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We consider identification and estimation of nonseparable sample selection models with 

censored selection rules. We employ a control function approach and discuss different 

objects of interest based on (1) local effects conditional on the control function, and (2) 

global effects obtained from integration over ranges of values of the control function. We 

provide conditions under which these objects are appropriate for the total population. 

We also present results regarding the estimation of counterfactual distributions. We 

derive conditions for identification for these different objects and suggest strategies 

for estimation. We also provide the associated asymptotic theory. These strategies are 
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growth in the United Kingdom.
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1 Introduction

This paper considers a nonseparable sample selection model with a censored selec-

tion rule. The most common example is a selection rule with censoring at zero, also

referred to in the parametric setting as tobit type 3, although other forms of cen-

sored selection rules are permissible. A leading empirical example is estimating the

determinants of wages when workers report working hours rather than the binary

work/not work decision. An important feature of the model, beyond the relaxation of

distributional assumptions, is the inherent heterogeneity facilitated through nonsep-

arability. Our approach is to account for selection via an appropriately constructed

control function. We propose a three step estimation procedure which first employs

the distribution regression of Foresi and Peracchi (1995) and Chernozhukov et al.

(2013) to compute the appropriate control function. The second step is estimated

either by least squares, distribution or quantile regression employing the estimated

control function. The primary estimands of interest are obtained in the third step

as functionals of the second step and control function estimates.

Our paper contributes to the growing literatures on nonseparable models with

endogeneity (see, for example, Chesher 2003, Ma and Koenker 2006, Florens et al.

2008, Imbens and Newey 2009, Jun 2009 and Masten and Torgovitsky, 2014) and

nonseparable sample selection models (for example, Newey 2007). An important

contribution is our focus on the identification and estimation of local effects. While

Newey (2007) considered the distribution of the outcome variable conditional on

selection, we provide statements regarding the outcome variable distribution condi-

tional on specific values of the control function. This local approach to identification

is popular in many contexts (see, for example, Chesher 2003, and Heckman and

Vytlacil 2005). We show that for any population observation that has a positive

probability of being selected, selection is irrelevant for the distribution of the out-

come variable conditional on the control function. Hence, we can estimate certain

objects of interest that are appropriate for the whole population conditional on the

value of the control function. We can also estimate global objects by integrating over

the distribution of the control function in the selected or entire population. How-

ever, we highlight that these global objects require strong support assumptions on

the explanatory variables which may be difficult to satisfy in empirical applications.
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Accordingly, we also consider global effects “on the treated” that are identified un-

der weaker assumptions. In addition to defining and providing estimators of these

global and local effects, we provide their associated asymptotic theory.

This paper is also related to the literature on quantile selection models. Arellano

and Bonhomme (2017) addressed selection by modeling the copula of the error

terms in the outcome and selection equations. The most important distinction to

this paper is that they consider the conventional binary, rather than a censored,

selection equation. Thus we require more information about the selection process.

However this has the advantage that one can consider local effects conditional on

the control function which are identified under weaker conditions.

The following section outlines the model and some related literature. Section 3

defines the control function and provides identification results regarding the objects

of interest in the model. Section 4 provides estimators of these objects and discusses

inference. Section 5 illustrates some of our estimands focusing on the determinants

of wages and wage growth for working women in the United Kingdom.

2 Model

The model has the following structure:

Y = g(X, ε) if C > 0, (2.1)

C = max (h(Z, η) , 0), (2.2)

where Y and C are observable random variables, and X and Z are vectors of ob-

servable explanatory variables. The set of variables included in X is a subset of the

set of variables included in Z. In principle, we do not need to impose an exclusion

restriction on Z with respect to the elements of X, although our identification as-

sumptions will be more plausible under such a restriction. The functions g and h are

unknown and ε and η are respectively a vector and a scalar of potentially mutually

dependent unobservables. We shall impose restrictions on the stochastic properties

of these unobservables. The primary objective is to estimate functionals related to

g noting that Y is only observed when C is above some known threshold normalized

2



to be zero. The non observability of Y for specific values of C induces the possibility

of selection bias. We shall refer to (2.1) as the outcome equation and (2.2) as the

selection equation.

The model is a nonparametric and nonseparable representation of the tobit type-

3 model and is a variant of the Heckman (1979) selection model. It was initially

examined in a fully parametric setting, imposing additivity and normality, and esti-

mated by maximum likelihood (see Amemiya, 1978, 1979). Vella (1993) provided a

two-step estimator based on estimating the generalized residual from the selection

equation and including it as a control function in the outcome equation. Honoré et

al. (1997), Chen (1997) and Lee and Vella (2006) relaxed the model’s distributional

assumptions, but imposed an index restriction and separability of the error terms

in each equation.

The model can be extended in several directions. For example, the selection

variable C could be censored in a number of ways provided there are some region(s)

for which it is continuously observed. This allows for top, middle and/or bottom

censoring. Also, although we do not consider it explicitly here, our approach is

applicable when the outcome variable Y is also censored. For example:

Y = max(g(X, ε), 0) if C > 0.

The model can also be extended to include C in the outcome equation as explanatory

variable provided that there is an exclusion restriction in Z with respect to X. This

extension, which corresponds to the triangular system of Imbens and Newey (2009)

with censoring in the first stage equation, is not considered here as it is not relevant

for our empirical application.

We highlighted above that we follow a local approach to identification such as

proposed by Heckman and Vytlacil (2005) who consider a binary treatment/selection

rule and a separable selection equation. While our focus is also, in part, on local

effects our model differs with respect to the selection rule and the possible presence

of nonseparability.
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3 Identification of objects of interest

We account for selection bias through the use of an appropriately constructed control

function. Accordingly, we first establish the existence of such a function for this

model and then define some objects of interest incorporated in (2.1)-(2.2).

Let ⊥⊥ denote stochastic independence. We begin with the following assumption:

Assumption 1 (Control Function) (ε, η) ⊥⊥ Z, η is a continuously distributed

random variable with strictly increasing CDF on the support of η, and t 7→ h(Z, t)

is strictly increasing a.s.

This assumption allows for endogeneity between X and ε in the selected population

with C > 0, since in general ε and η are dependent, i.e. ε 6⊥⊥ X | C > 0. The

monotonicity assumption allows a non-monotonic relationship between ε and C

because ε and η are allowed to be non-monotonically dependent. Under Assumption

1, we can normalize the distribution of η to be uniform on [0, 1] without loss of

generality (Matzkin, 2003).1

The following result shows the existence of a control function for the selected

population in this setting. That is, there is a function of the observable data such

that once it is conditioned upon, the unobservable component is independent of

the explanatory variables in the outcome equation for the selected population. Let

V := FC(C | Z) where FC(· | z) denotes the CDF of C conditional on Z = z.

Lemma 1 (Existence of Control Function) Under the model in (2.1)-(2.2) and

Assumption 1:

ε ⊥⊥ Z | V,C > 0.

All proofs are provided in the Appendix. The intuition behind Lemma 1 is based

on three observations. First, V = η when C > 0, so that conditioning on V is

identical to conditioning on η in the selected population. Second, conditioning on

Z and η makes selection, i.e. C > 0, deterministic. Therefore, the distribution

of ε, conditional on Z and η, does not depend on the condition that C > 0. The

1Indeed if t 7→ h(z, t) is strictly increasing, and η is continuously distributed with η ∼ Fη, then

h̃(z, η̃) = h(z, Fη(η̃)) is such that t 7→ h̃(z, t) is strictly increasing and η̃ ∼ U(0, 1).
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final observation, namely our assumption that (ε, η) ⊥⊥ Z, is sufficient to prove the

Lemma.

We consider two classes of objects which are interesting for econometric inference.

These are: (1) local effects conditional on the value of the control function, and (2)

global effects based on integration over the control function.

3.1 Local effects

We consider local effects on Y for given values of X conditional on the control

function V . Let Z, X , and V denote the marginal supports of Z, X, and V in

the selected population, respectively. We start by introducing the set XV , the joint

support of X and V in the selected population.

Definition 1 (Identification set) Define

XV := {(x, v) ∈ X × V : h(z, v) > 0, z ∈ Z(x)} ,

where Z(x) = {z ∈ Z : x ⊆ z}, i.e. the set of values of Z with the component

X = x.

Depending on the values of (X, η), we can classify the units of observation into 3

groups: (1) always selected units when h(z, t) > 0 for all z ∈ Z(x), (2) switchers

when h(z, t) > 0 for some z ∈ Z(x) and h(z, t) ≤ 0 for some z ∈ Z(x), and (3) never

selected units when h(z, t) ≤ 0 for all z ∈ Z(x). The set XV only includes always

selected units and switchers, i.e. units with (X, V ) such that they are observed

for some values of Z. When X = Z there are no switchers because the set Z(x)

is a singleton. Otherwise the size of the set XV increases with the support of the

excluded variables and their strength in the selection equation.

We now define the first local effect, the local average structural function.

Definition 2 (LASF) The local average structural function (LASF) at (x, v) is:

µ(x, v) = E(g(x, ε) | V = v).

The LASF gives the expected value of the potential outcome g(x, ε) obtained by

fixing X at x conditional on V = v for the entire population. It is useful for
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measuring the effect of X on the mean of Y . For example, the average treatment

effect of changing X from x0 to x1 conditional on V = v is

µ(x1, v)− µ(x0, v).

The following result shows that µ(x, v) is identified for all (x, v) ∈ XV .

Theorem 1 (Identification of LASF) Under the model (2.1)-(2.2), Assumption

1 and E|Y | <∞, for (x, v) ∈ XV,

µ(x, v) = E(Y | X = x, V = v, C > 0). (3.1)

According to Theorem 1, the LASF is identical to the expected value of the outcome

variable conditional on (X, V ) = (x, v) in the selected population. The proof of this

theorem is based on Assumption 1 that allows for the LASF to be conditional on

the outcome of (Z, V ) = (z, v). Since (x, v) ∈ XV , there is a z ∈ Z(x) such that

h(z, v) > 0 and hence the expected mean outcome of g(x, ε) conditional on V = v for

the total sample, i.e. the LASF, is the same as that mean outcome for the selected

sample. That is, selection is irrelevant for the distribution of the outcome variable

conditional on the control function. This mean outcome is equal to the conditional

expectation in the selected population, which is a function of the data distribution

and is hence identified.

When X is continuous and x 7→ g(x, ε) is differentiable a.s., we can consider the

average derivative of g(x, ε) with respect to x conditional on the control function.

