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Abstract

We investigate how the selection process of a leader affects team performance
with respect to social learning. We use a lab experiment in which an incentivized
guessing task is repeated in a star network with the leader at the center. Leader
selection is either based on competence, on self-confidence, or made at random.
Teams with random leaders do not underperform compared to competent leaders,
and they even outperform teams whose leader is selected based on self-confidence.
The reason is that random leaders are better able to use the knowledge within the
team. We can show that it is the declaration of the selection procedure which makes
non-random leaders overly influential. We set up a horse race between several ratio-
nal and näıve models of social learning to investigate the micro-level mechanisms.
We find that overconfidence and conservatism contribute to the fact that overly
influential leaders mislead their team.
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1 Introduction

In our rapidly changing world, most modern organizations are embedded in highly dy-

namic environments. For the management of an organization, the first essential step to

successful decision-making is the basic task of obtaining an accurate view of the envi-

ronment.1 For instance, this can be the foundation for defining a mission statement, as

argued, e.g., in Bolton et al. (2013). Recently, there have been a number of contributions

showing that organizations can improve their decision-making upon using the expertise

of a single individual by harnessing the wisdom of crowds (e.g., Surowiecki 2004; Mannes

2009; Keuschnigg and Ganser 2017). However, this literature has not analyzed whether

a team’s ability to learn from each other depends on characteristics of the team leader.

Given the initial level of information of each team member, the accuracy of the up-

dated opinions depends on the social learning process within the team. Many teams are

organized such that one person, the team leader, directly communicates with each team

member while the other members often communicate only indirectly with each other –

via the team leader. In this paper, we address the question of how the selection of the

team leader affects the performance of social learning in the team. Is it necessary that the

central person is the one with the highest expertise? How does self-confidence affect the

process of social learning? Should the selection criterion be declared or rather hidden?

Answering these questions is important for the design of successful organizations.

To address these questions, we set up a lab experiment in which subjects are asked

to answer incentivized estimation questions repeatedly. After each round, subjects can

observe the guesses and the confidence levels of some of their team members according to a

star network with the leader at the center. Thus, every team member observes the guesses

of the leader, while only the leader observes the guesses of all members. We randomly

allocate subjects into three treatments, which differ by the criterion that determines how

the team leader is selected. In the baseline treatment (T0), the leader, i.e., the center,

is selected at random. In the accuracy treatment (T1), the leader is the group member

whose estimation of a related question was the most accurate in the team. Finally, in the

confidence treatment (T2), the team member with the highest stated level of confidence

(in the own answer of a related question) is selected. Potential ties in maximal accuracy

or maximal confidence are broken at random.

Interestingly, a set of theoretical models following from the Bayesian approach to

social learning predict for this setting that the selection of the center does not matter

for the outcome, apart from the first two rounds, and that social learning is efficient.2

The reason is that agents can exchange (“communicate”) their opinions such that proper

1Indeed, disastrous decisions can often be traced back to management teams whose members are in
disagreement, or – what is arguably even worse – who unintendedly agree on a distorted view of reality.

2For instance, Gale and Kariv (2003), Mueller-Frank (2013), and Rosenberg et al. (2009) provide
frameworks to study social learning among rational agents who are Bayesian updaters.
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aggregation leads to a common estimate (consensus) that is independent of who is at

the center of the communication network. In contrast, a set of models of näıve social

learning predict a strong impact of the center on the same process, which induces an

inefficient outcome.3 Based on the assumption that subjects fail to account correctly for

the repetition of the center’s and the others’ initial opinion, they predict that consensus

is approached over time, but with a strong “bias” towards the center’s initial opinion. In

particular, the center’s weight on the consensus opinion is predicted to be proportional to

her eigenvector centrality, which is several times larger than the other team members’, in

standard specifications of a näıve model of social learning. Unless the leader is much better

infomed than the other team members, this is suboptimal, giving the leader’s opinion too

much weight. Now, any leader characteristic that further amplifies the weight of the

leader’s opinion undermines performance. As such we study the leader’s self-confidence,

as well as the declaration of why the leader was selected.

Results. In the experiment, we assess performance by the proximity of a guess to the

correct answer. In particular, we measure the individual and the collective errors of

the team’s guesses, and use a measure of the wisdom of the crowds. Our first result is

that leader selection based on accuracy (T1) does not outperform the random selection

(T0), while leader selection based on confidence (T2) even undermines performance. The

reason for this surprising result becomes apparent when isolating the effect of declaring

how the leader is selected. The declaration of the leader as somewhat superior, be it in

terms of past performance (T1) or of confidence (T2), induces the other team members

to put more weight on the leader’s opinion, making the team vulnerable to be misled

by a single person. In contrast, teams with random leaders more equally weight each

other’s opinions with the consequence of a higher performance. On top of these effects,

we assess how team performance is affected by (judgmental) overconfidence, which is the

tendency to provide too narrow confidence intervals for one’s estimates (e.g., Soll and

Klayman (2004); Moore and Healy (2008); Herz et al. (2014)). It turns out that both

overconfident leaders and overconfident other team members undermine performance,

while overconfident leaders are worse. Hence, when designing a procedure for leader

selection in a situation in which social learning is important, declared random selection

is a viable option and overconfidence should be avoided.

In the second part of the paper, we set up a horse race between different models of

social learning to shed more light on individual learning behavior and on the mechanisms

of how leader selection affects the wisdom of crowds in networks. Despite a long tradition

of theoretical insights and a growing body of empirical research, social learning behavior

is still far from being fully understood. In line with the previous literature, we observe

3For instance, DeGroot (1974), Friedkin and Johnsen (1990), DeMarzo et al. (2003), Golub and
Jackson (2010), and Acemoglu et al. (2010) study social learning among näıve agents.
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that simple models (of näıve social learning) generally fit better than sophisticated mod-

els (of Bayesian social learning). This has the consequence that the leader’s weight on

the long-term opinion is large already due to her central position in the network struc-

ture. Moreover, the experimental data reveal that an important pattern is missing in

both theoretical approaches: People tend to adapt their opinion less than predicted, a

pattern called conservatism. Conservatism is a very common finding in experiments on

belief updating and can be caused by (judgmental) overconfidence, as we show in this pa-

per.4 We incorporate this feature, which is missing in the theoretical literature on social

learning, into both model classes and observe that incorporating conservatism improves

the model fit of both model classes. Hence, there is important feedback from our data

to theory development. Incorporating conservatism is not only a behavioral twist that

matches empirical findings, but it also gives an additional reason for why overconfident

leaders undermine performance.

Methodological Approach. In laboratory experiments (and in lab in the field exper-

iments), theoretical models can be directly tested. For instance, Corazzini et al. (2012),

Grimm and Mengel (2016), and Chandrasekhar et al. (2016) compare sophisticated mod-

els of Bayesian learning with simple models of näıve learning in settings in which their

predictions diverge. The common conclusion is that the observations are more often con-

sistent with the simple models. Similarly, Choi et al. (2005), Çelen and Kariv (2005), and

Çelen et al. (2010) study predictions of social learning models experimentally. A caveat of

this theory-testing approach is that the participants are confronted with highly stylized

tasks such as guessing an average (or its sign) of randomly drawn numbers (Corazzini

et al., 2012; Çelen and Kariv, 2005; Çelen et al., 2010) or finding an abstract true state

(Choi et al., 2005; Grimm and Mengel, 2016; Chandrasekhar et al., 2016). It is question-

able how the investigated learning behavior transfers to settings with real questions. A

lab in the field approach (Chandrasekhar et al., 2016) does not fully mitigate this issue

of external validity, because the types of questions are still often stylized. At the other

side of the spectrum, real teams could be studied in the field to address our main research

question (without the issue of external validity). However, besides the issues of noise,

missing values, and the problem to measure performance of social learning, there would

be a severe endogeneity problem. First, because face-to-face interaction gives rise to ef-

fects (e.g., due to charisma), which are difficult to control for, and second, because there is

usually no proper randomization on who becomes a leader. For these reasons, we decided

to use some middle ground between these two approaches (theory-testing experiment and

4Experiments on belief updating frequently find that real people are more conservative updaters than
the theoretical model would predict (Mobius et al., 2011; Ambuehl and Li, 2014; Mannes and Moore,
2013), a pattern that has already been summarized in a classic survey (Peterson and Beach, 1967):
“when statistical man and subjects start with the same prior probabilities for two population proportions,
subjects revise their probabilities in the same direction but not as much as statistical man does[.]”

4



field data) in order to complement them. For that purpose, we imported a method devel-

oped outside of economics which has been increasingly used recently (Lorenz et al., 2011;

Rauhut and Lorenz, 2011). Participants are asked to answer knowledge questions about

vaguely known facts for which the true answer is known (and could in principle easily

be looked up, e.g., on Wikipedia.com). The questions cover various topics and create

a natural uncertainty among the participants who are paid according to their answers’

accuracy. Arguably, teams who are able to estimate such factual questions accurately are

also better at estimating states that cannot be simply measured, or at estimating future

states of the world (which is of high relevance in real managerial or political teams). In

our experiment, however, the quality of social learning can be assessed without waiting

for the future to realize. The realism of that approach already changes the way subjects

communicate with each other because, given that there is no stylized draw of signals which

is common knowledge, it becomes important not only to communicate the guess, but also

the own confidence in the guess. We consider it as a realistic assumption that people can

“tag” the pieces of information they pass on with a confidence level by stating how confi-

dent they feel about their own guess.5 This aspect is missing in most other experiments

of social learning because it is simply not necessary to communicate confidence if signal

quality is artificially made common knowledge.

Contribution. Our paper entails three contributions. First, we provide empirical ev-

idence for the superiority of a selection procedure that is based on random leader se-

lection (“sortition”). For both corporate and political governance, sortition (also called

demarchy, allotment, or aleatory democracy) is discussed as an alternative selection pro-

cedure, which has its roots in ancient Athens and medieval Italy (Zeitoun et al., 2014;

Frey and Osterloh, 2016). Despite a long list of claimed advantages of this procedure,

empirical evidence showing its superiority is very rare. One exception is the study by

Haslam et al. (1998), which shows experimentally that randomly selected leaders can en-

hance team performance in a task of deciding upon priorities in a hypothetical survival

situation (e.g., after a plane crash). The mechanism behind the effect, however, remains

largely unclear.6 Our results not only show that random selection can be beneficial com-

pared to selection based on confidence, but also demonstrate that it is the declaration of

randomness rather than the selection at random per se that is the crucial aspect. The

strength of random selection is based on the fact that the leader’s influence on team

members is not amplified by declaring the leader’s specialty. Since the leader is already

special because of her network position, additionally highlighting the leader’s properties

5This is similar to the literature that considers “tagging” pieces of information with their source
(Acemoglu et al., 2014; Phan et al., 2015).

