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Abstract The tax shield as present value of debt-related tax savings plays an

important role in firm valuation. Driving the risk of future debt levels, the firm’s

strategy to adjust the absolute debt level to future changes of the firm value, labeled

as (re-) financing policy, affects the value of tax shields. Standard discounted cash

flow (DCF) models offer two simplified (re-) financing policies originally intro-

duced by Modigliani and Miller (MM) as well as Miles and Ezzell (ME). In this

paper, we introduce a discontinuous financing policy that refers to the refinancing

intervals, i.e., the maturity structure of the firm’s debt. By deriving APV valuation

and beta unlevering equations that allow for this discontinuous financing policy, we

show the MM and ME policies to be special cases of the proposed extension. While

we document the effect of discontinuous refinancing to be economically significant

when leverage is high and refinancing periods are extremely long, our results

suggest that for low-levered firms with short refinancing periods, the traditional

continuous refinancing-based models (like the Miles/Ezzell model) produce rela-

tively robust value estimates. Combining capital structure and maturity structure

choices, our model extends the set of feasible financing policies in DCF valuation

models.
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1 Introduction

Due to the tax deductibility of interest payments, taxes are a major factor driving

corporate capital structure decisions (see, e.g., Graham 2000). In the literature on

firm valuation, the integration of debt-related tax savings into the pricing framework

has been (and still is) subject of a lively debate: researchers have been concerned

with the inclusion of default risk and costs of financial distress (see, e.g., Koziol

2014; Molnár and Nyborg 2013), personal income taxes (e.g., Sick 1990; Molnár

and Nyborg 2013), and consequences of different ‘‘debt policies’’ or ‘‘financing

policies’’1 (see, e.g., Fernandez 2004; Arzac and Glosten 2005; Cooper and Nyborg

2006; Massari et al 2007 and Dempsey 2013).

This paper analyzes the impact of a firm’s policy of adjusting future debt levels

towards changes of its market value, labeled as (re-)financing policy, on the value of

its tax shields. It does so by extending the well-known financing policy based on

market values originally introduced by Miles and Ezzell (1980) by a discontinuous

refinancing sequence. This sequence is defined by the firm’s timing of its debt level

adjustments towards a target leverage ratio on changes of its economic environment,

reflected by its market value. Between two adjustment dates, the firm’s debt levels

are state independent and certain. The choice of the adjustment sequence closely

relates to the maturity structure choice of corporate debt: choosing a certain time to

maturity for corporate debt contractually fixes debt levels over this time frame.

Renewing debt at the end of maturity will take into account the prevailing economic

conditions reflected by the firm’s market value.2

The chosen refinancing policy has an impact on the risk properties of debt-related

tax savings: while debt levels are certain between two adjustment/refinancing dates,

the adjustment towards changes of the firm value itself exposes debt levels to the

firm’s business risk at every refinancing date.

So far, firm valuation models capture the firm’s chosen refinancing/adjustment

policy by offering two simple types of ‘‘debt policies’’ or ‘‘financing policies’’.3 The

first policy assumes future debt levels to be certain (non-stochastic) [(see,

Modigliani and Miller 1958) and 1963 henceforth termed MM)], whereas the

second policy rests on certain leverage ratios based on market values of debt and

equity (see, e.g., Miles and Ezzell 1980 and 1985; Harris and Pringle 1985)

henceforth termed ME). When assuming constant absolute debt levels (in case of

MM) and constant leverage ratios (in case of ME), both policies reflect different

frequencies for the adjustment of the level of outstanding debt towards future

1 We will use the terms ‘‘debt policy’’ and ‘‘financing policy’’ interchangeable in this paper.
2 As a special case, the adjustment/refinancing sequence could be different from the chosen maturity of

debt: the firm may buy back a fraction of its outstanding bonds not yet due at the end of the sequence in

order to rebalance its debt level according to a change in firm value. On the other hand, it may follow a

policy of renewing bonds being due in periods before the adjustment date. As long as the timing and

amount of these adjustments are certain and independent from the development of the firm value, the risk

of future debt levels under such a policy is then identical to the case of the adjustment sequence being

equal to the maturity of the firm’s debt.
3 A notable exception from the corporate finance related literature is Grinblatt and Liu (2008) who map

the financing policy of the firm via a partial differential equation as a function of time, free cash flows,

levered asset value and history in a continuous time framework.
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changes in firm value. Kruschwitz et al (2007) allow for a combination of the two

policies and analyze a ‘‘hybrid’’ financing policy shifting one time from a MM

policy towards a ME policy. As our model allows for shifts in both directions for

several times, it offers a significantly higher flexibility for the firm’s financing

policy.

We propose a generalized model allowing the firm to choose its capital structure

and refinancing sequence and thus include discontinuous financing policies that

extend the standard MM and ME setting in firm valuation. In addition, we show that

the aforementioned standard financing policies are special polar cases of our model

each assuming a particular refinancing sequence. Moreover, we derive closed-form

pricing equations for the adjusted present value (APV) approach and a beta

unlevering procedure consistent to the refinancing sequence of the introduced

discontinuous financing policies. Finally, we briefly point to the applicability of the

weighted average cost of capital (WACC) approach in combination with the

proposed financing policy.

As our approach allows for a richer set of choices with respect to the corporate

‘‘financing policies’’, it makes an important contribution to the literature on firm

valuation: it introduces more realistic assumptions of the firms debt policies.

Empirically, firms do not seem to follow either of the two simplified financing

policies from above. In the corporate finance literature, there has been a long debate

around the question if at all, and if so how frequently firms adjust their debt level

and/or capital structure towards changes in firm value. Fischer et al (1989) showed

that transaction costs play an important role for the adjustment of the debt level

towards a certain target value determined by an optimal leverage ratio. Huang and

Ritter (2009) found evidence that firms adjust half way towards a target leverage on

book values at a moderate speed of 1.6–3.7 years. Leary and Roberts (2005) find a

full adjustment of debt levels towards a target market leverage in 2–4 years after

equity issues and equity shocks. Thus, by introducing the firm’s historic refinancing/

adjustment policy or a policy representative for the respective industry, our model

allows for more realistic estimates of the tax shield in firm valuation. While our

results indicate a significant economic effect of discontinuous financing on the tax

shield value for high debt levels and extremely long refinancing periods, we also

find the traditional ME financing policy to generate relatively robust value estimates

for low-levered firms with short refinancing intervals.