Definition 3 (LADF) The local average derivative function (LADF) at (x, v) is:

δ(x, v) = E[∂xg(x, ε) | V = v], ∂x := ∂/∂x. (3.2)

The LADF is the first-order derivative of the LASF with respect to x, provided that

we can interchange differentiation and integration in (3.2). This is made formal in

the next corollary which shows that the LADF is identified for all (x, v) ∈ XV .

Corollary 1 (Identification of LADF) Assume that for all x ∈ X , g(x, ε) is

continuously differentiable in x a.s., E[|g(x, ε)|] < ∞, and E[|∂xg(x, ε)|] < ∞.

6



Under the conditions of Theorem 1, for (x, v) ∈ XV,

δ(x, v) = ∂xµ(x, v) = ∂xE(Y | X = x, V = v, C > 0).

The local effects extend in a straightforward manner to distributions and quantiles.

Definition 4 (LDSF and LQSF) The local distribution structural function (LDSF)

at (y, x, v) is:

G(y, x, v) = E[1 {g(x, ε) ≤ y} | V = v].

The local quantile structural function (LQSF) at (τ, x, v) is:

q(τ, x, v) := inf{y ∈ R : G(y, x, v) ≥ τ}.

The LDSF is the distribution function of the potential outcome g(x, ε) conditional

on the value of the control function for the entire population. The LQSF is the left-

inverse function of y 7→ G(y, x, v) and corresponds to quantiles of g(x, ε). Differences

of the LQSF across levels of x correspond to quantile effects conditional on V for

the entire population. For example, the τ -quantile treatment effect of changing X

from x0 to x1 is

q(τ, x1, v)− q(τ, x0, v).

The identification of the LDSF follows by the same argument as the identification

of the LASF, replacing g(x, ε) (as in Definition 2) by 1 {g(x, ε) ≤ y} and Y (as in

equation (3.1)) by 1{Y ≤ y}. Thus, under Assumption 1, for (x, v) ∈ XV ,

E[1 {g(x, ε) ≤ y} | V = v] = FY |X,V,C>0(y | x, v).

The LQSF is then identified by the left-inverse function of y 7→ FY |X,V,C>0(y | x, v),

the conditional quantile function τ 7→ QY [τ | X = x, V = v, C > 0], i.e., for

(x, v) ∈ XV ,

q(τ, x, v) = QY [τ | X = x, V = v, C > 0].

We also consider the derivative of q(τ, x, v) with respect to x and call it the lo-

cal quantile derivative function (LQDF). This object corresponds to the average

derivative of g(x, ε) with respect to x at the quantile q(τ, x, v) conditional on V = v

7



under suitable regularity conditions; see Hoderlein and Mammen (2011). Thus, for

(τ, x, v) ∈ [0, 1]×XV ,

δτ (x, v) := ∂xq(τ, x, v) = E[∂xg(x, ε) | V = v, g(x, ε) = q(τ, x, v)].

By an analogous argument to Corollary 1, the LQDF is identified at (τ, x, v) ∈

[0, 1]×XV by:

δτ (x, v) = ∂xQY [τ | X = x, V = v, C > 0],

provided that x 7→ QY [τ | X = x, V = v, C > 0] is differentiable and other regularity

conditions hold.

Remark 1 (Exclusion restrictions) The identification of local effects does not

explicitly require exclusion restrictions in Z with respect to X although the size of

the identification set XV depends on such restrictions. For example, if h(z, η) =

z + Φ−1(η) where Φ is the standard normal distribution and X = Z, then XV =

{(x, v) ∈ X × V ] : x ≤ −Φ−1(v)} ⊂ X × V; whereas if h(z, η) = x+ z1 + Φ−1(η) for

Z = (X,Z1), then XV = {(x, v) ∈ X ×V : x ≤ −Φ−1(v)− z1, z1 ∈ Z(x)}, such that

XV = X × V if Z1 is independent of X and supported in R.

3.2 Global effects

We expand our set of estimands by examining the global counterparts of the local

effects obtained by integration over the control function in the selected population.

A typical global effect at x ∈ X is:

θS(x) =

∫
θ(x, v)dFV |C>0(v), (3.3)

where θ(x, v) can be any of the local objects defined above and FV |C>0(v) is the

distribution of V in the selected population. Identification of θS(x) requires identi-

fication of θ(x, v) over V , the support of V in the selected population.

For example, the average structural function (ASF),

µS(x) := E[g(x, ε) | C > 0],
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gives the average of the potential outcome g(x, ε) in the selected population. By

the law of iterated expectations, this is a special case of the global effect (3.3) with

θ(x, v) = µ(x, v), the LASF. The average treatment effect of changing X from x0 to

x1 in the selected population is

µS(x1)− µS(x0).

Similarly, one can consider the distribution structural function (DSF) in the selected

population as in Newey (2007) , i.e:

GS(y, x) := E[1{g(x, ε) ≤ y} | C > 0],

which gives the distribution of the potential outcome g(x, ε) at y in the selected

population. This is also a special case of the global effect (3.3) with θ(x, v) =

G(y, x, v). We can then construct the quantile structural function (QSF) in the

selected population as the left-inverse of y 7→ GS(y, x), that is:

qS(τ, x) := inf{y ∈ R : GS(y, x) ≥ τ}.

The QSF gives the quantiles of g(x, ε). Unlike GS(y, x), qS(τ, x) cannot be obtained

by integration of the corresponding local effect, q(τ, x, v), because we cannot inter-

change quantiles and expectations. The τ -quantile treatment effect of changing X

from x0 to x1 in the selected population is

qS(τ, x1)− qS(τ, x0).

Global counterparts of the LADF and LQSF are obtained by taking derivatives of

µS(x) and qS(τ, x) with respect to x.

As in Newey (2007), identification of the global effects in the selected population

requires a condition on the support of the control function. Let V(x) denote the

support of V conditional on X = x, i.e. V(x) := {v ∈ V : (x, v) ∈ XV}.

Assumption 2 (Common Support) V(x) = V.

The main implication of common support is the identification of θ(x) from the
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identification of θ(x, v) in v ∈ V(x) = V . Assumption 2 is only plausible under

exclusion restrictions on Z with respect to X; see the example in Remark 1.

We now establish the identification of the typical global effect (3.3).

Theorem 2 (Identification of Global Effects) If θ(x, v) is identified for all (x, v) ∈

XV, then θS(x) is identified for all x ∈ X that satisfy Assumption 2.

We can now apply this result to show identification of global effects in the selected

population, because under Assumption 1 the local effects are identified over XV ,

which is the support of (X, V ) in the selected population.

Remark 2 (Global Effects in the Entire Population) The effects in the se-

lected population generally differ from the effects in the entire population, except

under the additional support condition:

V = (0, 1), (3.4)

which imposes that the control function is fully supported in the selected population.

This condition requires an excluded variable in Z with sufficient variation to make

h(Z, η) > 0 for any η ∈ [0, 1] by an identification at infinity argument.

3.3 Global effects on the treated and average derivatives

Assumption 2 might be too restrictive for empirical applications where an excluded

variable with large support is not available. Without this assumption the global

effects are not point identified, but can be bounded following a similar approach to

Imbens and Newey (2009). We consider instead the alternative generic global effect:

θS(x | x0) =

∫
θ(x, v)dFV |X,C>0(v | x0), (3.5)

which is point identified under weaker support conditions than (3.3). Examples of

(3.5) include the ASF conditional on X = x0 in the selected population,

µS(x | x0) = E[g(x, ε) | X = x0, C > 0],
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which is a special case of (3.5) with θ(x, v) = µ(x, v). This ASF measures the mean

of the potential outcome g(x, ε) for the selected individuals with X = x0, and is

useful to construct the average treatment effect on the treated of changing X from

x0 to x1

µS(x1 | x0)− µS(x0 | x0).

The object in (3.5) is identified in the selected population under the following sup-

port condition:

Assumption 3 (Weak Common Support) V(x) ⊇ V(x0).

Assumption 3 is weaker than Assumption 2 because V(x0) ⊆ V . In particular, if the

selection equation (2.2) is monotone in X and X is bounded from below, Assumption

3 is satisfied by setting x0 lower than x.

We define the τ -quantile treatment on the treated as:

qS(τ, x1 | x0)− qS(τ, x0 | x0),

where qS(τ, x | x0) is the left-inverse of the DSF conditional on X = x0 in the

selected population,

GS(y, x | x0) := E[1{g(x, ε) ≤ y} | X = x0, C > 0],

which is a special case of the effect (3.5) with θ(x, v) = G(y, x, v).

We now establish the identification of the typical global effect (3.5).

Theorem 3 (Identification of Global effects on the Treated) If θ(x, v) is iden-

tified for all (x, v) ∈ XV, then θS(x | x0) is identified for all x ∈ X that satisfy

Assumption 3.

We can define global objects in the selected population that are identified without

a common support assumption when X is continuous and x 7→ g(x, ·) is differen-

tiable. One example is the average derivative conditional on X = x in the selected

population:

δS(x) = E[δ(x, V ) | X = x,C > 0],
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which is a special case of the effect (3.5) with θ(x, v) = δ(x, v) and x0 = x. This

object is point identified in the selected population under Assumption 1 because

the integral is over V(x), the support of V conditional on X = x in the selected

population. Another example is the average derivative in the selected population:

δS = E[δ(X, V ) | C > 0],

which is point identified under Assumption 1 because the integral is over XV , the

support of (X, V ) in the selected population. This is a special case of the generic

global effect

θS =

∫
θ(x, v)dFXV |C>0(x, v). (3.6)

3.4 Counterfactual distributions

We also consider linear functionals of the global effects including counterfactual

distributions constructed by integration of the DSF with respect to different dis-

tributions of the explanatory variables and control function. These counterfactual

distributions are useful for performing wage decompositions and other counterfac-

tual analyses (e.g., DiNardo et al., 1996, Chernozhukov et al., 2013, Firpo et al.,

2011, and Arellano and Bonhomme, 2017).

