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1 Introduction 

A transition towards a low-carbon and sustainable economy requires a fundamental 
transformation of consumption and production systems. These transformations will involve a 
reconfiguration of combination of technologies, infrastructures, industrial structures, business 
models, dominant ideas and cultural discourses, distribution of resources and power, modes of 
production and consumption, and institutions. These factors can be influenced by environmental 
and climate policies, but also by the interest and effectiveness of other actors (Hughes and 
Lipscy, 2013). As such, processes of change involve a dynamic interplay of incentives, regulation, 
governance transparency and effectiveness, business environment, political regime, lobbying, and 
vested interests (Grin et al, 2010). 
 
Model-based scenario analysis has become a key analytical approach to exploring low-carbon 
transitions in line with pre-defined future global environmental and sustainability goals. A 
number of different computational models are used to provide insight into transition pathways to 
sustainable low-carbon societies. These models, including Integrated Assessment Models (IAMs), 
Energy System Models), and Agent-Based Models (ABMs) extend historical trends by capturing 
several physical and economic causal-relationships in mathematical formulations and combining 
them into one single, consistent modelling framework to extrapolate our current understanding 
of future change over time.  
 
Models also have limitations - they need to simplify existing systems in order to provide a 
transparent analytical framework. Models make different choices in selecting parts of the system 
they describe in detail and which parts are not or are only partially represented (see also further in 
this introduction). Despite their limitations, models are used to study the complex interactions 
between human, natural, and climate systems. They can provide insights into possible interactions 
between sectors and different sustainability goals (e.g. energy, food, water, and climate), linkages 
across topics (e.g. consequences of climate policy for land use), scales and regions (from global to 
subnational level, often geographically explicit), and on indirect economic linkages (e.g. sectoral 
shifts and rebound effects as stated by van Vuuren and Kok, 2012). In addition, model-based 
scenario analysis allows us to examine the relationship between near-term decisions and long-
term trends and objectives by taking into account relevant system inertia. These scenarios have 
provided support to high-level decision-making in the fields of environment, sustainable 
development, and transition towards low-carbon economies. For example, the conclusions of the 
Fourth Assessment Report (AR4) by the Intergovernmental Panel on Climate Change (IPCC) 
provided the evidence for the European Union to adopt greenhouse gas emissions by 80%-95% 
in 2050 compared to 1990 levels to remain aligned with the 2°C global objective1 (Gupta et al., 
2007). Model-based scenarios have also been helpful in informing negotiators and heads of state 
during the establishment of the Paris Climate Agreement2. 
 
Although model-based scenarios will continue to be relevant as a reference for policymakers, the 
increasing focus on implementation and the transition dynamics toward long-term objectives 
requires greater attention to how the changes will take place and ways to accelerate them. With 
the adoption of the Paris Climate Agreement in 2015 (UNFCC, 2015), the global community has 
committed itself to strengthen long-term ambition. This has heightened the interest in the 
dynamics that drive this change. Earlier model-based work, such as those presented in AR5 
(Clarke et al., 2014), has already shifted from first-best transition pathways (fully oriented towards 
cost-optimality under perfect conditions) to second-best transition pathways (exploring socio-

                                                           
1 Council of the European Union, 2009. Brussels European Council 29/30 October 2009 - Presidency conclusions, 
https://www.consilium.europa.eu/uedocs/cms_data/docs/pressdata/en/ec/110889.pdf.  
2 G7, 2015. Leaders’ declaration G7 summit - Think Ahead, Act Together, 7-8 June 2015, Schloss Elmau. 

https://www.consilium.europa.eu/uedocs/cms_data/docs/pressdata/en/ec/110889.pdf
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political and innovative limitations, e.g. Kriegler et al. 2013a, 2013b, 2014a, Staub-Kaminski et al., 
2013, Tavoni et al. 2013, Riahi, 2015). However, given the rather techno-economic orientation of 
this type of assessment, several contextual factors (such as institutions, actors, power structures) 
remain rather underexposed. Contextual factors such as institutions influence the behavior both 
at the aggregate and individual levels. Although different types of models vary in their 
representation of actors, decision-making and institutions, it remains difficult to represent these 
factors in mathematical setting. Computational models are data-driven tools. They are inherently 
restricted to quantifiable, techno-economic relationships. As a result, decarbonization strategies 
are characterized by elements that have been empirically quantified or estimated, such as future 
technological performance or costs. Elements that cannot be empirically quantified or that go 
beyond the techno-economic realm are generally not addressed in models. Actors, individual 
decision-making and institutions are difficult to transform into model parameters due to 
pluralism (co-existing ideals, hence no clear solid trend to extrapolate). They are not always 
driven by rational decisions (formulas do not always apply) or by costs factors (unknown 
parameters in formulas). 

In this paper, we look into how model-based scenarios can be enriched in order to look into the 
role of actors, decision-making, and institutions from a deeper engagement with social sciences 
(Victor, 2015), specifically from a closer collaboration with socio-technical transition studies, 
initiative-based learning, and applied economics. We focus on three types of quantitative system 
models widely used in the scenario approach to transition studies: IAMs, Energy System Models, 
and ABMs.  

IAMs provide simplified representations of both the human and natural systems. With regard to 
the human systems, most IAMs are outcome-oriented, i.e. they provide insights into systemic 
change and focus on the consequences of exogenously specified policies, with limited attention to 
the processes and the social interactions leading to outcomes (Hofman et al. 2004). The 
representation of non-technological factors such as interactions among actors and interest 
groups, political economy factors, and institutions, remains stylized, as they are difficult to 
capture in the mathematical equations of the models (van Vuuren and Kok 2012). They also lack 
detail in the representation of consumer behavior and external drivers affecting policy 
effectiveness such as actor heterogeneity, institutions, and governance. The representation of 
governance and institutions is limited to the actions of the state or the government for which 
regulations and policies are generally represented as an exogenous shock/disruption implemented 
by a social planner. Some IAMs have dedicated (both explicitly and implicitly) more attention to 
the role of different actors and actor heterogeneity, as reviewed by Krey (2014) and Wilson and 
McCollum (2014). Examples of heterogeneities included in models are urban-rural divide, income 
distribution, and household composition (Ekholm et al., 2010; van Ruijven et al., 2011; Eom et 
al., 2012; O’Neil et al., 2012; Krey et al., 2012; Melnikov et al., 2012, and Melnikov et al., 2017).  

