

4.2.1 Model specification and base case with a zero risk-free rate

I use a simple model with two agents I ¼ 2, two risky assets N ¼ 2, and a risk-free

asset. There are three states and the payoffs are not redundant so that the asset

market is complete. I set the time discount factors of the agents to one, so that I do

not have to consider them explicitly here. I summarize the characteristics of the two

agents in Table 1.

The payoff space is specified as follows:

X ¼

111

0:420

003

2

6
6
4

3

7
7
5: ð82Þ

As before rows are assets and columns are states. Since the risk-free asset is in zero

net supply, aggregate consumption in the three states is c1 ¼ ð0:4 2 3Þ. The linear

marginal utility of the agents leads to simple expressions for the SDFs with,

mi ¼
cbi � ci1

cbi � ci0
; ð83Þ

for i ¼ 1; 2. Due to market completeness the SDFs of the two agents are equal.

Furthermore, due to the linearity of marginal utility of consumption, the SDF can

be represented through aggregate consumption and aggregate bliss point

consumption:

mi ¼
cbi � ci1

cbi � ci0
¼ cb � c1

cb � c0

; ð84Þ

for i ¼ 1; 2. To see that one can write down the vector of prices in the form:

Table 1 Characteristics of agents

Parameter Agent 1 Agent 2 Aggregate

cbi 1.5 2 3.5

�ci0 0 1 1

�n0i ð0 1 1Þ ð0 0 0Þ ð0 1 1Þ
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p ¼ E
cbi � ci1

cbi � ci0
X

� �

ð85Þ

and multiply both sides by cbi � ci0. The resulting expression is ðcbi � ci0Þp ¼
E ðcbi � ci1ÞX
� �

for i ¼ 1; 2. Now, one can simply add up those expressions for the

two agents to obtain ðcb1 � c10 þ cb2 � c20Þp ¼ E ðcb1 � c11 þ cb2 � c21ÞX
� �

, which is

the same as ðcb � c0Þp ¼ E ðcb � c1ÞX
� �

, and can be rearranged to

p ¼ E
cb � c1

cb � c0

X

� �

: ð86Þ

I summarize statewise the probabilities ps, the elements of the SDF ms and state

prices js for s ¼ 1; 2; 3 in Table 2. The SDF is given through aggregate con-

sumption and the aggregate bliss points. I choose the probabilities so that I obtain a

zero risk-free rate, i.e., a gross risk-free rate of one. This can be verified through

summing up the state prices in the table, which sum up to 1.

That allows to compute the asset prices, which are p0 ¼ ð1:00 0:63 0:05Þ. To

obtain portfolio weights I use the fact that m ¼ ðcbi � ci1Þ=ðcbi � ci0Þ. I substitute

ci1 ¼ n0iX and ci0 ¼ ð�n0ipþ �ci0Þ � n0ip into this expression and rearrange for

portfolio weights. This yields:

n0i ¼ ðcbi þ ðð�n0ipþ �ci0Þ � cbi ÞmÞðpmþ XÞ�1: ð87Þ

I use this equation to compute portfolio weights ni, initial consumption ci0, wealth

after initial consumption WF
i , and consumption at t ¼ 1 for the different states ci1.

Table 3 summarizes this information.

The table shows that the agents put equal weights on the risky assets. Quadratic

utility implies the CAPM (Cochrane 2005, p. 153), which, in turn, implies that

every agent holds a share of the portfolio of risky assets. Thus, every agent must

hold the same share of every risky asset.

Table 3 Summary of agents’ portfolios, consumption and wealth in the no-tax economy

Agent i ni ci0 WF
i

ci1

1 ð�0:03 0:44 0:44Þ 0.41 0.27 ð0:15 0:85 1:28Þ
2 ð0:03 0:56 0:56Þ 0.59 0.41 ð0:25 1:15 1:72Þ
1 þ 2 ð0:00 1:00 1:00Þ 1.00 0.68 ð0:40 2:00 3:00Þ

Table 2 Summary of pricing components

States s ps ms js

1 0.67 1.24 0.83

2 0.25 0.60 0.15

3 0.08 0.20 0.02
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In the tax economy the SDF does not change because aggregate consumption does

not change. I again use the fact that m� ¼ m ¼ ðcbi � c�i1Þ=ðcbi � c�i0Þ. The tax rate s is

40%. I substitute c�i1 ¼ n�0i ðX� sðX� p�sÞÞ þ xisn0ðX� p�sÞ and ci0 ¼ ð�n0ip�s þ
�ci0Þ � n0ip

�s into this expression and rearrange for portfolio weights. This yields:

n�0i ¼ ðcbi þ ðð�n0ip�s þ �ci0Þ � cbi Þm� xisn
0ðX� p�sÞÞ

� ðp�smþ Xð1 � sÞ þ sp�sÞ�1:
ð88Þ

I use this expression to compute portfolio weights n�i , initial consumption c�i0, wealth

after consumption W�F
i , and consumption at t ¼ 1 for the different states. The

results are presented in Table 4.