6Interestingly, they also observe that randomly selected leaders are, despite their superior performance,
often perceived by their team members as less effective than formally selected leaders.
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by declaring them to be relevant for selecting the leader makes the others disrespect their

own opinions, which results in a loss, because the wisdom of crowds is not harnessed.

Second, our experimental data reveal that the extent of (judgmental) overconfidence,

i.e., providing too narrow confidence intervals, has a strong deteriorating effect on team

performance. Indeed, overconfident team members undermine performance, and overcon-

fident team leaders have an even stronger deteriorating effect. For the selection of leaders

within organizations, this suggests that either overconfident leaders should be generally

avoided or that there is at least a trade-off between beneficial effects of a leader’s over-

confidence (e.g., to foster coordination, Bolton et al. 2013, or to motivate team members,

Gervais and Goldstein 2007) and the negative effect on social learning. (Judgmental)

overconfidence may be partially domain-specific and state-dependent, but to some extent

it is a personality trait that can easily be assessed, e.g., in an assessment center in the

course of a selection procedure.

Third and finally, our paper makes a methodological contribution. By combining the

experiments on factual questions with the theories on social learning, we bridge between

neat theoretical frameworks and experimental set-ups that are less stylized (than those

used for pure theory testing). By building this bridge it becomes apparent that the

assumption of common knowledge about signal precision is problematic. Arguably, in

reality people do not know the signal precision of their interaction partners, but form

expectations about it, given what they know about this person and given how this person

“tagged” her piece of information with a level of confidence. (Judgmental) overconfidence,

as well as mistrust or anchoring effects, can lead to conservatism in updating, i.e., agents

incorporate new pieces of information less than theoretically predicted. Bolton et al.

(2013) further argue that other behavioral biases such as a selection bias in information

acquisition can also induce conservatism (what they call resoluteness). We incorporate

this idea into both näıve and rational models of social learning and find that the model

fit of each model increases. This is informative for economic theory on näıve and rational

social learning by opening a fruitful avenue for an empirically important model extension.

In particular, our simple extensions of the models alter the prediction that consensus

is reached or approached. Instead, they predict a persisting diversity of opinions, in

which each agent’s long-run opinion is “biased” in the direction of his initial opinion.

This qualitatively different prediction could be studied more generally and be tested in

follow-up experiments.

2 Experimental Design

In a nutshell, participants in this experiment were asked to answer the same knowledge

questions multiple times in a row. The team leader could observe the previous answers

of all team members, while the team members could only observe the previous answer of
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the team leader. Treatments differed by the selection criterion that determined the team

leader.

The experiment was conducted at the University of Hamburg and consisted of eleven

sessions with a total of 176 subjects.7 In each session, participants were randomly allo-

cated into groups of four. The basic task was to answer a factual question individually

and to provide a level of confidence for the answer. The closer the estimate was to the

correct answer, the more it was honored by game points which were translated into actual

payouts, as detailed in Table C.4. On average, sessions lasted for one hour and partici-

pants earned 9.50 Euros, which was close to the norm of the lab. The maximum feasible

payout was 48.20, while the minimum was the show-up fee of 5 Euros. This fact was ex-

plicitly stated to the participants in order to highlight that the payout strongly depended

on individual performance. It was pointed out verbally and in the written instructions

that the use of mobile phones, smart phones, tablets, or similar devices would lead to

expulsion from the experiment and exclusion from all payments.

Each session consisted of two phases: A selection phase I and a decision phase II. In

the selection phase I, each participant answered eight different factual questions once. At

the end of the experiment, one of these questions was randomly selected to be payoff-

relevant. In the decision phase II, there was another set of eight questions, each of which

was similar to one of the questions of the selection phase. For instance, there was a

question about voter turnout in both phases of the experiment. Similarly, there were two

questions about the share of water in certain vegetables. Questions related to diverse

topics and each question was already tested in previous experiments (Lorenz et al., 2011;

Rauhut and Lorenz, 2011; Moussäıd et al., 2013).8

In the decision phase II, each question had to be answered six times in a row, in a

sequence of six rounds. After each round, participants received feedback about the answers

and confidence statements provided by their group members according to a star network.

The center of the star network could observe the previous answers and confidence levels

of all four team members; the three pendants could only observe the previous answer and

confidence of the center, in addition to their own. For each question of phase II, only one

of the six rounds was selected at random by the end of the session to be payoff-relevant.

Hence, there was no possibility to “hedge” risk with a portfolio of answers.

The actual treatments differed by the procedure that determined who within a group

of four became the center of the star network for phase II. In the baseline treatment T0,

the center was selected at random. In the accuracy treatment T1, the center became the

group member whose guess on the similar question in phase I was closest to the correct

answer. In the confidence treatment T2, the center became the group member whose level

of confidence for the guess on the similar question in phase I was highest. Potential ties

7A more detailed description of the experimental procedures can be found in Online Appendix C.
8The full list of questions can be found in Online Appendix C.
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in accuracy or confidence were broken at random. Half of all groups played the random

treatment (T0) for four questions and the accuracy treatment (T1) for the other four

questions; the other half played the random treatment (T0) for four questions and the

confidence treatment (T2) for four questions. When the network for one question was

formed, the selection procedure was made transparent to the group members. In the

selection phase I, subjects did not know how decisions in the selection phase could have

an influence on the decision phase. Instructions for the first phase simply announced that

there would be a second phase with another set of instructions. This precluded strategic

behavior in phase I, e.g., to become the center or to avoid becoming the center in phase II.

While the answers to the questions were strongly incentivized, the confidence statements

were not directly incentivized. Hence, the statements of confidence in phase II can also

be considered as a mere communication technology. As we discuss in the next section,

among rational agents there are indeed incentives to communicate truthfully the level of

confidence in our setting in order to foster optimal learning in the group. However, our

experimental results will not rely on the assumption that the confidence statements are

truthful.

3 Theoretical Background

In this section, we derive theoretical predictions about the behavior in our experiment.

The set-up is as follows. Let N = {1, 2, 3, 4} be the agents in one team. Let 1 be the

center of the star network and 2, 3, 4 the pendants. The basic task in our experiment is

to provide guesses on a specific question, the answer of which is a fraction. There is an

unkown state of the world θ ∈ Θ, which is the correct answer to the question at hand.9

Denote by xi(t) the answer of agent i at time t. Denote by ci(t) the confidence statement

of agent i at time t. Time is discrete: t = 1, 2, ..., T , with T = 6 in phase II of the

experiment. Accurate guesses are incentivized by a payoff function π(ei(t)) that is weakly

decreasing in the distance to the true answer ei(t) = |θ − xi(t)|. One out of six answers

is finally drawn as payoff-relevant.

To make predictions about the participants’ guesses in phase II, we use two approaches:

a rational learning approach and a näıve learning approach.

3.1 Rational Learning Approach: Bayesian Updating

In the rational learning approach, we assume that agents maximize expected payoffs given

their beliefs and that beliefs are formed by Bayes rule.

9In the experiment, the correct answer is rounded and belongs to the finite set Θ =
{0, 0.01, 0, 02, ..., 0.99, 1}, which we can also model as the interval Θ = [0, 1].
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Notice that a belief about the true answer is not a single number, but a probability

distribution over the possible states (fi(t) : Θ → R). In the first round of guessing,

t = 1, agents are endowed with some private information, i.e., what they know about

the question at hand before interacting in the team. In the second round, each pendant

i 6= 1 has observed the guess x1(1) and the confidence statement c1(1) of the center and

can use this to update his belief. The center, on the other hand, has observed all guesses

and confidence levels of the first round to form her belief, which is the basis for her

second-round guess x1(2). If we assume that the guess and confidence level are sufficient

to reconstruct an agent’s belief and that the agents know how their private information

is interrelated, then the center is fully informed after the first round of guesses. In this

case, she can make the optimal guess x∗ := arg maxx∈ΘE[π(|θ−x|)|f1(1), ..., f4(1)], given

the pieces of information in the team. Since all agents have the same payoff function

and pendants can observe the center’s guess x1(2) = x∗, all agents make the same guess

xi(t) = x∗ from round 3 on. This observation leads to the following prediction.10

Prediction 1 (Bayes). In a model with common knowledge of rationality and common

priors, the following holds. If the answer and confidence statement of a linked team

member in a star network is sufficient fully to represent her private information, then

the center learns once and the pendants learn twice. (Learning refers here to information

updates and improvements in expectations.) Moreover, all team members will state the

optimal answer x∗ in any round t ≥ 3, independent of who is at the center of the star

network.

Prediction 1 states that the selection of the team leader does not matter for the per-

formance of social learning, apart from the first two rounds (and, in fact, only apart from

round two). Moreover, it states that every agent states the payoff-maximizing guess, which

implies that social learning is “efficient” in the sense of maximizing the sum of expected

payoffs. However, several of its underlying assumptions deserve further attention.

First, a rational agent i is assumed to state the answer xi(t) that maximizes expected

payoff, given his belief. This holds at least in the last round t = 6. In earlier rounds, there

is potentially a strategic incentive to provide an answer that does not maximize expected

payoff of that round (in order to be able to provide a better answer in later rounds). In

fact, the earliest possibility to realize a deviating strategy is to deviate in round t = 1,

learn something about the reaction of others in round t = 2, and materialize the better

guess in round t ≥ 3. Since, under the assumptions above, each agent states the optimal

answer from round t = 3 on, strategic misrepresentation cannot pay off. There is simply

no room for improvement. The same argument applies to the strategic misrepresentation

of confidence statements. Hence, strategic misrepresentation is not an issue in our setting.

10A formal statement of this result can be found in Online Appendix B. There we introduce the general
framework (B.1.1), prove the proposition (B.1.2), and provide two specific examples how such a rational
model unfolds in our setting (B.2.1).
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Second, it is explicitly assumed that statements of guesses and confidence levels are

sufficient to recover beliefs. For this to be satisfied, the agent must know the other’s

belief up to one or two parameters. This is satisfied, for instance, in models assuming

that beliefs follow a beta distribution.11 Bayesian models with weaker assumptions could

assume that agents also have beliefs about the signal quality of the others and imperfectly

learn over time both the available private signals as well as their quality. Given the result

by Aumann (1976), such a model is expected to lead to more learning iterations, but to

the same outcome in the long run.

