Antrobus, Emma; Baranov, Victoria; Cobb-Clark, Deborah A.; Mazerolle, Lorraine; Tymula, Agnieszka

Working Paper

The Risk and Time Preferences of Young Truants and Their Parents

IZA Discussion Papers, No. 11236

Provided in Cooperation with:
IZA – Institute of Labor Economics

Suggested Citation: Antrobus, Emma; Baranov, Victoria; Cobb-Clark, Deborah A.; Mazerolle, Lorraine; Tymula, Agnieszka (2017) : The Risk and Time Preferences of Young Truants and Their Parents, IZA Discussion Papers, No. 11236, Institute of Labor Economics (IZA), Bonn

This Version is available at:
http://hdl.handle.net/10419/177040

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
IZA DP No. 11236

The Risk and Time Preferences of Young Truants and Their Parents

Emma Antrobus
Victoria Baranov
Deborah A. Cobb-Clark
Lorraine Mazerolle
Agnieszka Tymula

DECEMBER 2017
IZA – Institute of Labor Economics

Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany
Phone: +49-228-3894-0
Email: publications@iza.org
www.iza.org

DISCUSSION PAPER SERIES

IZA DP No. 11236

The Risk and Time Preferences of Young Truants and Their Parents

Emma Antrobus
University of Queensland

Victoria Baranov
University of Melbourne

Agnieszka Tymula
University of Sydney

IZA – Institute of Labor Economics

IZA – Institute of Labor Economics

Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany
Phone: +49-228-3894-0
Email: publications@iza.org
www.iza.org
ABSTRACT

The Risk and Time Preferences of Young Truants and Their Parents*

We use an incentivized experiment to measure the risk and time preferences of truant adolescents and their parents. We find that adolescent preferences do not predict school attendance and that a unique police-school partnership program targeting school absences was most effective in reducing the truancy of adolescents with relatively risk-averse parents.

JEL Classification: D81, J13, I29
Keywords: adolescent preferences, time preferences, risk preferences, RCT, truancy

Corresponding author:
Victoria Baranov
Department of Economics
University of Melbourne
111 Barry Street
VIC 3010
Australia
E-mail: victoria.baranov@unimelb.edu.au

* The authors gratefully acknowledge the Australian Research Council Laureate Fellowship (2010–2015; grant number FL100100014) that funded the experimental evaluation of the Ability School Engagement Program (ASEP). We also acknowledge the ongoing support from the Australian Research Council Centre of Excellence for Children and Families over the Life Course (project number CE140100027).
1. Introduction

Truancy is a costly social problem. Approximately 10–15% of students across a range of countries are classified as chronically absent from school (Vaughn et al. 2013). School absences are both predictors and symptoms of poor academic outcomes (Coelho et al. 2015), decreased psychological well-being (Dembo et al. 2012), illegal substances abuse (Henry and Huizinga 2007), and antisocial or criminal behavior (Rocque et al. 2017). Lowering truancy rates requires that we understand what drives students to regularly miss school without reasonable grounds.

Economic theory predicts that truancy rates will be higher for more impatient, present-biased and / or risk-taking individuals, though to date this relationship has not been empirically examined. Previous research examining economic preferences and students’ behavior at school focuses on good conduct or disciplinary referrals. Both are likely to be closely related to truancy; troublemakers may skip school more frequently and also receive more disciplinary referrals when they do attend school. Castillo et al. (2011) estimate that a one standard deviation increase in discount rate is associated with a 14% increase in disciplinary referrals, though because their discount rate measures were not adjusted for the curvature of the utility function, the effect of the discount rate is confounded with risk aversion (Andersen et al. 2008).

Experimentally measured risk and time preferences have also been linked to students’ health and educational outcomes. Impatient adolescents are more likely to violate their schools’ code of conduct, but there appears to be no relationship between misbehavior and risk preferences (Sutter et al. 2013). Castillo et al. (2017) find that more impatient young people are also less likely to graduate from high school.

Taken together, this evidence strongly suggests that adolescents’ preferences shape their behavior and success at school. Interestingly, although parents are believed to play a large role in their children’s decision-making, the link between parental preferences and school outcomes has not been studied. Moreover, previous research has not directly focused on the relationship between preferences and truancy rates.