This paper is organized as follows. In Sect. 2, we discuss the basic assumptions

and standard financing policies in discounted cash flow models. Section 3 introduces

the framework of a discontinuous financing policy and derives the corresponding

equations for tax shield pricing. In Sect. 4, we derive the unlevering relations for

beta factors and discuss their implications. To highlight the potential deviation

caused using the two simplified financing policies instead of a maturity structure

matching, we provide a numerical example in Sect. 5. A conclusion and outlook for

future research are given in Sect. 6.
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2 The model

2.1 Basics

We assume a standard economic multi-period setting, with t; t þ 1; . . .; T � 1; T
points in time, where T ¼ 14 is possible. The capital market is free of arbitrage and

the spanning property holds for the subsequently discussed free cash flows, equity,

and firm values. From this assumption, the fundamental theorem of asset pricing

applies and there exists a risk-neutral probability measure Q that is equivalent to the

subjective probability measure P.5 The operator for the expected value under P

contingent on the available information at time t is denoted by Et½:� and under the

risk-neutral probability measure Q by EQt ½:�. The risk-free rate rf and the corporate

tax rate s are assumed to be deterministic and constant.6

The firm realizes in every future period s uncertain, unlevered free cash flows

gFCFs, with s ¼ t þ 1; t þ 2; :::; T . The expected unlevered free cash flows are

determined by

Et gFCFtþ1

h i

¼ gFCFtð1þ gÞ; ð1Þ

where g denotes the (expected) growth rate. In addition, we assume FCF0 [ 0 and

g[ � 1 to hold implying gFCFt [ 0. With this explicit modelling of auto-regressive

free cash flows, the expected value in an arbitrary period s, with s[ t, can be

determined by Et½gFCFs� ¼ gFCFtð1þ gÞs�t
.7

The value of an unlevered firm at time t, eVU
t , whose assets generate a stream of

cash flows gFCFs, with s ¼ t þ 1; :::; T , is determined under Q by

eVU
t ¼

X

T

s¼tþ1

EQt ½gFCFs�
ð1þ rf Þs�t : ð2Þ

The cost of capital of an unlevered firm ru is assumed to be deterministic and

constant in time. This assumption allows to write for the value of the unlevered firm

under P8

4 For ease of notation we write T ¼ 1, instead of limT!1
PT

t¼1 we may write
P1

t¼1.
5 See initially Harrison and Kreps (1979) and Harrison and Pliska (1981). An extensive treatment on risk-

neutral pricing and on the fundamental theorem of asset pricing can be found in Shreve (2004); with

respect to the DCF framework, a rigorous treatment is given in Kruschwitz and Löffler (2006), p. 26.
6 The restriction on corporate taxes allows us to focus on the effects of the refinancing frequency without

mixing up with other issues subject to an introduction of personal taxes, e.g., the impact of the dividend

distribution policy and the effects of personal taxes on asset pricing under the risk-neutral probabilitymeasure.

See Kruschwitz and Löffler (2006), p. 111, and Rapp and Schwetzler (2008), for an extensive discussion.
7 The defined process (1) could be generalized to weak auto-regressive cash flows with a time-dependent

growth rate gt. See for a discussion Kruschwitz and Löffler (2006), p. 34.
8 By assuming auto-regressive free cash flows as in Eq. (1), only one additional condition, e.g., the

dividend ratios are deterministic, is necessary to prove that cost of capital is deterministic (see

Laitenberger and Löffler 2006). Deterministic cost of capital is required to determine the value of a firm

contingent on the available information at t.
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eVU
t ¼

X

T

s¼tþ1

Et½gFCFs�
ð1þ ruÞs�t : ð3Þ

Note, we understand the one-period cost of capital in an arbitrary period t as

deterministic conditional expected returns (see, e.g., Kruschwitz and Löffler 2006).

Now, consider an otherwise identical firm that partly finances its operations with

debt. In every period, this levered firm has to pay interest on the total amount of debt

outstanding eDs and possible principal payments. The possibly risk adjusted cost of

debt is denoted as rD.
9

The value of the levered firm, eV L
t , can be determined by the adjusted present

value approach (APV) (see, e.g., Myers 1974) which combines the unlevered firm

value and the tax shield TSt comprising the present value of future tax savings due

to the tax deductibility of interest payments:

eV L
t ¼ eVU

t þ TSt: ð4Þ

In the next section, we quantify the tax shield, TSt, for the well-known financing

policies following Modigliani and Miller as well as Miles and Ezzell.

2.2 Simplified financing policies

Equation (4) is generally valid without having imposed yet any assumptions with

respect to the pursued financing policy of the firm. We start our analysis by looking

at two standard financing policies proposed by Modigliani and Miller (1958) (MM

policy or autonomous financing) and Miles and Ezzell (1980) (ME policy or

financing based on market values):

MM policy: the firm projects a certain, state independent, not necessarily constant

total amount of debt Dt for every future period t. Combined with random future

firm values eV L
s , with s[ t, this policy implies random leverage ratios els as

els ¼ Ds=eV
L
s . Assuming Ds ¼ Dt for all s, the firm will maintain its current level

of debt for all future periods independently from the development of the firm

value eV L
s . This can be interpreted as the choice of a refinancing policy assuming

an adjustment interval tending to infinity; the firm never adjusts the level of debt

according to potential changes in eV L
t . Given a constant debt level, the value of the

tax shield is given by

9 As discussed by Sick (1990), Kruschwitz et al (2005), Rapp (2006), Cooper and Nyborg (2008),

Molnár and Nyborg (2013), and Krause and Lahmann (2016), the discount rate for tax shield valuation

depends on the assumptions on the tax treatment of writing down debt in case of a possible default and on

the loss distribution. Kruschwitz et al (2005) assuming interest prioritization and a taxation of a possible

cancellation of indebtedness (COD) have shown that the discount rate is equal to rf , i.e., rD ¼ rf (see

additionally Cooper and Nyborg (2008), p. 368). Cooper and Nyborg (2008) assuming interest

prioritization and possible COD are exempted from taxation have shown rD to be equal to the

contractually fixed promised yield rc. For risk-free debt rf ¼ rD, Krause and Lahmann (2016) have shown

that the expected return on debt can be used as discount rate whenever COD are tax-exempt and a

proportional loss distribution is assumed. To map both possibilities of the tax treatment of a COD, we use

rD as parameter in the tax shield pricing equation.
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TSMM
t ¼

X

1

s¼tþ1

s � rD � Dt

ð1þ rDÞs�t ¼ s � Dt: ð5Þ

ME policy: the firm establishes a certain, state independent, not necessarily

constant, leverage ratio ls in any future period s[ t. Given that future firm values

eVL
s are random, future debt levels eDs ¼ ls � eV L

s are uncertain as well. In a discrete

time setting, this policy implies that the absolute level of debt is following the

development path of the uncertain future firm value eV L
s if the leverage ratio is

constant over time, i.e., lt ¼ l 8 t. The firm is adjusting its debt level every period

according to the realized firm value. This debt policy can be interpreted as a

choice of a refinancing/adjustment sequence of 1 period, i.e., the debt issued in

period t, Dt, is redeemed in t þ 1 and new debt at an amount of eDtþ1 is issued.