Third, how exactly an agent updates depends on his higher order beliefs on how private

pieces of information are related to each other and how they are related to the truth. In

theoretical models, it is usually assumed that there is common knowledge about the prior

distribution of the true state, and about how private signals are drawn. In this experiment,

agents are confronted with real questions. Hence, the agents’ higher order beliefs about

their own and their fellow team members’ expertise can also depend on additional factors,

such as the particular question at hand or on the treatment. In particular, the accuracy

treatment T1, i.e., that the center gave the most accurate answer to a similar question,

or the confidence treatment T2, i.e., that the center was the most confident on a similar

question, might reveal something about the agent’s ability that could be considered in

the updating process. If anything, the declaration of the treatment T1 or T2 can reveal

additional information, which would lead to better guesses, compared to the random

treatment T0. To generate a prediction that is much more in line with the theoretical

models, Prediction 1 abstracts from this possibility by assuming that there is common

knowledge about how the private pieces of information are related to each other and to

the truth.12

Fourth and finally, the assumption of common knowledge of rationality need not be

satisfied. In sum, it cannot be expected that the requirements of Prediction 1 above

are fully satisfied in the experiment. Still, the Prediction 1 gives us a clean baseline to

compare the data with.

3.2 Näıve Learning Approach: DeGroot Model

Previous experimental research on social learning has not always found strong support

for Bayesian learning, but often suggests that simple rules of updating, such as repeat-

edly taking averages, fit the data well (Corazzini et al., 2012; Grimm and Mengel, 2016;

Battiston and Stanca, 2014; Chandrasekhar et al., 2016). We use their common mod-

eling approach, which is often named after Morris DeGroot, to generate an alternative

11We study such models in Section B.2.1.
12In the experiment, we did not induce a common prior because we used questions of real topics.

Nevertheless, we argue that models that assume a common prior and signals can contribute to our
understanding of social learning in real settings.
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prediction and to later specify models of more näıve learning. The basic aspect of näıveté

incorporated in this modeling approach is that agents do not sufficiently account for the

origin of information such that pieces of information are used each time they reach an

agent through the network. This behavioral bias is also called “persuasion bias” (DeMarzo

et al., 2003).

In the DeGroot model, the way people average the former guesses in their network

neighborhood is typically constant. In the star network, this means that peripheral agents

always provide a guess that is a mixture between the center’s and their own last guess,

with constant weights gi1 and gii on the two, while the center mixes all answers with some

constant weights g11, g12, g13, g14, which are also positive and sum up to one. Given the

weights and the initial answers xi(1), all consecutive answers xi(t) are fully determined.

In particular, if G denotes the (row-stochastic) 4 × 4 matrix consisting of these entries

gij and zeros at the remaining entries, the agents’ updating can be written in vector and

matrix notation as x(t) = Gx(t−1). Hence, the predicted guesses are x(t) = Gt−1x(1), for

t = 1, 2, .... Each agent thus generically changes guesses from round to round. Assuming

that averaging weights are strictly positive is sufficient for the conclusion that all agent’s

guesses xi(t) converge for t→∞ to the same answer, which we denote by xi(∞). Given

that convergence is fast enough, xi(∞) is also a good prediction for xi(6). It can be shown

that, for any i,

xi(∞) =
1

c

(
1x1(1) +

g12

g21

x2(1) +
g13

g31

x3(1) +
g14

g41

x4(1)

)
, (1)

with c = 1+ g12
g21

+ g13
g31

+ g14
g41

. The weights wi = 1
c
· g1i
gi1

measure long-term influence of an agent

i, which is called eigenvector centrality in network science since w′G = w′ (e.g., Friedkin

1991, DeMarzo et al. 2003, Golub and Jackson 2010). As can be directly observed from

Equation 1, the center’s influence on the long-term answer is different from a pendant

i’s influence, as long as g1i
gi1
6= 1. In particular, the center has a stronger influence if the

center’s weight on the pendant g1i is lower than the pendant’s weight on the center gi1.

This is a realistic assumption since pendants have only the center’s guess to update from,

while the center can distribute her weight among three pendants.

To discuss performance of social learning in this model type, we need to make as-

sumptions about the relation between the initial guesses xi(1) and the truth θ, e.g., that

initial guesses are realizations of independent random variables that have the truth as

expected values. For any such probabilistic model and for any definition of the “optimal”

guess x̂ given the initial guesses, the approached value x(∞) and the optimal guess x̂ will

only coincide if by coincidence the averaging weights happen to be optimal in that sense.

The same holds true for the guesses and optimal guesses of early rounds, say round two.

Even if the weights gij happen to produce the optimal guess x̂ for some agent i in some

round t, they will not have this property for every agent and for every round. Hence,
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there is an inherent inefficiency in these näıve models of social learning. The reason is

that initial guesses of some participants are incorporated in the change of answers more

frequently than other team members’ guesses, while guessing weights are constant. These

observations lead to the following prediction.13

Prediction 2 (DeGroot). In the näıve model with constant and positive averaging weights,

the following holds. In a star network, every agent’s learning heavily depends on the

network structure, i.e., on who is the center. In particular, for gi1 > g1i, the center has

a larger influence on the long-run opinion than team member i. Generically, the center

updates more than once and the pendants update more than twice. Under weak conditions,

the first round of updating is learning (the expected error decreases), but for every notion

of what is the optimal answer, the team members will generally state suboptimal answers.

Prediction 2 states that the selection of the team leader heavily affects the perfor-

mance of social learning, and that social learning is generally “inefficient” in the sense of

not maximizing any function that is decreasing in the error of an agent’s guess. Given

the weighting matrix G, the näıve model is fully specified and provides a clear-cut pre-

diction about all agents’ guesses in all rounds. Typical specifications of G are studied in

Section 5.3.

Our treatments T1 and T2 mainly affect näıve social learning through the manipu-

lation of the network structure (who is at the center), but potentially also through the

declaration of the treatments. The second channel would be present if the averaging

weights gij depended on this declaration. In the empirical analysis, we will disentangle

the effects of the manipulation of the center – which does not matter according to Pre-

diction 1, but is crucial according to Prediction 2 – from potential effects of declaration

(which can only be helpful in the rational framework of Prediction 1, but could also be

harmful in the näıve framework of Prediction 2).

4 Success of Social Learning

The two theoretical approaches lead to contradicting predictions. Therefore, it remains

an empirical question whether and how the selection of the leader affects the success of

social learning.

4.1 Performance over Time

We measure the quality of the final answers both on the individual and on the collective

level. On the individual level, we measure the quality by the error ei(t), which is the

13A formal statement of this result can be found in Online Appendix B.1.3. There we introduce a
probabilistic framework and prove the proposition.
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absolute distance between answer xi(t) and truth θ. On the group level, we use two com-

plementary measures. First, we measure the quality of the four answers by the collective

error, i.e., the error of the mean of the four answers in the group ce(t) = |1
4

∑4
i=1 xi(t)−θ|.

Indeed, given the four final answers by a group, a decision might be taken on the basis

of the mean of the four answers. Second, we consider whether the correct answer lies

within the interval that is spanned by the four answers, and if so, whether it also lies

within the interval that is spanned by the two answers which are contained in the interval

of the two other answers. We define the indicator variable (wisdom of) crowd error as

follows: woce(t) = 0 if at most two answers are strictly below or strictly above the cor-

rect answer; woce(t) = 1 if three answers are strictly below or strictly above the correct

answer; and woce(t) = 2 if the correct answer lies strictly above or below all four answers

in the group. The crowd error measures the error made when assuming that the correct

answer lies between the given answers. For all three measures of performance, smaller

errors mean higher performance.

Figure 1 depicts the levels of these performance measures over time, distinguishing

by the three treatments. Panels A-C show that the individual errors are on average

between 10 and 20 percentage points from the true answer and tend to decrease over

time. More precisely, the pendants’ average error reduces three times significantly on

the five percent level. As intended in the accuracy treatment T1, selecting a center who

was most accurate in answering a similar question (in phase I) leads to centers who are

significantly better in estimating the current question in the first round (of phase II).

The centers’ average error reduces significantly once in the random treatment T0, as

well as in the confidence treatment T2, but never so in the accuracy treatment T1 (at

significance levels p < 0.05). By and large, these observations on the learning dynamics

are consistent with the predictions of the rational model, namely that pendants learn

twice and centers learn once. In particular, in the random treatment T0 the center

reduces her error drastically from the first round to the second without significant further

improvements, as the rational model would predict. Panels D-F show that the collective

errors are on average between 12 and 16 percentage points from the true answer and also

reduce over time. Similarly to the individual errors, the collective errors first decrease and

then seem to settle after a few rounds (at a point that is significantly greater than zero).

Taking these observations on individual and collective errors together, agents do learn

from each other, but most of learning takes place in the first and in the second round

of updating, i.e., until round t = 3.14 A similar pattern, albeit with a change of sign,

can be observed in panels G-I for the crowd error: The crowd error increases over time

14Learning cannot stem from having more time to think about a question since participants of the
experiment who are not confronted with any information about the guesses and confidence of others did
not at all improve over time. We tested this possibility with participants of the experimental sessions
who were not exposed to any information. We randomly selected these subjects from all participants of
sessions whose number of participants was not divisible by four, the size of our groups.
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with most of its changes until round t = 3. This observation is consistent with findings

of Lorenz et al. (2011), who show that the exchange of opinions reduces the wisdom of

crowds. Crowd error is an indicator variable of which the averages have to be interpreted

correspondingly. For instance, in the random treatment T0, woce(6) is 1.57 on average,

which indicates that there are many cases (here: 65.9%) with a crowd error of two, and

very few cases (8.5%) with a crowd error of zero. Hence, in the final period the correct

answer most frequently lies outside of the convex hull of the provided answers.

Result 1. Individual and collective errors reduce over time. Centers learn once (except

in the accuracy treatment T1); pendants learn at least twice. Crowd errors increase over

time.

