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Abstract

Sample size analysis is a key part of the planning phase of any research. So far, however,

limited literature focusses on sample size analysis methods for two-sample linear rank tests,

although these methods have optimal properties at different distributions. This paper pro-

vides a new sample size analysis method for linear rank tests for location shift alternatives

based on score generating functions. Results show a slightly anti-conservative behavior, no

severe risk of an occuring circular argument at small to moderate variances of the populati-

on’s distribution, and good performance compared to alternate sample size analysis methods

for the most well-known linear rank test, the Wilcoxon-Mann-Whitney test.

Keywords: Sample Size Analysis, Linear Rank Test, Score Generating Function, Circular

Argument
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1. Introduction

Prior to conducting an experiment, a research’s planning phase includes an a priori power

analysis, respectively sample size analysis. A minimum sample size is required to ensure a

reasonable effect size with fixed probabilities for the error of the first (α) and second (β)

kind. Accordingly, depending on the population’s distribution, a suitable statistical method

to test a hypothesis has to be determined in advance. For examining two samples’ mean

differences, one of the most often applied tests is the so-called t-test. This test is uniformly

most powerful unbiased for normally distributed populations at one-sided alternatives, thus

it maximizes the power among all unbiased tests in this situation (Lehmann (1959)). The

usage of nonparametric tests, to which linear rank tests belong, is often recommended as

they provide considerable advantages in efficiency when the assumption of normality is in

doubt (Lehmann (1975)). Thus, the Wilcoxon-Mann-Whitney (WMW) test is asymptoti-

cally optimal or locally optimal in the set of all linear rank tests at a Logistic distribution

(Mann and Whitney (1947), Wilcoxon (1945)) and Mood’s Median test is asymptotically

optimal at a double exponential or Laplace distribution (Mood (1954), Hájek et al. (1999)).

Moreover, in case of a normal distribution the van der Waerden test is an asymptotically opti-

mal linear rank test (van der Waerden (1952), Gibbons (1971)). Consequently, depending on

the population’s distribution, one test will be preferred over another, while linear rank tests

provide (asymptotically) optimal properties not only when the assumption of normality is in

doubt. However, although extensive literature exists that is concered with sample size ana-

lysis for parametric tests, only limited literature can be found regarding sample size analysis

for linear rank tests. Herein, the most often considered linear rank test is the WMW test.

This is not surprising as it is probably the most well-known nonparametric test. However,

as other linear rank tests are preferrable in case a population is not logistically distributed

and few literature exists providing sample size analysis methods for general linear rank tests,

enhanced attention on this issue is needed. As sample size analysis is of central importance

for experimental research planning, this paper introduces a new sample size analysis method

for general linear rank tests on location shifts. The proposed method is based on linear rank

tests’ asymptotic normality, while mean and variance can be expressed by score generating

functions (Hájek et al. (1999)). Comparisons to the most common alternate tests on normal
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distributions for the WMW statistic display its good performance. As however this method

is based on linear rank test statistics’ asymptotical properties, the risk of an underlying

circular argument is apparent. This means, that for a sufficiently good approximation of

a test statistic’s exact distribution, a specific sample size is needed. Nonetheless, at an a

priori power analysis, a specific sample size will be determined. Thus, by making use of a

statistic’s asymptotical properties, the risk exists to calculate a minimum required sample

size at which the sample size analysis method is not operating sufficiently well. Therefore,

to check for the risk of an apparent circular argument, sample sizes were determined using

simulated or exact null-distributions of the regarded test statistics. Sample sizes provided by

the method based on the test statistics’ asymptotic distributions compared to those using

their exact or simulated distributions are not found to differ severly at distributions with

small to moderate variance.

This paper is structured as follows: Section 2 gives a short literature review on sample size

analysis methods for two-sample linear rank tests on location shifts. Section 3 presents the

asymptotic distribution of two-sample linear rank tests based on score generating functions

and introduces the new sample size analysis method. Section 4 displays the results of this

method for different distributions and discusses the findings. In Section 5, a comparison of

the sample size analysis method based on score generating functions to alternative methods

for the WMW test is shown. Section 6 summarizes and provides concluding remarks.

