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Abstract

We study the formation of networks in environments where agents derive bene…ts
from other agents directly linked to them but su¤er losses through contagion when
any agent on a path connected to them is hit by a shock. We …rst consider networks
with undirected links (e.g. epidemics, underground resistance organizations, trade
networks) where we …nd that stable networks are comprised of completely connected
disjoint subnetworks. Then, we consider networks with directed links and we …nd
that the completely connected network is stable, although, its exact structure, and
thus contagion implications, is sensitive to parameter values for costs and bene…ts.
Lastly, we introduce aggregate externalities (e.g. …re sales for the case of …nan-
cial networks) and we …nd that stable networks can be asymmetric, connected but
not completely connected, thus capturing the main features of inter-industry and
…nancial networks.
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1. Introduction

A signi…cant part of the literature on strategic network formation has focused on variants
of the ‘connections’ model studied by Jackson and Wolinsky (1996). The common idea
of this literature is that being part of a network allows agents to bene…t not only from
their direct links but also from indirect connections to other agents in the network. In
contrast, the costs of network participation in these models are only associated with the
creation of direct links. However, as Blume et al. (2011) observe in many networks
studied in economics and other disciplines the structure of costs and bene…ts is inverted.
As an example from economics they refer to the extensive body of work on issues related
to systemic risk in …nancial networks. In those networks two institutions form a link
by signing a loan agreement from which each party derives a bene…t. A failure by one
institution to meet its obligations in‡icts costs not only to the two parties that have signed
the agreement but also to other institutions connected to them, directly or indirectly, by
other …nancial agreements.

The above observation motivated Blume et al. (2011) to study the formation of net-
works with this alternative general payo¤ structure. They have restricted their analysis
to undirected graphs where information can ‡ow in either direction along a link. Using
stability as a solution concept that allows them to make predictions about which network
structures are more likely to form they …nd stable networks that consist of fully connected
disjoint subgraphs (cliques). Such arrangements might be o¤ering a good description of
some examples of social networks they mentioned in their paper (e.g. formation of groups
that minimize the risk of disease epidemics and the organization of cladenstine opera-
tions) but de…nitely less so for …nancial systems that have network structures which are
connected but incomplete.1 In such networks there is always a path connecting any of the
nodes (…nancial institutions) with every other node (ignoring for the moment that links
can also be directed), however, not all nodes are directly linked with every other node.

In this paper, we argue that by distinguishing between directed and undirected graphs
we can explain such variations in network structures. We begin by analyzing the formation
of undirected networks in a variant of the Blume et al. (2011) model. As in their model
(a) agents derive a bene…t by forming a link, and (b) each agent fails independently with
some …xed probability. The di¤erence in the two models is related to the way the costs
associated with such failures spread through the network. In their model after a failure
each node with some probability becomes live and shocks can only be transmitted through
live nodes. In our model all nodes are live and thus a¤ected by the shock, however, the
magnitude of the losses for each node depends on its distance from the one that initially
failed. We con…rm that when links are undirected there exist stable networks that consist
of fully connected disjoint subgraphs but we go one step further by showing that these are
the only structures that can be stable.

Then, we turn our attention to directed networks where shocks can be only transmitted
along directed paths. In …nancial networks an outgoing (ingoing) link means that the
institution represented by the node is a borrower (lender). Thus, the link captures the
‡ow of …nancial liabilities. By having only a subset of nodes being live the Blume et

1For a variety of examples see the review article by Bougheas and Kirman (2015).
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al. (2011) model mimics the transmission of shocks in directed networks. However, there
is an important di¤erence. In their model the paths are exogenously determined but in
our model are equilibrium outcomes. The direction of the links are determined by the
strategic decisions of agents. We …nd that the most likely stable structures are complete
directed networks (tournaments). More interestingly, we …nd that small variations in the
parameters of the model can signi…cantly a¤ect the vulnerability of the network to a failure
of any randomly chosen node. In particular, we …nd that by either slightly decreasing the
bene…t derived from forming a link or slightly decreasing the cost associated with being hit
by a shock we can move from a network structure where there is only one (critical) agent
whose failure would a¤ect all other agents to a stable structure where all agents become
critical.

The prediction that stable networks with directed links are connected …ts well with
what we know about the structure of …nancial networks, however, our prediction that such
networks are complete is not. With that in mind we next consider a modi…ed version of
our model that allows for aggregate externalities. More speci…cally, we consider the case
where the costs su¤ered by each agent following a shock on the network is increasing in the
number of agents being a¤ected. Now we …nd that there are parameter values such that
any stable network is connected but not complete. Moreover, we …nd that such networks
are more likely to be asymmetric that is also a feature of real networks.

In the following section, we describe a few examples of networks from economics and
other disciplines, both undirected and directed, whose general structure is captured by
our model.2 We also o¤er examples of aggregate externalities that might generate network
structures similar to those predicted by our …nal version of our model..

1.1. Contagion in Social and Economic Networks

The …rst three are examples of undirected networks and the following two are examples of
directed networks.

Contagious diseases and group size As Blume et al. (2011) observe there is a trade-
o¤ related to the formation of social groups. Larger clusters increase the bene…ts of partici-
pants, however, they also increase the risk of contagion. This trade-o¤ is clearly illustrated
in the study by Hamilton et al. (2007) of hunter-gatherer societies where they make the
distinction between cohesive and disruptive forces in the process of group formation and
among the latter they identify the spread of diseases.

Underground resistance networks This is another of the examples o¤ered by Blume
et al. (2011). Participants in such organizations bene…t by working in groups but also
there is a risk that the group might be in…ltrated. Chai (1993) explores this trade-o¤ in
the context of groups that resist governments while Morselli et al. (2007) do the same for
criminal networks.

2Many more examples of social and economic networks can be found in Jackson (2008) and Newman
(2010).
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Globalization and the international transmission of shocks The free movement
of goods and services, intermediate inputs in production (labor and physical capital) and
…nancial capital can be welfare enhancing during times of prosperity but they also facilitate
the transmission of regional shocks around the globe. This trade-o¤ has been studied by
Imbs (2004), Kose et al. (2003) and since then it has been an active topic of research.

What all three examples mentioned above have in common is that links are symmetric
and thus undirected.3 In all three examples the size of the group is a source of tension
between opposing forces. Larger groups confer bene…ts to participants as there are more
opportunities for collaboration. However, larger groups also expose a greater number of
participants to shocks in their network (new virus, an agent caught by the authorities, a
macroeconomic downturn). How big the network will be it will depend on balancing the
costs and bene…ts of participation. The risk of losing a member in clandestine operations
might be unacceptable and thus would keep the size of the network small. In contrast, the
international trade network has been expanding both by enlisting more trading partners
and reducing barriers to trade.