4.2 Treatment Effects on Performance

To test for treatment effects, we run regressions with the three error measures as the

dependent variables and with treatment dummies as the independent variables. We focus

our analysis on investigating the effects of learning on the final period, which is period 6.

The last period is the most relevant, since it is the last period up to which learning can

take place. In consecutive robustness analyses, we also analyze performance for earlier

rounds back to period t = 3, the first round in which full learning can theoretically take

place. Notice that the distribution of (individual and collective) errors is heavily skewed.

Taking the logarithm (e.g., log(ei(t) + 1)) in the regressions of individual and collective

errors gives less weight to errors which are far away from the truth and more weight to

errors close to the true answer, such that the analysis will not be driven by a few cases

in which errors were huge, say, forty and more. For the variable crowd error, which may

attain values 0, 1, and 2, we use ordered logit.

Table 1 reports these models when controlling for each treatment T1 and T2 with

a dummy variable, while T0 is the reference category. We control for the heterogeneity

between different questions by using dummy variables. If selecting the most accurate or

the most confident enhances performance, then we should see a significant negative effect

on the three errors. As Table 1 reveals, the accuracy treatment T1 does not outperform

the random treatment T0. The coefficients are insignificant and even positive. Even

more strikingly, the confidence treatment T2 underperforms compared with the random

treatment T0. The latter effect is significant on the 5-percent level for the individual error

and the crowd error, and significant on the 10-percent level for the collective error.

Result 2. Performance does not improve when the center is known to be the most accurate

(T1). Performance even deteriorates when the center is known to be the most confident

(T2).
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Figure 1: Individual, collective, and crowd errors over time by treatments. Panels A, B,
C differentiate between centers (black) and pendants (gray). All confidence intervals are
standard 95% confidence intervals.
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(1) (2) (3)
individual error (log) collective error (log) crowd error

accuracy treatment (T1) 0.026 0.003 0.106
(0.49) (0.03) (0.40)

confidence treatment (T2) 0.144∗ 0.179 0.739∗

(2.44) (1.80) (2.39)

intercept 2.164∗∗∗ 2.149∗∗∗

(33.40) (17.77)
intercept cut 1 -2.555∗∗∗

(-6.76)
intercept cut 2 -0.830∗

(-2.51)
N 1.408 352 352

t statistics in parentheses

Question dummy coefficients for 8 questions not shown

Individual error: robust s.e. clustered for 176 subjects

Collective and crowd errors: robust s.e. clustered for 44 groups
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 1: Treatment effects on final errors: log error, log collective error, and wisdom of
crowd error (in period 6). Linear regression (models 1 and 2) and ordered logit regression
(model 3).
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To understand the mechanism behind these treatment effects of selecting the most

accurate or the most confident agent as a center, we distinguish between two aspects of

each treatment, the trait of the central agent and the declaration of how the central agent

was selected. By our experimental design we can disentangle the two effects, since in the

random treatment T0 it frequently happens by chance that the most accurate agent was

selected as the center without having the declaration of her or his accuracy, as is the case

in the T1 treatment. The same applies for confidence; in a number of cases, the most

confident agent was randomly selected to be the center in the random treatment T0.

Table 2 reports the results of the regressions when we control for the trait that the

center is the most accurate or the most confident in the group, such that the treatment

dummies only pick up the declaration effect. When the center happens to be the most

confident or the most accurate, the outcome measures tend to improve, which can be seen

from the negative sign of the (non-significant) coefficients. When the confidence of the

center is declared to all group members, however, the performance is significantly reduced.

The results are qualitatively similar for accuracy of the center in the sense that the signs

of the effects are the same, but we cannot reject the null in that case, and the size of the

effects is also smaller than for confidence.

While Table 2 reports the effects for the final period after all learning has taken place,

Figure 2 illustrates robustness analyses of declaration effects when the regressions are run

for each period separately. We show periods 3 to 6, since these are the periods after which

full learning could happen and did take place according to the error dynamics (Figure 1).
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Figure 2: Treatment effects on errors: log error, log collective error, and wisdom of crowd
error (periods 3-6). Linear regressions, 95 % confidence intervals.

The effect of declaring that the center is the most confident consistently increases the

error measures and thus reduces performance. The declaration of accuracy has the same

tendency, but the effects are smaller and insignificant.
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(1) (2) (3)
individual error (log) collective error (log) crowd error

accuracy-trait -0.110 -0.0716 -0.0477
(-1.88) (-0.76) (-0.15)

accuracy-declaration (T1) 0.117 0.0790 0.196
(1.64) (0.60) (0.57)

confidence-trait -0.106 -0.231∗ -0.474
(-1.95) (-2.20) (-1.74)

confidence-declaration (T2) 0.218∗∗ 0.335∗ 1.053∗∗

(3.17) (2.58) (2.79)

intercept 2.221∗∗∗ 2.241∗∗∗

(34.17) (20.06)
intercept cut 1 -2.735∗∗∗

(-6.99)
intercept cut 2 -0.999∗∗

(-2.89)
N 1.408 352 352

t statistics in parentheses

Question dummy coefficients for 8 questions not shown

Individual error: robust s.e. clustered for 176 subjects

Collective and crowd errors: robust s.e. clustered for 44 groups
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 2: Treatment effects on final errors: log error, log collective error, and wisdom of
crowd error (in period 6). Linear regression (models 1 and 2) and ordered logit (model
3).
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Result 3. Performance tends to improve when the center is the most confident. Decla-

ration of confidence undermines performance.

4.3 Social Influence

To analyze why the selection of the center can have a negative impact on performance,

we study to which extent agents within a group influence each other. For this purpose

we regress the answer xi(t) of an agent i in time t ≥ 3 on his initial answer xi(1), as well

as on the initial answers of the other group members xj(1). In particular, a pendant’s

answer is regressed on the center’s initial answer, his own initial answer, and the mean of

the other two pendants’ initial answers. The center’s answer is regressed on the average

of the pendants’ initial answers.

Tables A.1 and A.2 in the Appendix report the influence weights when estimating them

separately for each treatment. For instance, in the random treatment T0, a pendant’s final

answer is estimated as the linear combination of its initial answer with weight 56.7%, the

center’s initial answer with weight 26.7%, and the other pendants’ average initial answer

with weight 16.6%. There are several interesting observations to make in these tables.

First, every agent places much weight to his own initial opinion. In the rational model

and the random treatment, we would expect that on average this weight is 25%.15 Second,

the weight individuals place on their own initial opinion depends on the treatment. In

the random treatment, pendants place more weight on themselves than in the other two,

while centers place less weight on themselves in the random treatment. Finally, the social

influence by the other team members heavily depends on the treatment. For pendants,

the center’s weight was 26.7% in the random treatment T0, but 46.9% in the confidence

treatment T2; and similarly in the accuracy treatment T1.

The two aspects of a treatment, the trait of the center and the declaration of the center,

are then captured by the interaction effects of the corresponding dummy variables with

the influence weights in the regressions that pool the three treatments. These regressions

are reported in Tables A.3 and A.4 in the Appendix. Their effects are illustrated in

Figure 3. A positive effect of a certain dummy variable means that the given influence

weight is increased by the given treatment.

When the center happens to be the most accurate or the most confident, but there is

no public declaration of this, then the pendants do not strongly respond (panel A); they

only mildly increase their weight on the center. In the same case, i.e., when the center

is the most accurate or confident, the center places significantly more weight on her own

initial opinion and, accordingly, significantly less weight on the pendants’ opinions (panel

B). In contrast, the declaration that the center is the most confident or accurate does

not affect the center’s weighting (panel D), but there is a strong effect on the pendants

15We will return to this observation when extending the social learning models in section 5.1.
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(panel C). Declaring that the center is somehow special (the most confident or accurate

on a similar question) significantly increases the pendants’ weights on the center’s initial

opinions.

Result 4. The pendants place more weight on a center who is declared to be the most

confident or the most accurate. The center places less weight on the pendants’ when she

is the most confident or the most accurate.

This result provides an explanation for the former results. Declaring that the center

is somewhat special increases the weight (s)he receives. Placing more weight to a single

opinion has a negative effect on performance, except if this person is substantially better

informed than the others. In the accuracy treatment T1, this condition is satisfied to

some extent, such that the negative effect of placing too much weight on a single person

and the positive effect of placing more weight on a person who is better informed may

balance each other. Consequently, the performance in the accuracy treatment T1 need

not differ from the random treatment T0. In the case of the confidence treatment T2, the

center is not substantially better informed than the other group members, as can be seen

from panel C in Figure 1. Hence, giving him/her more weight only has the negative effect

of insufficiently taking into account the information of the others. This is on average even

worse than the random treatment T0.

4.4 Overconfidence

As we have seen in Table 2 above, it is rather beneficial for the group when the center

happens to be most accurate or most confident, but is not declared as such. On the

other hand, it is well-known that many people are often overconfident, i.e., they report

much too small confidence intervals when asked about a region where they expect the true

answer with a certain probability (a usual way is to ask where they expect the answer in

90% of their guesses; see, e.g., Soll and Klayman (2004); Moore and Healy (2008); Herz

et al. (2014). In phase I of our experiment, we asked participants to provide such regions.

Therefore, we can compute for every participant her individual overconfidence score simply

by counting how often that person provided a confidence interval that did not contain

the true answer. Thus, every participant is characterized by an overconfidence score in

{0, 1, . . . , 8} with the interpretation that a person is the more overconfident the larger

her overconfidence score becomes. As Figure 4 reveals, many agents are overconfident.

Their guess should only lie in 10% of the cases outside of their provided 90% confidence

interval. However, for most agents this happens in more than two out of eight cases. The

histogram also documents that there is substantial heterogeneity in overconfidence.

In Table A.5 in the Appendix, we analyze how the center’s overconfidence score as

well as the sum of the pendants’ overconfidence scores impact the group’s performance
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Figure 4: Histogram of overconfidence. The value 0 means that a subject has specified for
all eight knowledge questions a respective 90% confidence interval which encloses the true
value. The value 8 means that a subject has specified for all eight knowledge questions a
90% confidence interval which does not enclose the true value. All values above 1 indicate
overprecision, since more than 10% of estimates fall out of the 90% confidence interval
(i.e., 91.5% of subjects are overconfident).

(on top of the previously found treatment effects): we find the corresponding regression

coefficients to be significantly positive for all three error measures (while the formerly

discussed effects remain). Moreover, the center’s coefficient is substantially larger than

the pendants’. We thus have the following result.