Our objective is to analyze whether time and risk preferences are related to adolescents’ propensity to be truant. We make an important contribution in focusing directly on young people with excessively high truancy rates living in an area characterized by significant socioeconomic disadvantage and high crime rates. Although such students are frequently the target of initiatives to raise school engagement, they are seldom captured in empirical research measuring economic preferences. Our study provides a unique opportunity to learn whether the truancy decisions of disadvantaged students are linked to their time and risk preferences and to understand the degree to which the success of anti-truancy interventions itself depends on students’ or parents’ preferences. Importantly, we estimate the preferences of both adolescents and their parents in an incentive-compatible way ensuring that the decisions that the participants make have real consequences.

2. The Experiment
2.1 The Ability School Engagement Program

Alarmed by high rates of truancy, police and local schools in Queensland, Australia came together in a structured partnership – the Ability School Engagement Program (ASEP) – to better engage truanting young people in school and reduce anti-social behavior. Specifically, school representatives and police met with young people and their parents to communicate parents’ legal obligations to ensure their children attend school.

A distinguishing feature of ASEP is that the engagement with parents and truants was in a carefully scripted face-to-face family (rather than parent-only) focused forum. Families assigned to ASEP attended a facilitated conference which concluded with the development of a youth-focused Action Plan. The truant, their parent(s), school and uniformed police representatives, and relevant supporters also participated in the conference. A police officer monitored the execution of the Action Plan for six months following the initial conference.

Families with students aged 10-16 with less than 85% attendance over the previous three school terms were eligible to participate in the trial. Between 2011 and 2013, a total of 217 families were classified as eligible; 102 were contactable and consented to participate. These 102 families were randomly assigned to either ASEP or the business-as-usual control condition (see appendix). Using these trial data, ASEP was previously shown to reduce truancy rates by approximately 6 percentage points or 25% (Mazerolle et al. 2017).

Our primary outcome variable, the absence rate, comes from the Queensland Education Department’s administrative database. For each student, absences were calculated as a proportion of all school days missed and measured over a period of three terms (30 teaching weeks) preceding the random assignment (pre-absence rates) and three terms following the initial conference (post-absence rates).

2.2 Measuring Economic Preferences

Preferences were measured during the two-year post randomization follow-up of the trial between October 2014 and January 2017. We measured risk attitudes, impatience and present bias for each adolescent and a parent using the double multiple price listing (Andersen et al. 2008) (see the appendix). Participants were incentivized to respond truthfully by paying cash based upon the choice from one of questions, chosen randomly.

We quantify an individual’s risk attitude as the proportion of questions selected as the risky lottery instead of the sure payment and an individual’s patience by calculating the proportion of questions selected as representing the desire to wait for the later, larger reward. To identify whether our participants show present bias, we calculated the difference between the proportion of times that they selected the sooner option when it was available now and the proportion of times that they selected the sooner option when it was to be delivered in one month.
3. Results

3.1 Data

Of the 102 families participating in the trial, we secured both parental and adolescent preference data from 82. Eight families provided either adolescents’ or parents’ preferences (Figure A.1). Attritors did not differ in characteristics from nonattritors, and attrition was not differentiated by treatment status (Table A.1). Table 1 summarizes the characteristics of the 90 families included in our analysis.