2. Literature Review

This section provides a short literature review on sample size analysis for two-sample

linear rank tests for location shifts of continuous distributions. Methods that will be used

in Section 5 for comparison will be presented in more detail. Most research is done referring

the WMW test, as it probably is the most often applied linear rank test. However, almost no

literature on sample size analysis methods considers alternate linear rank tests. Thus, first,

this literature review’s focus will be on sample size analysis methods for the WMW test,

while afterwards attention will be given to methods for alternate or general linear rank tests

for location shifts.
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The Wilcoxon-Mann-Whitney test (Wilcoxon (1945), Mann and Whitney (1947)) has the

statistic

SW =

n∑

i=1

an,m(Ri)

with scores an,m(i) = i, i = 1, 2, . . . , n +m and Ri being the respective scores of Xi in the

combined sample of X, Y , while X1, . . . , Xm and Y1, . . . Yn are independent random samples.

Sample size analyses can be based on a test statistic’s exact distribution or its asympto-

tic distribution. The WMW test statistic’s exact distribution requires computationally in-

tensive total enumeration. Hilton and Mehta (1993) introduced a network algorithm based

on a conservative lower bound of the critical value to generate conditional power followed

by applying an iterative process to determine the required sample size. Their algorithm is

however restricted to ordered categorical data and feasable only for small sample sizes. To

solve the computational burden, a half interval search algorithm was described by Wan et al.

(2009), and an asymptotic approach of Hilton and Mehta (1993)’s algorithm by Rabbee et al.

(2003). A method based on probability generating functions was proposed by van de Wiel

(2000), which has feasable computational time for sample sizes smaller than 40. However,

all of the previously mentioned methods have the disadvantage of being computationally

and time intensive, which can be avoided by using a test statistic’s asymptotical properties.

Al-Sunduqchi (1990) proposed to multiply the minimum required sample size for the para-

metric t-test by 1.156, which is reasoned by the WMW test’s lowest bound of asymptotic

relative efficiency to the t-test being 0.864 (Lehmann (1975)). Assuming the WMW test

statistic to be approximately normal, Noether (1987) suggested calculating the minimum

required sample size by

n =
(λ1−α + λ1−β)

2

6(p′′ − 0.5)2
,

with p′′ = P (X < Y ). The parameter λ denotes the quantile of the standard normal dis-

tribution. The central assumption of Noether (1987) is that alternatives do not differ much

from the null hypothesis, such that the test statistic’s variance under the alternative can be

assumed to equal the statistic’s variance under the null hypothesis of no location shift for

moderate sample sizes. By not applying this assumption, an estimate of the statistic’s varian-

ce under the alternative is required. Birnbaum and Klose (1957) suggested to use the WMW
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test statistic’s variance’s lower, respectively upper bound for calculating the required sam-

ple size. Inspired by Noether (1987)’s as well as Birnbaum and Klose (1957)’s suggestions,

Vollandt and Horn (1997) proposed an exact large sample method for calculating the WMW

test statistic’s variance’s upper bound via solving the following inequalities numerically

for 3/8 < p < 1/2:

1/2− p− λ1−α[(2n+ 1)/(12n2)]1/2

([17n2 − 20n+ 6]/[12(2n− 1)3])1/2
≥ λ1−β,

for 0 < p ≤ 3/8:
1/2− p− λ1−α[(2n+ 1)/12n2)]1/2

[(nδ1 + δ2)/(3n2)]1/2
≥ λ1−β,

with p = P (X > Y ), δ1 = 1/2 − 6δ2 + (2δ)3/2, δ2 = 1/4 + 3δ2 − (2δ)3/2, and δ = 1/2 − p.

While Birnbaum and Klose (1957)’s upper and lower bounds of the WMW test statistic’s

variance is obtained in terms of p, Vollandt and Horn (1997)’s upper bound depends on

the variance’s maximum for the two ranges of p. Moreover, their suggestion is valid for any

alternative. Based on the assumption of the test statistics’ asymptotic normality, Lehmann

(1953) proposed to solve numerically

β = 1− Φ

(
λα

mn(N+1)
12

−mn(p1 − 0.5)√
σ2
W

)
,

with

σ2
W = mnp1(1− p1) +mn(n− 1)(p2 − p21) +mn(m− 1)(p3 − p21),

while

p1 = P (X1 < Y1),

p2 = P (X1 < Y1 and X1 < Y2),

and

p3 = P (X1 < Y1 and X2 < Y1).