Energy System Models share many of the characteristics and limitations of IAMs. They are also 
outcome-oriented, despite the higher level of technological detail in the energy sector. Energy 
system models have a stronger focus on detailed technological changes of the energy sector or of 
a part of it (e.g. electricity system) while the macroeconomic system is modeled exogenously, thus 
disregarding potential inter-sectoral feedbacks. Demand is usually an exogenous input to the 
model while market prices are calculated endogenously. Energy system models can be categorized 
into three major types: optimization models, equilibrium models, and simulation models (Ventosa 
et al., 2005). With respect to the representation of actors and institutions, they also represent 
decisions in terms of actions of one or more representative social planners and institutions can be 
included only in a limited, highly indirect way, for example by defining exogenous constraints or 
preferences factors for certain technologies.  
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A different approach is offered by ABMs, which are dedicated models to analyze the decision-
making of different actors. They provide an explicit representation of agent heterogeneity as well 
as of interaction across agents (Epstein and Axtell, 1996). ABMs are designed to capture the 
agents’ perception of the relevant aspects of their environment and their decision-making 
according to their rationality. They often describe the interactions among different actors that 
operate according to prescribed behavioral rules and can capture emergent phenomena (Farmer 
et al., 2015). Most ABMs focus on a relatively small region or depict only parts of the energy 
system, for example, investments into renewable electricity or improvements of buildings, in 
order to deliver an explanation of the behavioral implications of agents’ heuristics and 
interactions with other agents. These factors are assessed as being critical in determining the 
pathway of technology uptake and performance and are not captured in detail in other types of 
models.  
 
The differences in the representation of actors, decision-making, and institutions between IAMs, 
energy system models, and ABMs arise from their different objectives. IAMs are intended to 
illustrate long-term, global emissions and technology pathways. Energy System Models are 
intended to provide more technologically detailed information on the energy system, while ABMs 
are intended to illustrate possible pathways of change at the level of individual decision-making. 
IAMs and Energy System Models are cost-oriented models as the decisions in these models are 
based on explicit (e.g. preferences) and implicit (e.g. capital, operation and maintenance) cost 
parameters, while decisions in ABMs depend on a richer diversity of technological and non-
technological factors.  
 
The remainder of the paper is organized as follows; Section 2 provides a detailed discussion on 
the models’ assumptions regarding actors, decision-making, and institutions by drawing on four 
models used in the PATHWAYS3 project, Section 3 discusses opportunities for model 
improvements, and Section 4 concludes.  

2 Representations of actors, decision-making, and institutions in models 

This section describes how three types of models – IAMs, Energy System Models, and ABMs 
characterize actors, their decision-making, and institutions. We build on the examples provided 
by the four models used in the PATHWAYS project: two IAMs - IMAGE (Stehfest, van Vuuren 
et al., 2014) and WITCH (Emmerling et al., 2016), one Energy System Model - Enertile4, one 
ABM - MATISSE-KK (Köhler et al., 2009).  
 
Section 2.1 describes the decisions makers in the models, the key decision variables, and the 
decision-making process. The decisions of actors are primarily determined by technological 
factors, as well as institutional factors (discussed in Section 2.2). The definition of institutions 
vary across disciplines; for the purposes of this paper we refer to Scott’s definition (Scott, 1995) 
of institutions as including regulative, normative, and socio-cognitive institutions (Table 1).  
 
  

                                                           
3 www.pathways-project.eu/  
4 www.enertile.eu  

http://www.pathways-project.eu/
http://www.enertile.eu/
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Table 1: Different types of institutions  
 Regulative Normative Socio-cognitive 

Examples Formal rules, laws, sanctions, incentive 
structures, reward and cost structures, 
governance systems, power systems, 
protocols, standards, procedures 

Values, norms, role 
expectations, 
authority systems, 
duty, codes of 
conduct 

Priorities, problem 
agendas, beliefs, bodies of 
knowledge (paradigms), 
models of reality, 
categories, classifications, 
jargon/language, search 
heuristics 

Basis of compliance Expedience Social obligation Taken for granted 

Mechanisms Coercive (force, punishments) Normative 
pressure (social 
sanctions such as 
‘shaming’) 

Mimetic, learning, 
imitation 

Logic Instrumentality (creating stability, ‘rules 
of the game’) 

Appropriateness, 
becoming part of 
the group (‘how we 
do things’) 

Orthodoxy (shared ideas, 
concepts) 

Source: Scott 1995 

2.1 Actors and decision-making 

Table 2 summarizes the main features regarding the representation of actors and decision-making 
in models. WITCH, IMAGE, and Enertile are cost-oriented models that do not represent 
individual decision-making. We can distinguish between optimization/equilibrium models 
(implicit social planner with limited/perfect foresight) and simulation (recursive decision-making 
based on a representative agent and the relative costs differences for concurrent services and 
technologies per year). In WITCH and Enertile, decisions are taken by one or more social 
planners, who make a top-down decision between a broad set of investment choices and 
consumption. In WITCH, regional social planners maximize a welfare function and choose the 
intertemporal resource allocation between consumption and investments. While in Enertile, a 
European social planner minimizes total system costs across technologies and across EU 
countries. In the case of IMAGE, decisions regarding services and technologies are made based 
on the relative costs of an ensemble of choices, which are specified per region and vary 
dynamically over time or exogenously. The relative costs consist of explicit (e.g. capital, 
Operation and Maintenance (O&M) and implicit (e.g. preferences) costs factors that combine 
technological and economic components. Using a so-called multinomial logit approach, those 
factors representing the sensitivity to price differences create heterogeneity in consumer 
preferences.  
 