Table 1: Descriptive statistics and balance

<table>
<thead>
<tr>
<th></th>
<th>Baseline Sample</th>
<th></th>
<th></th>
<th>p-val</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Control</td>
<td>(2)</td>
<td>(3) T-C Diff</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>Control Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student’s age (at recruitment)</td>
<td>13.11</td>
<td>(2.2)</td>
<td>0.21</td>
<td>0.64</td>
<td>90</td>
</tr>
<tr>
<td>Student gender (1=Female)</td>
<td>0.45</td>
<td>(0.5)</td>
<td>0.05</td>
<td>0.67</td>
<td>90</td>
</tr>
<tr>
<td>Indigenous background</td>
<td>0.09</td>
<td>(0.3)</td>
<td>0.04</td>
<td>0.56</td>
<td>90</td>
</tr>
<tr>
<td>Parent’s age (at recruitment)</td>
<td>42.37</td>
<td>(7.1)</td>
<td>-1.04</td>
<td>0.55</td>
<td>83</td>
</tr>
<tr>
<td>Parent gender (1=Female)</td>
<td>0.91</td>
<td>(0.3)</td>
<td>0.05</td>
<td>0.37</td>
<td>90</td>
</tr>
<tr>
<td>Parent is biological parent</td>
<td>0.93</td>
<td>(0.3)</td>
<td>0.01</td>
<td>0.88</td>
<td>85</td>
</tr>
<tr>
<td>Single parent</td>
<td>0.55</td>
<td>(0.5)</td>
<td>-0.02</td>
<td>0.82</td>
<td>90</td>
</tr>
<tr>
<td>Parent’s income (100s AUD/pw)</td>
<td>8.51</td>
<td>(5.5)</td>
<td>-2.31</td>
<td>0.06*</td>
<td>86</td>
</tr>
<tr>
<td>Parent highest degree: Uni</td>
<td>0.12</td>
<td>(0.3)</td>
<td>-0.07</td>
<td>0.21</td>
<td>89</td>
</tr>
<tr>
<td>Parent highest degree: Trade diploma</td>
<td>0.28</td>
<td>(0.5)</td>
<td>-0.08</td>
<td>0.36</td>
<td>89</td>
</tr>
<tr>
<td>Parent highest degree: High school</td>
<td>0.30</td>
<td>(0.5)</td>
<td>0.02</td>
<td>0.81</td>
<td>89</td>
</tr>
<tr>
<td>Parent highest degree: Less than high school</td>
<td>0.37</td>
<td>(0.5)</td>
<td>0.06</td>
<td>0.55</td>
<td>89</td>
</tr>
<tr>
<td>Absence rate (pre-intervention)</td>
<td>25.30</td>
<td>(11.8)</td>
<td>2.29</td>
<td>0.43</td>
<td>90</td>
</tr>
<tr>
<td>School size (# students, in 100s)</td>
<td>11.19</td>
<td>(7.6)</td>
<td>-1.20</td>
<td>0.44</td>
<td>90</td>
</tr>
<tr>
<td>School level (1=High school, 0=Primary)</td>
<td>0.55</td>
<td>(0.5)</td>
<td>0.08</td>
<td>0.42</td>
<td>90</td>
</tr>
</tbody>
</table>

Joint test (p-value) 0.41

*p < 0.1, **p < 0.05, ***p < 0.01.

We observe a wide distribution of risk preferences in our sample, illustrated in Figure 1. Many of our participants choose to wait for the larger reward and a majority of the participants do not display present bias, a common finding when transaction costs are equalized for all payment dates (Sutter et al. 2013). Unpaired t-tests confirm that adolescents do not significantly differ in their preferences from parents.
Previous research has found that parent’s and children’s time and risk preferences tend to be moderately correlated (Alan et al. 2017; Brown and van der Pol 2015; Kosse and Pfeiffer 2012). Our correlation coefficients are similar in magnitude to those typically found in the literature, however only patience is statistically significant (Table 2). We also find that, consistent with theory, risk tolerance and patience are strongly correlated in both parent and adolescent samples.
Table 2: Intergenerational correlations of preferences

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Adolescent Preferences</td>
<td>Parent Preferences</td>
<td></td>
</tr>
<tr>
<td>Risk</td>
<td>Patience</td>
<td>Present bias</td>
</tr>
<tr>
<td>(1) Risk</td>
<td>p</td>
<td>1.000</td>
</tr>
<tr>
<td>N</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>(2) Patience</td>
<td>p</td>
<td>0.047</td>
</tr>
<tr>
<td>N</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>(3) Present bias</td>
<td>p</td>
<td>-0.088</td>
</tr>
<tr>
<td>N</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>(4) Risk</td>
<td>p</td>
<td>0.097</td>
</tr>
<tr>
<td>N</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>(5) Patience</td>
<td>p</td>
<td>0.388</td>
</tr>
<tr>
<td>N</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>(6) Present bias</td>
<td>p</td>
<td>0.483</td>
</tr>
<tr>
<td>N</td>
<td>82</td>
<td>82</td>
</tr>
</tbody>
</table>

3.2 The Impact of the Treatment on Preferences

We test whether the intervention impacted economic preferences. Previous research indicates risk and time preference are relatively stable over time, while self-control is more malleable (Jamison, Karlan, and Zinman 2012). One component of the ASEP intervention involved creating an Action Plan, effectively a goal-setting task which is a common approach used to improve self-control.