Financial networks and systemic risk This is our …rst example of a directed net-
work. In the description we o¤ered above shocks are transmitted around the network from
borrowers to lenders. The inability of a borrower institution to meet its obligations with
its lenders can cause a cascade of failures through the system. The lenders of the initially
failing institution might be unable to meet their own obligations and this process can keep
going till the system is cleared (e.g., Eisenberg and Noe, 2001).4 Shocks can also be trans-
mitted from lenders to borrowers when the former group suddenly interrupts established
credit lines that it has earlier provided to the latter group. Episodes of market freezes
usually take place before the onset of a crisis as lenders anticipate that borrowers will, in
the near future, have a hard time repaying their debts (e.g. Diamond and Rajan; 2011).5

During a crisis, systemic losses can get magni…ed because of ‘…re sales’.6 As Shleifer and
Vishny (1992) have shown the simultaneous liquidation of assets by multiple institutions
can depress the market prices of these assets which in turn further deteriorates the balance
sheets of other institutions that hold similar assets thus potentially leading to further
failures.

Firm linkages and macroeconomic fat tails Directed networks are also useful for
understanding the causes of fat tails in the distribution of macroeconomic shocks. Recent
work by Acemoglu et al. (2012, 2017b) have shown that the interaction between the
distribution of idiosyncratic shocks and the structure of the network can become a shock

3There are exceptions but to address them we need a more specialized model. For example, as Chai
(1993) suggests while it is true that exposure to the risk of in…ltration keeps the size of resistance groups
small, these groups can be further protected by having a hierachical structure where every person is in
contact with no more that three other members (one above and two below).

4For excellent literature reviews see Acemoglu et al. 2017a, Babus and Allen (2009) and Glasserman
and Young (2016).

5For a network approach to market freezes see Gabrieli and Georg (2014).
6See Shleifer and Vishny (2011) for a review of the literature.
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ampli…cation mechanism that can explain ‘abnormal’ shocks at the aggregate level.7 They
analyze networks where nodes represent …rms that buy from and sell goods to each other
thus creating a web of complex relationships.

In Acemoglu et al. (2017b) they show that light-tailed risks (small deviations from the
normal case) in conjunction with some lack of balance in terms of economic importance
across the sectors of the economy can give rise to macroeconomic fat tails. One possible
explanation for the deviation of the distribution of idiosyncratic shocks from the nor-
mal case can be related to what in the past macroeconomists have identi…ed as aggregate
demand externalities. Examples of such externalities have been studied in a variety of con-
texts, such as search in labor markets (Diamond, 1982), coordination of economic activity
(Cooper and John, 1988), market structure (Kiyotaki, 1988) and industrial development
(Murphy et al., 1989).

By introducing in our model aggregate external e¤ects we are able to show that directed
networks, such as those considered above, though connected are not complete. We also
…nd that such networks are more likely to me asymmetric which is consistent with real-life
macroeconomic and …nancial networks.

1.2. Related Literature

Our paper is related to a quickly expanding literature on the endogenous formation of
economic and social networks. Early work focused on variants of the Jackson and Wolinsky
(1996) connectionist model.8 We focus our literature review on works that consider network
formation in environments with systemic risk.

As we mentioned above, the most closely related paper to ours is Blume et al. (2011).
They restrict their attention to undirected graphs. However, the transmission of a shock is
restricted to spread only through live nodes. In contrast, in the undirected graph version
of our model all nodes are live but we allow for losses to be discounted as the distance of
nodes from the one hit by the shock goes up. The two models become identical by setting
equal to one (a) the probability of a node being live in Blume et al. (2011), and (b) the
discount factor in our model. In addition, to …nding, as they do, that there exist stable
networks that consist of disjoint fully connected subgraphs we also show that any stable
network must have that structure.

Erol and Vohra (2014) also consider formation of undirected links and derive a similar
result, however, they do so from a network formation game that has a quite di¤erent
structure. In their model any pair of agents linked together play a coordination game,
each agent deciding whether to default or not and where their expected payo¤s also depend
on their beliefs about the default strategies of all other agents. At an earlier stage agents
form undirected links anticipating the later stage possibilities.

Our work is also related to a number of papers in the …nance literature that explore
the links between network structure and systemic risk. In particular, there has been a lot

7See also Carvalho (2014) for a lees technical exposition of this topic.
8See, for example, Bala and Goyal (2000), Dutta and Mutuswami (1997), Jackson and Watts (2002)

and Watts (2002).
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of work attempting to understand which types of network structures are more vulnerable
to systemic risk (e.g., Acemoglu et al., 2015; Elliott et al., 2014).

Recently, there has also been some work on the formation of such networks. Cohen-Cole
et al. (2010) study competition in the …nancial market where participants form undirected
links. In Babus (2013) …nancial institutions form links to insure themselves against the
probability of system wide default. In contrast, in the …nancial interpretation of our model
…nancial institutions are participating in an interbank market. Acemoglu et al. (2014)
also study network formation but they exogenously restrict the links that are allowed to
be formed. When such restrictions are lifted then the complete network can be stable. By
introducing aggregate externalities we have derived alternative equilibrium structures.

Lastly, Caballero and Simpsek (2013) also consider externalities in …nancial markets
within a network approach. They introduce the concept of ‘price complexity externality’
to refer to the negative externality imposed to the rest of the system by the liquidation of
assets by failing institutions.

2. Undirected Networks

There are  agents represented as nodes on a graph (network). Let  = f1  g denote
the set of nodes. A link between two nodes indicates that the corresponding agents have
a direct relationship. Let  denote the complete network where all agents are directly
connected and let  = f j  µ g denote the set of all possible graphs. For two agents
 and  who are directly linked in network  we write  2 .

The following notations will be useful. We will write  +  for the network that we
obtain when we add link  to an existing network . Similarly, we will write ¡  for the
network that we obtain after deleting link . A walk between agents  and  is de…ned
as a sequence of agents beginning with  and ending with  such that for every pair of
adjacent agents in the sequence there exists a direct link. A path between agents  and 
is de…ned as a sequence of agents beginning with  and ending with  such that for every
pair of adjacent agents there exists a direct link and each agent appears only once in the
sequence. We let () denote the number of direct links in the shortest path between
agents  and . A cycle is formed by adding the link  to a path between agents  and
. A complete cycle is a cycle where all the agents that belong on the cycle are connected
with each other. An empty cycle is a cycle that there are no links between any two agents
that belong on the cycle and are not adjacent.

For any network  we let () denote the set of all distinct connected subgraphs and
() the set of all isolated nodes. Then  = ([02()

0) [ (). We let 0 denote that
the subgraph 0 is complete.9

For any player  we de…ne  
 = f : () = g, that is the set of agents with a shortest

distance from agent  equal to . Let j 
j denote the cardinality of the set. Then we haveP¡1

=1 j 
j =  ¡ 1. Notice that j 

1j is equal to the degree of node .

9Notice that there is a distinction between a complete cycle and a complete connected subgraph. An
agent on a cycle path can be linked to an agent that does not belong to the cycle path. This is not allowed
in the latter case.
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Next, we de…ne the bene…ts and costs from network participation. With probability 
one of the nodes of the network is hit by a shock. Given that all nodes are hit by a shock
with the same probability, the unconditional probability that a node is hit by a shock is
equal to 


.10 Agents derive bene…t  from each direct link as long as one of the following

two conditions holds: Either the network is not hit by a shock or the network is hit by the
shock but they are not connected, neither directly nor indirectly, to the agent hit by the
shock. There is no bene…t from indirect links. The cost to an agent of being hit by a shock
is equal to   1. Other agents of the network will su¤er losses only if they are connected
to the agent who is hit by the shock (they have to belong to the same connected graph).
Suppose that agent  is hit by a shock. For any agent  connected to agent  this indirect
cost is given by (), where 0    1; thus, the cost is declining with the number of
links in the shortest path between the two agents.