Result 5. Both the center’s and the pendants’ overconfidence undermine performance.

The center’s overconfidence has a more deteriorating effect than the pendants’ overconfi-

dence.

Given this result, it is, ceteris paribus, best for the group’s performance if the most

overconfident group members are pendants, i.e., it would be best if the least overconfident

group member was the center. On the other hand, overconfidence is of course related

to confidence itself, and the most confident group member acting as center improves the

group’s performance when she is not declared to be the most confident. Indeed, Table A.5

reveals that, when controlling for overconfidence and for the declaration of confidence, the

trait of being the most confident significantly increases performance.

Thus, we conclude that the leader personality who should optimally be selected is

characterized as confident without being overconfident. Depending on the individual

characteristics, it can therefore be optimal to select someone who is not the most confident

agent, if the chosen agent can compensate by being very ‘tight’, i.e., not overconfident.

Hence, all results (Results 1-5) contribute to a coherent picture of how the selection of

the leader affects social learning. To investigate this interpretation further, in particular
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the one of placing “too much weight on the center” in the confidence treatment T2, we

analyze more in-depth the underlying micro-level mechanisms. In particular, we will study

the fact that weights on own opinions are too large, which also prevents optimal social

learning. As the social influence analysis showed, both pendants and centers generally

placed much weight on their own initial opinion. When studying the learning behavior in

the next section, we will incorporate this behavioral aspect.

5 Learning Behavior

The experimental data allow us to test theories of social learning on multiple levels. First,

their implications for the performance of social learning (as summarized in Prediction 1

and Prediction 2) are found to be consistent with some empirical results and inconsistent

with others. Second, we can directly take the theoretical models to the data and study

which aspects are in line with real behavior. For this purpose, we specify and vary

the models and measure which model specification best fits the data. We thus include

model variations that incorporate conservatism, a pattern that is commonly found in

experimental set-ups, but absent in any Bayesian model of social learning (that we are

aware of) and absent in almost all näıve models of social learning.

5.1 Specification and Extension of Bayesian Models

To specify the rational models, we assume that each agent’s belief follows a beta distri-

bution. This is a standard functional form for beliefs that live on intervals.16 With some

assumptions on the distribution of signals, all agents’ beliefs at any time indeed belong

to the class of beta distributions.17 Assuming conditional independence of initial signals,

Bayesian agents will state guesses that are convex combinations of their initial guesses.

The weight on these guesses, however, depends on the signal quality of each agent i,

which we denote by ni. The model variations that we study differ in the assumptions

about signal quality.

A baseline assumption is to suppose that the precision of each agent’s signal is the

same, i.e., ni = nj for all i, j. In that case, the optimal guess x∗, which will be the

consensus from round t = 3 on, is simply the unweighted mean of the initial guesses xi(1).

We call this the Standard Model. Alternatively, agents are assumed to communicate their

belief fully by providing the guess and the confidence level. Then, for each answer xi(1)

and its confidence ci(1), the center can determine the two parameters of the corresponding

beta distribution and combine all initial beliefs in a rational manner, thereby updating

16Like the normal distribution, which is a standard functional form for beliefs on the unbounded real
numbers, it is determined by two parameters only.

17The formal framework is provided in section B.2 of the Online Appendix.
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leads to a combination of own and others’ guesses – not with equal weights, but with

larger weights for those guesses which are tagged by high confidence. We call this the

Sophisticated Model. Note that these are two opposing views on the informativeness of the

confidence statement – either confidence is fully informative or confidence can be ignored

– which lead to two models that both satisfy the requirements of Prediction 1, and are

hence similar in most respects. They differ in their weighting of initial information.

The previous empirical literature on real people’s beliefs and their updating finds two

very strong and consistent patterns: overprecision and conservatism.18 There is a simple

way to introduce both of them into our model: Agents overestimate their own signal

precision by a factor τi ≥ 1; respectively, they underestimate the signal precision of the

others by the inverse factor 1
τi

. The motivation of this model variant is that overconfident

agents suffer from overprecision in the sense that they perceive their signal as more precise

than it is.19

Formally, this is a generalization of the Standard Model and the Sophisticated Model.

This model also predicts that there are no more changes after t = 3. However, this model

does not predict consensus! The agents’ opinions settle down in between the prediction

of x∗ (i.e., the case τi = 1 for all i ∈ N) and their initial guess xi(1). The weight of the

own initial guess is thereby increasing in overprecision τi. In particular, if τi → ∞, then

xi(t) → xi(1), i.e., infinitely overprecise agents are totally conservative and always stick

to their initial guess. (We will include such a model as a baseline and call it the Sticking

Model.)

To specify concrete models, we choose levels of overprecision τi that match with em-

pirical results on overprecision. When asked for a 90% confidence interval, many people

provide a 50% confidence interval instead. This is roughly induced by τi = 5. Incor-

porating conservatism of every agent into the Standard Model or, respectively, into the

Sophisticated Model leads to the two models Standard-Plus Model and Sophisticated-Plus

Model. In the Standard-Plus Model, agents behave very similarly to the Standard Model,

but move only a fraction into the direction of the center, which corresponds to findings on

conservatism. The only difference to the Sophisticated-Plus Model is simply that we spec-

ify the initial signal precision not as equal, but according to the confidence statements.

Agents are assumed to know that others are overprecise and thus learn about the original

signals by correcting for τ .20

18Overprecision, as it is called by Moore and Healy (2008), is also known as “judgmental overconfidence”
(Herz et al., 2014), “overconfidence in interval estimates” (Soll and Klayman, 2004), or “resoluteness”
(Bolton et al., 2013), and is defined as “excessive certainty regarding the accuracy of one’s belief.”
Conservatism means that agents are not willing to learn sufficiently from new signals (e.g., Peterson and
Beach (1967); Mobius et al. (2011); Ambuehl and Li (2014); Mannes and Moore (2013)). Of course, the
two patterns are closely related to each other.

19Or, alternatively: agents learn from their neighbors, but they attach higher uncertainty to the beliefs
of others than to their own belief.

20In the conservatism models (consisting of the specifications Standard-Plus and Sophisticated-Plus),
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Importantly, the four models Standard Model, Sophisticated Model, Standard-Plus

Model, and Sophisticated-Plus Model are all special cases of Bayesian models and hence

produce the prediction that is formalized as Prediction 1. Except that, in the Standard-

Plus Model and the Sophisticated-Plus Model, agents do not state the same guess x∗ from

round 3 on, but their subjectively perceived optimal guess x∗i , which is a mixture be-

tween x∗ and the agent’s initial guess xi(1). This difference is illustrated in Figure 5

below in the two left panels, which compare the dynamics of the Standard Model with

the Standard-Plus Model in a simple example.

5.2 Specification and Extension of DeGroot models

In the DeGroot framework of näıve learning, agents approach consensus. Consensus is

given by x(∞) = w′x(1), where the vector w captures the eigenvector centrality of the

agents (e.g., Friedkin (1991); DeMarzo et al. (2003); Golub and Jackson (2010)).

The most common specification is to allocate equal weights to any connection including

to oneself.

G =


1
4

1
4

1
4

1
4

1
2

1
2

0 0
1
2

0 1
2

0
1
2

0 0 1
2


Credit for this specification is usually given to DeMarzo et al. (2003). This behavior

corresponds to Bayesian updating with independent signals of equal precision in the first

round, but not in later rounds. The long-term prediction using this DeMarzo et al. Model

is determined by w = (2
5
, 1

5
, 1

5
, 1

5
)′, i.e., pendants’ initial opinions enter the calculation of

the consensus with a weight of 20% each, while the center’s initial opinion accounts for

40% of the consensus.

Corazzini et al. (2012) suggest improving the DeMarzo et al. Model by increasing the

weight of agents who listen to many other agents (and show that this twist improves

the model fit to experimental data). The suggested specification is that the weights are

we make assumptions about higher-order beliefs that close the model in the sense that no agent will
expect another agent to behave in a different manner than in the one observed. In particular, we assume
that all agents think of all other agents as overprecise; and that all agents think that all agents think
that all agents are overprecise. In that way, an agent i is not surprised that j discounts i’s behavior from
i’s point of view (from a neutral point of view, j takes i’s behavior as he should) and that j overvalues
j’s guess (from i’s and a neutral standpoint).
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proportional to the outdegree (i.e., the number of agents listened to):

G =


1
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1
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This model predicts that the center of the star is even more influential in the long run:

w = ( 9
15
, 2

15
, 2

15
, 2

15
)′.21

Incorporating conservatism requires a model extension. Friedkin and Johnsen (1990)

provide a more general model of näıve learning. Initial opinions are determined by some

exogenous conditions, which can always have an impact on an agent’s opinion. Such a

model has also been analyzed in Golub and Jackson (2012). To incorporate this aspect,

we can simply let agents stick to their initial guess xi(1) to some extent α:

xi(t) = (1− αi) ·Gx(t− 1) + αi · xi(1).

For αi = 0, we have the DeGroot model. For αi = 1, we have the simplest conceivable

model: an agent makes an initial guess xi(1) and then sticks to it. This is a baseline model

that we call the Sticking Model, as already mentioned when discussing totally overprecise

rational learners.

If αi ∈ (0, 1) for every agent i, then the model prediction is that agents move towards

the others’ guesses, but still rely on their initial guess. This is conservatism.22 Inter-

estingly, with this model variation, the updating process converges without reaching a

consensus (for generic starting values).

We extend the DeMarzo et al. Model and the Corazzini et al. Model by the Friedkin

and Johnsen (1990) framework and set the conservatism/overprecision parameter α = 0.5.

This leads to the DeMarzo et al. Plus Model and the Corazzini et al. Plus Model. In these

models, agents do not approach consensus anymore. For instance, in the DeMarzo et al.

Plus Model, the long-term guess of a pendant i is a convex combination of initial guesses

with the following weights: weight 2
9

on the center’s initial guess, weight 1
27

on other

pendants’ initial guesses each, and weight 19
27

(≈ 70%) on the own initial guess, which

leads to different guesses of each pendant. This difference is illustrated in the right panels

of Figure 5. The long-term weights of the Corazzini et al. Plus Model are comparable, but

21Grimm and Mengel (2016) propose another specification of the DeGroot weights. However, their ex-
tension does not lead to an additional prediction here because weights depend on the clustering coefficient,
which is zero for all agents in the star network.