Since the leverage ratio ties the debt level to the levered firm value, the tax

savings are subject to the same dynamics as the unlevered free cash flows (see,

e.g., Arzac and Glosten 2005). Assuming a constant leverage ratio and perpetual

free cash flows (i.e., g ¼ 0), the tax shield according to the ME approach is

determined by

TSME
t ¼

X

1

s¼tþ1

s � rD � Et½eDs�1�
ð1þ rDÞð1þ ruÞs�t�1

¼ s � rD � Dt

ru

1þ ru

1þ rD
: ð6Þ

Figure 1 depicts the debt structure of the two standard financing policies. The first

line illustrates the classical MM assumption of a constant debt level Dt for all

periods t þ 1; t þ 2; . . .. In every arbitrary period s[ t, the firm realizes expected

tax savings s � rD � Dt due to the tax deductibility of interest payments. The second

line shows the assumption regarding the debt maturity structure implied by the ME

approach. In an arbitrary future period s, with t\s� T , the firm adjusts its debt level

according to eDs ¼ l � eV L
s . Without loss of generality, we regard only the net

principal payments or change of the debt level, which is defined by

DeDs ¼ eDs�1 � eDs. Positive net principal payments, DeDs [ 0, indicate a decrease

in the debt level and vice versa. The ME approach implicitly assumes that the firm

refinances and adjusts every single period its debt level, i.e., the debt issued in

period t, Dt, is redeemed in t þ 1 and new debt with an amount of eDtþ1 is issued.

3 A discontinuous financing policy based on market values

In this section, we introduce a discontinuous financing policy based on market

values. According to this financing policy, the firm chooses to refinance its debt

every k periods, i.e., at the points in time t; t þ k; t þ 2k; . . .; t þ n � k, where n 2 N.

At any arbitrary refinancing date t þ nk, the firm’s debt level is adjusted according

to eDtþnk ¼ ltþnk � eV L
tþnk, where ltþnk denotes the target capital structure at t þ nk. In

addition, we assume a bullet structure of the redemption payment implying a

154 Business Research (2018) 11:149–171

123



constant debt level between two arbitrary refinancing dates t þ nk and t þ ðnþ 1Þk.
Thus, at every period s, the firm’s debt level is10

eDs ¼
ls � eV L

s if s ¼ tþ n � k forn 2 N;

eDs�1 else:

(

ð7Þ

Note that the first adjustment is observable at t. This financing policy combines a

target leverage ratio lt with a certain refinancing policy and maturity structure:

refinancing debt every k periods the firm adjusts the debt level according to the then

prevailing market value of the firm.

Assuming that T � t can be divided by k resulting in an integer, the value of the

tax shield is given by11

TSkt ¼
X

tþT�t
k

s¼tþ1

X

k

j¼1

s � rðkÞD � Et eDtþðs�tÞk�k

� �

ð1þ r
ðkÞ
D Þ j � ð1þ ruÞðs�tÞk�k

: ð8Þ

The valuation of the tax shield in an arbitrary year from T � k þ 1 to T has to take

into account that the level of debt is certain since the last adjustment at T � k. This

implies that the cost of debt for the debt issued in T � k with a maturity of k, r
ðkÞ
D , is

the appropriate discount rate12 for the tax savings up to the next refinancing point.

From T � k to the current point at time t, the appropriate discount rate is the

unlevered cost of equity ru as the present value of the tax shield depends on the

future debt adjustments to the (stochastic) firm value.13

Fig. 1 Illustration of the different debt maturity structures underlying the approaches

10 The assumed maturity structure k on firm level can be interpreted as the firm’s debt average or median

maturity structure.
11 See Appendix 7 for the derivation. In addition, Appendix 7 provides a pricing equation for ðT � tÞ=k
not resulting in an integer and a valuation equation for the case, where the timepoint of valuation t is

between two refinancing dates.
12 See for a discussion of the appropriate tax shield discount rate FN 9.
13 For a proof that the unlevered cost of equity is the appropriate discount rate for the tax shield value

generated at an arbitrary refinancing time t ¼ n � k to the current point in time t, we refer to Appendix 9.
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Assuming constant free cash flows (g ¼ 0) and a constant target leverage ratio at

any future refinancing date, i.e., ls ¼ l for any s ¼ t þ k; t þ 2k; t þ 3k; . . ., and an

infinite lifetime of the firm Eq. (8) can be simplified14 for the case of T ¼ 115 to

TSkt ¼ Dt � Kk
t ;with Kk

t ¼
s � rðkÞD � AFðru; kÞ
AFðrðkÞD ; kÞ � ru

; ð9Þ

where AFðr; kÞ ¼ r�ð1þrÞk

ð1þrÞk�1
is the annuity factor for discount rate r and time to

maturity k. Note that Kk
t in (9) accounts for the maturity structure and refinancing

frequency of debt chosen by the firm. The sensitivity of the tax shield with respect to

k depends on the difference between r
ðkÞ
D and ru. For the standard case r

ðkÞ
D \ru, the

tax shield value increases with k.

By substituting Eq. (9) in (4), the relation between the unlevered and the levered

firm value is

eV L
t ¼

eVU
t

1� l � Kk
t

: ð10Þ

According to Eq. (10), we observe a constant relationship between the levered and

the unlevered firm value if the leverage is set to lt ¼ l on all refinancing dates

t; t þ k; t þ 2k; . . . and the parameters k and s of Kk
t are constants as well. Note that

ru is an expected return and r
ðkÞ
D denotes the ‘‘cost of debt’’ for a debt issue with time

to maturity k. This results in a constant relationship between the unlevered firm

value and the total amount of debt, eDs ¼ l � eV L
s , for all s ¼ t; t þ k; t þ 2k; . . ..

The third line in Fig. 1 illustrates the maturity structure of the discontinuous

financing policy. At time t, the firm issues debt with a fixed maturity structure of k

periods. After k periods (e.g., years), the firm refinances this debt issue at time t þ k

by redeeming the debt issued on the most recent refinancing date t, eDt, and issuing

new debt eDtþk according to its target leverage ratio applied to the prevailing market

value of the firm.

By comparing our tax shield Eq. (8) against (6) and (5), we find the two debt

policies to be special and polar cases of the proposed discontinuous financing

policy: setting k ¼ 1 yields the ME policy Eq. (6) and letting k tends to infinity the

MM-policy Eq. (5) (see Appendix 8 for the proof). Obviously, any value of

k between the two polar cases results in a pricing equation that yields values

between the MM- and ME-implied values.

The result derived in this section has an important implication for the practical

relevant WACC approach. It is well known that cost of capital needs to be known

14 See Appendix 8 for the derivation.
15 Note that for the case of T ¼ 1, the transversality condition holds, since we operate in a setting with

ru [ g[ 0, FCF0 [ 0, implying gFCFt [ 0. See for an extensive treatment of this issue Kruschwitz and

Löffler (2015).
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with certainty at the timepoint of valuation t.16 Random future cost of capital cannot

be used as discount rates to obtain present values of future expected cash flows.17

Given a refinancing policy with a fixed interval of k periods, the capital structure of

the firm (in market values) is known with certainty every k periods, i.e., when the

firm readjusts the debt level according to the target leverage ratio l. Thus, the firm’s

WACC, defined as wacctþnk ¼ rLð1� lÞ þ rDð1� sÞl, at any arbitrary refinancing

point t þ nk is also non-random. However, this is not true for any intermediate

timepoint s between two arbitrary adjustment dates, with t þ nk\s\t þ ðnþ 1Þk.
Between two refinancing dates, the financing policy described fixes the debt level to

Dtþnk and the leverage ratio els ¼ Dtþnk=eV
L
s turns into a random variable. As a

consequence, gwaccs is a random variable for any intermediate point in time s and

thus does no longer meet the requirement from above to serve as cost of capital,

implying that a WACC-based valuation for discontinuous financing is not possible.