Suppose that 0 2 () and let j0j denote the cardinality of 0. Then, the expected
net payo¤ (

0 ) of agent  2 0 is given by:

(
0
 ) =

µ

1¡
j0j 



¶
¯
¯ 
1

¯
¯  ¡





¡
1 + 

¯
¯ 
1

¯
¯+ + ¡1

¯
¯ 

¡1

¯
¯
¢

=

µ

1¡
j0j 



¶
¯
¯ 
1

¯
¯  ¡





¡
1 +

P¡1
=1 


¯
¯ 



¯
¯
¢

The …rst term is equal to the expected bene…t derived from belonging in a subset of the
network  represented by a connected subgraph 0. The subgraph has j0j nodes and thus

the probability that one of the corresponding agents is hit by a shock is equal to j0j


.
As long as no agent that belongs to the subgraph is hit by the shock agent  will derive
a bene…t  from each of the direct links where the total number of these links is equal
to j 

1j. The second term is equal to the corresponding expected costs. Each agent fails
with probability 


. When an agent who belongs to the subgraph is hit by the shock all

agents su¤er a loss that is equal to  times a discount factor that depends on the shortest
distance of the agent from the one hit by the shock. Thus, costs due to contagion rise as
the distance form the agent hit by the shock declines.

2.1. Stability

As in Jackson and Wolinsky (1996) we use the notion of pair-wise stability to allow us to
make predictions about the types of networks that are likely to form. The formation of a
new link requires the approval of both agents forming the link. But any players can severe
a link unilaterally. This is a relatively weak notion of stability given that, as we will see
below, allows for stable networks where every participant would prefer to severe all links
simultaneously. In Section 4, we discuss alternative notions of stability where such cases
would be eliminated. Still, the notion of pair-wise stability by su¢ciently restricting the
set of stable networks allows us to make interesting predictions. Moreover, as Jackson and
Wolinsky (1996) note pairwise stability is independent of any particular dynamic process
through which the network is formed.

10In Section 4, we discuss alternative speci…cations of the distribution of shocks.
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De…nition 1 A network, , is stable if no agent  prefers to severe a link, and no pair of
agents  and  prefers to form link .

The following result addresses the two benchmark cases.11

Lemma 1 (a) if
¡
1¡ 2



¢
  


 then the empty network is stable, and

(b) if (1¡ )   

 (1¡ )  then the complete network,  , is stable.

Corollary 1 If

(1¡ )  



 (1¡ )  




 

µ

1¡
2



¶

 (1)

then neither the complete network nor the empty network are stable.

Our next result shows that stable networks always exist. In particular, as in Blume
et al. (2011), we will show that we can always construct stable networks that consist of
disjoint connected subgraphs. Then, we will go one step further and show that any stable
network has that structure.

Proposition 1 Stable networks always exist and consist of disjoint complete subgraphs.

Example 1 Let  = 9,  = 09,  = 5, and  = 1. Then the network comprised of two
complete subgraphs of sizes 5 and 4, respectively, is stable (see Figure 2.1).12

Proposition1 has identi…ed some su¢ecient results for stability but by no means are
necessary.13 Even if a network might not be stable in the presence of isolated agents
might be so in their absence. For example, a subgraph of size, say 0 might not be
stable if there are isolated agents, however, it might be stable if the smallest size complete
connected subgraph in the network exceeds some minimum value. An implication of the
last comment is that a multiplicity of stable networks is alomost certain.

Remark 1 As we metioned above pair-wise stability is a very weak concept. For example,
the stability condition for complete networks given in Proposition 1 might hold even if the
expected payo¤ of all agents is negative and thus they would prefer to be isolated. This
is because form the moment that the network is complete the net bene…t of breaking a
single link can be negative even if the agent can be better o¤ had been able to severe all
links at once. However, we can eliminate such networks if we restrict our attention to the
(very realistic) case where the staring point of every network is the empty network (all

11All proofs are presented in the Appendix.
12Notice that (A2) in the proof given in the Appendix is satis…ed for these parameter values. In addition,

we need to ensure that no agent belonging to the size 4 subgraph would like to link with an agent belonging
to the size 5 subgraph. The expected payo¤ from creating the new link is given by

(1 ¡ )4¡


9

¡
1 + 4 + 42

¢

which is less than the expected payo¤ from not creating the link given by (A1) for  = 9 and  = 4.
13See A3 in the proof of the result in the Appendix.

8



Figure 2.1: A Stable Network ( = 9,  = 09,  = 13,  = 5,  = 1)

agents are isolated). Under this restriction we can provide an upper bound on the size of
subgraphs that can be parts of stable networks. De…ne ¤¤() as the maximum value

of  such that the following inequalities hold
³
1¡ (+1)



´
 > 



¡
 + (¡ 1)2

¢
. Thus,

¤¤ is equal to the largest size of fully connected subgraph that an isolated agent would
wish to join and thus sets an upper bound for the size of such subgraphs. Notice that
the lower bound can be an isolated agent. To see this suppose that ¤¤ =  ¡ 1. In that
case, one stable network consists of a completely connected subgraph of size ¡ 1 and an
isolated agent.

Next, we show that any stable network consists of disjoint fully connected subgraphs.
We …rst show that completeness is necessary for stability.

Proposition 2 Any incomplete connected subgraph is not stable.

Then, the following result follows immediately from Propositions 1 and 2.

Corollary 2 Stable networks exist and each stable network consists of a collection of
connected subgraphs.

Stable networks respond to a trade-o¤ between large size structures that bring more
bene…ts to participants and small size structures that protect them from shocks. Given that
indirect connections do not confer any bene…ts but are still potentially harmful they are
absent in stable networks. The small size of hunter-gatherer societies might have indeed
protected them against epidemics as the small size of resistance groups protects them
against in…ltration. In contrast, when the expected costs of contagion are low relative to
the bene…ts of new connections the formation of large complete networks becomes possible.
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For example, despite the losses in welfare resulting from the transmission of macroeconomic
shocks there is still a tendency for expanding globalization by opening international borders
to allow for the movement of goods and services, inputs in production and …nancial capital.

2.2. Ex Ante E¢ciency vs Ex Post Systemic Losses

Up to this point we have been focusing on the types of network structures that are more
likely to form. Now we turn our attention to relative performance. For the types of
networks that we are interested there are two potentially interesting ways of measuring
performance. The …rst one is having a measure of ex ante performance as in Jackson
and Wolinsky (1996) who used the sum of expected utilities of network participants. The
second way provides a measure of ex post performance by focusing on 6the magnitude of
potential systemic losses after a shock on the network. Clearly, these losses are minimized
by not having any links at all, that is all agents are isolated, j()j = . Such a measure
ignores the bene…ts of creating networks in the …rst place. Nevertheless, such a measure
can be bene…cial to policymakers who are interested in minimizing the damage form con-
tagion. With that in mind, we are going to identify among all stable networks the one
that minimizes ex post losses.