Here, X1, X2 are independently distributed with continuous distribution F and Y1, Y2 are

independently distributed with continuous distribution G. Wang et al. (2003) proposed to

estimate the variance pointwise using pilot data. Shieh et al. (2006) provided an exact va-

riance large-sample method. Whenever pilot data is available, bootstrapping techniques can
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be applied (Efron (1979)). Therefore, Hamilton and Collings (1991) avoided the problem of

assuming normality and presented a bootstrapping method for estimating the required sam-

ple size for nonparametric tests for location shifts. Comparing their method to the one of

Noether (1987) in a simulation study displayed similar results for both methods. Based on

Hamilton and Collings (1991)’s suggestion, Chakraborti et al. (2006) proposed further me-

thods for sample size analysis for the WMW test combining bootstrapping and the formula of

Noether (1987) by estimating p′′ via p̂′′ = W/mn, with W being the WMW statistic estima-

ted from the bootstrapped samples. As another method they proposed to estimate p′′ using

linearly smoothed empirical cumulative distribution functions (ecdf) of two pilot samples via

p̂x =
∫
FX(x)dFX(x−δ) with FX(x) being the piecewise linear ecdf’s from the X-sample and

FX(x−δ) being the piecewise linear ecdf from the Y-sample. Their results showed that com-

pared to the bootstrapping method of Hamilton and Collings (1991) at different underlying

population distributions, their proposals work faster and are superior to Noether (1987)’s

suggestion. Moreover, they found that Noether (1987)’s formula provides larger minimum

required sample sizes than those caluclated using the exact method of van de Wiel (2000), by

comparing them for sample sizes smaller than n = m = 20. Taking cost considerations into

account, Guo (2012) proposed a sample size formula based on Chakraborti et al. (2006)’s

proposal on estimating p′′ of Noether (1987)’s formula. Likewise relying on the use of pilot

data, Divine et al. (2010) presented a so-called ’exemplary dataset method’ for calculating

the required minimum sample size for the WMW test statistic. This method is similar to the

one presented by Zhao et al. (2008), whose method can be applied at continuous as well as

ordered categorical data by accounting for ties while assuming equal variances under the null

hypothesis and the alternative hypothesis. For continuous distributions, Zhao et al. (2008)’s

suggestion equals Noether (1987)’s proposal.

Up to now, the focus was on sample size analysis methods for the WMW test. However,

limited literature could be found regarding samples size analysis for alternate linear rank

tests on location shifts. Chakraborti et al. (2006) displayed a general sample size analysis

formula for linear rank tests for location shifts along the lines of Noether (1987)

n =
[λ1−α + λ1−β ]

2

(µδ − 0.5)2
(

∫ 1

0

J2(u)du− [

∫ 1

0

J(u)du]2)
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with

µδ =

∫
∞

−∞

J [0.5Fx(t) + 0.5Fx(t− δ)]dFx(t),

where J(·) being the usual score function and m = n. This ’Noether-like’ formula considers

the underlying distribution through the mean functional µδ (see Gibbons and Chakraborti

(2003)).

To summarize, the available literature on sample size analysis for linear rank tests on

location shifts is limited and further approaches are needed. Therefore, this paper proposes

a new method to satisfy this need. This new sample size analysis method, which is based on

score generating functions, will be introduced in the next section.

3. Asymptotic Sample Size Analysis Method

3.1. Asymptotic Distribution of Two-Sample Linear Rank Statistics

This section will show that linear rank test statistics based on score generating functions

are asymptotically normally distributed.