We find that adolescents participating in ASEP do not differ from the controls in any measured preference; however, parents in the intervention become significantly less present biased, exhibiting greater self-control (see Figure 2 and Table 3). Estimates corrected for attrition are nearly identical (Table A.2).
3.3 Heterogeneity by Economic Preferences

We investigate whether the effectiveness of the intervention on attendance relates to parental risk tolerance or patience (Table 4). If risk and time preference are stable (as previous literature suggests, see Jamison et al. (2012)) and unaffected by treatment (as we demonstrate above), our ex post measures can serve as proxies for these preferences at baseline.

We find that the absence rates of participants in the intervention decreased more in response to the intervention if they have more risk averse parents (columns 1 and 2). These results are robust to controlling for basic demographics, patience, and present bias (columns 7 and 8). In contrast, we find no evidence of heterogeneous treatment effects by parental patience (columns 3 and 4).
While absence rates also fell more in response to the intervention for participants with less present-biased (self-controlled) parents (columns 5 and 6), this result is confounded with the effect of the intervention on parental self-control. However, parental present-bias does not appear to mediate the reduction in absences since estimates of the treatment effect are not attenuated after controlling for the mediator.

Finally, we investigated, but found no relationship between treatment effectiveness and adolescents’ preferences (Table A.3). There are potentially several reasons for this. It is possible that the intervention was more effective in changing parental attitudes towards schooling (Mazerolle 2014) or that the decision to attend school is largely guided by the parent.

Table 4: Treatment effect heterogeneity by parental preferences

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>School absence rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated</td>
<td>−4.49</td>
<td>−5.59</td>
<td>−4.35</td>
<td>−5.48</td>
<td>−5.05</td>
<td>−6.74*</td>
<td>−5.05</td>
<td>−6.53*</td>
</tr>
<tr>
<td></td>
<td>(3.58)</td>
<td>(3.68)</td>
<td>(3.68)</td>
<td>(3.79)</td>
<td>(3.72)</td>
<td>(3.81)</td>
<td>(3.73)</td>
<td>(3.90)</td>
</tr>
<tr>
<td>Treated × Risk (par)</td>
<td>21.3***</td>
<td>20.5*</td>
<td></td>
<td></td>
<td></td>
<td>19.9*</td>
<td></td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>(10.5)</td>
<td>(11.3)</td>
<td></td>
<td></td>
<td></td>
<td>(10.9)</td>
<td></td>
<td>(11.8)</td>
</tr>
<tr>
<td>Risk tolerance (parent)</td>
<td>−13.4*</td>
<td>−12.4</td>
<td></td>
<td></td>
<td></td>
<td>−12.1</td>
<td></td>
<td>−11.4</td>
</tr>
<tr>
<td></td>
<td>(7.17)</td>
<td>(7.67)</td>
<td></td>
<td></td>
<td></td>
<td>(7.51)</td>
<td></td>
<td>(8.20)</td>
</tr>
<tr>
<td>Treated × Patience (par)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(9.68)</td>
<td></td>
</tr>
<tr>
<td>Patience (parent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−7.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(−5.24)</td>
<td></td>
</tr>
<tr>
<td>Treated × Present bias (par)</td>
<td>24.4*</td>
<td>30.5**</td>
<td>26.3*</td>
<td>31.4**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(13.1)</td>
<td>(14.1)</td>
<td>(13.7)</td>
<td>(14.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present bias (parent)</td>
<td>−14.3</td>
<td>−21.0**</td>
<td>−13.9</td>
<td>−20.8*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.71)</td>
<td>(9.53)</td>
<td>(9.29)</td>
<td>(10.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated × Absence rate(pre)</td>
<td>−0.48</td>
<td>−0.53*</td>
<td>−0.63**</td>
<td>−0.58*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.31)</td>
<td>(0.31)</td>
<td>(0.30)</td>
<td>(0.32)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absence rate (pre-intervention)</td>
<td>0.77***</td>
<td>1.06***</td>
<td>0.80***</td>
<td>1.15***</td>
<td>0.84***</td>
<td>1.27***</td>
<td>0.76***</td>
<td>1.17***</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td>(0.25)</td>
<td>(0.13)</td>
<td>(0.24)</td>
<td>(0.13)</td>
<td>(0.24)</td>
<td>(0.14)</td>
<td>(0.26)</td>
</tr>
</tbody>
</table>