Despite the limited explicit representation of actors, it can be argued that a multitude of actors is 
implicitly accounted for in the investment decisions through specific variables (Table 3). Even if 
the same technology is adopted in different scenarios, the associated actors may differ depending 
on the narrative assumed. Investments in solar PV, for instance, can be made by large utilities in 
the form of large-scale PV or by consumers in the form of small-scale rooftop PV. While 
Enertile distinguishes these two technologies, IMAGE and WITCH do not yet. This means that 
depending on the respective scenario, two technologically similar results may have to be 
interpreted in different ways in terms of associated actors. Apart from cost-specific investment 
decision variables, conditional settings may be used to represent various non-cost related factors 
in the scenarios. For example, conditional settings can promote or limit the use of a specific 
technology or service, emulating a managerial decision process in a specific region, sector, or 
supply-chain.  
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Table 2: Action positioning and strategies in different types of models 
Action 

positioning 
and 

strategies 

IMAGE 
Simulation IAM 

WITCH 
Optimization 

IAM 

Enertile 
Optimization energy system 

model 

MATISSE-KK 
Agent-based model 

 
Actors 

Implicitly represented, 
decisions are 
described for 
individual markets. 
Differentiation 
between urban and 
rural households. 
 

Aggregate 
regional 
social 
planners  

Aggregate European social 
planner 

Agents or behaviors are 
modeled explicitly, 
consumers, niches, regime 

 
Decision 
variables 

Investments and 
dispatch 

Investments 
and dispatch 

Investments and dispatch  Niche and Regime: Direction 
of technological change 
Consumer:  Technology -
lifestyles adoption 

 
Decision-
making 

Constrained cost 
minimization without 
perfect foresight 

Constrained 
welfare 
maximization 
with perfect 
foresight 

Constrained cost 
minimization with perfect 
foresight 

Niches: change the 
technology-lifestyle 
characteristics to survive 
Regimes: maximize market 
share 
Consumers:  adopt the 
regime or a niche 
lifestyle/technology 

Source: Authors’ compilation  
 

Table 3: Examples of implicit actors in models 
Factors influencing investment decisions in models Associated actor 

Purchasing price Manufacturers / R&D  
Fuel cost OPEC 
Preferences Consumers 
Capital costs Investors 
O&M costs Mechanics 
CO2 tax Government 
System integration costs Energy companies 
Cost curves Research institutes 
Conditional settings Politics  

    Source: Authors’ compilation  
  
A detailed and explicit representation of actors is provided in the MATISSE-KK model, which 
also incorporates the concepts of niches and the regime in the sense of the Multi-Level 
Perspective on transitions (MLP) as individual agents (Köhler et al, 2009), with a focus on the 
sector mobility. In this specific context, a regime refers to the dominant structure consisting of 
the dominant culture and practices in a system. The regime in mobility is the conventional 
internal combustion engine, which the majority uses for most of their mobility needs. Niches 
refer to individuals or a small group of actors with local practices, which differ from the regime 
and consumers choose whether to adopt the regime or a niche lifestyle/technology. A large 
number of simple agents whose function is to allocate support to the regime or a niche determine 
the relative strength of the regime and niches. The MATISSE-KK ABM is intended to address 
changes in society through changes in mobility patterns or lifestyles. These changes are modeled 
as the decisions of households to keep the current pattern of mobility or to change it.  
 
A common element across the four models in Table 2 is that the adoption or investments in 
technologies are the key decisions being made by models’ actors (e.g. decision variables, Table 3). 
The decision of actors is primarily determined by technological and contextual factors. 
Technological factors describe the characteristics, costs, and environmental performance of 
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technologies in terms of lifetime, efficiency, learning, and emission performance and include 
factors representing economic considerations such as costs. Contextual factors include social and 
behavioral changes or regulatory changes such as the implementation of climate policy or of 
technology subsidies, which we refer to as institutions in a broad sense including socio-cognitive 
and normative dimensions as in Table 1. These factors can be implemented as external impulses 
or shocks imposed by modelers (e.g. by constraining the availability of a specific technology to 
reflect societal or political shifts), as exogenous changes in model parameters (e.g. by changing 
the substitution possibilities between technologies), or can be translated into (perceived) price-
based factors (e.g. preferences for specific technologies can be simulated by adjusting the interest 
rate for those technologies).  
 
Despite the similarities across models in the key decision variables, the decision process 
describing the choices made (e.g. decision-making, Table 2) varies across models. Full 
optimization models with perfect foresight (WITCH and Enertile) have full future knowledge 
and they optimize investment decisions accounting for the whole time horizon. In WITCH, 
investments decisions are based on country-specific returns on investment (endogenous in the 
model), which in turn are affected by exogenously specified capital and operation and 
maintenance costs. WITCH builds on neoclassical economic theory, viewing agents as rational 
with a clear objective achieved through optimization. Both WITCH and Enertile rely on rational 
choice and optimizing decision-making rules in the form of either welfare maximization or cost 
minimization. Simulation models such as IMAGE assume no future knowledge and optimize 
investment decisions year-by-year in a recursive-dynamic way. Investment choices are based on 
relative technology costs, assuming a fixed discount factor (by default set at 10%). Technology 
costs also includes a perceived factor, which is calibrated based on historical investment data.  
 
ABMs such as MATISSE-KK specify different rules and can differentiate them by type of agents. 
Consumers decide about the adoption of the regime or niche technologies based on a set of 
attributes (practices) including environmental performances (e.g. emissions), technology costs, 
demand split, Information and Communication Technologies (ICT) use, and the structure of the 
built environment with regards to provision for the different transport modes. Consumers 
choose regime or niches technologies/lifestyles based on their attractiveness based on their 
preferences. The technologies or lifestyles form niches and a regime, which are also represented 
as agents in the model. The regime and niches change their practices as technology improves and 
depending upon the support that the technology/lifestyle receives from the consumers. 
Preferences can be influenced by the contextual factors provided by the landscape, which is 
exogenously characterized. Landscape signals change the preferences of simple agents and hence 
their support decisions can also change the fitness of the regime and niches.  
 
With the exception of ABMs, the representation of actors and decision-making remains very 
limited. Limitations concern the lack of heterogeneity in agency, the weak empirical foundation 
of behavioral parameters and rules, the decision criteria being most often based on rational 
choice models, and the assumption of perfect knowledge regarding the objective to be achieved.   