22Interpretations for the cause of conservatism include forms of overprecision or kinds of anchoring
bias in which the initial guess serves as anchor and the adjustments to the others’ guesses is limited by
parameter α.
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Figure 5: Simple examples of dynamics with time on the x-axis and answers (in percentage
points) on the y-axis. Upper panels illustrate two prominent models from the literature;
lower panels illustrate their extensions when conservatism is incorporated. Standard Model
is upper left, Standard-Plus Model is lower left, DeMarzo et al. Model is upper right, and
DeMarzo et al. Plus Model is lower right panel. Hence the left panels illustrate rational
models, the right panels näıve models.

differ in that each agent, including the center, is more heavily influenced by the center’s

initial opinion.

Four models are illustrated in Figure 5. In this example, initial answers are x1 = 20%

for the center, and x2 = 40%, x3 = 60%, and x4 = 80% for the pendants. The most im-

portant differences are easily observable. In Bayesian models (left panels), learning stops

in round 3; in näıve models (right panels), answers converge. In the specifications without

conservatism/overprecision (upper panels), agents reach or converge to consensus; in the

models with conservatism/overprecision (lower panels), there is a persistent heterogene-

ity of answers, such that each agent’s answer is “biased” towards the own initial answer.

Note that the conservative/overprecise agents in the näıve models behave similarly to

conservative/overprecise agents in the rational learning approach.

5.3 Comparison of Models (Horse Race)

In total, we have specified nine models. Four following from the rational approach to

social learning, four following from the näıve approach to social learning, and one baseline
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model (the Sticking Model), which is a degenerate special case of both model classes. We

implemented each model such that all periods t ≥ 2 are predicted from values at t = 1.

We assess the fit of each model by measuring the root of the mean squared error (RMSE)

between the model predictions for t ≥ 2 and the data points. Figure 6 displays the results.

The worst overall model fit is obtained by the baseline model, in which all agents

stick to their initial guess (Sticking Model). The best model fit is obtained by the “Plus”

models, which incorporate conservatism. In fact, every model considered has a larger

RMSE than its “Plus” counterpart that incorporates conservatism.

Considering the model fit for each round separately, the conservatism aspect seems

particularly helpful in predicting the first updates (round 2). Hence, the “Plus” models

fit much better than the others in these early periods. However, in the last period, the

“Plus” models fit best still, with the only exception that the DeMarzo et al. Model fits

better than the Sophisticated-Plus Model. This observation indicates that the advantage

of the models that include conservatism is not restricted to the first rounds, but resists.

Ignoring the “Plus” models for one moment, we can see that the näıve learning in

the DeMarzo specification fits well to the data. The sophisticated specification of the

rational model does not fit to the data. The standard specification of rational learning

and the Corazzini specification of the näıve learning are somewhere in between. Hence,

the straightforward specifications that treat all agents symmetrically (Standard Model,

DeMarzo et al. Model) are at least as adequate as the specifications that incorporate

confidence statements in a specific way (Sophisticated Model), or that incorporate the

unequal degree (Corazzini et al. Model).

Adding conservatism to the models leads to a very good fit of the rational model

in its standard specification (Standard-Plus Model) and a better fit of the sophisticated

specification (Sophisticated-Plus Model) than without conservatism. The best model fit

is obtained for the näıve models with conservatism (Corazzini et al. Plus Model and

DeMarzo et al. Plus Model).

We can also differentiate the model fit by treatment. The results are illustrated in

Figure A.1 in the Appendix. The best model fit in the random treatment T0 is obtained

for both the DeMarzo et al. Plus Model and the Standard-Plus Model with an RMSE of

7.88. Hence, these extensions of straightforward specifications of the näıve and the rational

approach best predict the experimental data in the baseline treatment. Comparisons are

similar across treatments. However, the Corazzini et al. Model fits better in the accuracy

T1 and confidence treatment T2 than in the random treatment T0. The reason is that the

center receives a high influence weight in the accuracy and confidence treatment T2, as

well as in the Corazzini et al. Model specification. Complementarily, the baseline model

of sticking to the initial guess fits much better in the random treatment T0 than in the

others. This is a clear indication that social influence is weakest in the random treatment

T0 and stronger in the accuracy treatment T1 and the confidence treatment T2. Given
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Figure 6: Root mean squared errors (RMSE) of social learning models. “Standard” and
“Sophisticated” are models of rational learning; “DeMarzo” and “Corazzini” are models
of näıve learning. “Plus” models incorporate conservatism. Lower errors mean better fit
between model and data.

that social influence can undermine the wisdom of crowds (Lorenz et al., 2011), this is an

explanation for our result that the crowd error is lowest under the random leader T0.

We finally differentiate between the model fit for the center and for the pendants.

The result is displayed in Figure A.2 in the Appendix. The Corazzini et al. Model, which

predicts an immense influence of the center, fits well for the center, but not for the

pendants. Again, the “Plus” models fit well generally for both pendants and centers. The

best fit for the pendants is attained by the Corazzini et al. Plus Model, and the best fit

for the center is attained by the Standard-Plus Model.

Result 6. Incorporating “conservatism” into both the rational and näıve models of social

learning increases the fit between theoretical models and empirical data.

The result holds for all four considered models, for all three treatments, for all rounds,

and, apart from one exception, for both centers and pendants. The exception is that the

Corazzini et al. Model predicts the center’s opinion better than the Corazzini et al. Plus

Model. Hence, our data strongly indicate that the extension of both the rational and the

näıve models of social learning by conservatism is not a mere theoretical exercise, but an

empirically relevant generalization.

In sum, the results of the horse race show, first of all, that both models of rational and

models of näıve learning can contribute to our understanding of social learning in teams.

Second, the baseline model that each agent sticks to his own initial guess and keeps his

independent opinion fits much better to the data when the team leader was selected at

random. Complementarily, models that predict an immense weight of the team leader’s
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opinion (Corazzini et al. Model) fit well when the leader is known to be the most confident

(T2) or most accurate (T1).

Finally, the known models of social learning might fall short of covering the substantial

amount of conservatism that is characteristic for the social learning of real people. As-

suming that people are overprecise provides a foundation for conservative learning, even

for rational learners, and affects the model prediction such that they are much closer to

our data. We can connect this observation with Result 5 that overconfident leaders under-

mine social learning. Assuming that agents are overprecise induces conservative learning

in which the opinions of others are not sufficiently accounted for. Therefore, overconfident

leaders undermine performance.

6 Discussion

6.1 Summary and Conclusions

An organization’s fit to the environment depends on the management’s ability to assess the

state of the – usually dynamic – environment and to cope with uncertainty. We measure

team performance in this respect by assessing its ability to estimate correct answers to

factual questions.

Having a team leader who is knowledgeable or confident in a given topic might in

principle be helpful. However, communicating the leader’s qualities can undermine this

effect. Stressing the expertise or confidence of the leader triggers other team members

to put too much weight on the leaders’ opinion. This narrows the opinion space and

diminishes the wisdom of the group substantially. Past accuracy (T1) and actual ability

are correlated such that there is a positive effect of an accurate leader, which, however,

is immediately undermined by the effect of declaring it. Confidence (T2) is only weakly

correlated with actual ability such that the net effect is significantly negative.

In addition to a negative effect of declaring the selection criteria of leaders, we can show

that most people are overconfident in their estimates and in their assessments of problems.

Overconfidence leads to ignorance of the others’ valuable opinions, information gets lost,

and the team’s potential for solving problems deteriorates. While overconfidence of every

team member has a deteriorating effect, the leader’s overconfidence has the strongest

negative effect.

These are two detrimental effects of leaders selected by confidence. We can further

show the micro-mechanisms of these detrimental effects by simulating different classes

of learning models. In particular, rational learning models in which social learning is

efficient, independent of the team leader, fall short of explaining our data. A better fit is

obtained for näıve learning models that predict that the leader is more influential than any

other team member. Among those, the model that gives tremendous weight to the leader
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(Corazzini et al. Model) does not fit well in the random treatment T0, but particularly well

in the treatments T1 and T2, in which the leader is not selected at random. Compared to

all models, people tend to adapt too little to the others’ opinions and are too confident in

their own subjective estimates. To introduce this pattern in the theory of social learning,

we extend both rational and näıve models by conservatism, which can be derived from

overconfidence. With this twist, the fit of each model to the data increases substantially.

Moreover, this kind of bounded rationality leads to the fact that leaders learn too little

from the opinions in their network.

One conclusion from our paper is that we provide evidence for the superiority of a se-

lection procedure that is based on random leader selection (“sortition”). This mechanism

has its roots in ancient Greece and has been discussed by various names such as “de-

marchy” or “aleatory democracy” (Zeitoun et al., 2014; Frey and Osterloh, 2016). While

there have been discussions in the literature about the advantages and disadvantages of

aleatory democracy, there is hardly empirical evidence. Our empirical results demon-

strate that random selection can be beneficial compared to selection based on confidence.

Selection by confidence often leads to detrimental effects of truth-finding, since first the

leader listens too little to other members of the group and second the other members

listen too much to the leader. Our experiment is one of the first to shed light on one of

the potential mechanisms of why aleatory democracy may be beneficial. The strength of

random selection is not restricted to reducing the probability of overconfident leaders. It

is also based on the fact that the leader’s influence on team members is not amplified and,

therefore, the others’ opinions are respected more compared to a system in which leaders

push their own views on all team members due to both a central position in the commu-

nication network and an additional legitimacy because they are selected by expertise, or

even worse, by confidence.

The problem of overconfidence of leaders and its detrimental effects on group wisdom

becomes even more important when considering that expertise is often hard to measure in

reality. In fact, publicly expressed subjective confidence in the own expertise might some-

times be more important for becoming a leader than objective expertise. The problem is

that the truth is often not precisely known. Therefore, publicly expressed confidence may

persuade others that the person in question may know the correct answers. However, as

our experiment shows, when confidence and expertise are not strongly correlated, overly

confident leaders can mislead the group. This difficulty in assessing the true expertise for

selecting leaders may therefore be another argument for the beneficial empirical effects of

aleatory democracy, where the leaders are selected at random.