De…nition 2 A network ¤ is ex ante e¢cient if it maximizes the sum of the payo¤s of
all agents:14

¤ = argmax


P
=1 ( ) = argmax

P
02()

P
20 (

0 )¡ j()j





Proposition 3 E¢cient networks are such that every 0 2 () is complete.

Corollary 3 E¢cient networks are stable.

The expected payo¤ of an agent  belonging to one of the complete subgraphs of size 
is given by

¡
1¡ 



¢
(¡1)¡ 


 (1 + (¡ 1)). By maximizing this payo¤ with respect

to  we can …nd the size of a completely connected subgraph ̂ that o¤ers the maximum
expected payo¤ to its members.15 Setting the f.o.c. equal to 0 and solving for  we get:

̂ =

µ

1 +



¡





¶

2

Notice that for a …xed size, , of the network, the higher is the probability that the network
will be hit by a shock the lower is the size of the optimal subgraph. If mod ̂ = 0 then the
network consisting of completely connected subgraphs of size ̂ is the one that maximizes
ex ante e¢ciency. If mod ̂  0 then not all agents will be receiving the same payo¤

14Notice that the expected payo¤ of each  2 () is equal to ¡ 
. This expression cancels out in all

our derivations with only exceptions those in the last section were we introduce aggregate externalities.
For this reason we opted to keep it rather making an ad hoc introduction later in the paper.

15Given that ̂ is probably not an integer we need to compare the payo¤s of subgraphs of sizes equal
to the …rst integer higher than ̂ with the payo¤s of subgraphs of sizes equal to the …rst integer lower
than ̂. We will ignore this complication
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and the most e¢cient network might not feature subgraphs of size ̂. However, for high
values ,  and  or low values of , ̂ will be small relatively to  in which case it is more
likely that the e¢cient network mainly consists of subgraphs of size ̂.

Next, we consider the relationship between stability and systemic losses. Clearly, the
magnitude of systemic losses following a shock decline as the size of subgraphs gets smaller.
Therefore, we are looking for the smallest fully connected subgraph that is stable when
all other subgraphs have the same size.16 Denote the size of such subgraph by ·. If
the following inequality holds an agent belonging to a fully connected subgraph of size ·
would prefer not to link with another agent belonging to another similar subgraph:
µ

1¡




¶

( ¡ 1) ¡



 (1 + (¡ 1)) 

µ

1¡
2



¶

 ¡




¡
1 + + ( ¡ 1)2

¢

The left-hand side is equal to the expected payo¤ from being part of a completely connected
subgraph of size . If the agent links with an agent in another similar subgraph the size
of the new network will double and thus the probability that the subgraph will be hit by a
shock also doubles. There is the additional bene…t  from the extra link but also there are
additional costs. There is an additional expected cost 


 related to the new link and an

additional expected cost 

(¡ 1)2 from the new indirect links. · is the smallest value

of  such that the above inequality is satis…ed. In that case a network consisting of fully
connected subgraphs of size · is stable.

Example 2 Let  = 6,  = 1,  = 1,  = 7, and  = 1
2
. Then ̂ = 3. The above inequality

is satis…ed for  = 2 but not for  = 1 and thus we have · = 2. Notice that this example
also trivially satis…es the stability condition for the complete network.

The above example identi…es a tension between stability, e¢ciency and the size of
systemic losses. The observation that stability can be satis…ed with networks that are
much larger than those that maximize e¢ciency is not necessarily due to the notion of
stability that we use. When agents make decisions about forming or breaking a link they
ignore the negative impact that these decisions have on the payo¤s of other agents. This
negative externality implies that agents would tend to form too many links relative to the
number of links of the e¢cient network.17

3. Directed Networks

Up to this point we have treated symmetrically two agents forming a link. In our model
the paths formed by the links of the network capture the path of contagion following a
shock. Thus far, we have allowed the ‡ows to follow both directions de…ned by a link.
After a link is formed when any one of the two agents is hit by a shock then the other agent
also su¤ers losses. However, in many applications contagion ‡ows only in one direction
which depends on the nature of the relationship between the two agents. For example, for
any two linked banks in a banking network there is a lender bank and a borrower bank.

16Once more, we need to do a bit more work when  is not divisible by that particular size.
17As Acemoglu et al. (2014) show in …nancial markets ignoring this exteral e¤ect leads to overlending.
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When the borrower bank is hit by a shock and is unable to meet its obligations to the
lender bank the latter also su¤ers a loss. The lender bank might also play the role of a
borrower bank in another link in which case the shock can be further transmitted.18

We will use directed links to capture these one way ‡ows. In what follows  captures
not only the fact that agents  and  are linked but also that shocks are transmitted from
agent  to agent . Graphically, there will be an arrow between nodes  and  pointing
at node . Using the new interpretation of  we can de…ne, directed walks, directed
paths and directed cycles using the de…nitions for walks, paths and cycles o¤ered in the
last section. () now denotes the shortest directed path from  to .19 We let  ()
= f : () = g denote the set of agents with a shortest distance to agent  equal to 
and  () = f : () = g denote the set of agents with a shortest distance from agent
 equal to . Notice that the cardinality of these sets for  = 1 are the in-degree and the
out-degree of node , respectively. When there is no path leading from agent  to agent
 we set () ¼ 1. Lastly, a Hamiltonian path is a directed path that visits each node
exactly once while a Hamiltonian cycle is obtained from a Hamiltonian path by adding
the link from the last node to the …rst node.

We de…ne the bene…ts and costs from participation in directed networks in a similar
way as we have done for undirected networks. As above, the unconditional probability
that an agent is hit by a shock is equal to 


. As long as there is no agent hit by a shock

each agent obtains a bene…t  form each direct link irrespectively of the link’s direction.20

As above, an agent hit by a shock su¤ers cost . The only di¤erence is that in directed
networks other agents of the network will su¤er losses only if they are connected to the
agent who is hit by the shock by a directed path. Say agent  is hit by a shock. For any
agent  connected to agent  this indirect cost is given by (), where 0    1; thus,
as above the cost is declining with the number of links in the shortest path between the
two agents. The loss of bene…ts that each agent su¤ers following any shock it will depend
on the connectedness of the network. When agent  is hit by a shock all links located
on directed paths beginning with agent  are a¤ected and the corresponding bene…ts are
lost for both agents of each link. Consider the network 0() obtained from the original
network  after we have eliminated all a¤ected links. Each agent will keep the bene…ts
from all their remaining direct links in either direction. Then we can write the expected
payo¤ function of agent  from participating in the original network  as:

( ) =

µ

1¡
jj 



¶
¯
¯ 
1

¯
¯  ¡





³
 ¡

¯
¯ 
1

¯
¯
0()

+
P

( 6=)20()

³
() ¡

¯
¯ 
1

¯
¯
0()


´´

where j 
1j = j ()1j + j ()1j and j 

1j0() is de…ned in a similar way for the network
obtained after agent  is hit by a shock. The costs are calculated as in the case for
undirected networks but know only those paths leading to  are included. Notice that for
all agents such that there is no directed path leading from them to agent , () ¼ 0.

18In many real world networks some links can be bi-directional. In order to keep the analysis simple we
ignore such links.

19Keep in mind that now it is most likely that () 6= ().
20The idea here is that both agents bene…t for forming the link. For example, in banking networks both

the lending and the borrowing bank bene…t from the loan.
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The following example describes the expected net payo¤s obtained from being part of
a complete directed networks of size 3. Understanding these simple networks is crucial for
the general analysis of directed networks of any size greater than 3.