2.2 Institutions 

In models, institutions are often represented by exogenous decision rules describing the decision 
process of aggregate/representative actors or by exogenous factors influencing the outcome of 
the decision process. Table 4 summarizes the representation of regulatory and normative and 
socio-cognitive institutions by different models. Formal regulatory institutions as implemented by 
national or transnational political organizations are the main type of institutional change 
commonly implemented by IAMs and Energy System Models in transition scenarios. The main 
institutional drivers of change in regulatory institutions are in the form of different climate policy 
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instruments (e.g. carbon tax and emission trading scheme) and policy targets, which can be sector 
or technology specific (e.g. a PV subsidy). In the new scenario framework of the Shared 
Socioeconomic Pathways institutions are account for quantitatively with the concept of Shared 
Policy Assumptions (Kriegler et al., 2014a). These assumptions describe three attributes of 
climate policies; 1) climate policy goals, 2) policy regimes and measures, and 3) a description of 
how implementation limits and obstacles are addressed.  
 
When implemented, regulations are commonly assumed to be effective at achieving the objective. 
In both IAMs and Energy System Models, policies are often simply represented by a global 
uniform carbon tax or price applied to all sectors and regions, assuming cost-optimization over 
sectors, regions, and time (Clarke et al., 2009 and Kriegler et al., 2013b) with the main goal of 
providing insight into cost-efficient reduction strategies. Once the policy is adopted, its 
effectiveness is generally assumed to be unaffected by the institutional framework, as models 
assume the same governance style and power structures over centuries (top-down steering) – 
which creates stylized pathways.  
 
Even though the focus of the economic-oriented approach of models driven by technological 
factors is on the effects of regulations and policy prescriptions, contextual factors and normative 
dimensions (such as beliefs, mindsets, preferences, normative aspirations, and the notion of what 
is good) are also implicitly included in model assumptions and parameter choices. 
 
In optimizing macroeconomic models, normative assumptions are embedded in the welfare 
function. The welfare function is used for intertemporal optimization, a process to evaluate the 
trade-off between current and future consumption. The representative agent of the models, a 
benevolent national or supranational government, decides the allocation of resources between 
consumptions and savings. Similar to individual decisions on consumption and savings, this 
decision depends on the subjective degree of risk aversion and the importance given to future 
consumption. A similar reasoning applies when considering the decision to choose between 
investing in clean energy to reduce the future damages from climate change or to achieve a long-
term mitigation target. Models specify parameters affecting discounting of the future. These 
include the pure rate of time preference describing the weight of future generations in 
intertemporal welfare considerations and the intertemporal elasticity of substitution describing 
the willingness to smooth consumption over time. Lowering the discount factor in models places 
more weight on the future relative to current costs and benefits, and therefore favors 
technologies with high initial investment such as wind power which, after the initial investments 
are carried out, delivers power at almost zero marginal cost. 
 
Socio-cognitive institutions, referring to priorities, problem agendas, and beliefs, can be 
represented in IAMs and Energy System Models implicitly by specifying different preferences for 
energy technologies by changing their relative costs. For example, societal preferences for energy 
technologies can be represented in an implicit way through ad-hoc adjustments in costs, or 
exogenous shifts imposed by modelers (e.g. phasing out of nuclear power, opposition to CCS, 
and services versus ownership). A premium factor (subsidy, tax, or preference for a certain 
technology) to modify costs can be included to calibrate against historical data. Indeed, according 
to historical data, it is clear that some technologies have a higher market share than can be 
explained by costs only. 
 
ABMs can control for normative institutions such as values regarding lifestyle expectations of 
roles for individuals in energy and mobility systems and markets and socio-cognitive institutions 
explicitly. The MATISSE-KK model has consumer agents characterized as having different 
weights for different mobility lifestyles. The acceptance of households as power suppliers into the 
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grid can also be represented by the inclusion of consumer power producers. Changes in norms 
about energy and mobility behavior (e.g. lowering indoor temperatures to save on energy use or a 
driving style that minimizes energy use rather than driving as fast as possible) can be modeled by 
modifying energy and fuel demand functions for the relevant technologies. This can be done for 
a representative consumer/producer and for a distribution of consumer and producer decision-
making types. In MATISSE-KK socio-cognitive institutions are represented more explicitly, for 
example by weighting of climate issues in consumers’ decisions. 

 
Table 4: Representation of institutions in different types of models 

Institutional 
change 

IMAGE WITCH Enertile MATISSE-KK 

Regulatory Formal regulatory 
institutions as 
exogenous policy targets 
or instruments, e.g. 
carbon/energy tax; 
subsidies; standards; 
prescribed technology 
market shares; emission 
targets 

Formal regulatory 
institutions as 
exogenous policy targets 
or instruments, e.g. like 
in IMAGE 

Formal regulatory 
institutions as 
exogenous policy 
targets or 
instruments, e.g. like 
in IMAGE 
 
Adjustments in land 
use, technology and 
fuel prices or 
emission prices 
/limits 

Formal regulatory 
institutions as costs 
and environmental 
performance of the 
regime/niche. 
 
Changes in relative 
prices, changes in 
relative emissions 
performance, 
changes in service 
level of alternative 
modes, changes in 
urban form 

Normative & 
Socio-
cognitive 

Exogenous discount 
rate. Although the 
model formally does not 
optimize over time, it 
includes an iteratively 
process to find the 
cheapest pathway to 
achieve a set climate 
target. Discounting 
affects the outcome in 
the optimization 
procedure. 
 
Preferences for energy 
technologies based on 
relative costs: explicit 
and implicit non-
monetary parameters 
changing the preference 
hierarchy for 
technologies and 
services, cheap 
technologies gain a 
higher market share. 
Costs include a (positive 
or negative) premium 
factor, which can also 
be interpreted as a 
subsidy, tax, or 
preference for a certain 
technology.  

Discounting, given by 1) 
the weight assigned to 
future generations in the 
intertemporal welfare 
function  2) the 
willingness to smooth 
consumption over time. 
Discounting affects the 
outcome in the 
optimization procedure. 
 
Preferences for energy 
technologies based on 
relative costs and 
substitutability. 
 

Discounting affects 
the outcome in the 
optimization 
procedure  
 
Interest rate driving 
investment choice in 
specific energy 
technologies  
 
Preference for 
technologies based 
on relative costs and 
substitutability. 

Weighting of 
support for 
different 
technologies-
lifestyles. 
 
Weighting of 
climate issues in 
consumers’ 
decisions. 
 