Observations 84 84 84 84 84 84 84 84
Demographic controls Yes Yes Yes Yes Yes Yes
Demo. × Treated Yes Yes Yes Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01.
Notes: All specifications control for decision error, measured as the number of switches for each preference parameter. Demographic controls include gender and age of student, parental education, gender, and if the parent is a single parent.

4. Conclusion

We find that ASEP improved self-control in parents, though we find no evidence of it affecting the preferences of truanting adolescents. We also find the intervention is most effective for students with more risk averse parents. Our study is based upon a unique sample of truanting adolescents from disadvantaged households who are often underrepresented in experimental studies and especially difficult to locate in longitudinal follow up studies. Our results from the ASEP trial are therefore unique in both the longitudinal nature of the randomized trial and the embedded use of an incentivized risk and time preference study. Whilst the small sample size remains a limitation, ASEP shows promise as an intervention that fosters increased school attendance especially among risk averse parents.
References

Description of business-as-usual (prior to ASEP)

At the time that the program was developed, schools were responsible for implementing the Education (General Provisions) Act 2006 (QLD) that explicitly applied a four-stage escalation process for school nonattendance. When the school identified unexplained or unsatisfactory absences or patterns of absences (Queensland Government 2016), the school principal was required to send a letter to the parent or guardian of the truanting student, explaining parental responsibilities for making sure their truanting child attends school (stage 1). If truancy continued, the principal would initiate a formal meeting with parents (stage 2), escalating to a formal warning of prosecution notice to parents (stage 3) and lastly (stage 4), initiation of prosecution procedures by the Chief Executive of the Department of Education and Training with a penalty of $AU660 for a first offense and $AU1320 for a second or subsequent offense.
Measuring preferences
Risk preferences were measured using a set of ten questions in which individuals selected between a payment of $15 for sure and a lottery that with equal likelihood paid nothing or a reward that changed from question to question and ranged from $15 to $86. To measure time preferences, we asked our participants to choose whether they would like to receive $40 sooner or wait three months longer to receive a larger amount (which ranging between $43 and $81).

After an individual finished the task, they chose a chip from a bag of 30 numbered poker chips to determine which choices they would be paid for. If a question from the risk assessment list was chosen for payment, they would receive the payment mailed on the specified date at risk assessment list was chosen for payment, they would receive the payment in cash.

Figure A.2: Subject decision sheet

<table>
<thead>
<tr>
<th>Question number</th>
<th>$15 for sure or</th>
<th>50% chance of $15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>$40 today or</td>
<td>$43 in 3 months (90 days)</td>
</tr>
<tr>
<td>12</td>
<td>$40 today or</td>
<td>$46 in 3 months (90 days)</td>
</tr>
<tr>
<td>13</td>
<td>$40 today or</td>
<td>$48 in 3 months (90 days)</td>
</tr>
<tr>
<td>14</td>
<td>$40 today or</td>
<td>$51 in 3 months (90 days)</td>
</tr>
<tr>
<td>15</td>
<td>$40 today or</td>
<td>$56 in 3 months (90 days)</td>
</tr>
<tr>
<td>16</td>
<td>$40 today or</td>
<td>$61 in 3 months (90 days)</td>
</tr>
<tr>
<td>17</td>
<td>$40 today or</td>
<td>$66 in 3 months (90 days)</td>
</tr>
<tr>
<td>18</td>
<td>$40 today or</td>
<td>$71 in 3 months (90 days)</td>
</tr>
<tr>
<td>19</td>
<td>$40 today or</td>
<td>$76 in 3 months (90 days)</td>
</tr>
<tr>
<td>20</td>
<td>$40 today or</td>
<td>$81 in 3 months (90 days)</td>
</tr>
<tr>
<td>21</td>
<td>$40 in 1 month (30 days) or</td>
<td>$43 in 4 months (120 days)</td>
</tr>
<tr>
<td>22</td>
<td>$40 in 1 month (30 days) or</td>
<td>$46 in 4 months (120 days)</td>
</tr>
<tr>
<td>23</td>
<td>$40 in 1 month (30 days) or</td>
<td>$48 in 4 months (120 days)</td>
</tr>
<tr>
<td>24</td>
<td>$40 in 1 month (30 days) or</td>
<td>$51 in 4 months (120 days)</td>
</tr>
<tr>
<td>25</td>
<td>$40 in 1 month (30 days) or</td>
<td>$56 in 4 months (120 days)</td>
</tr>
<tr>
<td>26</td>
<td>$40 in 1 month (30 days) or</td>
<td>$61 in 4 months (120 days)</td>
</tr>
<tr>
<td>27</td>
<td>$40 in 1 month (30 days) or</td>
<td>$66 in 4 months (120 days)</td>
</tr>
<tr>
<td>28</td>
<td>$40 in 1 month (30 days) or</td>
<td>$71 in 4 months (120 days)</td>
</tr>
<tr>
<td>29</td>
<td>$40 in 1 month (30 days) or</td>
<td>$76 in 4 months (120 days)</td>
</tr>
<tr>
<td>30</td>
<td>$40 in 1 month (30 days) or</td>
<td>$81 in 4 months (120 days)</td>
</tr>
</tbody>
</table>
Figure A.3: Distribution of post-intervention absence rates by intervention arm