Example 3 Suppose that  = 3 (  ). There are two possible types of complete directed
networks (see, Figure 3.1)

(a) Cycle: The links are , , . The network is symmetric as all agents have exactly
the same net expected payo¤ given by:

( 3) = (1¡ ) 2¡


3

¡
+ + 2

¢

In this case when any agent is hit by a shock all bene…ts are lost and all agents will su¤er
losses.

(b) Complete Order:21 The links are , , . The net expected payo¤s are given by:

( 3) = (1¡ ) 2¡


3
( ¡ 4)

( 3) = (1¡ ) 2 ¡


3
( +  ¡ 3)

( 3) = (1¡ ) 2¡


3
(+ 2 ¡ 3)

When agent  is hit by a shock all links are a¤ected, when agent  is hit by a shock only link
 is a¤ected and when agent  is hit by a shock none of the links are a¤ected. Remember
that agents keep receiving bene…ts from links that are not a¤ected.22

The above example illustrates how small changes in connectivity can have large aggre-
gate and distributional e¤ects.

3.1. Stability

De…nition 3 A network, , is stable if no agent  prefers to severe a link, and no pair of
agents  and  prefer to form either link  or link .

The de…nition of stability is similar as that used in the case of undirected networks.
The only di¤erence is that now stability requires that any pair of agents not linked do not
want to form a link in any of the two directions.

Lemma 2 Suppose that (1¡ ) + (¡1)


  

. Then the empty network is not stable.

21A complete directed graph of size  is a complete order if we can label the nodes 1   such that
there is a link form  to  , link , if and only if   . Notice there are links form  to all other nodes
and there are links to 1 from all other nodes. A complete directed graph is also known as a tournament.

22In a banking network after a bank is hit by a shock, its debtors (other banks that have borrowed from
it) still need to meet their obligations.
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Figure 3.1: (a)  = 3 Cycle; (b)  = 3 Complete Order

When the empty network is not stable a link  is always bene…cial to agent  (the
origin of the link). In contrast, whether the link is bene…cial to agent  it will depend on
the distribution of shortest paths that include link . If any agent along these paths is
hit by a shock agent  will also su¤er a loss. In contrast, the only bene…t that agent 
obtains from such paths is from the link to agent . Below we will show that small changes
in this trade-o¤ can have large consequences for the structure of the network and, hence,
for aggregate losses due to shocks. For making these comparisons we de…ne an agent as
critical if when after this agent is hit by a shock all links of the network are a¤ected. We
begin by looking at the extreme case where any shortest path larger than 1 is unstable.

Proposition 4 Suppose that the empty network is not stable and (1¡ )  + (¡2)


 


 (1 + ) . Then the only stable network is a complete order tournament.

In the case of the above proposition there is a single critical agent associated with
the single Hamiltonian path (see, Figure 3.2) For the above result, we have imposed the
constraint that directed paths of length two are not stable. Next, we relax the constraint
by allowing directed paths of length two but not directed paths of length three. The
following result identi…es conditions such that there exists a Hamiltonian cycle; that is
every agent is critical.23

Proposition 5 Suppose that (a) the empty network is not stable, (b) (1¡ ) + (¡2)


 


 (1 + ) , (c) (1¡ )  + (¡3)


  


 (1 +  (1 + )) , and (d)   2

2
. Then for odd

23There is quite a lot of work trying to establish the maximum number of hamiltonial paths and
hamiltonian cycles in tournaments (e.g. Adler et al., 2001). It is well known that the number can be very
large. Here, we are interested in the existence of such paths and cycles when we impose restrictions on
the maximum allowable shortest path.
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Figure 3.2: A Complete Order for  = 5

values of  there exist stable tournaments where every agent is critical and for even values
of  there exist stable tournaments where  ¡ 1 agents are critical.

According to Proposition 4 when chains (shortest path greater than one) are too costly
the only connected stable network is the complete order tournament where there is exactly
one critical player. In Proposition 5 we have shown that when we allow for shortest paths
equal to two then the conclusions change dramatically. There are stable tournaments
where every agent is critical because there exists a Hamiltonian cycle (see, Figure 3.3).
Any shock will a¤ect all agents. Of course, the complete order tournament is still stable
as there are many other tournaments with the number of critical agents ranging from one
to . In fact, it might be possible to construct stable networks that are not connected
but which are comprised of sets of disjoint complete subgraphs. The reasoning behind
this argument is based on what we know from our results related to undirected networks.
However, there is a crucial di¤erence. When the networks are directed the only network
with isolated agents that can be stable is the empty network. As long as the empty network
is not stable then any agent belonging to a connected subgraph would prefer to link with
an isolated agent (in either direction but an outgoing link would be preferable) and any
isolated player would de…nitely prefer to link with a connected subgraph as long as the
link is outgoing (the agent might also prefer an incoming link).

The last observation suggests that the formation of stable networks that are not con-
nected are less likely. Furthermore, our results for undirected networks also suggest that
the only stable networks are complete. We have already shown that this is the case when
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Figure 3.3: Hamiltonian Cycle for  = 5

the shortest path cannot exceed one. It follows that relaxing this constraint should not
alter our conclusion that incomplete but connected networks are not stable.24 However,
the real-life directed economic networks that have the general structure of our model (e.g.
input-output and …nancial) are connected but incomplete. Below we consider a simple
extension of our basic model that will restrict the connectivity of stable structures.

3.2. Aggregate Externalities

Up to this point, we have assumed that the cost  is independent of the number of agents
that are a¤ected by the shock. However, both the macroeconomics and the …nancial eco-
nomics literatures suggest that there exist mechanisms generating aggregate externalities
that exacerbate the impact of shocks on each market participant. We capture these ex-
ternalities by allowing the cost associated with a shock to be increasing in the number of
a¤ected agents, ̂. Thus, we now write  (̂), where (1)  0 and 0  0. The following
result has importnat implications for the stability of the network.

Proposition 6 Suppose that 0()! 1 as  ! 1 and  ¼ 1. Then there exists ¤ such
that in any complete network with  > ¤ there are agents with negative expected payo¤.

24We have not proved that any subgraph has to be complete for the case of directed networks, which
automatically would also include connected networks, but we have argued that if such stable networks
exist are unlikely to be formed.
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Figure 3.4: A connected but incomplete network,  = 4

The above result does not imply that these complete networks are not pair-wise stable
as breaking a single link might not necessarily increase the expected payo¤. However,
as we explain in Section 4, this will not be the case if we introduce a stronger notion of
stability where agents are allowed to brake any number of links.

Moreover, any network with isolated agents cannot be stable. This is because creating
a link directed from the isolated agent to any agent in the network will increase the payo¤
of both agents. Thus, stable networks are very likely to be connected but incomplete (see,
Figure 3.4). In this example, if (4) is su¢ciently high then agents  and  will prefer
not to link in either direction as in that case a failure of the agent from whom the link
originated would a¤ect the whole network, thus increasing the cost to (4). As the network
stands the maximum number of agents that will be a¤ected after a shock is 3 in which
case the cost will be equal to (3).