Let X1, . . . , Xn be stochastically independent, identically distributed (iid) with cumula-

tive distribution function (cdf) F and Y1, . . . , Ym be iid with cdf G. We consider indepen-

dent samples such that Xi and Yj are stochastically independent for i = 1, 2, . . . , n and

j = 1, 2, . . . , m. Ri is the rank of Xi in the combined sample for i = 1, 2, . . . , n. Then

Sa =
n∑

i=1

an,m(Ri)

with scores an,m(i), i = 1, 2, . . . , n + m, defines a two-sample linear rank test statistic. It

can be used to test H0 : F = G against one-sided alternatives concerning the stochastic

ordering of F and G or the two-sided alternative of F and G being different. F and G shall

be continuous such that no ties appear. These tests have a long tradition in statistics and

belong to the standard tools of applied statisticians. As mentioned in the previous section,

the probably most famous two-sample linear rank test statistic is the WMW statistic with

scores an,m(i) = i. This statistic counts the amount of Xi being smaller or equal to Yj for j =

1, 2, . . . , n. Other choices for the scores an,m(i) lead to the van der Waerden (van der Waerden

(1952)) or Mood’s Median statistic (Mood (1954)). Under the null hypothesis the ranks are
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independent of the population’s distribution F . However, already the null distribution of Sa

requires combinatorics, while the computational effort increases exponentially with n, as a

higher-dimensional integral has to be solved (see e.g. Haynam and Govindarajulu (1966)).

Thus, as already mentioned in the previous section, sample size analysis proposals using a

test statistic’s exact distribution have the disadvantage of only working sufficiently fast and

computationally feasable for sample sizes smaller than 40, as of today. Hence, practically

feasable solutions should use a linear rank test statistic’s asymptotic properties instead.

Therefore, let f0 be a density with mean 0 and variance σ2, f ′

0 has to exist, and the

Fisher-information I(f0) will be assumed to be finite. We consider two independent samples

of size n and m from f0. X1, X2, . . . , Xn are iid with f0(x − δσ) and Y1, Y2, . . . , Ym are iid

with f0(x). R1, R2, . . . , Rn are the ranks of X1, X2, . . . , Xn in the combined sample. δ will be

called the effect size being tested.

Set

ϕ(u; f0) = −f ′

0(F
−1
0 (u))

f0(F
−1
0 (u))

, u ∈ [0, 1].

Then, we consider a linear rank test with scores an,m to test a right-sided alternative

H0 : δ ≤ 0 against HA : δ > 0,

while the corresponding test statistic is

Sn,m =
n∑

i=1

an,m(Ri)− n
1

N + 1

N∑

i=1

an,m(i).

If there is a square integrable function ϕ with

lim
N→∞

∫ 1

0

(aN(1 + [uN ])− ϕ(u))2du = 0

while [uN ] denotes the largest integer not exceeding N = n +m, with ϕ =
∫ 1

0
ϕ(u)du, then

Sn,m is asymptotically normal

1. under the null hypothesis with mean 0 and variance

σ2
n,m =

nm

n+m

∫ 1

0

(ϕ(u)− ϕ)2du

or

V ar(Sn,m) =
nm

(n+m− 1)

1

n+m

N∑

i=1

(an,m(i)− an,m)
2
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2. under the alternative with mean

µn,m(δ) = δσ
nm

n+m

∫ 1

0

ϕ(u)ϕ(u; f0)du

and the same variance as under the null hypothesis (see Hájek et al. (1999)).

3.2. Sample Size Analysis Method based on Score Generating Functions

The asymptotical normal distribution of Sn,m under the existence of a function ϕ can be

used to determine the minimum sample size.

Theorem 3.1. Let α and β be fixed sizes of the probabilities of the errors of the first and the

second kind, δ a fixed effect size, and σ2 the variance of the underlying density f0. In case

of equal sample sizes, for a decision that the null hypothesis is correct with error probability

α or the alternative holds with error probability β, a two-sample linear rank test with score

generating function ϕ

1. for H0 : δ ≤ 0 against HA : δ > 0 requires a minimum sample size of

n = 2

(
λ1−α − λβ

δσ

)2
∫ 1

0
(ϕ(u)− ϕ)2du

(∫ 1

0
ϕ(u)ϕ(u; f0)du

)2 .

2. For H0 : δ = 0 against HA : δ 6= 0 the minimum sample size n is given by the solution

of

β = Φ


λ1−α/2 −

√
n

2
δσ

∫ 1

0
ϕ(u)ϕ(u; f0)du√∫ 1

0
(ϕ(u)− ϕ)2du




+Φ


λ1−α/2 +

√
n

2
δσ

∫ 1

0
ϕ(u)ϕ(u; f0)du√∫ 1

0
(ϕ(u)− ϕ)2du


− 1.