Table A.1: Characteristics of attrition

<table>
<thead>
<tr>
<th>Baseline Characteristics for Followup vs Attrition (LTFU) Samples</th>
<th>(1) Followup sample (N=90) Mean</th>
<th>(2) LTFU sample (N=12) Mean</th>
<th>(3) Difference (1) - (2)</th>
<th>(4) (s.e.)</th>
<th>(5) p-val</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student’s age (at recruitment)</td>
<td>13.22</td>
<td>13.00</td>
<td>0.22</td>
<td>(0.68)</td>
<td>0.74</td>
</tr>
<tr>
<td>Student gender (1=Female)</td>
<td>0.48</td>
<td>0.42</td>
<td>0.06</td>
<td>(0.15)</td>
<td>0.69</td>
</tr>
<tr>
<td>Indigenous background</td>
<td>0.11</td>
<td>0.17</td>
<td>−0.06</td>
<td>(0.10)</td>
<td>0.58</td>
</tr>
<tr>
<td>Parent’s age (at recruitment)</td>
<td>41.81</td>
<td>39.55</td>
<td>2.26</td>
<td>(2.44)</td>
<td>0.36</td>
</tr>
<tr>
<td>Parent gender (1=Female)</td>
<td>0.93</td>
<td>0.92</td>
<td>0.02</td>
<td>(0.08)</td>
<td>0.83</td>
</tr>
<tr>
<td>Parent is biological parent</td>
<td>0.93</td>
<td>1.00</td>
<td>−0.07</td>
<td>(0.07)</td>
<td>0.35</td>
</tr>
<tr>
<td>Single parent</td>
<td>0.53</td>
<td>0.58</td>
<td>−0.05</td>
<td>(0.15)</td>
<td>0.75</td>
</tr>
<tr>
<td>Parent’s income (100s AUD/pw)</td>
<td>7.35</td>
<td>11.00</td>
<td>−3.65</td>
<td>(3.35)</td>
<td>0.28</td>
</tr>
<tr>
<td>Parent highest degree: Uni</td>
<td>0.08</td>
<td>0.08</td>
<td>−0.00</td>
<td>(0.08)</td>
<td>0.96</td>
</tr>
<tr>
<td>Parent highest degree: Trade diploma</td>
<td>0.24</td>
<td>0.42</td>
<td>−0.18</td>
<td>(0.13)</td>
<td>0.18</td>
</tr>
<tr>
<td>Parent highest degree: High school</td>
<td>0.31</td>
<td>0.08</td>
<td>0.23</td>
<td>(0.14)</td>
<td>0.10*</td>
</tr>
<tr>
<td>Parent highest degree: Less than high school</td>
<td>0.40</td>
<td>0.42</td>
<td>−0.01</td>
<td>(0.15)</td>
<td>0.94</td>
</tr>
<tr>
<td>Absence rate (pre-intervention)</td>
<td>26.47</td>
<td>25.26</td>
<td>1.21</td>
<td>(4.13)</td>
<td>0.77</td>
</tr>
<tr>
<td>School size (# students, in 100s)</td>
<td>10.57</td>
<td>9.41</td>
<td>1.17</td>
<td>(2.31)</td>
<td>0.62</td>
</tr>
<tr>
<td>School level (1=High school, 0=Primary)</td>
<td>0.59</td>
<td>0.50</td>
<td>0.09</td>
<td>(0.15)</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Joint test (p-value) | | | | | 0.55 |