Expectedly, the only change compared to the result in Table 2 is the change in the

portfolio weights. Alternatively to Eq. (88), one can also use the expression in

Proposition 4 rearranged for n�0i , which yields exactly the same portfolios weights,

which, in turn, imply equal consumption in both economies. I continue to look at

effects of changes in the risk-free rate on prices.

4.2.2 Price distortions through a non-zero risk-free rate

In the constructed model the risk-free rate is endogenous. Thus, there must be a

change in the basic economy to induce a change in the risk-free rate. I alter the risk-

free rate through using different probabilities of the states, and I hold the remaining

parameters constant. This leaves the SDF unchanged but leads to new state prices.

Notice that with quadratic utility and bi ¼ 1 for all i, E½m� ¼ 1 means that,

E
cb � c1

cb � c0

� �

¼ 1; ð89Þ

which implies that E½c1� ¼ c0 or zero expected consumption growth. Changing bliss

point consumption changes prices but will eventually not lead to a zero risk-free rate.

With an impatience factor b equal for all agents and not equal to one, it is possible to

change bliss point consumption so that a zero risk-free rate can be obtained.

The endogeneity of the risk-free rate makes clear that a change in the risk-free rate is

triggered by some fundamental change in the economy. Thus, it is not instructive to

compare the pair of a no-tax and a tax economy at a zero risk-free rate with a pair of

economies at a different risk-free rate. Furthermore, the same value for the risk-free

rate can be obtained through different changes of fundamental parameters, leading to

different prices and price differences in both economies. Therefore, I restrict the

analysis to changes in the probabilities of states one and three.

Table 4 Summary of agents’ portfolios, consumption and wealth in the tax economy

Agent i n�i c�i0 W�F
i

c�i1

1 ð�0:09 0:53 0:53Þ 0.41 0.27 ð0:15 0:85 1:28Þ
2 ð0:09 0:47 0:47Þ 0.59 0.41 ð0:25 1:15 1:72Þ
1 þ 2 ð0:00 1:00 1:00Þ 1.00 0.68 ð0:40 2:00 3:00Þ
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To compute a target risk-free rate RT
f , I use the fact that

1=RT
f ¼ E½m� ¼ m1p1 þ m2p2 þ m3p3, where the subscripts in the last equality are

states. Probabilities must sum to 1 so that 1=RT
f ¼ m1p1 þ m2p2 þ m3ð1 � p1 � p2Þ.

I rearrange for p1:

p1 ¼ 1=RT
f � m2p2 � m3 þ m3p2

m1 � m3

: ð90Þ

Probability p2 remains unchanged and p3 ¼ 1 � p1 � p2.

The model with quadratic utility is very convenient to compute price differences

because the discount factor does not change when going from the no-tax to the tax

economy. Since the SDF does not change, the pre-tax price in the tax economy is

equal to the price in the no-tax economy: p� ¼ p. That holds for any risk-free rate,

but it is special to the quadratic utility. Therefore, I can use Eq. (17), in which I

substitute in pj for p�j and 1=R�s
f for E½m��:

p�sj ¼ pjð1 � sÞ
1 � s=R�s

f

: ð91Þ

I rearrange Eq. (91) to an expression that yields the price difference in percent of

price in the tax economy:

pj � p�sj
p�sj

¼ 1 � s=R�s
f

1 � s
� 1: ð92Þ

Thus, for quadratic utility the percentage change in price versus the no-tax case is

the same for any asset j. As the prior equation shows, the rhs does not depend on any

asset specific parameter.

The unchanged SDF between the no-tax and the tax economy also means that the

risk-free rate in the no-tax economy is equal to the after-tax risk-free rate in the tax

economy: Rf ¼ 1=E½m� ¼ 1=E½m�� ¼ R�s
f . I show the results for some ranges of the

after-tax risk-free rate and the tax rate in Table 5. I also provide the implied pre-tax

risk-free rates on the rhs of the table.