Only in one special case, WACC may be used as discount rate for every future

period’s cash flow: if k ¼ 1, i.e., the ME policy applies, the firm’s debt level will be

adjusted every period and l is known with certainty at any future point in time.

4 Unlevering beta

In the preceding section, we derived a pricing equation for a discontinuous financing

policy. In this section, we analyze the impact of the discontinuous financing policy

on the levered beta by deriving a relation between the levered, bðkÞL , and unlevered

(asset) beta factor, bU . Following the literature (e.g., Miles and Ezzell 1985), we

start our analysis by obtaining a relation for the ‘‘weighted average’’ beta factor, bw
based upon the increments of the APV equation incorporating the tax shield for the

discontinuous financing policy, as given by Eq. (8). Second, we recognize the well-

known fact that the leverage weighted average of the debt beta, bðkÞD , and the beta for

levered equity, bðkÞL , yields the firm’s weighted average beta, bw, and rearrange to

obtain an equation relating bðkÞL , bðkÞD , and bU :
18

bðkÞL ¼
1�

Pk
j¼1

s�rðkÞ
D
�l

ð1þr
ðkÞ
D
Þj

1� l

0

B

@

1

C

A � bU þ

Pk
j¼1

s�rðkÞ
D
�l

ð1þr
ðkÞ
D
Þj
� l

1� l

0

B

@

1

C

A � bðkÞD : ð11Þ

Equation (11) generally holds for a discontinuous financing policy and, therefore,

includes the two special cases of the MM and ME approaches. Note that the

superscript (MM) indicates the MM policy and (ME) the ME policy. Assuming risk-

16 Retain the WACC definition (e.g., Kruschwitz and Löffler 2006) to calculate levered firm values by

eV L
t ¼

PT
s¼tþ1

E½fFCFs �
ð1þwaccsÞ, where the cost of capital, waccs, is deterministic and calculated by

waccs ¼ rLð1� lsÞ þ rDð1� sÞls.
17 See for an equivalent statement, e.g., Laitenberger and Löffler (2006) and Kruschwitz and Löffler

(2006).
18 For the mathematical proof, we refer to Appendix 10.
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free debt, with bðkÞD ¼ 0 implying r
ðkÞ
D ¼ rf , and letting k ! 1, we find the unlev-

ering relation for the MM model:

bMM
L ¼ 1þ ð1� sÞ

eDt

eEt

 !

� bU : ð12Þ

Setting k ¼ 1 results in the unlevering relationship of the standard ME model:

bME
L ¼

1� s�rf �l
1þrf

1� l

 !

� bU : ð13Þ

Now, we are interested in the potential effect of a given discontinuous financing

policy with sequence k compared to the two standard financing policies by ME and

MM when deriving a firm’s asset beta from a given levered equity beta. To illustrate

this impact, we look at the standard setting of corporate valuation of a levered beta

bL estimated based on empirical capital market data. Table 1 displays asset betas

computed using the derived unlevering equations for a set of different financing

policies [k ¼ 1 (ME policy), k ¼ 3; 5; 10 and k ¼ 1 (MM policy)], different

leverage ratios (l ¼ 0:4; 0:6and0:8) and estimates for equity betas

(bL ¼ 0:5; 1; and1:5).19 In addition, the calculations assume a debt beta of zero,

i.e., rD ¼ rf with bD ¼ 0. The corporate tax rate is s ¼ 35% and the risk-free rate

rf ¼ 2%.

We find unlevered betas to decline in value for increasing leverage ratios l and to

increase with increasing k. The first result reflects the well-known (reverted) impact

of financial leverage risk (e.g., Miles and Ezzell 1985). The second effect is a direct

consequence of the tax savings’ risk properties: as increasing k reduces the risk of

future debt levels and the tax savings attached to it, it also curbs the increase in

financial leverage with increasing debt.

Finally, we derive percentage estimation errors for using the unlevering Eqs. (12)

and (13) of the two simplified financing policies whenever a discontinuous financing

policy with sequence k is actually pursued, i.e., Eq. (11) should be applied. For the

MM policy, define the percentage estimation error by
bMM
U

bðkÞ
U

� 1. Substituting Eqs. (12)

and (11) as well as rearranging, we obtain

bMM
U

bðkÞU

� 1 ¼
sl�

Pk
j¼1

srf l

ð1þrf Þj

1� sl
: ð14Þ

For s[ 0 and l[ 0, we find percentage errors of the MM unlevering equation to

increase in l and to decrease in k. The latter result is not surprising as a refinancing

sequence with k ¼ 1 is equivalent to the MM policy.

19 Technically, we rearrange Eqs. (11), (12), and (13) for the financing policy corresponding unlevered

beta. Basically, all discussed unlevering procedures consist of a financing policy specific term in brackets,

(a), multiplied by an unlevered beta, bU , to calculate the levered beta, bL, i.e., bL ¼ ðaÞ � bU . Rearrange
for bU divide by (a) and obtain bU ¼ bL=ðaÞ.
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For the ME policy, define the percentage estimation error by 1� bME
U

bðkÞ
U

.20

Combining (11) with (13) and rearranging yields21:

1� bME
U

bðkÞU

¼

Pk�1
j¼1

srf l

ð1þrf Þj

ð1þ ð1� slÞrf Þ
: ð15Þ

Equation (15) suggests the estimation error to increase with l and k. Again, the latter

reflects the result from above that k ¼ 1 is equivalent to the ME policy. While both

simplified equations may produce significant errors in deriving unlevered asset

betas, the percentage deviation to realistic (discontinuous) financing policies is

smaller under the ME assumptions than under the ones of the MM model. One way

to minimize errors is to estimate refinancing sequences for different industries

empirically and transfer them into Eq. (11).

5 Relevance of discontinuous financing policies for the tax shield value

In the subsequent section, we highlight the impact of the chosen refinancing policy

on the levered firm value. As we are also interested in the deviation caused using the

two simplified models of ME and MM policies from the value given the ‘‘true’’

policy of the firm, we consider a levered firm with a refinancing frequency of k ¼ 3

years. This frequency is in line with the empirical findings of the studies from above

(see, e.g., Leary and Roberts 2005). We concentrate on the effect of the refinancing

sequence and thus assume for simplicity the firm’s cost of debt to be independent

from its choice of k, i.e., r
ðkÞ
D ¼ rD ¼ rf for all k and equal to 2%. With this

