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1 Study region 

 

Figure S1: Overview of the study area. Blue coloring indicates, for the purpose of this 

manuscript, Northern Europe, green Western Europe, red Eastern Europe, and yellow Southern 

Europe. Abbreviations: BE = Belgium, BG= Bulgaria, CZ= Czech Republic, DK= Denmark, 

DE= Germany, EE= Estonia, IE= Ireland, EL= Greece, ES= Spain, FR= France, IT= Italy, LV= 

Latvia, LT= Lithuania, LU= Luxembourg, HU= Hungary, NL= Netherlands, AT= Austria, PL= 

Poland, PT= Portugal, RO= Romania, SI= Slovenia, SK= Slovakia, FI= Finland, SE= Sweden, 

UK= United Kingdom 
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2 Description of land-use change indicators 

2.1 Data on changes in the extent of broad land-use categories 

We used cropland, permanent crops, and pasture area from the Common Agricultural 

Policy Regionalized Impact (CAPRI) database (Britz and Witzke 2012) for the years 1990 and 

2006 (i.e., corresponding with the CORINE time cuts). CAPRI provides data at the NUTS-2 

level) and cropland in this database included all arable land including fodder crops, as well as 

permanents crops, included fruit and olive orchards, vineyards, and berries. To disaggregate 

CAPRI cropland to the grid level, we used two datasets: the CORINE layers (100-m gridcells) 

and the CAPRI-Dynaspat database (1-km gridcells). CAPRI-Dynaspat discerns 13 cropland 

commodity groups (cereals, rice, wine, oilseeds, olives, roots & tubers, fibers, fodder crops, 

pulses, sugar beet, vegetables & others, and fallow).  

To calculate the cropland share per gridcell in our target grid, we regarded the CORINE 

layers as authoritative for the spatial extent of cropland areas, while using the CAPRI-Dynaspat 

(Heckelei and Kempen 2011; Leip et al. 2008) for defining the patterns of fractional cover of 

cropland commodity groups, for which no information is available in CORINE. CAPRI-

Dynaspat is consistent with CAPRI at NUTS2, but shows small deviations with CORINE (for a 

quantitative comparison between CORINE and CAPRI cropland cover please see 

http://agrienv.jrc.ec.europa.eu/publications/pdfs/HNV_Final_Report.pdf, p29 and Appendix p81-

87). CAPRI-Dynaspat areas outside of the extent of the CORINE cropland were masked. To 

account for these discrepancies, cropland areas in CORINE without CAPRI Dynaspat 

information (very few grid cells) were allocated to neighboring grid cells by applying Euclidian 

allocation. In some regions (e.g. Mecklenburg-Vorpommern) CAPRI numbers on cropland areas 

were unreasonably high, likely representing reporting errors. We truncated the CAPRI-Dynaspat 

cropland amount in these cases using the CORINE cropland area. The resulting cropland 

fractions per gridcell were then used as weights for disaggregating the NUTS-2 CAPRI statistics 

to our 3-km grid-level. 

For pasture areas we first allocated the class “meadows & pastures” from CAPRI to the 

extent of the CORINE pastures class (excluded the class ‘Sparsely vegetated areas’). CAPRI 

reports significantly larger pasture areas in all NUTS-2 regions than the CORINE pasture class 

(which is essentially a grassland class). Thus, in a second step, the remaining CAPRI pasture 

areas were assigned to the CORINE classes ‘heterogeneous agricultural areas’, as well as 

http://agrienv.jrc.ec.europa.eu/publications/pdfs/HNV_Final_Report.pdf
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‘shrublands and herbaceous vegetation not designated as pastures’. For further details on the 

allocation procedure for cropland and pastures please see Plutzar et al. (2016). 

To map agricultural abandonment and recultivation, we used time series of MODIS 

Normalized Differenced Vegetation Index (NDVI), using the 16-day composites from both 

satellites Terra (MOD13Q1, v5), and Aqua (MYD13Q1, v5), thus yielding a time series with 

images every 8 days) for the time period 2000 to 2012 at a spatial resolution of 232m (Estel et al. 

2015). We applied a multi-step pre-processing chain to reduce effects arising from clouds, water, 

ice, and soil background, and thus to construct a consistent NDVI time-series. We also 

normalized the NDVI time series to make them more comparable across the broad environmental 

gradients prevailing in Europe. 