We focus on functionals in the selected population. To simplify the notation, we

use a superscript s to denote these functionals, instead of explicitly conditioning on

C > 0. The basis of the decompositions is the following expression for the observed

distribution of Y :

Gs
Y (y) =

∫
F s
Y |Z,V (y | z, v)dF s

Z,V (z, v). (3.7)

We show in the Appendix that (3.7) can be rewritten as:

Gs
Y (y) =

∫
G(y, x, v)1(h(z, v) > 0)dFZ,V (z, v)∫

1(h(z, v) > 0)dFZ,V (z, v)
. (3.8)

We construct counterfactual distributions by combining the component distribu-

tions G and FZ,V as well as the selection rule h from different populations that can

correspond to different time periods or demographic groups. Thus, let Gt and FZk,Vk

denote the distributions in groups t and k, and hr denote the selection rule in group
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r. Then, the counterfactual distribution of Y when G is as in group t, FZ,V is as in

group k, while the selection rule is identical to group r, is:

Gs
Y〈t|k,r〉

(y) :=

∫
Gt(y, x, v)1(hr(z, v) > 0)dFZk,Vk(z, v)∫

1(hr(z, v) > 0)dFZk,Vk(z, v)
. (3.9)

Note that under this definition the observed distribution in group t is Gs
Y〈t|t,t〉

. A

sufficient condition for nonparametric identification is that ZVk ⊆ ZVr ⊆ ZV t,

which guarantees that Gt and hr are identified for all combinations of z and v over

which we integrate. By monotonicity of v 7→ h(z, v), the condition hr(z, v) > 0 is

equivalent to

v > FCr|Z(0 | z), (3.10)

where FCr|Z is the distribution of C conditional on Z in group r. Note that the

identification condition ZVk ⊆ ZVr can be weakened to Zk ⊆ Zr, and ZVr ⊆ ZV t
to XVr ⊆ XV t, which is more plausible in the presence of exclusion restrictions in

X with respect to Z.

We can decompose the difference in the observed distribution between group 1

and 0 using counterfactual distributions:

Gs
Y〈1|1,1〉

−Gs
Y〈0|0,0〉

= [Gs
Y〈1|1,1〉

−Gs
Y〈1|1,0〉

]︸ ︷︷ ︸
(1)

+[Gs
Y〈1|1,0〉

−Gs
Y〈1|0,0〉

]︸ ︷︷ ︸
(2)

+[Gs
Y〈1|0,0〉

−Gs
Y〈0|0,0〉

]︸ ︷︷ ︸
(3)

,

(3.11)

where (1) is a selection effect due to the change in the selection rule given the dis-

tribution of the explanatory variables and the control function, (2) is a composition

effect due to the change in the distribution of the explanatory variables and the

control function, and (3) is a structure effect due to the change in the conditional

distribution of the outcome given the explanatory variables and control function.

4 Estimation and inference

The effects of interest are all identified by functionals of the distribution of the ob-

served variables and the control function in the selected population. The control

function is the distribution of the censoring variable C conditional on all the explana-
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tory variables Z. We propose a multistep semiparametric method based on least

squares, distribution and quantile regressions to estimate the effects. The reduced

form specifications used in each step can be motivated by parametric restrictions on

the model (2.1)–(2.2). We refer to Chernozhukov et al. (2017) for examples of such

restrictions.

Throughout this section, we assume that we have a random sample of size n,

{(Yi ∗ 1(Ci > 0), Ci, Zi)}ni=1, of the random variables (Y ∗ 1(C > 0), C, Z), where

Y ∗ 1(C > 0) indicates that Y is observed only when C > 0.

4.1 Step 1: Estimation of the control function

We estimate the control function using logistic distribution regression (Foresi and

Peracchi, 1995, and Chernozhukov et al., 2013). More precisely, for every observation

in the selected sample, we set:

V̂i = Λ(RT
i π̂(Ci)), Ri := r(Zi), i = 1, . . . , n, Ci > 0,

where, for c ∈ Cn, the empirical support of C,

π̂(c) = arg max
π∈Rdr

n∑
i=1

[
1{Ci ≤ c} log Λ(RT

i π)) + 1{Ci > c} log Λ(−RT
i π)
]
,

Λ is the logistic distribution, and r(z) is a dr-dimensional vector of transforma-

tions of z with good approximating properties such as polynomials, B-splines and

interactions.

4.2 Step 2: Estimation of local objects

We can estimate the local average, distribution and quantile structural functions us-

ing flexibly parametrized least squares, distribution and quantile regressions, where

we replace the control function by its estimator from the previous step.

For reasons explained in Section 4.6, our estimation method is based on a

trimmed sample with respect to the censoring variable C. Therefore, we introduce
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the following trimming indicator among the selected sample

T = 1(C ∈ C)

where C = (0, c] for some 0 < c <∞, such that P (T = 1) > 0.

The estimator of the LASF is µ̂(x, v) = w(x, v)Tβ̂, where w(x, v) is a dw-

dimensional vector of transformations of (x, v) with good approximating properties,

and β̂ is the ordinary least squares estimator:2

β̂ =

[
n∑
i=1

ŴiŴ
T
i Ti

]−1 n∑
i=1

ŴiYiTi, Ŵi := w(Xi, V̂i).

The estimator of the LDSF is Ĝ(y, x, v) = Λ(w(x, v)Tβ̂(y)), where β̂(y) is the logistic

distribution regression estimator:

β̂(y) = arg max
b∈Rdw

n∑
i=1

[
1{Yi ≤ y} log Λ(ŴT

i b)) + 1{Yi > y} log Λ(−ŴT
i b))

]
Ti.

Similarly, the estimator of the LQSF is q̂(τ, x, v) = w(x, v)Tβ̂(τ), where β̂(τ) is the

Koenker and Bassett (1978) quantile regression estimator

β̂(τ) = arg min
b∈Rdw

n∑
i=1

ρτ (Yi − ŴT
i b)Ti.

Estimators of the local derivatives are obtained by taking derivatives of the

estimators of the local structural functions. Thus, the estimator of the LADF is:

δ̂(x, v) = ∂xw(x, v)Tβ̂,

and the estimator of the LQDF is:

δ̂τ (x, v) = ∂xw(x, v)Tβ̂(τ).

2An alternative approach is to follow Jun (2009) and Masten and Torgovitsky (2014). These
papers acknowledge that with an index restriction the parameters of interest can be estimated in
the presence of a control function by estimation over subsamples for which the control function has
a similar value. While each of these papers considers a random coefficients model with endogeneity
their approach is applicable here.
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4.3 Step 3: Estimation of global effects

We obtain estimators of the generic global effects by approximating the integrals

over the control function by averages of the estimated local effects evaluated at the

estimated control function. The estimator of the effect (3.3) is

θ̂S(x) =
n∑
i=1

Tiθ̂(x, V̂i)/
n∑
i=1

Ti.

This yields the estimators of the ASF for θ̂(x, v) = µ̂(x, v) and DSF at y for θ̂(x, v) =

Ĝ(y, x, v). The estimator of the QSF is then obtained by inversion of the estimator

of the DSF.3 We form an estimator of the effect (3.5) as

θ̂S(x | x0) =
n∑
i=1

TiKi(x0)θ̂(x, V̂i)/
n∑
i=1

TiKi(x0),

for Ki(x0) = 1(Xi = x0) when X is discrete or Ki(x0) = kh(Xi − x0) when X is

continuous, where kh(u) = k(u/h)/h, k is a kernel, and h is a bandwidth such as

h→ 0 as n→ 0. Finally, the estimator of the effect (3.6) is

θ̂S =
n∑
i=1

Tiθ̂(Xi, V̂i)/
n∑
i=1

Ti.

4.4 Step 4: Estimation of counterfactual distributions

Based on equations (3.9) and (3.10), the estimator (or sample analog) of the coun-

terfactual distribution is:

Ĝs
Y〈t|k,r〉

(y) =
n∑
i=1

Λ(ŴT
i β̂t(y))1[V̂i > Λ(RT

i π̂r(0))]/nskr,

where the average is taken over the sample values of V̂i and Zi in group k, nskr =∑n
i=1 1[V̂i > Λ(RT

i π̂r(0))], β̂t(y) is the distribution regression estimator of step 2 in

3We can use the generalized inverse

q̂S(τ, x) =

∫ ∞
0

1(ĜS(y, x) ≤ τ)dy −
∫ 0

−∞
1(ĜS(y, x) > τ)dy,

which does not require that the estimator of the DSF y 7→ ĜS(y, x) be monotone.
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group t, and π̂r(0) is the distribution regression estimator of step 1 in group r. Here

we are estimating the components F s
Yt

by logistic distribution regression in group t

and the component F s
Zk

by the empirical distribution in group k.

4.5 Inference

We use weighted bootstrap to make inference on all the objects of interest (Praest-

gaard and Wellner, 1993; Hahn, 1995). This method obtains the bootstrap version

of the estimator of interest by repeating all the estimation steps including random

draws from a distribution as sampling weights. The weights should be positive and

come from a distribution with unit mean and variance such as the standard ex-

ponential. Weighted bootstrap has some theoretical and practical advantages over

empirical bootstrap. Thus, it is appealing that the consistency can be proven follow-

ing the strategy set forth by Ma and Kosorok (2005), and the smoothness induced

by the weights helps dealing with discrete covariates with small cell sizes. The im-

plementation of the bootstrap for the local and global effects is summarized in the

following algorithm:

Algorithm 4 (Weighted Bootstrap) For b = 1, . . . , B, repeat the following steps:

(1) Draw a set of weights (ωb1, . . . , ω
b
n) i.i.d. from a distribution that satisfies Con-

dition 1(b) such as the standard exponential distribution. (2) Obtain the bootstrap

draws of the control function, V̂ b
i = Λ(RT

i π̂
b(Ci)), i = 1, . . . , n, where for c ∈ Cn,

π̂b(c) = arg max
π∈Rdr

n∑
i=1

ωbi
[
1{Ci ≤ c} log Λ(RT

i π)) + 1{Ci > c} log Λ(−RT
i π)
]
.

(3) Obtain the bootstrap draw of the local effect, θ̂b(x, v). For the LASF, θ̂b(x, v) =

µ̂b(x, v) = w(x, v)Tβ̂b, where

β̂b =

[
n∑
i=1

ωbi Ŵ
b
i (Ŵ b

i )TTi

]−1 n∑
i=1

ωbi Ŵ
b
i YiTi, Ŵ b

i := w(Xi, V̂
b
i ).

For the LDSF, θ̂b(x, v) = Ĝb(y, x, v) = Λ(w(x, v)Tβ̂b(y)), where

β̂b(y) = arg max
b∈Rdw

n∑
i=1

ωbi

[
1{Yi ≤ y} log Λ(bTŴ b

i ) + 1{Yi > y} log Λ(−bTŴ b
i )
]
Ti.
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For the LQSF, θ̂b(x, v) = q̂b(τ, x, v) = w(x, v)Tβ̂b(τ), where

β̂b(τ) = arg min
b∈Rdw

n∑
i=1

ωbiρτ (Yi − bTŴ b
i )Ti.