Table 1 Comparison of unlevering procedures

bL ¼ 0:5 bL ¼ 1 bL ¼ 1:5

l ¼ 0:4 l ¼ 0:6 l ¼ 0:8 l ¼ 0:4 l ¼ 0:6 l ¼ 0:8 l ¼ 0:4 l ¼ 0:6 l ¼ 0:8

bME
U

0.301 0.201 0.101 0.602 0.402 0.201 0.902 0.602 0.302

bðk¼3Þ
U

0.302 0.202 0.102 0.605 0.405 0.203 0.907 0.607 0.305

bðk¼5Þ
U

0.304 0.204 0.103 0.608 0.408 0.205 0.912 0.612 0.308

bðk¼10Þ
U

0.308 0.208 0.105 0.615 0.416 0.211 0.923 0.624 0.316

bMM
U

0.349 0.253 0.139 0.698 0.506 0.278 1.047 0.759 0.417

20 As bME
U \bðkÞU \bMM

U holds, this definition ensures positive signed percentage estimation errors.
21 In brief, to derive Eq. (15), we cancel bL as well as ð1� lÞ and obtain

1� 1�
Pk

j¼1
srf l

ð1þrf Þj
h i

= 1� s�rf �l
1þrf

h i

. Extend the first term, 1, by 1� srf l
ð1þrf Þ and rearrange. Simplify the

nominator in the resulting expression
Pk

j¼1
srf l

ð1þrf Þj
� srf l

1þrf

h i

=
1þrf
1þrf

� srf l
1þrf

h i

to
Pk

j¼2
srf l

ð1þrf Þj
. Cancelling 1þ rf

and changing sum limits in the nominator yield Eq. (15).
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assumption, we consider debt to be risk free. The firm has a constant expected

annual unlevered free cash flow of 100 over an infinite lifetime ðg ¼ 0Þ. Moreover,

the equity betafactor of an otherwise identical but unlevered firm with the same

business risk is bU ¼ 1:1. The corporate tax rate s is set to 35% and the return of the

market portfolio rm to 7:5%. With these assumptions, the unlevered cost of equity

according to the standard CAPM return equation:

ru ¼ rf þ ðrm � rf Þ � bU ð16Þ

is calculated as ru ¼ 8:0805% and in turn the unlevered firm value amounts to
eVU
t ¼ 100

0:0805 ¼ 1; 242:24.

The superscript (MM) indicates the MM policy (ME) the ME policy and k ¼ 3

the respective refinancing assumption within the discontinuous financing policy

framework. Comparing the three different assumptions, we first determine the firm

values using Eq. (10). Notice that, as firm values differ with respect to the assumed

financing policy, a given leverage ratio of 40% implies different absolute debt

values for the three policies.22 Having derived the firm values eVL
t allows us to

compute the absolute debt amount and the tax shield value TSt.

1. ME policy

Starting with the ME policy (k ¼ 1), the basic parameter KME
t is equal to 0.0921.

Based on Eq. (10), the levered firm value is equal to

eV L;ME
t ¼ 1; 242:24

1� 0:4 � 0:0921 ¼ 1; 289:76; ð17Þ

and the absolute debt value DME
t amounts to 515.9. The tax shield value is then

TSME
t ¼ 0:35 � 0:02 � 515:9

0:0805� 0
� 1þ 0:0805

1þ 0:02
¼ 47:52: ð18Þ

2. MM policy

KMM
t for the MM policy (k ¼ 1) is equal to 0.35 and the levered firm value

amounts to

eV L;MM
t ¼ 1; 242:24

1� 0:4 � 0:35 ¼ 1; 444:46: ð19Þ

With a leverage of l ¼ 0:4, the absolute debt value DMM
t is equal to 577.78. In this

case, the value of the debt related tax savings amounts to

TSMM
t ¼ 0:35 � 577:78 ¼ 202:22: ð20Þ

22 Assuming identical absolute debt levels Dt would accordingly yield different leverage ratios for the

three policies.
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3. Exemplary maturity structure of the firm (k ¼ 3)

Kk¼3
t for the chosen refinancing policy by the firm is equal to 0.0974 and the levered

firm value amounts to

eVL;k¼3
t ¼ 1; 242:24

1� 0:4 � 0:0974 ¼ 1; 292:59: ð21Þ

This implies an absolute debt value Dk¼3
t of 517.04. Finally, the tax shield value

amounts to

TSk¼3
t ¼ 0:0974 � 517:04 ¼ 50:36: ð22Þ

As the refinancing policy of the firm with k ¼ 3 is close to k ¼ 1 and far away from

k ¼ 1, our example results in a moderate undervaluation when applying the sim-

plified ME policy, but in a significant overvaluation when relying on the simplifying

assumption of an MM policy.

In Fig. 2, we depict the levered firm value as a function of k. We vary the value of

k between 1 and 30, for four different leverage ratios, l ¼ 0 (i.e., the unlevered firm

value), 0.4 (the previously discussed example), 0.6, and 0.8. In general, we observe

for the three cases l[ 0 the levered firm value to increase in k. All graphs increase

with increasing values for k. To provide a concise and clear Fig. 2, we have

abstained from depicting values tending towards a maximum value for k ¼ 1.23 In

particular, for k ¼ 1, Fig. 2 depicts the leverage dependent values for the ME case

1, 289.76 ðl ¼ 0:4Þ, 1, 314.91 ðl ¼ 0:6Þ, and 1, 341.06 ðl ¼ 0:8Þ. Last but not least,
it should be noted that for k ¼ 1, i.e., the MM case, we would obtain the levered

firm values: 1, 444.46, 1, 572.45, and 1, 725.33, respectively.

Summarizing, the refinancing sequence of the firm’s debt is a major factor

influencing the tax shield value. Depending on the firm’s actual choice of k, using

the ME or MM financing policy may result in significant deviations from the levered

firm value that matches the actual refinancing sequence of the debt issue. While for

shorter maturities, the difference to the ME case could be regarded as relatively

small, an application of the MM policy would result in a significant overvaluation of

the tax savings of debt.

The economic effect of the pricing discrepancy between the k-implied tax shields

is a direct result of the discounting technique. For higher (lower) values of k, the

number of years with a certain debt level increases (decreases). Correspondingly,

the number of years where the debt value and in turn the interest tax savings are

subject to the same risk as the unlevered cash flows decreases (increases).

Respectively, an increasing (decreasing) number of annual tax savings are

discounted by r
ðkÞ
D and a decreasing (increasing) number with the unlevered cost

of capital ru.

23 Values with a parameter choice of k[ 30 might be interesting for theoretical purposes. Already, a 30

year loan, i.e., a 30 year refinancing frequency, is rather uncommon.
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6 Conclusion

In this paper, we develop a model to value debt related tax shields. This model

allows for a discontinuous debt financing policy by giving the opportunity to choose

the firm’s leverage ratio and a refinancing interval of corporate debt. We show how

to include the refinancing policy into the well-known APV approach and derive a

pricing equation adjusting the discounting procedure accordingly. Moreover, we

derive general relations between the unlevered and the levered beta factor. For the

tax shield valuation and the APV approach, we also show that the two simplified

financing policies currently proposed by the valuation literature, the Modigliani/

Miller and the Miles/Ezzell case can be regarded as polar cases of the discontinuous

financing policy. Furthermore, we briefly discuss the general inapplicability of the

textbook WACC approach in combination with discontinuous financing.

Finally, we have to point towards some limitations of our approach. Obviously,

the presented financing policy does not capture all possible policies of firms

choosing their capital structure and refinancing sequence. For instance, a policy

including a dynamic adjustment towards a target leverage ratio including transaction

costs as first suggested by Fischer et al (1989) is not captured by our approach.