In our experiment, we focus on the team’s ability to converge to correct assessments of

the environment, which is to adapt and learn from each other such that they find correct

answers to factual questions. However, in addition to correct problem-solving, another

goal of teams is to foster cohesion, e.g., to strengthen their corporate identity. Sometimes,
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it is less important to find the truth, but more important to converge towards a common

opinion. Having a common opinion helps to reduce conflicts, work on the same tasks, and

help each other. This means that opinion convergence can be a separate, distinct goal of

teams and those leaders may be preferable who manage to unify the opinion space in their

team. Our experiment only focuses on the goal of finding correct answers. How to foster

coordination, opinion convergence, and cohesion is another goal. For example, it has been

shown that a leader’s overconfidence or resoluteness can foster coordination and cohesion

(Bolton et al., 2013). In their theoretical contribution, Bolton et al. (2013) already point

to the trade-off that an overconfident leader, while having positive effects for coordination,

has the downside of not sufficiently learning from the followers. We can now strengthen

and empirically document the second mechanism: overconfidence of leaders is clearly a

detrimental factor to the team’s learning. Hence, the strength of overconfident leaders

for coordination comes at the downside of suboptimal information-processing. When it

comes to tasks which are related to truth-finding, we claim that overconfident (or resolute)

leaders are actually harmful.

6.2 Limitations

The strength of our experimental design comes at the expense of certain limitations. First,

the external validity of this type of experiments depends on whether the interaction among

participants (who were virtually all university students) are similar to the interaction

among members of real teams in organizations. Moreover, we focus on the organizational

task to estimate the state of the environment, while other aspects also matter for the

performance of an organization. At the same time, this is a strength of our experimental

set-up, since we can isolate the performance in a key task: estimating the state of the

environment.

We have exogenously varied the selection criterion of the leader. This takes the per-

spective of the top management, deciding about, e.g., the promotion criteria of more and

less senior employees of the organization. It would also be interesting to see how team

members themselves would choose a selection criterion if they were given the opportunity

to choose.

By studying star networks, we have not varied the network architecture, but only the

network positions, which for star networks boils down to the question of who is the leader.

Follow-up research might include a variety of network architectures. This is beyond the

scope of this paper because it would shift the emphasis from the selection of the team

leader to the selection of a communication architecture within an organization. Formal

hierarchies within organizations usually have a star-like structure, e.g., they determine

the head of an organizational unit, or the president of a certain committee, which can be

directly modeled by star networks. However, since informal networks within organizations
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are also known to be important, alternative network architectures and even endogenous

network formation should be considered in future research.23

Finding that overconfidence is an important determinant of social learning suggests an

alternative treatment that combines accuracy and confidence to overconfidence, in which

leaders are selected based on their relatively low or high level of overconfidence. This

seems an interesting extension that, however, does not match real selection procedures we

are aware of. This could be considered an innovative suggestion to assess overconfidence

when selecting managers. Our treatments T1 accuracy and T2 confidence resemble real

selection criteria based on maximal competence, which are either objectively assessed (T1

accuracy) or subjectively provided by self-declaration (T2 confidence).

Finally, our experimental design focuses on social learning and does not mix it with

the decision-making process. After learning took place in a team, there are various forms

of how a decision is actually made. It could be the case that the team communicates its

opinions to the higher level management or their client, who then draw their conclusions

and take actions. It could also be that the team takes actions on its own, deciding, e.g.,

by the majority rule or with unanimity about the consequences. Obviously, decision-

making processes also affect the quality of the decisions and are thus important to study.

However, studying them jointly with the social learning process can distort the measures

of learning since communication before collective decisions makes strategic considerations

in the communication stage prevalent.

6.3 Practical implications

Our findings suggest several practical implications. First, when selecting a leader, there

is a substantial difference between assessing a candidate’s competence by some tests (as

in our accuracy treatment T1) versus relying on her subjective statement of her own com-

petence (as in our confidence treatment T2). This even holds when there are no strategic

incentives to misrepresent the own opinion and the own competence. Our findings clearly

suggest, whenever possible, focusing on objective measures of competence rather than

trusting subjectively stated confidence in candidates’ own expertise. A large majority of

people is overconfident, such that starting a competition as to who is claiming the highest

confidence will most likely lead to detrimental effects in selecting leaders who will listen

too little to other opinions in their network. Hence, when the main goal of the team is

related to truth-finding, this is expected to be a poor selection criterion.

Second, the way the selection criterion for the leader is communicated to a team heavily

affects the team’s interaction and performance. In particular, making explicit that the

team leader was selected at random can lead other team members to make use of their

23In a quite different framework, endogenous network structures and social learing in organizations
have been studied by Çelen and Hyndman (2012).
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own valuable knowledge instead of “blindly” following their leader. By the hierarchical

structure, which determines the communication network, the team leader is already very

powerful and her opinion is certainly heard. Declaring that the team leader was selected

because of her (alleged) superiority increases her power, which might push team learning

out of balance. Hence, keeping quiet about the (alleged) superiority of a team leader can

foster more efficient learning within a team.

Third, we can validate that communication and social influence can be harmful for

the wisdom of crowds effect (Lorenz et al., 2011). We confirm this finding for unequal

communication structures in terms of star networks, where all people are connected to

a single center, who receives all information from the network while the others have to

communicate via the center. In particular, we show that the wisdom of crowd error

increases over time, giving evidence that the group can exploit less and less information

from other network members over consecutive periods of social influence. However, and

importantly, we also show that social influence can foster social learning. In particular,

the individual error and the collective error improve over time. Crucially, the effect of

social influence on performance is moderated by the selection criterion of who is in the

powerful position in the communication network, and by the declaration of the selection

criterion. In conclusion, if teams want to utilize the wisdom of crowds within their team,

they should admit interaction and opinion exchange, but prevent single individuals from

becoming overly influential.
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A Appendix: Additional Tables and Figures

(1) (2) (3)
T0 random: answer 6 T1 accuracy: answer 6 T2 confidence: answer 6

own weight (pendant) 0.567∗∗∗ 0.405∗∗∗ 0.392∗∗∗

(13.70) (9.35) (7.87)

center’s weight 0.267∗∗∗ 0.449∗∗∗ 0.469∗∗∗

(8.82) (12.72) (14.13)

other pendants’ weight 0.166∗∗∗ 0.146∗∗∗ 0.139∗∗

(5.95) (3.78) (3.14)
N 528 264 264

t statistics in parentheses

robust s.e. clustered subjects
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.1: Influence weights on pendants’ final answer, separately estimated for each
treatment. Regression of the pendant’s final answer (period 6) on the initial answers
(period 1). Coefficients forced to sum up to one.
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Figure A.1: Root mean squared errors (RMSE) of social learning models differentiated
by treatment. Lower errors mean better fit between model and data.
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(1) (2) (3)
T0 random: answer 6 T1 accuracy: answer 6 T2 confidence: answer 6

own weight (center) 0.473∗∗∗ 0.659∗∗∗ 0.705∗∗∗

(8.80) (9.91) (10.68)

pendants’ weight 0.527∗∗∗ 0.341∗∗∗ 0.295∗∗∗

(9.79) (5.13) (4.47)
N 176 88 88

t statistics in parentheses

robust s.e. clustered for 176 subjects
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.2: Influence weights on center’s final answer, separately estimated for each treat-
ment. Regression of the center’s final answer (period 6) on the initial answers (period 1).
Coefficients forced to sum up to one.

8.62 8.15 8.93 9.24 10.06
11.44

10.06
11.47 12.07

8.22 8.74
8.14
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Figure A.2: Root mean squared errors (RMSE) of different models by center and pendants
differentiated by center and pendants. Lower errors mean better fit between model and
data.
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(1)
pendant’s answer 6 (last period)

own weight (pendant) 0.577∗∗∗

(12.05)

center weight 0.244∗∗∗

(6.81)

other pendants weight 0.198∗∗∗

(5.31)
accuracy-trait × own -0.0234

(-0.41)

accuracy-trait × center 0.0693
(1.69)

accuracy-trait × other pendants -0.0393
(-0.90)

accuracy-declaration (T1) × own -0.140
(-1.90)

accuracy-declaration (T1) × center 0.120∗

(2.33)

accuracy-declaration (T1) × other pendants 0.0222
(0.40)

confidence-trait × own -0.00712
(-0.14)

confidence-trait × center 0.0317
(0.79)

confidence-trait × other pendants -0.0516
(-1.15)

confidence-declaration (T2) × own -0.152∗

(-2.37)

confidence-declaration (T2) × center 0.169∗∗∗

(3.39)

confidence-declaration (T2) × other pendants 0.0407
(0.80)

N 1.056

t statistics in parentheses

robust s.e. clustered for 176 subjects
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.3: Influence weights on pendant’s final answer. Linear regression of the pendant’s
final answer (period 6) on the initial answers (period 1).
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(1)
center’s answer 6 (last period)

own weight (center) 0.400∗∗∗

(6.23)

pendants weight 0.643∗∗∗

(9.76)
accuracy-trait × own 0.158∗

(2.45)

accuracy-trait pendants -0.147∗

(-2.09)
accuracy-declaration (T1) × own 0.0402

(0.44)

accuracy-declaration (T1) × pendants -0.0393
(-0.38)

confidence-trait × own 0.139∗

(2.05)

confidence-trait × pendants -0.189∗∗

(-2.70)
confidence-declaration (T2) × own 0.108

(1.44)

confidence-declaration (T2) × pendants -0.0353
(-0.42)

N 352

t statistics in parentheses

robust s.e. clustered for 176 subjects
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.4: Influence weights on center’s final answer. Linear regression of the center’s
final answer (period 6) on the initial answers (period 1)
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(1) (2) (3)
individual error (log) collective error (log) crowd error

accuracy-trait -0.0989 -0.0589 0.0143
(-1.70) (-0.62) (0.05)

accuracy-declaration (T1) 0.108 0.0709 0.185
(1.56) (0.56) (0.55)

confidence-trait -0.136∗ -0.264∗ -0.695∗

(-2.23) (-2.37) (-2.38)

confidence-declaration (T2) 0.238∗∗∗ 0.355∗ 1.215∗∗

(3.36) (2.65) (2.93)

overprecision center 0.0426∗∗ 0.0453∗ 0.216∗∗∗

(2.76) (2.05) (3.32)

overprecision pendants (sum) 0.0268∗∗ 0.0268 0.102
(3.04) (1.83) (1.92)

intercept 1.696∗∗∗ 1.706∗∗∗

(10.84) (7.43)
intercept cut 1 -0.637

(-0.70)
intercept cut 1 1.154

(1.33)
N 1.408 352 352

t statistics in parentheses

Question dummy coefficients not shown

Individual error: robust s.e. clustered for 176 subjects

Collective and crowd errors: robust s.e. clustered for 44 groups
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.5: Treatment effects on final errors: log error, log collective error and wisdom of
crowd error (in period 6). Linear regression (models 1 and 2) and ordered logit regression
(model 3).
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D Instructions

B Mathematical Appendix

B.1 Appendix for Section 3

B.1.1 Theoretical Framework

The uncertainty is described by a probability space (Ω,F , P ), with Ω being the set of

all states of nature, F being the σ-algebra of events, and P being a probability measure

on F . For state of nature ω ∈ Ω, the correct answer to the question is denoted by θ(ω),

i.e., θ is a random variable on (Ω,F , P ). When the team members are confronted with

the question, every team member i is equipped with some information set describing i’s

knowledge about the true state of nature, Fi(0), with i = 1, 2, 3, 4 denoting the four team

members. Thereby, Fi(0), technically a sub-σ-algebra of F , contains all those events of

which team member i knows at time t = 0 for sure whether they have occurred or not.