(4) Obtain the bootstrap draw of the global effects as

θ̂bS(x) =
n∑
i=1

ωbiTiθ̂
b(x, V̂ b

i )/
n∑
i=1

ωbiTi,

θ̂bS(x | x0) =
n∑
i=1

ωbiTiKi(x0)θ̂
b(x, V̂ b

i )/
n∑
i=1

ωbiTiKi(x0),

or

θ̂bS =
n∑
i=1

ωbiTiθ̂
b(Xi, V̂

b
i )/

n∑
i=1

ωbiTi.

4.6 Asymptotic theory

We derive large sample theory for some of the local and global effects. We focus

on average effects for the sake of brevity. The theory for distribution and quantile

effects can be derived using similar arguments, see, for example, Chernozhukov et

al. (2015) and Chernozhukov et al. (2017). Through the analysis we treat the

dimensions of the flexible specifications used in all the steps as fixed, so that the

model parameters are estimable at a
√
n rate. The model is still semiparametric

because some of the parameters are function-valued such as the parameters of the

control variable.4

In what follows, we shall use the following notation. We let the random vector

A = (Y ∗ 1(C > 0), C, Z, V ) live on some probability space (Ω0,F0, P ). Thus, the

probability measure P determines the law of A or any of its elements. We also let

A1, ..., An, i.i.d. copies of A, live on the complete probability space (Ω,F ,P), which

contains the infinite product of (Ω0,F0, P ). Moreover, this probability space can

be suitably enriched to carry also the random weights that appear in the weighted

bootstrap. The distinction between the two laws P and P is helpful to simplify the

notation in the proofs and in the analysis. Calligraphic letters such as Y and X
4Chernozhukov at al. (2017) discuss the trade-offs between imposing parametric restrictions in

the model and the support conditions required for nonparametric identification of the effects of
interest.
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denote the supports of Y ∗ 1(C > 0) and X; and YX denotes the joint support of

(Y,X). Unless explicitly mentioned, all functions appearing in the statements are

assumed to be measurable.

We now state formally the assumptions. The first assumption is about sampling

and the bootstrap weights.

Condition 1 (Sampling and Bootstrap Weights) (a) Sampling: the data {Yi∗

1(Ci > 0), Ci, Zi}ni=1 are a sample of size n of independent and identically dis-

tributed observations from the random vector (Y ∗ 1(C > 0), C, Z). (b) Bootstrap

weights: (ω1, ..., ωn) are i.i.d. draws from a random variable ω ≥ 0, with EP [ω] = 1,

VarP [ω] = 1, and EP |ω|2+δ < ∞ for some δ > 0; live on the probability space

(Ω,F ,P); and are independent of the data {Yi ∗ 1(Ci > 0), Ci, Zi}ni=1 for all n.

The second assumption is about the first stage where we estimate the control func-

tion

ϑ0(c, z) := FC(c | z).

We assume a logistic distribution regression model for the conditional distribution

of C in the trimmed support, C, that excludes censored and extreme values of

C. The purpose of the upper trimming is to avoid the upper tail in the modeling

and estimation of the control variable, and to make the eigenvalue assumption in

Condition 2(b) more plausible. We consider a fixed trimming rule, which greatly

simplifies the derivation of the asymptotic properties. Throughout this section, we

use bars to denote trimmed supports with respect to C, e.g., CZ = {(c, z) ∈ CZ :

c ∈ C}, and V = {ϑ0(c, z) : (c, z) ∈ CZ}.

Condition 2 (First Stage) (a) Trimming: we consider the trimming rule as de-

fined by the indicator T = 1(C ∈ C). (b) Model: the distribution of C conditional

on Z follows the distribution regression model in the trimmed support C, i.e.,

FC(c | Z) = FC(c | R) = Λ(RTπ0(c)), R = r(Z),

for all c ∈ C, where Λ is the logit link function; the coefficients c 7→ π0(c) are three

times continuously differentiable with uniformly bounded derivatives; R is compact;
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and the minimum eigenvalue of EP
[
Λ(RTπ0(c))[1− Λ(RTπ0(c))]RR

T
]

is bounded

away from zero uniformly over c ∈ C.

For c ∈ C, let

π̂b(c) ∈ arg min
π∈Rdim(R)

n∑
i=1

ωi{1(Ci ≤ c) log Λ(RT
i π) + 1(Ci > c) log Λ(−RT

i π)},

where either ωi = 1 for the unweighted sample, to obtain the estimator; or ωi are

the bootstrap weights to obtain bootstrap draws of the estimator. Then set

ϑ0(c, r) = Λ(rTπ0(c)); ϑ̂
b(c, r) = Λ(rTπ̂b(c)),

if (c, r) ∈ CR, and ϑ0(c, r) = ϑ̂b(c, r) = 0 otherwise.

Theorem 4 of Chernozhukov et al. (2015) established the asymptotic properties

of the DR estimator of the control function. We repeat the result here as a lemma

for completeness and to introduce notation that will be used in the results below.

Let ‖f‖T,∞ := supa∈A |T (c)f(a)| for any function f : A 7→ R, and λ = Λ(1−Λ), the

density of the logistic distribution.

Lemma 2 (First Stage) Suppose that Conditions 1 and 2 hold. Then, (1)

√
n(ϑ̂b(c, r)− ϑ0(c, r)) =

1√
n

n∑
i=1

ei`(Ai, c, r) + oP(1) ∆b(c, r) in `∞(CR),

`(A, c, r) := λ(rTπ0(c))[1{C ≤ c} − Λ(RTπ0(c))]×

×rTEP
{

Λ(RTπ0(c))[1− Λ(RTπ0(c))]RR
T
}−1

R,

EP [`(A, c, r)] = 0,EP [T`(A,C,R)2] <∞,

where (c, r) 7→ ∆b(c, r) is a Gaussian process with uniformly continuous sample

paths and covariance function given by EP [`(A, c, r)`(A, c̃, r̃)T]. (2) There exists

ϑ̃b : CR 7→ [0, 1] that obeys the same first order representation uniformly over CR,

is close to ϑ̂b in the sense that ‖ϑ̃b − ϑ̂b‖T,∞ = oP(1/
√
n) and, with probability ap-

proaching one, belongs to a bounded function class Υ such that the covering entropy

20



satisfies:5

logN(ε,Υ, ‖ · ‖T,∞) . ε−1/2, 0 < ε < 1.

The next assumptions are about the second stage. We assume a flexible linear model

for the conditional distribution of Y given (X, V ) in the trimmed support C ∈ C,

impose compactness conditions, and provide sufficient conditions for identification

of the parameters. Compactness is imposed over the trimmed support and can be

relaxed at the cost of more complicated and cumbersome proofs.

Condition 3 (Second Stage) (a) Model: the expectation of Y conditional on (X, V )

in the trimmed support C ∈ C is

E(Y | X, V,C ∈ C) = WTβ0, V = FC|Z(C | Z), W = w(X, V ).

(b) Compactness and moments: the setW is compact; the derivative vector ∂vw(x, v)

exists and its components are uniformly continuous in v ∈ V, uniformly in x ∈ X ,

and are bounded in absolute value by a constant, uniformly in (x, v) ∈ XV; E(Y 2 |

C ∈ C) < ∞; and β0 ∈ B, where B is a compact subset of Rdw . (c) Identification

and nondegeneracy: the matrix J := EP [WWT T ] is of full rank; and the matrix

Ω := VarP [f1(A) + f2(A)] is finite and is of full rank, where

f1(A) := {WTβ0 − Y }WT,

and, for Ẇ = ∂vw(X, v)|v=V ,

f2(A) := EP [{[WTβ0 − Y ]Ẇ +WTβ0W}T`(a, C, Z)]
∣∣
a=A

.

Let

β̂ = arg min
β∈Rdim(W )

n∑
i=1

Ti(Yi − βTŴi)
2, Ŵi = w(Xi, V̂i), V̂i = ϑ̂(Ci, Ri),

5See Appendix B for a definition of the covering entropy.
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where ϑ̂ is the estimator of the control function in the unweighted sample; and

β̂b = arg min
β∈Rdim(W )

n∑
i=1

ωiTi(Yi − βTŴ b
i )2, Ŵ b

i = w(Xi, V̂
b
i ), V̂ b

i = ϑ̂b(Ci, Ri),

where ϑ̂b is the estimator of the control function in the weighted sample. The

following lemma establishes a central limit theorem and a central limit theorem for

the bootstrap for the estimator of the coefficients in the second stage.

Let  P denote bootstrap consistency, i.e. weak convergence conditional on the

data in probability as defined in Appendix B.1.

Lemma 3 (CLT and Bootstrap FCLT for β̂) Under Conditions 1–3, in Rdw ,

√
n(β̂ − β0) J−1G, and

√
n(β̂b − β̂) P J

−1G,

where G ∼ N(0,Ω) and J and Ω are defined in Assumption 3(c).

The properties of the estimator of the LASF, µ̂(x, v) = w(x, v)Tβ̂, and its bootstrap

version, µ̂b(x, v) = w(x, v)Tβ̂b, are a corollary of Lemma 3.

Corollary 2 (FCLT and Bootstrap FCLT for LASF) Under Assumptions 1–

3, in `(XV),

√
n(µ̂(x, v)− µ(x, v)) Z(x, v) and

√
n(µ̂b(x, v)− µ̂(x, v)) P Z(x, v),

where (x, v) 7→ Z(x, v) := w(x, v)TJ−1G is a zero-mean Gaussian process with co-

variance function

CovP [Z(x0, v0), Z(x1, v1)] = w(x0, v0)
TJ−1ΩJ−1w(x1, v1).

To obtain the properties of the estimator of the ASFs, we define Wx := w(x, V ),

Ŵx := w(x, V̂ ), and Ŵ b
x := w(x, V̂ b). The estimator and its bootstrap draw of

the ASF in the trimmed support, µS(x) = EP{βT
0 Wx | T = 1}, are µ̂S(x) =∑n

i=1 β̂
TŴxiTi/nT , and µ̂bS(x) =

∑n
i=1 eiβ̂

bT Ŵ b
xiTi/n

b
T , where nT =

∑n
i=1 Ti and

nbT =
∑n

i=1 eiTi. The estimator and its bootstrap draw of the ASF on the treated

in the trimmed support, µS(x | x0) = EP{βT
0 Wx | T = 1, X = x0}, are µ̂S(x | x0) =
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∑n
i=1 β̂

TŴxiKi(x0)Ti/nT (x0), and µ̂bS(x) =
∑n

i=1 eiβ̂
bT Ŵ b

xi Ki(x0)Ti/n
b
T (x0), where

nT (x0) =
∑n

i=1Ki(x0)Ti and nbT (x0) =
∑n

i=1 eiKi(x0)Ti. Let pT := P (T = 1) and

pT (x) := P (T = 1, X = x). The next result gives large sample theory for these

estimators. The theory for the ASF on the treated is derived for X discrete, which

is the relevant case in our empirical application.