Proof:

1. From the asymptotical results we get the asymptotical power function

π(δ) ≈ 1− Φ

(
λ1−α − µn,m

σn,m

)
.
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Inserting the asymptotical moments gives

π(δ) ≈ 1− Φ


λ1−α −

√
nm

n +m
δσ

∫ 1

0
ϕ(u)ϕ(u; f0)du√∫ 1

0
(ϕ(u)− ϕ)2du


 .

For a known density f0, fixing α, β, and δ leads to an equation for the sample sizes

n,m by solution of

β = Φ


λ1−α −

√
nm

n+m
δσ

∫ 1

0
ϕ(u)ϕ(u; f0)du√∫ 1

0
(ϕ(u)− ϕ)2du


 .

In the special situation of equal sample sizes n = m we get

Φ−1(β) = λ1−α −
√

n

2
δσ

∫ 1

0
ϕ(u)ϕ(u; f0)du√∫ 1

0
(ϕ(u)− ϕ)2du

.

Solving with respect to sample size leads to

n =


√

2
λ1−α − λβ

δσ

√∫ 1

0
(ϕ(u)− ϕ)2du

∫ 1

0
ϕ(u)ϕ(u; f0)du




2

.

2. For the two-sided alternative we get the asymptotical power function

π(δ) ≈ 1− Φ


λ1−α/2 −

√
n

2
δσ

∫ 1

0
ϕ(u)ϕ(u; f0)du√∫ 1

0
(ϕ(u)− ϕ)2du




+Φ


−λ1−α/2 −

√
n

2
δσ

∫ 1

0
ϕ(u)ϕ(u; f0)du√∫ 1

0
(ϕ(u)− ϕ)2du


 .

Due to the symmetry of the standard normal distribution the result follows immedia-

tely.

�

The following examples demonstrate the introduced sample size analysis method for the

WMW statistic in case of a normal distribution and a t(3) distribution.

Example 3.1. Let f0 be the standard normal density with ϕ(u; f0) = Φ−1(u), u ∈ [0, 1] and

Wilcoxon scores generating function ϕ(u) = u− 1/2, u ∈ [0, 1]. With
∫ 1

0

(ϕ(u))− ϕ)2du =

∫ 1

0

(u− 1/2)2du = 1/12
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and numerical integration we get
∫ 1

0

ϕ(u; f0)ϕ(u)du = 0.2821.

By setting α = β = 0.05, δ = 0.8, and due to σ2 = 1 we get

n =

(
√
2
2 · 1.645
0.8 · 1

√
1/12

0.2821

)2

= 35.4.

Thus, the minimum required sample size is 36. For the two-sided alternative n has to be

calculated numerically. Solving

0.05 = Φ

(
1.96−

√
n

2
0.8

0.2821√
1/12

)
+ Φ

(
1.96 +

√
n

2
0.8

0.2821√
1/12

)
− 1

leads to n = 42.53. Thus, the minimum required sample size is 43.

Example 3.2. Let f0 be the t(k) density with variance σ2 = k/(k − 2) for k > 2. Then it

holds

−d ln f0(x)

dx
=

k + 1

k

x

1 + x2/k
, x ∈ R

such that

ϕ(u; f0) =
k + 1

k

t−1(u; k)

1 + t−1(u; k)2/k
, u ∈ [0, 1]

with the quantile function t−1(.; k). Consider the special case k = 3. Again we consider the

WMW test. Numerical integration gives
∫ 1

0

ϕ(u; f0)ϕ(u)du = 0.2297.

By setting α = β = 0.05, δ = 0.8, and due to σ2 = 3 we get

n =

(
√
2
2 · 1.645
0.8

√
3

√
1/12

0.2297

)2

= 17.80.

Thus, the minimum required sample size is 18. For the two-sided alternative, solving

0.05 = Φ

(
1.96−

√
n

2
0.8

√
3
0.2297√
1/12

)
+ Φ

(
1.96 +

√
n

2
0.8

√
3
0.2297√
1/12

)
− 1

leads to n = 21.38. Thus, the minimum required sample size is 22.