The general e¤ect of aggregate externalities is to decrease the average number of agents
that can be a¤ected by a shock. However, that number can be small even in networks that
are connected but not comple. Furthermore, as the above example suggests such networks
can be asymmentric a standard feature of real-life networks.

4. Final Remarks

In this section, we consider the implications for our main results of changing some of the
main assumptions of our model.
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Stability The notion of pairwise stability that we have used throughout this paper is
weak. In some cases it allows for stable networks that would not survive a stronger notion
while in other cases has complicated the proofs of some of the results.

Following Jackson and Wolinsky (1996) we have assumed that agents cannot break
more than one link. Alternatively, consider the case where agents can break as many links
as they like. One implication of this change is that the proof of part (cii) of Lemma 5
(Appendix) can be greatly simpli…ed. While all other steps of the proof are straightforward,
this particular case is not and only arises because our stability notion does not allow agent
 to break both links on the cycle. Even if the expected payo¤ from retaining both links
is negative there is no bene…t in severing only one of them. Under the alternative notion
of stability  would break both links thus violating the supposition that the subgraph is
stable and completing the proof at that point.

The notion of pairwise instability might allow stable networks where each agent’s next
expected payo¤ is less that ¡ 


. In contrast, such networks would not be stable had we

allowed agents to break more than one link. We identi…ed such a case above when we
considered the impact of aggregate externalities on network formation. By breaking a
single link an agent loses the bene…t of having the link without signi…cantly reducing the
cost given that the probability that the network is hit by a shock has remained the same.

Discounting We have introduced discounting (decay) in our model to capture the pos-
sibility that costs related to shocks are decreasing as the shortest distance from the agent
hit by the shock goes up. Further, to keep the exposition simple we have followed other
examples in the literature (see, Jackson and Wolinsky, 1996; Watts, 2002) and have as-
sumed geometric discounting. Our results still hold if we allow for a weakly decreasing
decay function.

Distribution of shocks We have only allowed shocks that directly a¤ect only one
agent. Allowing for multiple shocks, either independent or correlated, would de…nitely
a¤ect quantitatively our results but not qualitatively. In all cases multiplicity of shocks
would increase the parameter space within which the empty network is stable. For the
case of undirected graphs it would also decrease the size of stable disjoint fully connected
subgraphs. For the case of directed graphs it could make more likely the formation of
networks that are not fully connected.

Nodes and links In many interesting applications of directed graphs links can be bidi-
rectional. For example, in …nancial networks two institutions can hold claims against each
other. Generally, bankruptcy procedures do not allow the bilateral clearance of such claims
following the failure of an institution as it would violate priority rules (Eisenberg and Noe,
2001). Thus, allowing for bidirectional links would not fundamentally a¤ect our analysis.
We only observe that as the number of such links increases the network would behave
more as an undirected one.

Moreover, in many applications of directed graphs (…nancial and macroeconomic net-
works) links and nodes can be weighted. Weights on links would capture the size of the
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transaction while weights on nodes would capture the size of the institution and thus po-
tentially the probability of being hit by a shock. Introducing weights it is a potentially
interesting area for future research.

Dynamics In the present work, we have concentrated on the properties of networks that
in principle could be formed but we have ignored the dynamics of network formation and
thus potentially the likelihood of these networks being formed. Our main objective in this
paper has been to extend the analysis of Blume et al. (2011) to networks with directed
links. The main message of the paper does not depend on any particular dynamics.
However, such dynamics can be important when we consider particular applications.25

Moreover, as we have already argued above, we might be able to eliminate some of the less
appealing stable networks (e.g. those where each agent’s expected net payo¤ is negative)
as dynamically unstable.

5. Appendix (Proofs)

5.1. Proof of Lemma 1

(a) Consider the empty network and any pair of agents  and . The probability that one
of the two agents is hit by a shock is equal to 


in which case, if the link has been formed,

the agent not hit by the shock will bear an indirect loss . With probability 1¡ 2

, none

of the two agents is hit by a shock in which case each agent obtains bene…t . Thus, if¡
1¡ 2



¢
  


 the two agents will decide not to form the link.

(b) The payo¤ to an agent  who is part of the complete network is given by:

(
  ) = (1¡ ) ( ¡ 1)  ¡




 (1 + ( ¡ 1))

Agent  by severing a link, say with agent , loses bene…t  when there is no shock on
the network and this happens with probability 1 ¡ . Given that () = 2 by severing
the link the expected cost of participating in the network for agent  has been reduced by


 (1¡ ) . The proof follows form comparing bene…ts and losses. ¤

5.2. Proof of Proposition 1

We will prove the proposition in two steps. We will …rst show that the existence of a stable
complete subgraph is su¢cient for the existence of at least one stable network. Then we
will show that a stable complete subgraph exists.

Lemma 3 If there exists a stable complete subgraph 0 then there also exists at least
one stable network.

25Predictions will not only depend on the structure of the dynamic model but also on the tradeo¤
beween a more detailed characterization of equilibrium networks when agents are myopic (e.g. Bala and
Goyal, 2000) and a less detailed characterization with farsighted agents (e.g. Dutta et al., 2005).
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Proof Let
¯
¯0

¯
¯ = . Suppose that mod =  and consider the network with ¡



complete subgraphs each with  nodes and 1 complete subgraph of size . To prove
the proposition we need to show that the complete subgraph of size  is stable, given
that all other subgraphs are of size  and thus, by supposition, stable. The expected
payo¤ of an agent  belonging to one of the complete subgraphs of size  is given
by:

(
0  ) =

µ

1¡




¶

(¡ 1)¡



 (1 + (¡ 1)) (A1)

One of the necessary conditions for the stability of the subgraph is that agent  does
not want to severe a link. The new payo¤ of an agent who severs a link is given by¡
1¡ 



¢
( ¡ 2) ¡ 


(+ (¡ 2)2 + 3), and thus the stability condition, which

by supposition holds, is given by:

µ

1¡




¶

 ¡



 (1¡ )   0 (A2)

Next, we consider the stability of a complete subgraph of size . The stability of
the rest of the subgraphs implies that none of the agents belonging to the other
subgraphs are willing to link with any agent belonging to another subgraph. In
order to complete the proof we need to show that none of the agents in the complete
subgraph of size  prefers to severe a link, whcih follows form the fact that the
left-hand side of (4) is decreasing in  and the inequality   . ¤

Suppose that (1) holds; that is neither the empty network nor the complete network are
stable. Clearly, if this is not the case existence of stable networks is trivially satis…ed. Then
the lemma implies that it is su¢cient to show that a stable complete subgraph exists. The
existence of a stable complete subgraph of cardinality  requires that two conditions are
satis…ed: (a) no agent prefers to break a link, that is

¡
1¡ 



¢
  


 (1¡ ) , and (b) that

no isolated agent would like to join the graph, that is
³
1¡ (+1)



´
  



¡
 + ( ¡ 1)2

¢
.