Theorem 5 (FCLT and Bootstrap FCLT for ASF) Under Assumptions 1–3,

in `(X ),

√
npT (µ̂S(x)− µS(x)) Z(x) and

√
npT (µ̂bS(x)− µ̂S(x)) P Z(x),

where x 7→ Z(x) is a zero-mean Gaussian process with covariance function

CovP [Z(x0), Z(x1)] = CovP [WT
x0
β0 + σx0(A),WT

x1
β0(v) + σx1(A) | T = 1],

with

σx(A) = EP{WT
x T}J−1[f1(A) + f2(A)] + EP{ẆT

x β0T`(a,X,R)}
∣∣
a=A

.

Also, if pT (x0) > 0, in `(X ),

√
npT (x0)(µ̂S(x | x0)− µS(x | x0)) Z(x | x0) and√

npT (x0)(µ̂
b
S(x | x0)− µ̂S(x | x0)) P Z(x | x0),

where x 7→ Z(x | x0) is a zero-mean Gaussian process with covariance function

CovP [Z(x | x0), Z(x̃ | x0)] = CovP [WT
x β0 + ψx(A),WT

x̃ β0 + ψx̃(A) | T = 1, X = x0],

Theorem 5 can be used to construct confidence bands for the ASFs, x 7→ µS(x) and

x 7→ µS(x | x0), over regions of values of x via Kolmogorov-Smirnov type statistics

and weighted bootstrap, and to construct confidence intervals for average treatment

effects, µ(x1) − µ(x0) and µ(x1 | x0) − µ(x0 | x0), via t-statistics and weighted

bootstrap.
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5 Application: United Kingdom wage regressions

We now investigate two important issues related to the wage level of female workers

in the United Kingdom and the rate of their wage growth. First, we examine the

impact of selection bias from the hours decision in estimating the returns to human

capital. Second, we provide a decomposition of earnings growth which includes a

contribution resulting from selection bias. We use data from the United Kingdom

Family Expenditure Survey (FES) for the years 1978 to 1999. Blundell et al. (2003)

study male wage growth and Blundell et al. (2007) examine wage inequality for

both males and females using the same data source. We employ the same data

selection rules and refer the reader to these earlier papers for details. The FES

is a repeated cross section of households and contains detailed information on the

number of weekly hours worked and the hourly wage of the individual. We restrict

the data to those who report an education level and only include working women

who report working weekly hours of 70 or less and an hourly wage of at least 0.01

pounds. This reduces the total number of observations from 96,402 to 94,985. This

produces a data set of over 4,100 observations per year and with approximately

2,600 working females.

The outcome variable is the log-hourly wage defined as the nominal weekly earn-

ings divided by the number of hours worked and deflated by the quarterly UK retail

price index. Following Blundell et al. (2003), we use the simulated out-of-work

benefits income as an exclusion restriction in the hours equation. We refer to their

paper for details and note that the UK benefits system makes this restriction appro-

priate since, in contrast to other European countries, unemployment benefits are not

related to income prior to the period out of work. Blundell et al. (2007) argue that

the system of housing benefits may still have a positive relationship with in-work

potential. However, we do not consider these additional issues and refer to Blundell

et al. (2007) for a potential solution using a monotonicity restriction in place of an

exclusion restriction in the hours equation. Equations (2.1) and (2.2) characterize

the model of Blundell et al. (2003) when g and h are linear and separable and ε and

η are normally distributed.

Figure 1A reports the female participation rate over the sample period. Figure

1B reports the average number of hours for all females and those reporting positive
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Figure 1: Descriptive statistics of the data set

hours respectively. Recall that our control function exploits the variation in both

the extensive and intensive margins of the hours decisions. Figure 1A illustrates

that participation was around 65 percent in the years before the recession in the

beginning 1980’s. Participation drops to a sample period low of 58 percent in 1982,

but subsequently increases and almost reaches 70 percent at the end of the sample

period. The figures for the average hours show similar trends but most notably there

is significant variation in average hours over time for the sample of workers. The

figures illustrate the utility of exploiting the number of hours rather than just the

binary outcome if they are available.

We use the following variables for our empirical analysis. We use three different

education levels; (1) a dummy variable indicating the individual left school at the

age of 16 years or younger, (2) a dummy variable for left school at the age of 17

or 18 years, and (3) a dummy variable for left school at the age of 19 years or

older. We use age and age squared and interact these with the level of education.

In addition, we use a dummy variable indicating that the individual lives together

with a partner and we use 12 dummy variables indicating the region in the UK in

which the individual lives. We pool the data for four consecutive years, i.e. 1978-

81, 1982-1985, 1986-1989, 1990-1993, 1994-1997 and 1998-2000 noting that the last

period is only 3 years.
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Mean Q1 Q2 Q3

Leaving school at the age of 17-18
1978-1981 0.259 0.149 0.252 0.349

(0.227,0.290) (0.221,0.283) (0.221,0.283) (0.314,0.384)
1986-1989 0.275 0.195 0.292 0.335

(0.248,0.302) (0.164,0.227) (0.265,0.320) (0.294,0.376)
1998-2000 0.273 0.223 0.299 0.335

(0.245,0.301) (0.267,0.331) (0.124,0.377) (0.301,0.370)

Leaving school at the age of 19 or older
1978-1981 0.658 0.564 0.746 0.809

(0.624,0.692) (0.511,0.618) (0.704,0.787) (0.771,0.849)
1986-1989 0.579 0.549 0.701 0.691

(0.551,0.608) (0.512,0.585) (0.671,0.732) (0.660,0.722)
1998-2000 0.597 0.521 0.701 0.703

(0.567,0.628) (0.473, 0.569) (0.665,0.736) (0.669,0.737)

Table 1: Estimates of the returns to education without correction for sample selec-
tion. Bootstrapped confidence intervals are in between parentheses.

5.1 Returns to human capital

Given the changes in working hours over the sample period, we investigate the

impact of selection on the return to human capital. We first examine the returns to

schooling. Table 1 reports the impact of education on wages estimated by quantile

regression unadjusted for selection. The reported results in the first column are the

absolute values of the average treatment effects of the difference between the lowest

level of education and any higher level of education. Similarly, columns 2 to 4 report

the absolute values of the quantile treatment effects.6 The results in Table 1 indicate

that there is generally a larger coefficient at higher quantiles. There is also evidence

that there is an increase in the return to education over time at some quantiles.

Table 2 reports the results of the local average and quantile treatment effects.

We report the absolute values of these effects based on the subsample of individuals

with the lowest level of education. We account for sample selection by including V

and V 2 as well as interaction terms of V with all the regressors discussed above.

Note that we report our results for values of V at the median and higher as it

appears that our identification requirements are not satisfied at lower quantiles.

6We calculate the average treatment effects for the medium education level as the difference in
the average wage among the lowest educated and

∑
educ=“low′′ P (x, educ = “medium′′)β̂, where P

is a polynomial. We use distribution regression for the quantile treatment effect to estimate the
distribution and calculate the quantile of that distribution.
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Mean Q1 Q2 Q3

V = 0.5

1978-1981 0.263 0.151 0.217 0.300
(0.200,0.327) (0.074,0.229) (0.139,0.296) (0.210,0.390)

1986-1989 0.309 0.122 0.304 0.426
(0.252,0.366) (0.059,0.0186) (0.254,0.354) (0.363,0.488)

1998-2000 0.281 0.178 0.318 0.411
(0.232,0.330) (0.116,0.241) (0.261,0.375) (0.341,0.481)

V = 0.75

1978-1981 0.258 0.154 0.256 0.346
(0.225,0.291) (0.115,0.194) (0.224,0.287) (0.307,0.385)

1986-1989 0.279 0.199 0.307 0.350
(0.253,0.305) (0.168,0.230) (0.277,0.336) (0.311,0.389)

1998-2000 0.278 0.235 0.306 0.343
(0.250,0.306) (0.196,0.276) (0.273,0.337) (0.310,0.377)

Leaving school at the age of 19 or older

V = 0.5

1978-1981 0.742 0.610 0.911 0.954
(0.679,0.805) (0.465,0.755) (0.828,0.994) (0.880,1.028)

1986-1989 0.638 0.456 0.814 0.877
(0.579,0.697) (0.329,0.583) (0.744,0.883) (0.829,0.926)

1998-2000 0.653 0.385 0.779 0.889
(0.592,0.713) (0.314,0.456) (0.688,0.870) (0.816,0.963)

V = 0.75

1978-1981 0.661 0.564 0.747 0.802
(0.627,0.696) (0.512,0.615) (0.706,0.788) (0.758,0.846)

1986-1989 0.589 0.562 0.717 0.705
(0.561,0.616) (0.528,0.596) (0.686,0.747) (0.674,0.736)

1998-2000 0.601 0.531 0.706 0.712
(0.570,0.601) (0.483,0.579) (0.670,0.741) (0.677,0.748)

Table 2: Estimates of the returns to education, our method using a control function.
Bootstrapped confidence intervals are in between parentheses.
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Figure 2A: Global estimates of the average impact of education for the low and mid-
dle educated in the selected population in case that they have any other education
level.

An examination of Table 2 reveals that the impact of education varies by quantile

and by the value of V at which it is evaluated. Looking at the results at the

mean, there appears to be some variation in the returns to education for different

values of V , but the evidence is not strong statistically. This, in addition to the

similarity of these results to the unadjusted results, may suggest that there are no

clear indications of selection bias for these quantiles at higher levels of V .

We further explore the role of education by deriving the average and the quantile

impact of obtaining a higher education for some qualified groups. These are shown in

Figures 2A and 2B. The estimates are based on pooling the data in the same manner

as above. The labels “Low”, “Middle” and “High” capture the three education

groups. Hence, the figure “Low versus middle” in Figure 2A displays the average

increase in wages when women of the lowest education group have an education level

equal to the middle education level. The figure displayed for τ = 0.25 in Figure 2B

looks at this increase at the first quartile of the distribution. The magnitude of the

average impact of education for the various educational comparisons is consistent

with the estimates in the tables discussed above and the plot over time appears to

reveal some cyclical behavior.