Table 5 Price changes through capital gains taxes for different risk-free rates

Price changes
pj�p�sj
p�s
j

Implied pre-tax risk-free rate r�f

r�sf ¼ r�sf ¼

-5 0 5 10 15 20 -5 0 5 10 15 20

s ¼ 5 -0.3 0.0 0.3 0.5 0.7 0.9 -5.3 0.0 5.3 10.5 15.8 21.1

10 0.6 0.0 0.5 1.0 1.4 1.9 -5.6 0.0 5.6 11.1 16.7 22.2

20 -1.3 0.0 1.2 2.3 3.3 4.2 -6.3 0.0 6.3 12.5 18.8 25.0

30 -2.3 0.0 2.0 3.9 5.6 7.1 -7.1 0.0 7.1 14.3 21.4 28.6

40 -3.5 0.0 3.2 6.1 8.7 11.1 -8.3 0.0 8.3 16.7 25.0 33.3

All numbers are in percent and rounded to one decimal
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The table shows that a higher risk-free rate increases the price difference between

prices in the tax economy and those in the no-tax economy. For example for

r�sf ¼ 20% and a tax rate of 5% the prices in the no-tax economy are 0.9% higher

than in the tax economy. For r�sf ¼ �5% the prices in the no-tax economy are 0.3%

less than the ones in the tax economy. The columns of the table show that the

magnitudes increase with an increasing tax rate.

I show the effects of the combination s ¼ 40% and r�sf ¼ 20% a bit more in

detail. The price vector in the no-tax economy is then p0 ¼ ð0:83 0:55 0:14Þ,
which means that assets are worth 0.69 (the last two prices). In the tax economy

the price vector is p�s0 ¼ ð0:75 0:50 0:13Þ, so that the total value of financial

assets amounts to 0.63. The differences of the values reflect the 11.1% given in

Table 5.

Consumption in t ¼ 0 and t ¼ 1 as well as wealth are different between the

economies. Notice, however, that the agents’ consumption does not change a lot

(Table 6). They try to stick to the pattern that was optimal without taxes. The tax

transfers, which now have a non-zero price, cannot be traded at t ¼ 0 so that agents

have to rearrange what they want to consume now and what they want to save for

the next period. With quadratic utility they can do that without changing the SDF. In

the no-tax economy agents can trade all of the claims on future consumption, which

leads to a different division of endowments into initial consumption and wealth, as

well as to a changed future consumption.

Still with a complete asset market but with a more demanding utility function

such as power utility, aggregation of marginal utilities is more complicated and does

not involve just summing up consumption of agents. It involves summing over

nonlinear functions of consumption. That means introducing taxes will likely not

leave the SDF unchanged, which in turn can lead to different risk-free rates in the

two economies. Then, something like Table 5 needs a new interpretation because

r�sf ¼ rf is not likely to hold anymore.

Table 6 Summary of agents’ portfolios, consumption and wealth in the no-tax and the tax economy

Agent i ni ci0 WF
i

ci1

No-tax economy

1 ð�0:02 0:44 0:44Þ 0.41 0.28 ð0:15 0:85 1:28Þ
2 ð0:02 0:56 0:56Þ 0.59 0.41 ð0:25 1:15 1:72Þ

Agent i n�i c�i0 W�Fs
i

c�i1

Tax economy

1 ð�0:13 0:54 0:54Þ 0.39 0.24 ð0:12 0:83 1:28Þ
2 ð0:13 0:46 0:46Þ 0.61 0.39 ð0:28 1:17 1:72Þ

The assumed tax rate is 40% and r�sf ¼ 20%
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5 Conclusion

I extend the analysis of Kruschwitz and Löffler (2009) about the effects of capital

gains taxes on asset pricing. Specifically, they analyze cases when taxes do not

change prices in a mean-variance CAPM with consumption only at one future point

in time. I extend the analysis to agents who maximize expected utility over

consumption. I construct two economies that have equal endowments, utility

functions of investors and payoffs. I look at economies with consumption at t ¼ 0

and t ¼ 1. I find that, with a risk-free rate of zero, taxes on returns have zero value.

Using this result, I can show that for a no-tax economy there exists a tax economy

with the same asset prices. This is the case when investors change their portfolios to

consume the same in the tax economy in every state as in the no-tax economy. This

implies the same portfolio rule as proposed in Kruschwitz and Löffler (2009). With

a non-zero risk-free rate equilibria with equal prices and in which agents consume

the same in the tax as in the no-tax economy do not generally exist. In the case of

linear marginal utility, prices are always different in both economies for a non-zero

risk-free rate.

Furthermore, I show that with exponential utility, multivariate normal payoffs,

and consumption only in t ¼ 1, prices are equal when the risk-free rate in both

economies are the same. But this time taxes do not have zero value so that aggregate

wealth after initial consumption is different in both economies. Individual

consumption profiles as well as SDFs are different in the two economies. I find

that the portfolio rule for risky assets is the same as in Kruschwitz and Löffler

(2009) and the same is true for the case with a zero risk-free rate and in which all

agents consume the same in both economies in every state. Additionally, utility

functions that lead to linear marginal utility also have equilibria with equal prices.