Second, for the years 2001 to 2012, we classified each grid cell as either managed (i.e., 

active, plowed, mowed or heavily grazed) or fallow (i.e. unmanaged) and finally applied the 

CORINE agricultural mask (i.e., all classes with non-permanent cropland and pastures). To do so, 

we used a Random Forests classifier (Cutler et al. 2007; Waske et al. 2012), with training data 

sampled across Europe using a random-stratified setup. Independent validation data came from 

the Land Use/Cover Area Frame Statistical Survey (LUCAS, www.lucas-europa.info), field 

campaigns, and higher-resolution satellite images (e.g. GoogleEarth imagery). LUCAS provides 

ground information on land cover and land management (Delincé 2001; Gallego and Delincé 

2010; van der Zanden et al. 2013), including fallow, abandoned and active farmland. For LUCAS 

2009 and 2012, for instance, around 500,000 points were surveyed and photo-documented by 

field surveyors in 23 (2009) and 27 (2012) EU countries (Eurostat 2014).  

Training and validation data were crosschecked to ensure field labels were correct, as class 

labels may have changed after a plot was surveyed on the ground (e.g., plowing of a fallow field 

after a site was visited) using the temporal profiles of the MODIS NDVI time series and high-

resolution imagery in GoogleEarth. The resulting annual active/fallow maps had an average 

overall accuracy of 89.8% (standard deviation of 1.1%). Using the annual active/fallow time 

series, we defined agricultural abandonment as all pixels that had a maximum of two fallow years 

in 2001-2006 and a maximum of one active in 2007-2012. Recultivation was defined as a 

maximum of one active year in 2001-2006 and a maximum of two fallow years in 2007-2012. 

For details, including a sensitivity analysis regarding the abandonment and recultivation 

definitions, see Estel et al. (2015). We then calculated abandonment, and recultivation rates at the 

3-km grid level (relative to total farmland in 2001). 
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Assessing changes in forestland from satellite-based land cover maps such as CORINE is 

challenging, because forest cover changes can reflect permanent gains or losses in forest area, but 

also temporary cover losses due to natural disturbance (e.g., storms or fire) or management (e.g., 

harvest), which do not reflect land use change. To derive forestland maps, we disaggregated and 

harmonized regional level forest area statistics for the years 1990 and 2005 to the 3-km grid using 

CORINE forest area as weights (Plutzar et al. 2016). Forestland extent was taken from the State 

of European Forests (SoEF) database (Forest Europe 2011) at NUTS-3 to NUTS-1 level, 

depending on the country (see Levers et al. 2014 and Verkerk et al. 2015 for details). 

To calculate the extent of urban area change, we relied on the 1990 and 2006 CORINE 

maps and calculated percent urban land cover within 1-km grid cells based on the 11 urban or 

built-up classes, following the protocol by Feranec et al. (Feranec et al. 2012). Further details on 

the allocation procedure for forestland and urban area are provided in Plutzar et al. (2016). 

2.2 Data on changes in the management intensity within broad land use categories 

To measure cropland inputs, we relied on a recently developed 1-km dataset of fertilizer 

application rates (Overmars et al. 2014; Temme and Verburg 2011). This dataset was generated 

using statistics on fertilizer use data at the NUTS-2 level from the CAPRI database, which 

contains both manure and chemical fertilizer input for all major crops for 1990 – 2007 from the 

Farm Structure Survey (see Britz and Witzke 2012 for details). To summarize the fertilizer data 

across crop types, cropland area at the NUTS-2 level was stratified into three fertilizer input 

classes: low (<50 kg/ha), medium (50-150 kg/ha) and high (>150 kg/ha) (Overmars et al. 2014). 

Next, multinomial regression models were fitted to create probability maps for each class and for 

each country. As response variable, we used ~150,000 cropland points from LUCAS, to which 

crop-specific nitrogen application rates had been assigned. As predictors, a set of environmental 

(i.e., soil, topography, climate) and socio-economic (i.e., population density and accessibility) 

factors at a resolution of 1 x 1 km² was used (Temme and Verburg 2011). For countries without 

LUCAS coverage, regressions from neighboring countries were applied. Using the resulting 

probability maps, a hierarchical procedure was then used to allocate the NUTS-2 level areas of 

the three fertilizer application classes to the grid level (Overmars et al. 2014; Temme and 

Verburg 2011). For the purpose of this manuscript, we aggregated data to a 3-km target grid for 

1990 and 2006 (our target years for which CORINE land cover information was available) by 

calculating an area-weighted mean, using the values 50, 150, and 250 kg/ha as class values. 
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In terms of cropland outputs, we used yields for the 13 most prevalent crops types defined 

by CAPRI-DynaSpat in the EU (i.e., cereals, oilseeds, pulses, roots & tubers, sugar beet, olives, 

flax & hemp, wine & grapes, fruits, rice and vegetables) from the CAPRI database at the NUTS-2 

level for 1990 and 2006. Yields were expressed as the amount of biomass harvested per crop. To 

disaggregate yields to the 3-km target grid, we derived crop suitability maps using environmental 

niche modelling, in our case based on a maximum entropy algorithm (Phillips et al. 2006; You 

and Wood 2006). Niche models require data on the occurrence of a particular species (in our case 

a specific crop), which we took from the LUCAS database. Maxent then describes the niche of a 

crop based on environmental factors by contrasting the distribution of values of an environmental 

factor at the occurrence locations with the overall distribution of this factor. As environmental 

factors (i.e., predictors), we used bioclimatic, soil, and topographic variables. The resulting crop 

suitability maps were combined with the cropland area maps described above by calculating the 

product of cropland share and suitability. These layers then served as weights for the 

disaggregation of harvest yields (see Plutzar et al. (2016) for details), resulting in a map of the 

amount of biomass harvested on cropland area per grid cell [tC km² yr-1]. 