We also explore how the return to experience has varied by education group over

the sample period by estimating the average derivative with respect to age. Figure

3 presents the derivative for different education levels. The figures represent the
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age weighted average derivative based on a weighted average over the sample. The

figures show that there is a drastic increase to the return to experience during the

1990s. They also reveal that there is a drastic difference in the rate of wage growth

across education groups. Figure 4 reports these derivatives evaluated at ages 25,

40 and 55 years and these represent the local average responses. There is a strong

positive relationship between wage growth and age at 25 years and the effect is

particularly strong for the highest educated. Moreover, the effect increases notably

over the sample period with large increases in the 1990s. The effect is notably lower

although still positive at the age of 40 years. The differences by education groups

are less dramatic. At 55 years, wages do not appear to be generally increasing with

age. In fact, there appears to be evidence that the real wage is decreasing for the

highest education group.

5.2 Decomposition of the wage increase

The above evidence regarding the impact on human capital and the role of selec-

tion on wages suggest each has played a role in the evolution of wages for working

females in our sample period. We investigate their respective contributions by fol-

lowing Blundell et al. (2003) to decompose female wage growth into the selection

component, composition component and structure component as introduced in Sec-

tion 3.7 For these components, we set 1982 as the base year (i.e. year 0 as in (3.11)).

This choice is based on Figure 1. We do not focus on these components, but report

the differences in the quantiles. For example, the selection component equals:

∆1
τ = Qτ (Y〈t|t,t〉 | Ct > 0)−Qτ (Y〈t|t,0〉 | C0 > 0)

and similarly, we introduce ∆2
τ and ∆3

τ .

Figure 5 shows the time series of the different components and the total difference

in wages from 1982 to 1999. Similar to Blundell et al. (2003), who find a large

change in the wage dispersion for males in this period, we find the total increase to

be much larger for the second (Q2) and third quartiles (Q3) than for the bottom

7Blundell et al. (2003) provide the decomposition of male wages in the same period, while
employing a parametric approach to account for selection.
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Figure 3: Average derivative of the impact of age on log wages among the selected
population.

decile (D1) and first quartile (Q1). More explicitly, while wages grew 26.0 percent

for the bottom decile and 31.1 percent for the bottom quartile they grew 42.4 and

48.4 percent at the median and upper quartile respectively. This difference in growth

rates is especially drastic since 1991. Notably, we find that the increase in the wages

is primarily due to the wage structure component and this is especially true at the

bottom of the distribution. There is also evidence that the composition component

contributes substantially to wage growth at all quantiles although there is evidence of

larger effects at the median and above. The selection component is small in absolute

values and negative. The negative effect is expected as comparing later years to 1982

makes the sample more selective. Thus, since it is likely that the “more productive”

women were working in 1982, the wages will increase by dropping the less able

women in the later years from the sample. The selection effect is largest at D1 and

Q1 and almost non-existent at Q3. This is also expected. That is, women at the

top of the distribution worked both in 1982 as in any other year and therefore we do

not change the composition of the sample, with respect to unobservables, at these

higher quantiles by imposing the high 1982 level of selection.

6 Conclusion

This paper examines a nonseparable sample selection model with a selection equa-

tion which is based on a partially censored outcome. We account for selection by
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conditioning on an appropriately constructed control function. We show that for this

model we are able to identify several economically interesting objects. We categorize

these as local effects, which represent estimands conditional on a specific outcome

of the control function and global effects, which represent estimands evaluated over

a range of values of the control function. For both effects we provide identification

results and estimation methods in addition to the related asymptotic theory. We

illustrate the utility of our approach in an empirical application focusing on the de-

terminants of wages and wage growth for a sample of United Kingdom females over

a period of increasing labor force participation at both the intensive and extensive

margins.
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A Proofs of Section 3

A.1 Lemma 1

Proof. The proof is similar to the proof of Theorem 1 in Newey (2007). For any bounded
function a(ε) and C > 0 (and hence h(Z, η) > 0), by Assumption 1,

E [a(ε) | Z = z, η = q, C > 0] = E [a(ε) | η = q, C > 0]

Since this holds for any function a(ε) and any h(Z, η) > 0, Z and ε are independent
conditional on η and C > 0. The result follows because η is a one-to-one function of
FC|Z(C | Z) when C > 0 since η = h−1(Z,C) if C > 0 by Assumption 1, and for c > 0

FC|Z(c | Z = z) = P(max(h(Z, η), 0) ≤ c | Z = z)

= P(h(Z, η) ≤ c | Z = z) = P(η ≤ h−1(Z, c) | Z) = h−1(Z, c),

where we use the normalization η ∼ U(0, 1).

A.2 Theorem 1

Proof. Define the generic local object

θ(x, v) = Eε[Γ(x, ε) | V = v]

for some function Γ(x, e) : X × E → Rk; k ∈ N+, where E is the support of ε. Using
Assumption 1, this equals

θ(x, v) = Eε[Γ(x, ε) | Z = z, V = v].
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Since conditional on Z = z and V = v, we have that C = max{h(z, v), 0} and since
(x, v) ∈ XV, there is a z ∈ Z such that C = h(z, v) and hence

θ(x, v) = Eε[Γ(x, ε) | Z = z, V = v, C > 0]

= Eε[Γ(X, ε) | Z = z, V = v, C > 0],

where the second line is due to X ⊆ Z. This second line is identical to the right-hand side
of (3.1) when Γ(x, e) = g(x, e). Along the same lines, this also proves Corollary 1, with
Γ(x, e) = ∂xg(x, e). Note that this also proves identification of the LDSF, since

G(y, x, v) = Eε[1{g(x, ε) ≤ y} | V = v]

and hence the proof is completed by using Γ(x, e) = 1{g(x, e) ≤ y}.

A.3 Derivation of (3.8)

By Bayes’ rule and monotonicity of v 7→ h(z, v),

dF sV,Z(v, z) =
P(C > 0 | Z = z, V = v)dFV,Z(v, z)

P(C > 0)
=

1(h(z, v) > 0)dFV,Z(v, z)∫
1(h(z, v) > 0)dFV,Z(v, z)

.

The result follows from substitution into (3.7) and using that F sY |Z,V (y | z, v) = G(y, x, v)

by Lemma 1.

B Proofs of Section 4

B.1 Notation

In what follows ϑ denotes a generic value of the control function. It is convenient also
to introduce some additional notation, which will be extensively used in the proofs. Let
Vi(ϑ) := ϑ(Zi), Wi(ϑ) := w(Xi, Vi(ϑ)), and Ẇi(ϑ) := ∂vw(Xi, v)|v=Vi(ϑ). When the pre-
vious functions are evaluated at the true values we use Vi = Vi(ϑ0), Wi = Wi(ϑ0), and
Ẇi = Ẇi(ϑ0). Recall that A := (Y ∗ 1(C > 0), C, Z, V ), T (c) = 1(c ∈ C), and T = T (C).
For a function f : A 7→ R, we use ‖f‖T,∞ = supa∈A |T (c)f(a)|; for a K-vector of functions
f : A 7→ RK , we use ‖f‖T,∞ = supa∈A ‖T (c)f(a)‖2. We make functions in Υ as well as

estimators ϑ̂ to take values in [0, 1]. This allows us to simplify notation in what follows.
We adopt the standard notation in the empirical process literature (see, e.g., Van der

Vaart, 1998),

En[f ] = En[f(A)] = n−1
n∑
i=1

f(Ai),

and

Gn[f ] = Gn[f(A)] = n−1/2
n∑
i=1

(f(Ai)− EP [f(A)]).

When the function f̂ is estimated, the notation should interpreted as:

Gn[f̂ ] = Gn[f ] |
f=f̂

and EP [f̂ ] = EP [f ] |
f=f̂

.

We also use the concepts of covering entropy and bracketing entropy in the proofs. The
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covering entropy logN(ε,F , ‖ · ‖) is the logarithm of the minimal number of ‖ · ‖-balls of
radius ε needed to cover the set of functions F . The bracketing entropy logN[](ε,F , ‖ · ‖)
is the logarithm of the minimal number of ε-brackets in ‖ · ‖ needed to cover the set of
functions F . An ε-bracket [`, u] in ‖ · ‖ is the set of functions f with ` ≤ f ≤ u and
‖u− `‖ < ε.

We follow the notation and definitions in Van der Vaart and Wellner (1996) of boot-
strap consistency. Let Dn denote the data vector and En be the vector of bootstrap
weights. Consider the random element Zbn = Zn(Dn, En) in a normed space Z. We say
that the bootstrap law of Zbn consistently estimates the law of some tight random element
Z and write Zbn  P Z in Z if

suph∈BL1(Z)
∣∣EbPh (Zbn)− EPh(Z)

∣∣→Pb 0, (B.1)

where BL1(Z) denotes the space of functions with Lipschitz norm at most 1, EbP denotes
the conditional expectation with respect to En given the data Dn, and →Pb denotes con-
vergence in (outer) probability.

B.2 Proof of Lemma 3

The proof strategy follows closely the argument put forth in Chernozhukov et al. (2015) to
deal with the dimensionality and entropy properties of the first step distribution regression
estimators.

B.2.1 Auxiliary Lemmas

We start with 2 results on stochastic equicontinuity and a local expansion for the second
stage estimators that will be used in the proof of Lemma 3.

Lemma 4 (Stochastic equicontinuity) Let ω ≥ 0 be a positive random variable with
EP [ω] = 1, VarP [ω] = 1, and EP |ω|2+δ < ∞ for some δ > 0, that is independent of
(Y ∗ 1(C > 0), Z, C, V ), including as a special case ω = 1, and set, for A = (ω, Y ∗ 1(C >
0), Z, C, V ),

f1(A, ϑ, β) := ω · [W (ϑ)Tβ − Y ] ·W (ϑ) · T.

Under Assumptions 1–3 the following relations are true.

(a) Consider the set of functions

F = {f1(A, ϑ, β)Tα : (ϑ, β) ∈ Υ0 × B, α ∈ Rdim(W ), ‖α‖2 ≤ 1},

where B is a compact set under the ‖·‖2 metric containing β0, Υ0 is the intersection
of Υ, defined in Lemma 2, with a neighborhood of ϑ0 under the ‖ ·‖T,∞ metric. This
class is P -Donsker with a square integrable envelope of the form ω times a constant.

(b) Moreover, if (ϑ, β)→ (ϑ0, β0) in the ‖ · ‖T,∞ ∨ ‖ · ‖2 metric, then

‖f1(A, ϑ, β)− f1(A, ϑ0, β0)‖P,2 → 0.

(c) Hence for any (ϑ̃, β̃)→P (ϑ0, β0) in the ‖ · ‖T,∞ ∨ ‖ · ‖2 metric such that ϑ̃ ∈ Υ0,

‖Gnf1(A, ϑ̃, β̃)−Gnf1(A, ϑ0, β0)‖2
P→ 0.
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(d) For for any (ϑ̂, β̃)→P (ϑ0, β0) in the ‖ · ‖T,∞ ∨ ‖ · ‖2 metric so that

‖ϑ̂− ϑ̃‖T,∞ = oP(1/
√
n), where ϑ̃ ∈ Υ0,

we have that
‖Gnf1(A, ϑ̂, β̃)−Gnf1(A, ϑ0, β0)‖2 →P 0.