Moreover, as the standard ME and MM approaches, our model does not explicitly

account for default and potential bankruptcy cost. We believe, however, that the

model can be easily extended towards this feature. The cost of debt is currently

exogenously given and does not relate to any properties of default triggers. Thus, as

the firm’s refinancing sequence combined with the leverage choice has an impact on

credit risk, endogenizing the cost of debt, depending on l and k, is an obvious next

step in extending the model.
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The definition of the discounting rule

The tax shield pricing equation mapping a discontinuous financing policy based on

market values with refinancing every k years can be obtained by

TSkt ¼
X

tþT�t
k

s¼tþ1

X

k

j¼1

s � rðkÞD � Et eDtþðs�tÞk�k

� �

ð1þ r
ðkÞ
D Þ j � ð1þ ruÞðs�tÞk�k

: ð23Þ

The following example highlights the derivation of the proposed discounting pro-

cedure for the valuation of the tax shield.

Example 1 We assume the current point in time to be t ¼ 0 and the lifetime of the

project to end in T ¼ 4. The firm’s financing policy is to adjust the debt level every

k ¼ 2 years. The tax shield is given by Eq. (8), in which we apply j times r
ðkÞ
D and

ðs� tÞ � k � k times ru as a discount rate.

Table 2 displays the adjustment of the amount of debt according to the

refinancing sequence and highlights the number of years in which a tax shield needs

to be discounted using the cost of debt r
ðkÞ
D and unlevered cost of capital ru,

respectively.

To find a pricing equation for ðT � tÞ=k being not an integer, we simplify Eq. (8)

by defining two operators.

Definition 1 Integers a (dividend) and k (divisor) are given with k[ 0, two unique

integers q (quotient) and r (remainder) exist, such that a ¼ k � qþ r and 0\r� k.

Thus, we can write

Table 2 Discount rates and debt amount per index s in (8)

s ¼ t þ 1; . . .; t þ T�t
k

j ¼ 1 to k eDtþðs�tÞk�k ð1þ ruÞðs�tÞk�k ð1þ r
ðkÞ
D Þ j

s ¼ t þ 1 1 Dt ð1þ ruÞ0 ð1þ r
ðkÞ
D Þ1

s ¼ t þ 1 2 Dt ð1þ ruÞ0 ð1þ r
ðkÞ
D Þ2

s ¼ t þ 2 1 eDtþ2 ð1þ ruÞðtþ2�tÞ2�2 ð1þ r
ðkÞ
D Þ1

s ¼ t þ 2 2 eDtþ2 ð1þ ruÞðtþ2�tÞ2�2 ð1þ r
ðkÞ
D Þ2
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a div k ¼ q; and a cert k ¼ r:

Note that this is not the Euclidian division (division based on a modulo operator),

where q is the downward rounded quotient of a / k with the remainder or rest of r.

This would be the case if 0� r\k. In our definition, the number a ¼ 8 divided by

k ¼ 3 results in a div k ¼ q ¼ 2 with remainder a cert k ¼ r ¼ 2 and the number

a ¼ 9 divided by k ¼ 3 results in q ¼ 2 with remainder r ¼ 3.

With these two operators at hand, we rewrite Eq. (8) without the assumption of k

being a divisor of T � t:

TSkt ¼
X

T

s¼tþ1

s � rðkÞD � Et eDs�ðs�tÞcertk
� �

ð1þ r
ðkÞ
D Þðs�tÞcertk � ð1þ ruÞððs�tÞdivkÞ�k : ð24Þ

The following example highlights the derivation of the correct discount rate per

annual tax shield.

Example 2 We assume the current point in time to be t ¼ 5 and the lifetime of the

project to end in T ¼ 12. The firm’s financing policy is to adjust the debt level every

k ¼ 3 years. The tax shield is given by Eq. (24), in which we applyðs� tÞcertk times

rD and ððs� tÞdivkÞ � k times ru.

Table 3 displays the denominator of (24) and highlights the number of years for

which a tax shield needs to be discounted per cost of debt r
ðkÞ
D and unlevered cost of

capital ru, respectively.

Finally, some specific cases might require to drop our assumption that the time

point of valuation t is itself a refinancing point. Consider a setting in which t

represents a point in time between two refinancing dates. The firm has debt

outstanding amounting to Dt which is held constant until the next refinancing date,

H. As above, the firm chooses to refinance its debt every k periods and T represents

the end of the lifetime. In this case, the tax shield pricing equation extends to

TSkt ¼
X

H�t

i¼1

s � rðkÞD � Dt

ð1þ r
ðkÞ
D Þi

þ
X

tþT�H
k

s¼tþ1

X

k

j¼1

s � rðkÞD � Et eDtþðs�t�1ÞkþH�t

� �

ð1þ r
ðkÞ
D Þ j � ð1þ ruÞðs�t�1ÞkþH�t

: ð25Þ

Table 3 Discount factors per index s in (24)

s ¼ t þ 1,...,T s� t ð1þ r
ðkÞ
D Þðs�tÞcertk ð1þ ruÞððs�tÞdivkÞ�k

6 1 ð1þ r
ðkÞ
D Þ1 ð1þ ruÞ0

7 2 ð1þ r
ðkÞ
D Þ2 ð1þ ruÞ0

8 3 ð1þ r
ðkÞ
D Þ3 ð1þ ruÞ0

9 4 ð1þ r
ðkÞ
D Þ1 ð1þ ruÞ3

10 5 ð1þ r
ðkÞ
D Þ2 ð1þ ruÞ3

11 6 ð1þ r
ðkÞ
D Þ3 ð1þ ruÞ3

12 7 ð1þ r
ðkÞ
D Þ1 ð1þ ruÞ6
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Initially, focus on the first term representing the tax shield value based upon the

certain debt level Dt chosen at the last refinancing date. Since the debt level remains

certain, the appropriate discount rate is r
ðkÞ
D . Now, regard the second term in Eq. (25)

mapping the value of all future tax savings incurred after the next refinancing date

H. Comparing the second term with Eq. (8) reveals only one difference: the tax

shield value at time H needs to be discounted by the unlevered cost of capital from

time H to t. Otherwise, the discounting procedure described in Sect. 3 holds here as

well.

The following example highlights the aforementioned discounting procedure.

Example 3 We assume the current point in time to be t ¼ 1 and the lifetime of the

project to end in T ¼ 4. The firm’s financing policy is to adjust the debt level every

k ¼ 2 years. Time H ¼ 2 represents the next refinancing date. The tax shield is

given by Eq. (25), in which we apply in the second term j times r
ðkÞ
D and ðs� tÞ �

k þH� t times ru as a discount rate.

Table 4 displays the adjustment of the amount of debt according to the

refinancing sequence and highlights the number of years in which the tax shield

needs to be discounted using the cost of debt r
ðkÞ
D and the unlevered cost of capital ru.