Rates of change of 
preference 
parameters (e.g. 
consumer 
preferences and 
niche strategies) 
 
Changes in relative 
prices, changes in 
relative emissions 
performance, 
changes in service 
level of alternative 
modes, changes in 
urban form 

Source: Authors’ compilation. The table is not meant to be exhaustive but to provide illustrative examples. 
 
Overall, we can conclude that the representation of institutions in models is stylized. ABMs offer 
a richer framework for characterizing institutional heterogeneity, though still mostly exogenously 
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as specified by the modeler. While institutions affect the decision process in models, actors 
cannot affect the broader institutional setting. Although the elements of models can be associated 
with different assumptions on institutions, modelers usually exogenously specify them.  

3 Improving the representation of actors, decision-making, and institutions in 
models 

The need to improve the representation of the behavioral and institutional components in IAMs 
is being explored by a growing number of researches5. Work in this direction is necessary as the 
increasing focus on implementation and the transition dynamics toward long-term objectives 
requires more attention on how the changes will take place and ways to accelerate them. 
Opportunities to improve behavioral realism, the degree of heterogeneity, and the representation 
of institutional and governance factors can arise through collaboration among scientists from 
different disciplines such as modelers, sociologists, empirical economists, and political scientists. 
This section discusses possible routes of improvements in the modeling of actors, their decision-
making, and institutions. Section 3.1 discusses the opportunities that arise by means of i) making 
use of transition narratives, ii) improving actor heterogeneity, iii) linking empirical evidence and 
modeling  tools, iv) linking ABMs and IAMs, and v) linking initiative-based learning and 
modeling. Section 3.2 discusses whether the existing framework of IAMs, Energy System Models, 
and ABMs can attend to the institutional dimensions outlined in Table 1 or whether the analysis 
of the governance of transition pathways should instead rely on a partnership with other 
approaches.  
 

3.1 Actors and decision-making  

As discussed in the previous sections, models rely on mathematical equations, variables, and 
parameters to quantitatively describe contextual factors that influence models’ choices in addition 
to price and technological factors. When establishing different climate policy scenarios, models 
generally vary the regulatory or technological dimension (Kriegler et al., 2013a; 2013b; 2014a; 
Tavoni et al., 2013) but social and behavioral factors are often left unchanged. Stabilization 
scenarios aimed at achieving a predefined level of greenhouse gases concentration are often 
characterized by incremental changes and technological substitution without requiring major 
reconfiguration in the underlying societal configuration of actors. The remainder of this section 
discusses several ways to improve the representation of actor and decision-making explored in 
the PATHWAYS project, via more detailed narrative structures and by pursuing model 
refinement. 
 
Transition narratives based on insights from Multi-Level Perspective studies 
In order to provide better heuristic insights on long-term sustainability transition scenarios, the 
PATHWAYS project has applied a new interdisciplinary approach that systematically bridges 
through a form of soft integration (Turnheim et al., 2015) by aligning quantitative system 
modelling with socio-technical transition studies6.  
 
 
Insights from the MLP assessment have been used to refine the quantitative transition scenarios 
from models, with the aim of developing a richer narrative than assumed under cost-optimality. 
                                                           
5 See for example COBHAM (http://cordis.europa.eu/project/rcn/191138_en.html), ADVANCE (http://www.fp7-advance.eu/ 
and Wilson and Mcollum, 2014), WholeSEM( http://www.wholesem.ac.uk/).  
6 See van Sluisveld et al., (2016) for a detailed description of this form of integration, specifically, MLP theoretical framework 
(Geels, 2002 and Geels and Schot, 2007). 

http://cordis.europa.eu/project/rcn/191138_en.html
http://www.fp7-advance.eu/
http://www.wholesem.ac.uk/
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Starting from a typology of transition narratives (Geels and Schot, 2007) based on selected case 
studies; two archetypical transition pathways have been defined. Two global IAMs - IMAGE and 
WITCH – have been used to set the boundary conditions for five domains: electricity, transport, 
heating, agri-food, and land use. The two pathways achieve the same quantitative goals in terms 
of emission reduction and carbon budget but entail a different constellation of systemic change 
with respect to the configuration of actors and institutions, or in the MLP jargon, in terms of 
niches, regimes, and landscapes. In the pathway named “technological substitution”, the currently 
dominant and incumbent actors are at the center of the transition process, which is characterized 
by changes in technical components. The pathway named “broader regime change” entails a shift 
to a new socio-technical system based on the breakthrough of radical niche-innovations that 
involve not only technical change but also wider behavioral and cultural changes supported by 
new institutional and systems of governance. The MLP assessment has classified a number of 
niche-innovations (from specific technologies to new methods and practices for mobility and 
heating) with respect to their potential towards the near future (e.g. momentum) and in terms of 
configuration of actors driving the change (e.g. incumbents versus new actors). Input parameters 
in models have been used as levers to integrate qualitative insights regarding actor 
reconfigurations and to represent exogenously defined social developments or actor preferences. 
Broader regime changes entailing actors’ reconfiguration by changing key model assumptions and 
parameters connected to social and behavioral factors and implicitly to different actors, 
summarized in Table 5. 
 
In the electricity domain, to emulate an increased interest in solar-PV systems the WITCH, 
IMAGE, and Enertile models introduced external impulses to represent regulatory (e.g. subsidy) 
and technological changes (e.g. faster social learning reinforcing technical learning) by modifying 
the cost of PV and thus the penetration and momentum of that particular technological option. 
In Enertile, a change in preferences towards a higher willingness of small actors to invest in solar-
PV was simulated by lowering its cost and interest rate, which can be interpreted as representing 
different underlying developments. The first option is government support targeted at policies to 
lower interest rates or costs for solar-PV investments. These might include special state-aided 
loans to encourage investment or feed-in-tariffs. The second option is that a low interest rate 
represents a high acceptance among private investors, who lower their profit expectations in 
favor of investing in a new promising technology.  
 
In the mobility domain, the IMAGE model mostly focuses on the allocation to various transport 
modes and the composition of the vehicle fleet for each mode. Actor heterogeneity can only be 
expressed as a reconsideration of preferences for modes and vehicles used to meet the total travel 
demand. Some degree of behavioral change can be implemented by tweaking specific parameters 
such as vehicle occupancy rates, time, and monetary budgets for travel and preference factors 
that increase the weight on one mode or vehicle over the other. As such, IMAGE has emulated 
mode shifts and car sharing by increasing the preferences for public transportation and by 
increasing the vehicle occupancy rate. Moreover, the total travel budget has been lowered to 
emulate an overall decrease in travel demand as a consequence of urban reconfiguration towards 
a compact city scheme.  
 