Proof of Lemma 4. The proof is divided in subproofs of each of the claims.
Proof of Claim (a). The proof proceeds in several steps.
Step 1. Here we bound the bracketing entropy for

I1 = {[W (ϑ)Tβ − Y ]T : β ∈ B, ϑ ∈ Υ0}.

For this purpose consider a mesh {ϑk} over Υ0 of ‖ · ‖T,∞ width δ, and a mesh {βl} over
B of ‖ · ‖2 width δ. A generic bracket over I1 takes the form

[i01, i
1
1] = [{W (ϑk)

Tβl − κδ − Y }T, {W (ϑk)
Tβl + κδ − Y }T ],

where κ = LW maxβ∈B ‖β‖2 + LW , and LW := ‖∂vw‖T,∞ ∨ ‖w‖T,∞.
Note that this is a valid bracket for all elements of I1 because for any ϑ located within

δ from ϑk and any β located within δ from βl,

|W (ϑ)Tβ −W (ϑk)
Tβl|T ≤ |(W (ϑ)−W (ϑk))

Tβ|T + |W (ϑk)
T(β − βl)|T

≤ LW δmax
β∈B
‖β‖2 + LW δ ≤ κδ, (B.2)

and the ‖ · ‖P,2-size of this bracket is given by

‖i01 − i11‖P,2 ≤
√

2κδ.

Hence, counting the number of brackets induced by the mesh created above, we arrive at
the following relationship between the bracketing entropy of I1 and the covering entropies
of Υ0, and B,

logN[](ε, I1, ‖ · ‖P,2) . logN(ε2,Υ0, ‖ · ‖T,∞) + logN(ε2,B, ‖ · ‖2)
. 1/(ε2 log4 ε) + log(1/ε),

and so I1 is P -Donsker with a constant envelope.
Step 2. Similarly to Step 1, it follows that

I2 = {W (ϑ)TαT : ϑ ∈ Υ0, α ∈ Rdim(W ), ‖α‖2 ≤ 1}

also obeys a similar bracketing entropy bound

logN[](ε, ‖ · ‖P,2) . 1/(ε2 log4 ε) + log(1/ε)

with a generic bracket taking the form [i02, i
1
2] = [{W (ϑk)

Tα − κδ}T, {W (ϑk)
Tα + κδ}T ].

Hence, this class is also P -Donsker with a constant envelope.
Step 3. In this step we verify the claim (a). Note that F = ω · I1 · I2. This class has a
square-integrable envelope under P . The class F is P -Donsker by the following argument.
Note that the product I1 · I2 of uniformly bounded classes is P -Donsker, e.g., by Theorem
2.10.6 of Van der Vaart and Wellner (1996). Under the stated assumption the final prod-
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uct of the random variable ω with the P -Donsker class remains to be P -Donsker by the
Multiplier Donsker Theorem, namely Theorem 2.9.2 in Van der Vaart and Wellner (1996).

Proof of Claim (b). The claim follows by the Dominated Convergence Theorem, since
any f1 ∈ F is dominated by a square-integrable envelope under P , and, W (ϑ)TβT →
WTβ0T and |W (ϑ)TαT −WTαT | → 0 in view of the relation such as (B.2).

Proof of Claim (c). This claim follows from the asymptotic equicontinuity of the em-
pirical process (Gn[f1], f1 ∈ F) under the L2(P ) metric, and hence also with respect to
the ‖ · ‖T,∞ ∨ ‖ · ‖2 metric in view of Claim (b).

Proof of Claim (d). It is convenient to set f̂1 := f1(A, ϑ̂, β̃) and f̃1 := f1(A, ϑ̃, β̃). Note
that

max
1≤j≤dimW

|Gn[f̂1 − f̃1]|j ≤ max
1≤j≤dimW

|
√
nEn[f̂1 − f̃1]|j + max

1≤j≤dimW
|
√
nEP (f̂1 − f̃1)|j

.
√
nEn[ζ̂ ] +

√
nEP [ζ̂ ]

. Gn[ζ̂ ] + 2
√
nEP [ζ̂ ],

where |f |j denotes the jth element of the application of absolute value to each element of

the vector f1, and ζ̂ is defined by the following relationship, which holds with probability
approaching one,

max
1≤j≤dimW

|f̂1−f̃1|j . ω|W (ϑ̂)Tβ̃−Y |‖W (ϑ̂)−W (ϑ̃)‖2+ω|W (ϑ̂)Tβ̃−W (ϑ̃)Tβ̃| . ω(k+|Y |)∆n =: ζ̂,

where k is a constant such that k ≥ LW maxβ∈B ‖β‖2 with LW = ‖∂vw‖T,∞ ∨ ‖w‖T,∞,
and ∆n = o(1/

√
n) is a deterministic sequence such that

∆n ≥ ‖ϑ̂− ϑ̃‖T,∞.

The second inequality result follows from

|W (ϑ̂)Tβ̃ − Y |‖W (ϑ̂)−W (ϑ̃)‖2 . (k + |Y |)∆n, and |W (ϑ̂)Tβ̃ −W (ϑ̃)Tβ̃| . k∆n.

Then, by part (c) the result follows from

Gn[ζ̂ ] = oP(1),
√
nEP [ζ̂ ] = oP(1).

Indeed,

‖ζ̂‖P,2 .
√

EPω2(k2 + EP (Y 2 | C ∈ C))∆2
n = o(1)⇒ Gn[ζ̂ ] = oP(1),

and

‖ζ̂‖P,1 ≤ EP |ω| · (k + EP (|Y | | C ∈ C)∆n = o(1/
√
n)⇒ EP |ζ̂| = oP(1/

√
n).

Lemma 5 (Local expansion) Under Assumptions 1–3, for

δ̂ =
√
n(β̃ − β0) = OP(1);

∆̂(c, r) =
√
n(ϑ̂(c, r)− ϑ0(c, r)) =

√
n En[`(A, c, r)] + oP(1) in `∞(CR),

‖
√
n En[`(A, ·)]‖T,∞ = OP(1),
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we have that

√
n EP [{W (ϑ̂)Tβ̃ − Y }W (ϑ̂)T ] = Jδ̂ +

√
n En [f2(A)] + oP(1),

where
f2(a) = EP {[WTβ0 − Y ]Ẇ +WẆTβ0}T`(a,C,R).

Proof of Lemma 5.
Uniformly in Z ∈ Z,

√
nEP {W (ϑ̂)Tβ̃ − Y | Z}T

=
√
nEP {WTβ0 − Y | Z}T + {W (ϑ̄ξ)

Tδ̂ + Ẇ (ϑ̄ξ)
Tβ̄ξ∆̂(C,R)}T

=
√
nEP {WTβ0 − Y | Z}T + {WTδ̂ + ẆTβ0∆̂(C,R)}T + ρZ ,

ρ̄ = sup
{Z∈Z}

|ρZ | = oP(1),

where ϑ̄ξ is on the line connecting ϑ0 and ϑ̂ and β̄ξ is on the line connecting β0 and β̃.
The first equality follows by the mean value expansion. The second equality follows by

uniform continuity of W (·) and Ẇ (·), ‖ϑ̂− ϑ0‖T,∞
P→ 0 and ‖β̃ − β0‖2

P→ 0.

Since the entries of W and Ẇ are bounded, δ̂ = OP(1), and ‖∆̂‖T,∞ = OP(1), with
probability approaching one,

√
nEP {W (ϑ̂)Tβ̃ − Y }W (ϑ̂)T = EP {WTβ0 − Y }ẆT ∆̂(C,R)

+ EP {WWTT}δ̂ + EP {WẆTβ0T ∆̂(C,R)}+OP(ρ̄)

= Jδ̂ + EP [{WTβ0 − Y }Ẇ +WẆTβ0]T ∆̂(C,R) + oP(1).

Substituting in ∆̂(x, r) =
√
n En[`(A, x, r)] + oP(1) and interchanging EP and En,

EP [{WTβ0 − Y }Ẇ +WẆTβ0]T ∆̂(C,R) =
√
n En[g(A)] + oP(1),

since ‖[{WTβ0 − Y }Ẇ + WẆTβ0]T‖P,2 is bounded . The claim of the lemma follows.

B.2.2 Proof of Lemma 3.

The proof is divided in two parts corresponding to the CLT and bootstrap CLT.

CLT: In this part we show
√
n(β̂ − β0) J−1G in Rdw .

Step 1. This step shows that
√
n(β̂ − β0) = OP(1). Recall that

β̂ = arg min
β∈Rdw

En[(Y −W (ϑ̂)Tβ)2T ].

Due to convexity of the objective function, it suffices to show that for any ε > 0 there
exists a finite positive constant Bε such that ,

lim inf
n→∞

P
(

inf
‖η‖2=1

√
nηTEn

[
f̂1,η,Bε

]
> 0

)
≥ 1− ε, (B.3)

where
f̂1,η,Bε(A) :=

{
W (ϑ̂)T(β0 +Bεη/

√
n)− Y

}
W (ϑ̂)T.
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Let
f1(A) :=

{
WTβ0 − Y

}
WT.

Then uniformly in ‖η‖2 = 1,

√
nηTEn[f̂1,η,Bε ] = ηTGn[f̂1,η,Bε ] +

√
nηTEP [f̂1,η,Bε ]

=(1) ηTGn[f1] + oP(1) + ηT
√
nEP [f̂1,η,Bε ]

=(2) ηTGn[f1] + oP(1) + ηTJηBε + ηTGn[f2] + oP(1)

=(3) OP(1) + oP(1) + ηTJηBε +OP(1) + oP(1),

where relations (1) and (2) follow by Lemma 4 and Lemma 5 with β̃ = β0 + Bεη/
√
n,

respectively, using that ‖ϑ̂ − ϑ̃‖T,∞ = oP(1/
√
n), ϑ̃ ∈ Υ, ‖ϑ̃ − ϑ0‖T,∞ = OP(1/

√
n) and

‖β0 + Bεη/
√
n − β0‖2 = O(1/

√
n); relation (3) holds because f1 and f2 are P -Donsker

by step-2 below. Since J is positive definite, with minimal eigenvalue bounded away from
zero, the inequality (B.3) follows by choosing Bε as a sufficiently large constant.
Step 2. In this step we show the main result. Let

f̂1(A) :=
{
W (ϑ̂)Tβ̂ − Y

}
W (ϑ̂)T.