Panel A depicts the discounting procedure for the first term in Eq. (25). Notice that

for the outlined example the current debt outstanding Dt ¼ D1 is a certain quantity

chosen at the last refinancing date. Therefore, the tax savings based on D1 and

incurred at time t þ 1 ¼ 2 need to be discounted once by the cost of debt. Panel B

shows the discounting procedure for the time H to T. The firm refinances its debt in

H and keeps it constant until the next refinancing date Hþ k ¼ T . Thus, the

expected tax savings at time T ¼ 4, srðkÞD Et½eD2�, need to be discounted twice by the

cost of debt and once by the unlevered cost of capital. Accordingly, the tax savings

incurred at time t ¼ 3 need to be discounted once by the cost of debt and once by

the unlevered cost of capital.

Table 4 Discount rates and debt amount per period in (25)

Panel A: time t to H (term 1)

– i ¼ 1 to H� t Dt – ð1þ r
ðkÞ
D Þi

– 1 Dt ¼ D1 – ð1þ r
ðkÞ
D Þ1

Panel B: time H to T (term 2)

s ¼ t þ 1; :::; t þ T�H
k

j ¼ 1 to k eDtþðs�t�1ÞkþH�t ð1þ ruÞðs�t�1ÞkþH�t ð1þ r
ðkÞ
D Þ j

s ¼ t þ 1 ¼ 2 1 eD2 ð1þ ruÞ1 ð1þ r
ðkÞ
D Þ1

s ¼ t þ 1 ¼ 2 2 eD2 ð1þ ruÞ1 ð1þ r
ðkÞ
D Þ2
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The generalized pricing equation and the ME and MM policies as polar
cases

Definition 2 We consider a loan P0 with a lifetime of k years and we assume

annual compounding. The annual payment c corresponding to interest and

redemption payments for k years is given by

c ¼ P0 � AFðr; kÞ;with AFðr; kÞ ¼ r � ð1þ rÞk

ð1þ rÞk � 1
ð26Þ

The present value of tax savings resulting from interest payments of a debt issue

with k years time to maturity, where the debt levels are certain and constant thus can

be written as

X

tþk

s¼tþ1

s � rðkÞD � Dt

ð1þ r
ðkÞ
D Þðs�tÞ ¼

s � rðkÞD � Dt

AFðrðkÞD ; kÞ
; ð27Þ

Equation (8) can be simplified to

TSkt ¼
X

tþT�t
k

s¼tþ1

s � rðkÞD � Et
eDtþðs�tÞ�k�k

� �

AFðrðkÞD ; kÞ � ð1þ ruÞðs�tÞ�k�k
: ð28Þ

Equation (28) defines the total tax shield value as present value of a sequence of tax

savings. Assuming a bullet redemption payment and a constant target leverage ratio,

i.e., ls ¼ lt for all s ¼ t þ k; t þ 2k; t þ 3k; :::, and combining with g ¼ 0 and T !
1 results in expected tax shields of s � rðkÞD � Et eDs

� �

¼ s � rðkÞD � eDt for all periods.

Multiplying the present value for every financing sequence with AFðru; kÞ is turning
the value of this sequence s into an annuity between s and sþ k and the total tax

savings over all sequences into a perpetuity. The present value of the tax shields can

thus be calculated by dividing this perpetual cash flow by ru finally resulting in

TSkt ¼ Dt � Kk
t ;with Kk

t ¼
s � rðkÞD � AFðru; kÞ
AFðrðkÞD ; kÞ � ru

: ð29Þ

The two simplified financing policies defined by Modigliani and Miller (1958) and

Miles and Ezzell (1980) imply tax shield pricing equations that are special cases of

(29) and (9). First, from (28) and k ¼ 1, we simplify to the value of the tax shield

according to the assumptions of Miles and Ezzell and risky debt, where the firm

refinances every year:

TSME
t ¼

X

T

s¼tþ1

Et eDs�1

� �

� rD � s
ð1þ rDÞ � ð1þ ruÞs�ðtþ1Þ : ð30Þ

In Eq. (30), tax savings from interest payments are discounted with the cost of debt

for one year and the cost of unlevered capital for the remaining number of years.24

24 See Miles and Ezzell (1980).
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Choosing k ¼ 1 yields Kk¼1
t ¼ s � rD�ð1þruÞ

ð1þrDÞ�ru and in turn the tax shield equation

implied by the ME policy:

TSk¼1
t ¼

X

1

s¼tþ1

s � rD � Et½eDs�1�
ð1þ rDÞð1þ ruÞs�t�1

¼ s � rD � Dt

ru

1þ ru

1þ rD
¼ TSME

t : ð31Þ

The levered firm value in (10) is then

eV L
t ¼

eVU
t

1� lt � s � rD�ð1þruÞ
ð1þrDÞ�ru

; ð32Þ

which is equal to the pricing equation for the levered firm value implied by the

assumptions of Miles and Ezzell, eV
L;ME
t .

Second, in the case that the firm never refinances and the current debt level is

assumed to be constant until infinity, choosing k tends to 1, Kk¼1
t ! s. Then, the

value of the tax shield is determined by

TSk¼1
t ¼

X

T

s¼tþ1

rD � s � Et½Ds�1�
ð1þ rDÞs�t ¼ s � Dt ¼ TSMM

t : ð33Þ

which is equal to the the tax shield pricing equation for the Modigliani and Miller

case.

The levered firm value according to (10) is calculated by

eVL
t ¼

eVU
t

1� lt � s
$ eVL

t ¼ eVU
t þ s � Dt ¼ eVL;MM

t : ð34Þ

Again, Eq. (34) describes the MM case.

Proof of ru as appropriate discount rate

This section proves ru to be the appropriate discount rate for the tax shield value

TSkn�k determined at an arbitrary refinancing point n � k. In particular, we analyze the

levered firm value at time t ¼ n � k, where n is an integer. The levered firm value at

nk under the risk-neutral probability measure is given by

eV L
nk ¼

X

k

s¼1

EQnk½gFCFL
nkþs�

ð1þ rf Þs
þ
EQnk½eVL

ðnþ1Þk�
ð1þ rf Þk

; ð35Þ

where gFCFL
t denotes the levered free cash flow at an arbitrary time t. The levered

free cash flow is the sum of the unlevered free cash flow and the tax savings at an

arbitrary time t, i.e., gFCFL
t ¼ gFCFt þ srD eDt�1. This allows to write

eVL
nk ¼

X

k

s¼1

EQnk½gFCFnkþs�
ð1þ rf Þs

þ
X

k

s¼1

EQnk½sr
ðkÞ
D
eDnkþs�1�

ð1þ rf Þs
þ
EQnk½eVL

ðnþ1Þk�
ð1þ rf Þk

: ð36Þ
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Equation (36) consists of three components. The first is the value of the unlevered free

cash flows for all cash flows beyond time nk until nk þ k. The second component

determines the value of the tax shield for the same time frame. The third component is

the value of all levered free cash flows beyond time ðnþ 1Þk. We focus on the second

component and note that the debt amount has been adjusted at time nk according to the

leverage ratio which implies eDnk ¼ l � eVL
nk. Thus, for all s, with nk� s\nk þ k, eDnk ¼