Building only on the information available to them at time t = 0, all team members

then state their guesses on the correct answer: we denote these answers at time t = 1 by

Xi(1) (i = 1, 2, 3, 4): the fact that team member i can only make use of the information

contained in Fi(0) technically translates into Xi(1) being a random variable which must be

Fi(0)-measurable. Additionally, at time t = 1, team member i also provides information

about the confidence level associated withXi(1): this confidence statement will be denoted

by Ci(1), technically it is also a Fi(0)-measurable random variable.

After the team members have stated their answers and confidence levels at time t =

1, the team leader learns about the other team members’ answers, X2(1), X3(1), and

1



X4(1), as well as their confidence levels, C2(1), C3(1), and C4(1).1 Thus, the team leader

can update by combining the initial information, F1(0), and the observed answers and

confidence levels of the other team members to build

F1(1) := σ (F1(0), X2(1), X3(1), X4(1), C2(1), C3(1), C4(1)) .2

Similarly, the non-central team members can update their information, however, they

only observe the answer and confidence level stated by the team leader:

Fi(1) := σ (Fi(0), X1(1), C1(1)) , i = 2, 3, 4.

Again, all team members i now state their answers, Xi(2), and confidence levels, Ci(2).

When stating these, team members can only build on the information set Fi(1), which

however in general is larger than Fi(0), thus the answers and confidence levels stated at

time t = 2 may well differ from those stated at time t = 1.

After the answers and confidence levels at time t = 2 have been stated, the team

leader again observes what the other team members have stated, which can be used for

updating information:

F1(2) := σ (F1(1), X2(2), X3(2), X4(2), C2(2), C3(2), C4(2))

= σ((F1(0), Xi(τ), Ci(τ), i = 2, 3, 4, τ = 1, 2) .

Similarly, the non-central team members can update their information, using the team

leader’s stated answer and confidence level:

Fi(2) := σ (Fi(1), X1(2), C1(1)) = σ (Fi(0), X1(τ), C1(τ), τ = 1, 2) , i = 2, 3, 4.

Yet again, all team members i now state their answers, Xi(3), and confidence levels,

Ci(3). When stating these, team members can only build on the information set Fi(2),

which however in general is larger than Fi(1), thus the answers and confidence levels stated

at time t = 3 may differ from those stated at time t = 2. Afterwards, information updating

takes place again, and the process of updating and stating answers and confidence levels

goes on. Formally, this can described by Xi(t) and Ci(t) being Fi(t − 1)-measurable for

all team members i = 1, 2, 3, 4 and all times t = 1, . . . , 6, and

F1(t) := σ (F1(t− 1), X2(t), X3(t), X4(t), C2(t), C3(t), C4(t))

= σ((F1(0), Xi(τ), Ci(τ), i = 2, 3, 4, τ = 1, . . . , t)

1In this mathematical appendix we use capital letters to indicate random variables.
2σ(·) denotes the result of combining information, technically, it is the smallest sub-σ-algebra of F

with respect to which all combined information is measurable.
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as well as

Fi(t) := σ (Fi(t− 1), X1(t), C1(t)) = σ (Fi(0), X1(τ), C1(τ), τ = 1, . . . , t) , i = 2, 3, 4

for all times t = 1, . . . , 6.

Using a payoff function, Π, which is decreasing in its argument, team member i’s guess

at time t, Xi(t), is awarded by Π(|θ −Xi(t)|). In the end, the actual payoff is determined

by randomly choosing the payoff belonging to one of the six answers, i.e., the payoff equals

Π(|θ −Xi(1)|), . . . ,Π(|θ −Xi(6)|), each with a probability of 1/6.

B.1.2 Rational Models of Learning

Rational approaches assume that team members maximize their expected payoff. Accord-

ing to rational models, team member i will choose Xi(1), . . . , Xi(6) and Ci(1), . . . , Ci(6)

such that the expected payoff

1

6

6∑
t=1

E (Π(|θ −Xi(t)|))

becomes as large as possible.

First, we state an almost trivial lemma about the maximal amount of information the

team members can collect.

Lemma B.1. Information acquisition in the team is bounded, no team member can learn

more than the combination of all team members’ initial information, technically:

Fi(t) ⊆ σ (F1(0),F2(0),F3(0),F4(0)) =: F(0).

We now discuss how the team leader is expected to behave under rational models of

learning.

Proposition B.1. 1. If the information contained in the pendants’ first-round answers

and confidence statements allows the team leader to get to know all of the informa-

tion contained in the pendants’ initial information that is important with respect

to the correct answer, then the team leader will give the same, optimal answer in

rounds 2 through 6. Formally,

if P (θ|σ(F1(0), Xi(1), Ci(1), i = 2, 3, 4)) = P (θ|F(0)) ,

then X1(t) = arg max
XF(0)−measurable

E (Π (|θ −X|)) for t = 2, . . . , 6.

3



This is in particular fulfilled if the team leader is able to completely infer the maxi-

mally available information, F(0), from the other team members’ first round answers

and confidence statements, i.e., if σ(F1(0), Xi(1), Ci(1), i = 2, 3, 4) = F(0).

2. If P (θ|σ(F1(0), Xi(1), Ci(1), i = 2, 3, 4)) = P (θ|F(0)) (as in ’1.’), then the team

leader’s optimal behavior is to give the answers X∗ := arg max
XF(0)−measurable

E (Π (|θ −X|))

in rounds t = 2, . . . , 6 and arg max
XF1(0)−measurable

E (Π (|θ −X|)) in the first round.

Proof. 1. Because of Lemma B.1, the team leader can never give an answer better than

arg max
XF(0)−measurable

E (Π (|θ −X|)) .

On the other hand, given that

P (θ|σ(F1(0), Xi(1), Ci(1), i = 2, 3, 4)) = P (θ|F(0)) ,

the team leader can form this conditional expectation at times t = 2, . . . , 6, because

it can be formed when knowing F1(0), X2(1), X3(1), X4(1), C2(1), C3(1), and C4(1).

2. The statement for rounds 2 through 6 has already been proven in ’1.’, and the state-

ment for the first round follows from the same reasons. As this strategy separately

maximizes each of the terms in the expected payoff, 1
6

∑6
t=1 E (Π(|θ −X1(t)|)), it is

the optimal strategy for the team leader.

We now discuss how the pendants are expected to behave under rational models of

learning.

Proposition B.2. 1. If, from the team leader’s answers and confidence statements in

the first two rounds, pendant i can learn everything that is relevant with respect to

the correct answer, then pendant i will state the optimal answer in rounds 3 through

6. Formally,

if P (θ|σ(Fi(0), X1(1), C1(1), X1(2), C1(2))) = P (θ|F(0)) ,

then Xi(t) = arg max
XF(0)−measurable

E (Π (|θ −X|)) for t = 3, . . . , 6.

This is in particular fulfilled if pendant i is able to completely infer the maximally

available information, F(0), from the team leader’s first and second round answers

and confidence statements, i.e., if σ(Fi(0), X1(1), C1(1), X1(2), C1(2)) = F(0).
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2. If P (θ|σ(Fi(0), X1(1), C1(1), X1(2), C1(2))) = P (θ|F(0)) (as in ’1.’), then pen-

dant i’s optimal strategy is to give the answers arg max
XF(0)−measurable

E (Π (|θ −X|)) in

rounds t = 3, . . . , 6, arg max
XFi(1)−measurable

E (Π (|θ −X|)) in the second round, as well as

arg max
XFi(0)−measurable

E (Π (|θ −X|)) in the first round.

Proof. The proofs are analogous to the corresponding proofs of Proposition B.1.

Overall, we have thus derived the following results which correspond to Prediction 1:

if answers and confidence statements of the team members can be used to gain all relevant

information contained in the team members’ initial information, then the team leader will

state the optimal answer in rounds 2 through 6 and the pendants will state the optimal

answer in rounds 3 through 6.

B.1.3 Näıve Models of Learning

Naive models of learning suppose that, from round to round, answers are convex combi-

nations of own and other team members’ answers according to weights gij:

X1(t+ 1) = g11X1(t) + g12X2(t) + g13X3(t) + g14X4(t),

Xi(t+ 1) = gi1X1(t) + giiXi(t), i = 2, 3, 4.

Using the notation X(t) := (X1(t), . . . , X4(t))′ for t = 1, . . . , 6, the updating can

conveniently be written in vector and matrix notation as X(t + 1) = GX(t), where G is

given as follows:

G =


g11 g12 g13 g14

g21 g22 0 0

g31 0 g33 0

g41 0 0 g44

 . (B.1)

G is a row-stochastic matrix which means that all entries of G are non-negative and

that, for each row, the sum of the corresponding entries equals unity. Additionally, to

avoid trivial special cases, we assume that all the parameters in equation (B.1) are strictly

positive: g11, g1i, gi1, gii > 0 for i = 2, 3, 4, meaning that, when updating, the team leader

takes into account the previous guesses of all team members, while all other team members

update their guesses using their own and the team leader’s previous guess.3

We first discuss under which conditions the team leader and pendants update their

guesses only once and twice, respectively.

3In section 5.1, we study one baseline model, called the Sticking Model, in which this assumption is
not satisfied. In that model, we have gii = 1 for all i = 1, ..., 4 and hence gij = 0 for i 6= j.
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