(Stability also requires that none of the agents belonging to the subgraph would like to
be linked with agents outside the graph but this constraint does not bind. Further, if no
isolated agent would like to join the complete subgraph then this will also be the case
for any other agent belonging to any subgraph as joining an even larger network always
decreases expected payo¤.) Then it su¢ces to show that if (1) holds then there exists
 2 [2  ¡ 1] such that the following inequalities are satis…ed:

µ

1¡
(+ 1) 



¶

 



 

µ

1¡




¶

 (A3)

The proof of Proposition 1 follows from the observations that for  = 2 the second
inequality is satis…ed by (1) and for  =  ¡ 1 the …rst inequality is satis…ed by (1). ¤

5.3. Proof of Proposition 2

We prove the following results:
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Lemma 4 If a complete subgraph of size  is not stable because agents would prefer
to severe a link then any connected subgraph of size  is also not stable because agents
would prefer to severe a link.

Proof We need to consider two cases:

(a) A broken link does to alter the size of the subgraph: Form (A2) we know that
instability implies that

¡
1¡ 



¢
  


 (1¡ ) . The left hand side is equal to the

expected loss from breaking a link which does not depend on the structure of the
subgraph as long as its size is equal to . When the original graph is not complete
then it must be the case that for no agent the expected bene…t of breaking a link
can be lower than 


 (1¡ )  (the expected bene…t corresponding to breaking a

link of a complete subgraph) and there must be at least one agent whose expected
bene…t must be higher. Similarly, expected costs because of the direct link decline
by at least 


 but now they can decline even more because the shortest path to

other agents has increased. This is because after the break of a link in the complete
network the shortest path between the two corresponding agents has increased to 2
and when the subgraph is not complete the shortest path can be even higher.

(b) A broken link decreases the size of the subgraph: The lowest expected payo¤ that an
agent can gain be severing a link is when the other agent is not connected to anyone
else. This is because, …rst, the probability of being a¤ected by a shock depends on
the size of the subgraph which in this case only declines by 1, and, second, there
are no additional bene…ts from cost reduction given that the shortest path to other
agents is not a¤ected. For such an agent the expected bene…t from participating
in the network prior to the break of the link is equal to

¡
1¡ 



¢
( ¡ 1) and the

corresponding bene…t after the break is equal to
³
1¡ (¡1)



´
(¡2). There is also

a reduction in expected costs by 

. These conditions imply that the agent would

prefer to break the link if
¡
1¡ 



¢
¡ 


( ¡ 2) ¡ 


  0 which is implied by the

instability condition of the complete subgraph. ¤

Lemma 5 Consider a complete subgraph of size  where no agent prefers to severe a
link. Then any incomplete connected subgraph of size  is not stable.

Proof Notice that the fact that no agent prefers to severe a link when the subgraph is
complete implies that (A2) holds. Consider any incomplete connected subgraph of
size  where no agent prefers to severe a link. (If this is not the case the lemma
holds.) Then there exist agents    such that  2 0  2 0  2 0. We will show
that either agents  and  would like to form link  or that there exists another pair
of agents taht are not linked but would prefer to be linked. We focus on the decision
of agent  given that the decision of agent  is symmetric. We need to consider three
cases:

(a)  is a terminal node: agent ’s expected payo¤ from creating a link with agent  is
given by the left-hand side of (A2) and therefore is positive.
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Figure 5.1: Proof of Lemma 5 (b)

(b) Breaking link  would divide the original subgraph into two distinct connected
subgraphs: Agent ’s expected payo¤ from creating link  is higher than agent
’s expected payo¤ from maintaining . This is because agent  by breaking 
could bene…t, …rst, from reducing the costs due to all indirect links through agent
, and, second, from reducing the size of the subgraph and thus the likelihood of
being a¤ected by a shock. In contrast, agent ’s decision does not a¤ect the size of
the subgraph. Moreover by creating the link  the only additional cost is that the
shortest path to all indirect links is reduced by 1. (See, Figure 5.1)

(c) In the original subgraph there exists at least one cycle such that the subgraph remains
connected after link  is broken and  belongs to the cycle. Agent ’s net expected
payo¤ from linking with agent  depends on the distance from only those agents from
whom the shortest path includes link . (The shortest paths from all other agents
is not a¤ected by creating the link .) We need to consider two cases:

(i)  also belongs to the cycle (by de…nition the cycle is not complete given that
link  does not exist): Consider all agents from whom the shortest paths to  after
linking with  are through the link . Then the shortest paths of these agents to
agent  are through link . (The reverse in not true as there are agents whose
shortest paths from agent  are not through agent  - other way around the cycle
- but their shortest path to agent  is through agent .) From the above it follows
that if agent  prefers to maintain link  then agent  will prefer to create link .
(See, Figure 5.2)
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Figure 5.2: Proof of Lemma 5 (ci)

(ii)  does not belong to the cycle but  does: Suppose that the cycle is empty.
If the number of links in this empty cycle is odd then the arguments used in part
(i) above still hold as what matters is only the shortest path. If the number of links
in the cycle is even then there exists an agent  such that there exist two (shortest)
paths from agent  to agent  that are equal. (See, Figure 5.3 - there are two shortest
paths from  to any node in 2). In this case, the shortest path form  to  is not
a¤ected by the decision of  to break or to retain link . However, if link  is
created then the shortest path from agent  to agent  decreases by 1. Thus, in such
case there is a possibility that while agent  prefers to retain link, agent  might
prefer not to create link . However, given that the cycle is empty consider any
three agents 0 0 0 such that 00 and 00 belong to the cycle. By supposition these
agents prefer not to break these links. Then, following the arguments so far, it must
be the case that either agent 0 prefers to create link 00 or there is another empty
cycle such that 00 does not belong on the new cycle but 00 does. The proof of
the lemma is completed with the observation that the size of the connected graph
is …nite. If the original cycle is not empty then the arguments used in part (i) still
hold and agent  would prefer to link with agent . ¤

The proof of the Proposition follows from the above two results. ¤

23



Figure 5.3: Proof of Lemma 5 (cii)

5.4. Proof of Proposition 3

The expected payo¤ of an agent  belonging to one of the complete subgraphs of size  is
given by (A1). Subtracting ¡ 


 and dividing by  ¡ 1 we get

¡
1¡ 



¢
 ¡ 


 which is

equal to each agent’s net expected payo¤ from each node. We need to consider two cases:
(a)

¡
1¡ 



¢
¡ 


 ¸ 0: Consider any other connected subgraph of cardinality  that

is not complete. From each directly linked node an agent gets exactly the same expected
payo¤ as the one derived form being a member of a complete subgraph. The expected
payo¤ derived form nodes not directly linked is negative due to connectivity. Thus the
total payo¤ is maximized when the subgraph is complete.