l � eVL
nk which is a certain variable at time nk. Rearranging yields

eVL
nk ¼

X

k

s¼1

EQnk½gFCFnkþs�
ð1þ rf Þs

þ srðkÞD leVL
nk

X

k

s¼1

1

ð1þ rf Þs
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼:k

þ
EQnk½eVL

ðnþ1Þk�
ð1þ rf Þk

: ð37Þ

Defining
Pk

s¼1
1

ð1þrf Þs ¼: k and further rearranging yields

eVL
nkð1� srðkÞD lKÞ ¼

X

k

s¼1

EQnk½gFCFnkþs�
ð1þ rf Þs

þ
EQnk½eVL

ðnþ1Þk�
ð1þ rf Þk

ð38Þ

or

eVL
nk ¼

X

k

s¼1

EQnk½gFCFnkþs�
ð1� srðkÞD lkÞð1þ rf Þs

þ
EQnk½eVL

ðnþ1Þk�

ð1� srðkÞD lkÞð1þ rf Þk
: ð39Þ

By solving Eq. (39) recursively, we obtain for any arbitrary refinancing date

t þ n � k:

eVL
t ¼

X

1

j¼t

X

k

s¼1

EQt ½gFCFjþs�
ð1� srðkÞD lkÞðj�tÞþ1ð1þ rf Þðj�tÞkþs

: ð40Þ

Equation (40) displays a linear relationship between eVL
t and the unlevered free cash

flows. Both quantities only differ by a constant scalar factor and therefore have the

same expected return.25 It follows that the tax shield value at an arbitrary point in

time t ¼ nk has to be discounted by ru for all preceding periods. Applying the

fundamental theorem of asset pricing (Kruschwitz and Löffler 2006, Theo-

rem 2.3,p.39) allows to rewrite the pricing equation (40) under the subjective

probability measure P by

eV L
t ¼

X

1

j¼t

X

k

s¼1

Et½gFCFjþs�
ð1� srðkÞD lkÞðj�tÞþ1ð1þ ruÞðj�tÞkþs

: ð41Þ

Again, the convergence to the Miles and Ezzell as well as the Modigliani and Miller

equation is shown by setting k ¼ 1 and k ¼ 1. To start with the Miles and Ezzell

case, we set k ¼ 1 and note k to converge to 1
1þrD

. This allows to write

25 An equivalent argument can be found in the respective literature (e.g., Löffler 1998); or comprising an

equivalent procedure to obtain the Miles/Ezzell result Löffler, 2004). Notice that the original article of

Miles and Ezzell (1980) refers to the perfect correlation between eVL
t and eVU

t .
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eV L
t ¼

X

1

j¼t

Et½gFCFjþs�

1� srDl
1þrD

� �ðj�tÞþ1

ð1þ ruÞðj�tÞþ1
: ð42Þ

Equation (42) is equivalent to the result of Miles and Ezzell (1980).26

Setting k ¼ 1 implies k ¼
Pk

s¼1
1

ð1þrDÞs to converge to k ¼ 1
rD
. Thus, we arrive at

eV L
t ¼ Et½gFCFtþ1�

ð1� slÞru
: ð43Þ

Equation (43) corresponds to the Modigliani and Miller result.27

Derivation of the beta relationships

To obtain the relation between the levered beta and the unlevered beta, we proceed

equivalently as in the respective literature stream (e.g., Miles and Ezzell 1985) and

begin by writing down the levered firm value at time t with refinancing every k

periods:

eVL
t ¼ eVU

t þ TSkt ð44Þ

¼
Et½gFCFtþ1 þ eVU

tþ1�
ð1þ ruÞ

þ
X

k

j¼1

s � rðkÞD � l � eVL
t

ð1þ r
ðkÞ
D Þj

þ
Et½TSktþk�
ð1þ ruÞk

; ð45Þ

where eVU
tþ1 is the unlevered firm value at time t þ 1 and TSktþk is the t þ k value of

tax savings beyond t þ k. The first component of the aforementioned formula is

simply the unlevered firm value. The second term represents the value of the tax

savings until time t þ k and the third term represents the present value of all tax

savings beyond the first refinancing at time t þ k. Consistent to the literature stream,

we define a beta factor, bw, as the weighted average of the betas of these three terms.

Since the discount rate for the first and third term is the unlevered cost of equity, for

both terms, the unlevered beta factor, bU , has to be used. Since r
ðkÞ
D is the rate of

return of the second term, the beta factor of the debt issue, bðkÞD , should be used. In

case of risk-free debt, the debt beta is zero, i.e., bðkÞD ¼ 0.

Using Eq. (44), we readily obtain the respective weights of the beta factors. The

weight of the debt beta component is
Pk

j¼1

s�rðkÞ
D
�l

ð1þr
ðkÞ
D
Þj
. This implies for the remaining

components, i.e., the unlevered beta factor, bU , to have a value weight of

1�
Pk

j¼1

s�rðkÞ
D
�l

ð1þr
ðkÞ
D
Þj
. Thus, we obtain for the relation between bw and bU :

26 Miles and Ezzell (1980) base their result on the ‘‘cost of debt’’. We explicitly distinguish between the

cost of debt and the risk-free rate (see Footnote 9). Several articles (e.g., Rapp 2006) discuss that Miles

and Ezzell actually assumed risk-free debt.
27 For a discussion of the associated inconsistencies of Eq. (43), we would like to point to (see, e.g.,

Kruschwitz and Löffler 2006, pp.74).
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bw ¼ 1�
X

k

j¼1

s � rðkÞD � l
ð1þ r

ðkÞ
D Þj

 !

� bU þ
X

k

j¼1

s � rðkÞD � l
ð1þ r

ðkÞ
D Þj

� bðkÞD : ð46Þ

In addition, we retain the relation between the weighted average beta, bw, the debt

beta, bðkÞD , and the beta factor of levered equity , bðkÞL , a standard result of the capital

budgeting literature stream, by

bw ¼ l � bðkÞD þ ð1� lÞ � bðkÞL : ð47Þ

Equations (46) and (47) allow us to determine the relation between bU and bðkÞL :

bðkÞL ¼
1�

Pk
j¼1

s�rðkÞ
D
�l

ð1þr
ðkÞ
D
Þj

1� l

0

B

@

1

C

A � bU þ

Pk
j¼1

s�rðkÞ
D
�l

ð1þr
ðkÞ
D
Þj
� l

1� l

0

B

@

1

C

A � bðkÞD : ð48Þ

To proof the validity of this unlevering procedure and to compare it to the standard

formulas of MM and ME, we regard the cases k ! 1 and k ¼ 1. For the MM case

assuming risk-free debt, i.e., bðkÞD ¼ 0, we obtain

lim
k!1

bðkÞL ¼
1� s�rf �l

rf

1� l

 !

� bU ð49Þ

¼ 1þ ð1� sÞ
eDt

eEt

 !

� bU : ð50Þ

Equation (49) constitutes the classic MM beta adjustment equation.

For the ME case, k ¼ 1, we find the standard ME beta adjustment already

proposed by Miles and Ezzell (1985):

bME
L ¼

1� s�rf �l
1þrf

1� l

 !

� bU : ð51Þ
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