Difference in followup rate
- Treatment-Control = 0.04
- p = 0.54

* p < 0.1, ** p < 0.05, *** p < 0.01.

Notes: Table presents characteristics of the preference study followup and trial participants who were lost to followup (LTFU) for the preference study. Columns 1 and 2 present means by the sample with preference data and those who were not located, respectively. Column 3 presents the difference in means between the two samples, column 4 the standard error of the difference, and column 5 the associated p-value. The p-value of the joint test of whether baseline characteristics of the two samples differed is presented in the bottom row.
Demographic controls include gender and age of student, parental education, gender, and if the parent is a single parent.

Table A.2: Attrition-corrected treatment effects on preferences

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td>Risk tolerance</td>
<td>Patience</td>
<td>Present bias</td>
</tr>
<tr>
<td>Treated</td>
<td>0.030 (0.058)</td>
<td>-0.003 (0.052)</td>
<td>0.061 (0.060)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.013 (0.076)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.012 (0.069)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.141**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.063)</td>
</tr>
<tr>
<td>Observations</td>
<td>84</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>Control mean</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Control s.d.</td>
<td>0.26</td>
<td>0.24</td>
<td>0.25</td>
</tr>
</tbody>
</table>

* $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.

Notes: Dependent variables are listed across the top of the table. Estimates produced by OLS, regressing dependent variables on an indicator for whether the individual was part of the intervention arm (“Treated”). Estimate are presented without any additional adjustment for baseline covariates, but corrected for attrition using Inverse Probability Weighting where the weights are calculated as the inverse of probability of that the participant is observed in the preference study conditional on baseline demographics (gender and age of student and parent, parental education, income, if the parent is a single parent, pre- and post-intervention absence rates, and a treatment dummy) estimated by Probit. N=86 in the unweighted estimation. Two observations are lost due to inclusion of post-intervention absence rates (estimates similar using pre-intervention rates only).

Table A.3: Heterogeneity by student preferences

<table>
<thead>
<tr>
<th></th>
<th>Dependent variable: School absence rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) (2) (3) (4) (5) (6) (7) (8)</td>
</tr>
<tr>
<td>Treated</td>
<td>-4.76 (3.57) -6.10 (3.76) -4.88 (3.59) -6.17 (3.79) -4.90 (3.59) -6.51* (3.81) -5.18 (3.75) -6.48 (4.10)</td>
</tr>
<tr>
<td>Risk tolerance</td>
<td>3.31 (13.7) 7.08 (15.4)</td>
</tr>
<tr>
<td>Patience</td>
<td>-8.01 (10.1) -12.5 (11.9)</td>
</tr>
<tr>
<td>Present bias</td>
<td>-2.41 (10.8) -0.46 (11.5)</td>
</tr>
<tr>
<td>Absence rate (pre)</td>
<td>-0.53* (0.31) -0.48 (0.31) -0.53 (0.32) -0.54 (0.35)</td>
</tr>
<tr>
<td>Absence rate (pre-intervention)</td>
<td>0.82*** (0.13) 1.17*** (0.25) 0.81*** (0.13) 1.14*** (0.25) 0.83*** (0.13) 1.19*** (0.26) 0.85*** (0.14) 1.22*** (0.27)</td>
</tr>
<tr>
<td>Observations</td>
<td>84</td>
</tr>
<tr>
<td>Demographic controls</td>
<td>Yes</td>
</tr>
<tr>
<td>Demo. × Treated</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.

Notes: All specifications control for decision error, measured as the number of switches for each preference parameter. Demographic controls include gender and age of student, parental education, gender, and if the parent is a single parent.