From the first order conditions of the least squares problem,

0 =
√
nEn

[
f̂1

]
= Gn

[
f̂1

]
+
√
nEP

[
f̂1

]
=(1) Gn[f1] + oP(1) +

√
nEP

[
f̂1

]
=(2) Gn[f1] + oP(1) + J

√
n(β̂ − β0) + Gn[f2] + oP(1),

where relations (1) and (2) follow by Lemma 4 and Lemma 5 with β̃ = β̂, respectively,

using that ‖ϑ̂ − ϑ̃‖T,∞ = oP(1/
√
n), ϑ̃ ∈ Υ, and ‖ϑ̃ − ϑ‖T,∞ = OP(1/

√
n) by Lemma 2,

and ‖β̂ − β0‖2 = OP(1/
√
n).

Therefore by invertibility of J ,

√
n(β̂ − β0) = −J−1Gn(f1 + f2) + oP(1).

By the Central Limit Theorem

Gn(f1 + f2) G in Rdw , G ∼ N(0,Ω), Ω = EP [(f1 + f2)(f1 + f2)
T],

where Ω is specified in the lemma. Conclude that

√
n(β̂ − β0) J−1G in Rdw .

Bootstrap CLT: In this part we show
√
n(β̂b − β̂) P J

−1G in Rdw .

Step 1. This step shows that
√
n(β̂b−β0) = OP(1) under the unconditional probability P.

Recall that
β̂b = arg min

β∈Rdim(W )
En[ω(Y −W (ϑ̂b)Tβ)2T ],

where ω is the random variable used in the weighted bootstrap. Due to convexity of the
objective function, it suffices to show that for any ε > 0 there exists a finite positive
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constant Bε such that

lim inf
n→∞

P
(

inf
‖η‖2=1

√
nηTEn

[
f̂ b1,η,Bε

]
> 0

)
≥ 1− ε, (B.4)

where
f̂ b1,η,Bε(A) := ω ·

{
[W (ϑ̂b)T(β0 +Bεη/

√
n)]− Y

}
W (ϑ̂b)T.

The result then follows by an analogous argument to step 1 in the proof of the CLT, which
we do not repeat here.
Step 2. In this step we show that

√
n(β̂b − β0) = −J−1Gn(f b1 + f b2) + oP(1) under the

unconditional probability P. Let

f̂ b1(A) := ω · {W (ϑ̂b)Tβ̂b − Y }W (ϑ̂b)T.

From the first order conditions of the least squares problem in the weighted sample,

0 =
√
nEn

[
f̂ b1

]
= Gn

[
f̂ b1

]
+
√
nEP

[
f̂ b1

]
=(1) Gn[f b1 ] + oP(1) +

√
nEP

[
f̂ b1

]
=(2) Gn[f b1 ] + oP(1) + J

√
n(β̂b − β0) + Gn[f b2 ] + oP(1),

where relations (1) and (2) follow by Lemma 4 and Lemma 5 with β̃ = β̂b, respectively,

using that ‖ϑ̂b − ϑ̃b‖T,∞ = oP(1/
√
n), ϑ̃b ∈ Υ and ‖ϑ̃b − ϑ0‖T,∞ = OP(1/

√
n) by Lemma

2, and ‖β̂b − β0‖2 = OP(1/
√
n). Therefore by invertibility of J ,

√
n(β̂b − β0) = −J−1Gn(f b1 + f b2) + oP(1).

Step 3. In this final step we establish the behavior of
√
n(β̂b − β̂) under Pb. Note that Pb

denotes the conditional probability measure, namely the probability measure induced by
draws of ω1, . . . , ωn conditional on the data A1, ..., An. By Step 2 of the proof of the CLT
and Step 2 of the proof of the bootstrap CLT, we have that under P:

√
n(β̂b − β0) = −J−1Gn(f b1 + f b2) + oP(1),

√
n(β̂ − β0) = −J−1Gn(f1 + f2) + oP(1).

Hence, under P
√
n(β̂b − β̂) = −J−1Gn(f b1 − f1 + f b2 − f2) + rn = −J−1Gn((ω − 1)(f1 + f2)) + rn,

where rn = oP(1). Note that it is also true that

rn = oPb(1) in P-probability,

where the latter statement means that for every ε > 0, Pb(‖rn‖2 > ε) = oP(1). Indeed, this
follows from Markov inequality and by

EP[Pb(‖rn‖2 > ε)] = P(‖rn‖2 > ε) = o(1),

where the latter holds by the Law of Iterated Expectations and rn = oP(1).
Note that f b1 = ω · f1 and f b2 = ω · f2, where f1 and f2 are P -Donsker by step-2 of the

proof of the first part and EPω2 <∞. Then, by the Conditional Multiplier Central Limit
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Theorem, e.g., Lemma 2.9.5 in Van der Vaart and Wellner (1996),

Gbn := Gn((ω − 1)(f1 + f2)) P G in Rdw .

Conclude that √
n(β̂b − β̂) P J

−1G in Rdw .

B.3 Proof of Theorem 5

In this section we use the notation Wx(ϑ) = w(x, V (ϑ)) such that Wx = w(x, V (ϑ0)).
We focus on the proof for the estimator of the ASF, because the proof for the estimator

of the ASF on the treated can be obtained by analogous arguments. The results for the
estimator of the ASF follow by a similar argument to the proof of Lemma 3 using Lemmas
6 and 7 in place of Lemmas 4 and 5, and the delta method. For the sake of brevity, here
we just outline the proof of the FCLT.

Let ψx(A, ϑ, β) := Wx(ϑ)TβT such that µS(x) = EPψx(A, ϑ0, β0)/EPT and µ̂S(x) =

Enψx(A, ϑ̂, β̂)/EnT . Then, for ψ̂x := ψx(A, ϑ̂, β̂) and ψx := ψx(A, ϑ0, β0),

√
n
[
Enψx(A, ϑ̂, β̂)− EPψx(A, ϑ0, β0)

]
= Gn

[
ψ̂x

]
+
√
nEP

[
ψ̂x − ψx

]
=(1) Gn[ψx] + oP(1) +

√
nEP

[
ψ̂x − ψx

]
=(2) Gn[ψx] + oP(1) + Gn[σx] + oP(1),

where relations (1) and (2) follow by Lemma 6 and Lemma 7 with β̃ = β̂, respectively,

using that ‖ϑ̂ − ϑ̃‖T,∞ = oP(1/
√
n), ϑ̃ ∈ Υ, and ‖ϑ̃ − ϑ‖T,∞ = OP(1/

√
n) by Lemma 2,

and
√
n(β̂ − β0) = −J−1Gn(f1 + f2) + oP(1) from step 2 of the proof of Lemma 3.

The functions x 7→ ψx and x 7→ σx are P -Donsker by Example 19.7 in Van der Vaart
(1998) because they are Lipschitz continuous on X . Hence, by the Functional Central
Limit Theorem

Gn(ψx + σx) Z(x) in `∞(X ),

where x 7→ Z(x) is a zero mean Gaussian process with uniformly continuous sample paths
and covariance function

CovP [ψx0 + σx0 , ψx1 + σx1 ], x0, x1 ∈ X .

The result follows by the functional delta method applied to the ratio of Enψx(A, ϑ̂, β̂)
and EnT using that (

Gnψx(A, ϑ̂, β̂)
GnT

)
 

(
Z(x)
ZT

)
,

where ZT ∼ N(0, pT (1− pT )),

CovP (Z(x), ZT ) = GT (x)pT (1− pT ),

and

CovP [ψx0 + hx0 , ψx1 + σx1 | T = 1]

=
CovP [ψx0 + σx0 , ψx1 + σx1 ]− µT (x0)µT (x1)pT (1− pT )

pT
.
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Lemma 6 (Stochastic equicontinuity) Let ω ≥ 0 be a positive random variable with
EP [ω] = 1, VarP [ω] = 1, and EP |ω|2+δ < ∞ for some δ > 0, that is independent of
(Y 1(C > 0), C, Z, V ), including as a special case ω = 1, and set, for A = (ω, Y 1(C >
0), C, Z, V ),

ψx(A, ϑ, β) := ω ·Wx(ϑ)Tβ · T.

Under Assumptions 1–3, the following relations are true.

(a) Consider the set of functions

F := {ψx(A, ϑ, β) : (ϑ, β, x) ∈ Υ0 × B × X},

where X is a compact subset of R, B is a compact set under the ‖ · ‖2 metric
containing β0, Υ0 is the intersection of Υ, defined in Lemma 2, with a neighborhood
of ϑ0 under the ‖ · ‖T,∞ metric. This class is P -Donsker with a square integrable
envelope of the form ω times a constant.

(b) Moreover, if (ϑ, β)→ (ϑ0, β0) in the ‖ · ‖T,∞ ∨ ‖ · ‖2 metric , then

sup
x∈X
‖ψx(A, ϑ, β)− ψx(A, ϑ0, β0)‖P,2 → 0.

(c) Hence for any (ϑ̃, β̃)→P (ϑ0, β0) in the ‖ · ‖T,∞ ∨ ‖ · ‖2 metric such that ϑ̃ ∈ Υ0,

sup
x∈X
‖Gnψx(A, ϑ̃, β̃)−Gnψx(A, ϑ0, β0)‖2 →P 0.

(d) For for any (ϑ̂, β̃)→P (ϑ0, β0) in the ‖ · ‖T,∞ ∨ ‖ · ‖2 metric , so that

‖ϑ̂− ϑ̃‖T,∞ = oP(1/
√
n), where ϑ̃ ∈ Υ0,

we have that
sup
x∈X
‖Gnψx(A, ϑ̂, β̃)−Gnψx(A, ϑ0, β0)‖2 →P 0.

Proof of Lemma 6. The proof is omitted because it is similar to the proof of Lemma 4.

Lemma 7 (Local expansion) Under Assumptions 1–3, for

δ̂ =
√
n(β̃ − β0) = OP(1);

∆̂(x, r) =
√
n(ϑ̂(x, r)− ϑ0(x, r)) =

√
n En[`(A, x, r)] + oP(1) in `∞(XR),

‖
√
n En[`(A, ·)]‖T,∞ = OP(1),

we have that

√
n
{
EPWx(ϑ̂)Tβ̃T − EPWT

x β0T
}

= EP {WxT}Tδ̂+EP {ẆT
x β0T`(a,X,R)}

∣∣
a=A

+ōP(1),

where ōP(1) denotes order in probability uniform in x ∈ X .

Proof of Lemma 7. The proof is omitted because it is similar to the proof of Lemma 5.
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