In WITCH, similar changes have been made (i.e. a slower increase in vehicle ownership, an 
increase in the vehicle occupancy rate, and a decrease in travel demand). While in MATISSE-KK, 
a change to either car sharing, domination of a public transport based lifestyle, or a mobility 
lifestyle based on cycling and walking requires not only a change in preferences towards less CO2 
emissions but also a change in consumer preferences towards mixed use of urban structures and 
a shift away from private conventional car ownership. 
 



12 
 

In the heating domain, the IMAGE model implemented lifestyle and behavioral changes in terms 
of heating demand reduction due to more efficient insulation, smaller dwelling sizes, reduced rate 
for appliances, and a more efficient use of household appliances. A more in-depth discussion of 
the implementation and the initial parameterization can be found in van Sluisveld et al., (2016). 
 
Increasing actor heterogeneity 
If we follow the insight that more disaggregated and detailed IAMs are more appropriate to 
address socio-technical transitions (as stated in Li et al., 2017), then further model-development 
towards such direction is desirable7. As the IAM community is following a trend to refine existing 
model structures and disaggregate their processes into more specific processes on a higher 
resolution (Edmonds et al, 2012), one could assume that IAMs will become more appropriate for 
soft integration with social sciences over time. By creating a more explicit representation of either 
(1) processes or the (2) representative agents, IAMs allow further inspection of the impact of 
these elements in forward-looking low-carbon transitions studies.  
 
A richer model structure will offer more levers that could be used to integrate inputs and insights 
from other disciplines, providing further opportunities to address social actor behavior within the 
broader scope of global system change modelling (Li et al., 2017). Table 5 illustrates how 
IMAGE due to its richer characterization of the heating and transport sector, was able to 
implement a number of interventions to simulate social and behavioral change. Actor 
heterogeneity can be accounted for by making regional and demographic elements explicit, 
through differentiating between urban and rural areas, income classes, and cultural variation in 
energy demand. The decision mechanisms, however, remain broadly driven by techno-economic 
considerations without endogenously incorporating socio-technical aspects and influences. 
Hence, another line of development is to make actor behavior more internally dynamic and 
conditional to non-economic factors. For instance, recent developments in the IAM community 
have focused on expanding the representations of actors by explicating several types of 
“consumer groups” in the transport sector (e.g. McCollumn et al., 2016, in review). Specific 
attitudes towards technology adoption (e.g. early adopter, laggard) are implemented by 
monetizing qualitative concepts (such as preference, social influence, and risk aversion) and 
including these as factors in the decision-making mechanisms of the computational models.  
 
Another example is provided by the MATISSE-KK model, which has a range of 
parameterizations for different actor groups (Köhler, et al, 2009). The four main groups are; 
“conventional” car drivers, “green” car drivers, public transport users, and cyclists/pedestrians. 
The groups have different preferences that reflect the characteristics of the dominant 
technologies in each of these mobility lifestyles. An important limitation is that the agents are still 
individual decision makers, although there is strong evidence that individual consumers are 
influenced by the surrounding culture and social contacts (Shelley, 2012; Köhler, 2006). While the 
MATISSE-KK model does allow changes in preferences over time as a representation of changes 
in mobility culture in the society to reflect situations such as an increasing priority of emissions 
reduction, the model could be extended to include direct interactions among the individual 
consumer agents. 

 
 

                                                           
7 Contrary to the idea that disaggregation of complex IAMs yield more appropriate model results for socio-technical transition 
analysis, some scholars would therefore argue that more simple and transparent models could be equally as effective in being a 
heuristic tool of future change as a further specialized high-resolution IAM (Risbey et al., 1996; Rotmans and van Asselt, 2001; 
Worrell et al., 2004). Indeed it could be argued that refinement may (1) add to the parametric uncertainty in the model (Rotmans 
and van Asselt, 2001) as well as (2) maintain (or “lock-in” into) the techno-economic perspective (with the human dimension 
having no direct analogue in IAMs) (Rotmans and van Asselt, 2001), which could paralyze or substantially delay any further 
collaborative effort with other disciplinary fields (Voinov and Bousquet, 2010). 
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Table 5: Examples of intervention changes to simulate actor re-configuration in transition pathways 
   IMAGE WITCH Enertile MATISSE-KK 

 E
le

ct
ric

ity
 

   
PV 
 

Equalize PV price to overall 
electricity price 

Learning rate to 
+25%, floor cost -
12.5% 

Lower 
interest rate 
Higher land 
availability 

 
 
 
 

 
M

ob
ili

ty
 

Car sharing Increased vehicle occupancy Increased vehicle 
occupancy 

 Government support 
and publicity for car 
sharing. Restrictions 
and taxes on private 
car use, leading to 
increased costs and 
lower convenience 
of driving you own 
ICE car. 

Transportati
on mode 

Reducing available travel budget 
per person 
Increased preference for public 
transport 

Lower travel 
demand and 
vehicle ownership 
growth 

 
 
 

Change in lifestyle, 
with less car use, 
more emphasis on 
environment and on 
mixed zones and 
public transport 

 
H

ea
t 

Low-energy 
housing 

15% energy reduction due to 
improved insulation 

   

Behavioral 
change/ 
Smart 
metering 

Change base temperature by 1˚C 
No growth of appliance ownership 
after 2010 
No tumble dryer after 2010 
More efficient use of appliances 

   

Lower size 
of dwelling 

Floor space is fixed to 2010 values 
(rural 50m2/cap and urban 
40m2/cap) 

   

Source: Authors’ compilation. 
 
Empirical evidence and modeling tools 
Table 5 illustrates examples of model parameters that offer a lever to integrate evidence from 
other disciplines. Empirical evidence from microeconomic studies could be used to introduce 
increased heterogeneity in preferences and behaviors across sectors and regions. There is indeed 
a broad empirical literature on microeconomic behaviors related to technology adoption, 
highlighting the great variety of technical and non-technical determinants of technology 
investments and adoption that could be used for this purpose. For opportunities in this direction 
see (Mundaca et al., 2010; Wilson and McCollum, 2014; Wilson et al., in review). 
 