Regarding grazing systems, we used one input and one output metric. Regarding inputs, we 

derived grazing intensity on pastures by downscaling NUTS-2 level livestock numbers to the 1-

km grid level following Neumann et al. (2009). The NUTS-2 level statistics do not distinguish 

between grazing and stall feeding, and we assumed that all dairy cattle, beef cattle, heifers, sheep 

and goats were dominantly grazing. We converted all livestock numbers to equivalent livestock 

units using region-dependent conversion factors. We then used a grazing potential map, using 

grassland productivity, terrain and accessibility as main determinants (see Neumann et al. 

(2009)), to spatially allocate these livestock units. Areas with very low grazing potential were not 

allocated any livestock. Based on the resulting livestock densities, four grazing intensity 

categories were distinguished (1: <25 LSU/km2; 2: 25-50 LSU/km2; 3: 50-100 LSU/km2; 4: >100 

LSU/km2). We then calculated an area-weighted mean at the 3-km target grid using class means 

(100 LSU/km2 for the fourth class). 

In terms of output metrics, we used biomass yields and calculated biomass removed from 

pastures (in tC km² yr-1) from CAPRI at the NUTS-2 level and disaggregated these to the 3-km 

target grid. We did so following the approach by Neumann et al. (2009), using a combination of 

actual Net Primary Productivity (NPP) and slope as weights, assuming a linear decrease of 

pasture suitability between 6% and 24% slope. Actual NPP was taken from Plutzar et al. (2016), 
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slope was calculated on the basis of the SRTM-90m digital elevation model (www.cgiar-

csi.org/data/srtm-90m-digital-elevation-database-v4-1). No metrics regarding changes in the 

input intensity of grazing systems were available to use. 

To assess forestry management intensity, we compiled and harmonized annual roundwood 

removal maps based on regional harvest statistics from 2000 to 2005 at the level of 

administrative units (Levers et al. 2014). In this study, we disaggregated these regional harvesting 

statistics using the forest cover map developed in section 1.1, which was combined with a pixel-

level harvest likelihood map to produce wood removal maps at the target resolution of 3x3km2. 

This likelihood map was derived using linear regression modelling to link harvesting statistics 

with productivity, tree species composition and terrain ruggedness as the most important location 

factors (see Verkerk et al. (2015) for details on the harvest likelihood maps and disaggregation 

approach). To extend the time period covered, we disaggregated national-level harvesting data 

from Forest Europe et al. (2011) for 1990, assuming constant harvesting ratios among regions 

within a country, which is supported by the very stable harvesting patterns found by Levers et al. 

(2014). We assigned wood removal volumes only to grid cells that were forests already in 1990. 

New forests either established or deforested after 1990 were assumed not to supply wood in 

2005, due to long production cycles in forestry. 

3 Calculation of Moran’s I 

The bivariate Moran’s I quantifies the association of a given variable (x) at a location and a 

different variable (y) at surrounding locations and is calculated as: 

𝐼 =  
𝑁

∑ ∑ 𝑤𝑖𝑗𝑗𝑖

∑ ∑ 𝑤𝑖𝑗𝑗𝑖 (𝑋𝑖 − �̅�)(𝑌𝑖 − �̅�)

∑ (𝑌𝑖 − �̅�)2
𝑖

 

where N is the number of observations (i.e., gridcells), Xi is variable 1 at a particular 

location i, Yj is variable 2 at another location j, and wij is a weight indexing location i relative to j. 

For details, please see Anselin (1995) and Anselin (2001). 

http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1
http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1
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4 Distribution of land use categories 

 

 

Figure S2: Distribution of major land-use categories in the two target years 1990 and 2006. Left: 

area per land use category and year. Right: relative shares of land-use category per year. 
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5 Sensitivity analyses of hotspot/coldspot mapping 

Figure S3: Sensitivity of hotspots of area changes in broad land use classes to varying the 

quantile threshold chosen to define hotspots (thresholds considered: top/bottom 2.5%, 5%, 7.5%, 

10%, 15%, and 20% of the change distribution).  
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