(b)
¡
1¡ 



¢
¡ 


  0: In this case the net expected payo¤ received form each node

of a complete graph is negative and clearly the payo¤s of all agents would have been higher
had they been isolated. ¤

5.5. Proof of Corollary 3

As we argued above an agent cannot achieve a higher payo¤ by breaking a single link. It
is also the case that an agent cannot achieve a higher payo¤ by forming a link. Suppose
that this is not the case and can achieve a higher payo¤ by connecting with an isolated
agent. But the new payo¤ would be exactly the same as the one that the agent would
obtain form being in a complete subgraph of size + 1. This would also be true for any
other agent contradicting the assumption that the original network was e¢cient. ¤

24



5.6. Proof of Lemma 2

Consider two isolated agents  and . It su¢ces to consider the expected payo¤ of agent 
from creating the link  who su¤ers losses when any of the two agents is hit by a shock.
The …rst term of the left-hand side of the inequality shows agent ’s expected payo¤ from
creating the link in the absence of any shock. Agent  will lose the bene…t of the link only
when agent  is hit by a shock and, therefore, even when there is a shock on the network,
with probability (¡1)


the link remains intact and agent  obtains bene…t . The right

hand side shows the net expected cost from creating the link conditional on one of the
two agents is hit by a shock. Keep in mind that an isolated agent is also hit by a shock
with probability 


and su¤ers a loss . After the creation of the link this cost is still there,

however, with probability 


agent  is hit by the shock and the expected loss to agent 
equal to 


. Thus, when the inequality holds both agents prefer to create the link. ¤

5.7. Proof of Proposition 4

Consider three agents    and links  and . The left-hand side of the inequality is
equal to the expected payo¤ of agent . Agent  will lose the bene…t  from link  when
either agent  or agent  is hit by a shock (but not agent ). Thus, agent  will bene…t
from the link if either there is no shock (probability 1¡ ) or there is a shock but it does

not a¤ect the link (probability (¡2)


). The right-hand side of the inequality is equal to
agent ’s net expected cost from keeping the link in which case su¤ers losses when either
agent  or agent  is hit by a shock.

Lemma 6 A directed cycle of three agents is not stable.

Proof The expected net payo¤ of any agent who is part of a directed cycle of three agents
is equal to

(1¡ ) 2+
( ¡ 3)


2 ¡




(1 +  (1 + )) 

Each agent bene…ts from two links as long as none of the three agents is hit by a
shock. They su¤er losses when any of the three agents is hit by a shock. Next,
consider the bene…t from breaking a link. Clearly, an agent who does that would
break the incoming link. The expected payo¤ after the break of the link is given by

(1¡ ) +
( ¡ 1)


 ¡






As long as the agent is not hit by a shock the link remains intact. Moreover, there
is a loss only when the agent is hit by a shock. Then, for the agent to prefer to keep
the link the following inequality must hold:

(1¡ ) +
( ¡ 5)


 >




 (1 + )  (A4)

which by supposition is false. ¤
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Lemma 7 All incomplete connected subgraphs are not stable.

Proof Suppose that this is not the case. Consider an incomplete connected subgraph
where there is no agent who prefers to severe a link. We will show that there exists
at least one pair of agents that would like to form a link. From the above lemma
we know that the only way to fully connect three agents together is by a complete
order. We also know that we cannot have links  and  without also having link
 (if this is not the case then agent  would prefer to severe link ). To complete
the proof we need to demonstrate that any group of three agents is fully connected
by a complete order. We need to examine two cases:

(a) Consider three agents    and links  and . Thus, both links are directed to
agent . Without any loss of generality, consider the creation of link . Agent 
should agree to form the link unless there is another agent  and link , but not link
, in which case agent  will end up at the end of the path created by links  and .
(Given that, by supposition,  did not prefer to severe the link  this also implies
the existence of link ). But then consider the formation of the link . The only
reason that agent  would prefer not to form this link is because there is another
agent  and link . Given that the subgraph has a …nite size we conclude that
there is always a link that agent  would like to form and given that the proposed
links are directed to agent  we have a contradiction.

(b) Consider three agents    and links  and . Thus, both links are directed from
agent . Without any loss of generality, consider the creation of link . Agent 
should agree to form the link unless there is another agent  and link , but not link
, in which case agent  will end up at the end of the path created by links  and
. But then consider the formation of the link . The only reason that agent 
would prefer not to form this link is because there is another agent  and link .
Given that the subgraph has a …nite size we conclude that there is always a link that
agent  would like to form and given that the proposed links are directed to agent 
we have a contradiction.

The above results imply that any group of three agents in the subgraph form a complete
order and thus the subgraph must be complete. ¤

Harary and Moser (1966) have shown that any complete graph that does not have a
three-agent cycle is a complete order. This implies that there is one agent who is critical
for the subgraph. In order to complete the proof we are going to show that any complete
subgraph of size less than  is not stable. There are two cases to consider:

(a) Isolated agents: Suppose that there exists an isolated agent and a complete order
subgraph. A link directed from the isolated agent to the critical agent would increase the
expected payo¤ of both agents.

(b) A disconnected group of complete order subgraphs: A link, in any direction, be-
tween the two critical agents would increase the expected payo¤ of both agents.

Thus, the only stable network is a complete order tournament. ¤
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5.8. Proof of Proposition 5

Inequality (b) states that the net expected payo¤ corresponding to a node at the end of a
directed path of length two is positive. Inequality (c) states that the net expected payo¤
corresponding to a node at the end of a directed path of length three is negative. From
Lemma 6 we know that inequality (b) is not su¢cient for the existence of cycles of length
three. Lemma 6 also identi…es (A4) as a necessary condition for such cycles. Then as long
as inequalities (c) and (A4) are jointly satis…ed then cycles of length three are stable. This
will be the case when inequality (d) holds. We will prove the proposition by construction:

(a)  is odd: Consider the complete directed network (tournament) where the in-
degrees and the out-degrees of all nodes are equal to ¡1

2
. The adjacency matrix is given

by
1 2 3  ¡1

2
¡1
2
+ 1 ¡1

2
+ 2   ¡ 2  ¡ 1 

1 0 1 1  1 1 0  0 0 0
2 0 0 1  1 1 1  0 0 0
3 0 0 0  1 1 1  0 0 0
           
¡1
2

0 0 0  0 1 1  1 1 0
¡1
2
+ 1 0 0 0  0 0 1  1 1 1

¡1
2
+ 2 1 0 0  0 0 0  1 1 1

           
 ¡ 2 1 1 1  0 0 0  0 1 1
 ¡ 1 1 1 1  0 0 0  0 0 1
 1 1 1  1 0 0  0 0 0

Thus, if we arrange the agents around a circle, there are links from each agent to the next
¡1
2

agents. There are also links directed to each agent from the previous ¡1
2

. Given that,
moving clockwise, there exists a link directed from each agent to the next one there is at
least one Hamiltonian cycle (there are many). We also need to show that the shortest path
between any two agents  and  does not exceed two. Consider the shortest path from 
to . There are two possibilities: If the link is  then the shortest path is equal to one; if
the link is  then, by construction, there exists an agent  and links  and , so that the
shortest path is equal to two.

(b)  is even: Consider any set of ¡ 1 agents and construct a completed subgraph as
above. Next, create links directed form each agent in the subgraph to the isolated agent.

The only agent who is not critical is the agent who was isolated. This completes the
proof. ¤

5.9. Proof of Proposition 6

Any complete directed network has a Hamiltonial path (see Leighton and Dijk, 2010).
Consider the expression (1 ¡ )( ¡ 1) ¡ 


()

P¡1
=0 

. The …rst term is equal to the
expected bene…t derived by each agent in the complete network. The second term is equal
to the lowest possible cost of an agent at the end of a Hamiltonian path (for some agents
there might be alternative paths that are shorter and therefore the cost would be higher).
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Thus, the expression shows the highest possible expected payo¤ of an agent at the end of
the Hamiltonian path. The expression is decreasing in  which completes the proof. ¤
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