ABMs and IAMs 
In theory, it is possible to develop Agent-Based IAMs. The simplest possibility would be to have 
two different types of agents rather than a single representative agent or a centralized social 
welfare maximizer. However, this would represent a change in the underlying theory, which 
would require a reconsideration of other principles of the model as well. An alternative approach 
is to use the results of ABMs to inform the calibration of the IAMs. For example, results from an 
ABM could be used to adapt the rate of technology adoption in the IAMs, or to enrich the set of 
solutions for society that go beyond technological substitutions. This could be achieved by 
defining these lifestyle solutions and their emissions and price characteristics as part of the choice 
sets in the IAM. In the field of passenger transport, an example of such a lifestyle change could 
entail a change from personal automobiles to public intermodal transportation. This could be 
achieved by changes in the preference structure of the consumers and by changes in the 
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generalized costs of the different modes. In the field of energy, this could involve a shift from 
buying energy as a consumer to becoming a combined supplier and consumer, with an automated 
energy management system optimizing a combination of decentralized generation, energy 
storage, and energy purchase - depending on real time current prices and costs. 
 
Initiative-based learning and modeling tools 
The evidence from initiative-based learning can also be used to enrich the representation of actor 
behavior and decision-making in models. De Cian et al. (2016) explore whether the evidence 
from initiative-based learning can be combined with IAMs to offer a more realistic representation 
of learning dynamics in the context of solar PV technologies. Whereas initiative-based learning 
highlights learning mechanisms involving the interaction among agents and actors (social 
learning), IAMs emphasize the learning mechanisms related to the process of production and use 
of specific technologies (learning-by-doing). IAMs rely on empirical evidence to parameterize the 
learning curves describing learning-by-doing dynamics but the empirical estimates 1) span a very 
broad range and 2) are not able to disentangle the role of less tangible forms of learning such as 
social learning. The omission of the less tangible forms of learning may have important 
implications for the future penetration of technologies, energy transition, and energy systems in 
scenarios. A systematic analysis of a large sample of case studies, with a great attention to the 
unfolding of short-run learning dynamics, could yield robust general patterns that could be used 
by IAMs. In turn, IAMs could assess the sensitivity that learning dynamics have on energy and 
technology scenarios and could interpret the results in light of the insights provided by other 
disciplines such as initiative-based learning. 
 

3.2 Institutions  

As discussed in section 2.2, quantitative system models represent institutions either implicitly or 
in an exogenous, ad-hoc manner. As a consequence, models are unable to generate insights into 
the institutional changes entailed by certain transitions that rely on broader systemic changes. In 
this section we describe two different opportunities for enriching this component; i) linking the 
applied economic literature and modelling and ii) comparative analysis of transition pathways. 
 
Linking the applied economic literature and modelling 
The applied economic literature on the environment and institutions can offer empirical guidance 
by establishing quantitative patterns and stylized facts that can be used to improve models’ 
representation of institutions. It examines relationships between institutions as described in Table 
1 and indicators of policy adoption, policy effectiveness, and environmental outcomes 
quantitatively, relying on observed historical data. The literature provides empirical evidence on 
reduced-form relationships between decisions variables (e.g. R&D investments, policy stringency 
Dasgupta, De Cian, and Verdolini, 2016), outcomes (e.g. energy intensity, green investments, 
emissions), and institutional contextual factors at the aggregate country level, which is the scale 
relevant to most models.  
 
In this context institutions and governance refers to the actions of the state or the government. 
Governance is defined as the traditions and institutions that determine how authority is exercised 
in a country (Kaufmann et al., 2010). Institutions are grouped into legal, political, and economic 
institutions (Acemoglu et al., 2005). Legal institutions take the form of legislature, public or state-
devised legal institutions, and private legal institutions, while political institutions shape policy 
decisions by constraining the set of feasible choices of the decision-makers and by creating and 
enforcing laws, and governmental policy making. The most commonly used indicators are the 
Polity IV indicators (democracy, autocracy, and polity), the World Governance Indicators (rule of 
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law, voice and accountability, government effectiveness, and control of corruption), the Freedom 
House Index, and corruption perception index from Transparency International8. The main 
insights from this field of study as summarized by Dasgupta and De Cian (2016) are:  
 

• Democracy, civil and political freedom, transparency, and free flow of information allow 
the electorate to exert policy pressure on the government and facilitate or constraint the 
ability of governments to implement environmental measures. Therefore, democratic 
countries and open societies are generally associated with more participation into 
international environmental agreements and with better performance in terms of 
environmental indicators.  

• Good governance encourages the adoption of environmental policies and generally leads 
to better environmental outcomes.  

• Corruption can be a channel for environmental degradation, as it could lead to a sub-
optimal use of resources and inefficiencies. 

 
These results suggest that institutional factors such as corruption, transparency of governments, 
the quality of bureaucratic quality and speed, are likely to influence the ability to implement 
environmental policies, the type of policy chosen, policy stringency, as well as the effectiveness of 
the policy implemented. This is in contrast for example with what generally is assumed by 
models, where environmental policies, once implemented, are equally effective across regions. 
Indeed, despite the existence of quite a broad empirical literature on institutions and the 
environment, that evidence has not been used explicitly in models. The empirical evidence 
available in the current literature might not be suitable to be directly used in models, either 
because the empirical specification is not directly comparable to the equations used in the 
computational models or because the indicators used are not represented in the models. For 
example, the empirical literature has focused mostly on physical environmental performance 
indicators such as emissions and less so on decision variables such as investments. In the case of 
environmental policy decisions, the focus has been on dated policy adoption choices (e.g. 
ratification of the Kyoto Protocol). An example of tailoring empirical evidence for use in models 
is provided by Iyer et al., (2015), which use historical data to conclude that investment risks are 
higher in regions with inferior institutions. That empirical result was then used to differentiate 
investment risks across regions in an IAM to assess the implications for regional mitigation costs. 
 