Aggregation makes the pricing equation independent from the tax rate. With

nonlinear marginal utility, price equality cannot generally be obtained since

aggregation will keep the tax rate terms in the aggregate pricing equation.

Eventually, also in the case with consumption only at t ¼ 1, a zero risk-free rate

leads equal price vectors for the two economies.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

Appendix A: Alternative derivation for the exponential utility case
with multivariate normal payoffs

Another approach to obtain the same the pricing equation but to keep more track of

the SDF language is to use Stein’s lemma. The SDF is a function of consumption,

which, in turn, is normally distributed. The vector Xs
r still contains the tax

expression so that I can rearrage p�sr ¼ E m�
iX

s
r

� �
to obtain the known equation

p�sr ¼ E m�
iXr

R�s
f

R�
f

h i
.
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I use the definition for the SDF, i.e., m�
i ¼

u0iðc�i Þ
R�s

f
E u0

i
ðc�

i
Þ½ �. Assuming multivariate

normal payoffs, I use Stein’s Lemma for the pricing equation:

p�sr ¼ E m�
iXr

R�s
f

R�
f

� �

¼ E½Xr�
R�

f

þ Covðm�
i ;XÞ

R�s
f

R�
f

¼ E½Xr�
R�

f

þ Covðu0iðc�i Þ;XrÞ
1

R�
f E½u0iðc�i Þ�

¼ E½Xr�
R�

f

þ E½u0iðc�i Þ�Covðc�i1;XrÞ
1

R�
f E½u0iðc�i Þ�

¼ E½Xr�
R�

f

þ E½u0iðc�i Þ�Xðn�rið1 � sÞ þ xisnrÞ
1

R�
fE½u0iðc�i Þ�

:

ð93Þ

Marginal utility of consumption at t ¼ 1 is:

u0iðc�i1Þ ¼ expð�aic
�
i1Þ: ð94Þ

The second derivative with respect to c�i1 is:

u00i ðc�i1Þ ¼ �ai expð�aic
�
i1Þ ¼ �aiu

0
iðc�i1Þ: ð95Þ

I substitute this back into Eq. (93) to obtain:

p�sr ¼ E½Xr�
R�

f

� a
R�

f

Xðn�rið1 � sÞ þ xisnrÞ: ð96Þ

This is the same as Eq. (53), which can be aggregated to Eq. (55). For the no-tax

economy, using Stein’s Lemma gives:

p ¼ E½X�
Rf

þ� ai
Rf

Xnri: ð97Þ

With equal prices so that also R�
f ¼ Rf , Eqs. (93) and (97) lead to,

n�rið1 � sÞ þ xisnr ¼ nri; ð98Þ

which is expectedly the same portfolio rule derived earlier. Using the budget con-

straints leads to the same rule for the risk-free asset as before.

Appendix B: Linear marginal utility and aggregation

I denote a general form of linear marginal utility as u0ðci1Þ ¼ ai þ bici1, so that the

individual SDF for the model with consumption at times t ¼ 0 and t ¼ 1 is:

mi1 ¼ b
ai þ bici1

ai þ bici0
: ð99Þ

Putting that into Eq. (5) and multiplying by ðai þ bici0Þ, I obtain:
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pðai þ bici0Þ ¼ E Xbðai þ bici1Þ½ �: ð100Þ

I divide by bi and sum over all i to obtain:

p
XI

i¼1

ai

bi
þ c0

 !

¼ E Xb
XI

i¼1

ai

bi
þ c1

 !" #

; ð101Þ

in which c0 ¼
PI

i¼1 ci0 and c1 ¼
PI

i¼1 ci1. Rearranging again leads to,

p ¼ E Xb

PI
i¼1

ai
bi
þ c1

PI
i¼1

ai
bi
þ c0

" #

: ð102Þ

Aggregate values for consumption can be used in the SDF. For the form of quadratic

utility that is used in Cochrane (2014) and also herein, i.e., for

uðcitÞ ¼ �0:5ðcit � cbi Þ
2
, marginal utility is cit � cbi , so that bi ¼ �1 for all i and

ai ¼ cbi . Notice that the time discount factors b are equal for all agents. With

different time discount factors the equation changes to,

p ¼ E X

PI
i¼1

ai
bi
þ c1

PI
i¼1

1
bi

ai
bi
þ c0i


 �

2

4

3

5; ð103Þ

which shows that aggregate consumption at t ¼ 0 cannot generally be used in the

SDF.
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