Future empirical research could explore the role of institutions in contexts that are more relevant 
for futures studies on low-carbon energy transitions. For example, a parameter of high relevance 
in decarbonization studies is energy intensity. IAM-based scenarios suggest strong absolute 
convergence in energy intensity across regions not only in the long run but also in the short run. 
However, empirical evidence does not necessarily support this assumption (Le Pen and Sévi, 
2010). Instead, conditional convergence, i.e. countries tend to converge in energy intensity if they 
share common characteristics, seems more likely. Introducing more realism in the 
characterization of energy intensity convergence can improve the reliability of assessments of 
climate policies using models. Comprehending the institutional factors that hinder convergence is 
also important to understand the complementary measures that need to be implemented in order 
to ensure policy effectiveness. Model-based scenarios assume strong convergence in energy 
intensity across regions, requiring improvements rates that for some regions (e.g. energy 
exporters) to far exceed their historically observed rates. The question is why those regions have 
lagged behind in terms of energy efficiency? Is it reasonable to assume that those reasons will 
disappear in the future? If not, what are the implications of considering the institutional barriers 
that have prevented energy intensity convergence also in future scenarios? 

                                                           
8 See Dasgupta and De Cian (2016) for a detailed review of institutional indicators used in this literature.   
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Comparative analysis of transition pathways 
In the PATHWAYS project, a comparative analysis of transition pathways has been proposed by 
exploiting complementarities between MLP and quantitative system models. Starting from the 
quantitative, techno-economic oriented scenarios (Hof et al., this issue; Sluisveld et al., this issue), 
richer socio-technical scenarios describing the change needed in order to make those scenarios 
materialize have been developed (Geels et al., this issue). These socio-technical scenarios focus 
on societal and behavioral aspects such as types of actors, their goals, strategies, and resources 
(e.g. role of policy makers versus civil society) as well as institutional change (e.g. social and 
cultural changes to foster social acceptance of new technologies). Given the broad definition of 
institutions used in this paper, the transition narratives approach described in section 3.1 to 
enrich actor and decision-making representation in models using MLP insights also involves 
some degree of institutional changes to some extent (e.g. see definition provided in Table 1). 
Some of the interventions described in Table 5 are indeed regulatory changes (e.g. government 
support for car sharing in the MATISSE-KK model) and social and behavioral changes (e.g. 
preferences for technologies). 
 
Neither the approach that links the empirical evidence and modeling nor the comparative analysis 
of transition pathways would require major structural changes in quantitative system models, as 
they do not intend to achieve full integration. As a consequence, institution dynamics remain 
exogenous. Introducing endogenous dynamics of institutions more explicitly in the models used 
in transition scenarios would require deep structural changes in IAMs. However, depicting both 
large energy systems and more complex social systems in the same model would imply extremely 
high computational requirements and extensive result evaluation processes. Schmitt (2014) 
developed a numerical IAM to analyze how endogenous political turnover between governments 
with heterogeneous preferences with respect to the level of greenhouse emissions affect climate 
change mitigation policies. The model builds on WITCH but a number of simplifications were 
made to keep the problem computationally tractable. In other words, a richer and endogenous 
representation of institution dynamics comes at the cost of realism with respect to the techno-
economic components, which is the strength of quantitative models such as IAMs.  

4 Conclusions 

Adopting greater realism with respect to the representation of actors, decision-making, and 
institutions is important to improve the understanding transitions towards a low-carbon 
sustainable society since actors, decision-making, and institutions are the defining elements of 
transition pathways. In this paper, we explore how this can be done by adopting model-based 
scenarios. The increasing focus on implementation and transition dynamics towards long-term 
objectives requires a better understanding of what drives change and how those changes can be 
accelerated. We have explored opportunities that arise from a deeper engagement of quantitative 
systems modeling with socio-technical transitions studies, initiative-based learning, and applied 
economics. 
 
By focusing on three types of quantitative system models, we find that, with the exception of 
ABMs, the explicit representation of actors and decision-making remains very limited. 
Limitations concern the lack of heterogeneity in agency, weak empirical foundation for 
behavioral patterns and rules, decision mechanisms driven by techno-economic relationships and 
rational choice paradigms, the assumption of perfect knowledge of the objective. The 
representation of institutions is also stylized and implicitly accounted for in quantitative systems 
modelling. ABMs include a richer representation of institutional heterogeneity but within the 
limitations of quantitative computational modelling (exogenously as specified by the modeler).  
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Although actors, behaviors, and institutions are recognized to affect the emulated decision 
process in computational models, many of the socio-institutional factors remain highly stylized 
and are only captured through proxies. To expand on the knowledge, a number of opportunities 
for enriching the realism in model-based scenario analysis have been identified:  
 

i) Using detailed transition narratives developed by socio-technical transition studies to 
provide context to missing elements in quantitative systems modeling.  

ii) Model refinement in the form of improving actor heterogeneity will provide more 
explicit leads to assess the influence of actors, behaviors, and institutional change. 

iii) Expanding the disciplinary scope by linking modelling tools with the applied 
economic literature, ABMs, initiative-based learning, and by developing comparative 
analysis of transition pathways. 
 

Some of these opportunities entail a higher degree of integration across different analytical and 
disciplinary approaches (e.g. ii), whereas others rely on softer forms of integration (e.g. i and iii). 
Other opportunities (e.g. comparative analysis) focus on a pluralism of perspective approach, 
exploiting complementarities to provide a multi-perspective assessment of transition pathways, 
whereby quantitative techno-economic scenarios are accompanied with richer qualitative 
storylines describing the broader institutional and governance changes required to support 
systemic changes.   
 
The extent to which different analytical and modelling approaches from the different disciplines 
can be linked varies but it generally entails establishing common concepts, agreeing on common 
problem frame that requires integration, identifying operational linkages, and agreement on 
parameters, metrics, indicators, and data. Integrating a much wider combination of real life 
aspects and dynamics into models leads to an increased complexity that would restrict them to 
smaller fields of applications (e.g. sectoral analysis, country-level analysis). The respective 
weaknesses are inherent in their approaches and existing models are unable to cover all aspects of 
energy transition simultaneously. Therefore, in future exercises, a well-defined combination of 
models covering the same domain (e.g. electricity, heat) complemented by other social science 
approaches could deliver new insights. Such an approach would also allow combining the 
strengths of the different approaches rather than trying to work around their respective 
weaknesses.   
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