This means that the WMW test needs a remarkably smaller sample size for a t(3) distri-

bution than for the normal distribution to cover a decision for fixed α, β, and δ.
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Furthermore, for a known density f0, we can consider the corresponding locally optimal

linear rank test with scores an,m(i) = E(ϕ(U i; f0)) or the asymptotically optimal rank test

with scores an,m(i) = ϕ(i/(2n+ 1); f0), with U i being ranks of indendent random variables,

each uniformly distributed over (0, 1). The following corollary shows the sample size analysis

in this case.

Corollary 3.1. Let α and β be fixed probabilities of the error of the first and the second

kind, δ be a fixed effect size and σ2 the variance of the underlying density f0. In case of equal

sample sizes a two-sample linear rank test with generating function ϕ(.; f0)

1. for H0 : δ ≤ 0 against HA : δ > 0 needs at least a sample size of

n = 2

(
λ1−α − λβ

δσ

)2
1(∫ 1

0
ϕ(u; f0)2du

)

for a decision that the null hypothesis is correct with error probability α or the alter-

native holds with error probability β.

2. For H0 : δ = 0 against HA : δ 6= 0 the necessary sample size n is given by the solution

of

β = Φ


λ1−α/2 −

√
n

2
δσ

√∫ 1

0

ϕ(u; f0)2du




+Φ


λ1−α/2 +

√
n

2
δσ

√∫ 1

0

ϕ(u; f0)2du


− 1

for a decision that the null hypothesis is correct with error probability α or the alter-

native holds with error probability β.

This corollary can e.g. be applied to the van der Waerden test statistic for a normal distri-

bution. The corresponding two-sample test is asymptotically optimal.

Example 3.3. Let f0 be the standard normal density with ϕ(u; f0) = Φ−1(u), u ∈ [0, 1] and

an,m(i) = Φ−1(i/(n + m − 1)), i = 1, 2, . . . , n, the van der Waerden scores with generating

function ϕ(u) = ϕ(u; f0), u ∈ [0, 1]. It is
∫ 1

0

ϕ(u; f0)
2du =

∫ 1

0

(Φ−1(u))2du = σ2 = 1.
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By setting α = β = 0.05, δ = 0.8, and due to σ2 = 1 we get

n =

(√
2
2 · 1.645

0.8

)2

= 33.83.

Thus, the minimum required sample size is 34. For the two-sided alternative we have to solve

0.05 = Φ

(
1.96−

√
n

2
0.8

)
+ Φ

(
1.96 +

√
n

2
0.8

)
− 1

numerically for n. This results in n = 40.61. Thus, the minimum required sample size is 41.

This proposed sample size analysis method is suitable for arbitrary linear rank tests for

location shift alternatives on various distributions.

4. Sample Size Analysis for Two-Sample Linear Rank Tests

This section presents the results of the new sample size analysis method at different

conditions. The most often applied linear rank statistics will be discussed. To these belong

the WMW, Mood’s Median, and the van der Waerden statistic. The corresponding two-

sample linear rank tests are asymptotically optimal for the Logistic, the Laplace, and the

normal distribution. To provide results for a situation where none of these tests is optimal,

the t(3) distribution was also used for comparison next to the ones mentioned previously.

However, whether asymptotical results hold depends on the sample size. Therefore, a circu-

lar argument could occure at determining the necessary sample size using a test statistic’s

asymptotical properties. Thus, we examined whether a test statistic’s asymptotical proper-

ties hold for the calculated sample sizes by comparing these sample sizes to those calculated

using a test statistic’s exact distribution. The exact power analysis was performed by simu-

lating the distribution under the null (if necessary) as well as the alternative hypothesis.

The null distribution of Mood’s Median test is given by the hypergeometric distribution. For

the WMW test’s null distribution a recurrence relation holds, while under the alternative

a higher dimensional integral has to be solved. Thus, at analyzing the 12 conditions (three

test statistics at four different distributions), we applied as effect sizes δ the values proposed

by Cohen (1969) for small (δ = 0.2), medium (δ = 0.5), and large (δ = 0.8) effects. Ad-

ditionally, we considered extremly large effect sizes (δ = 1.2, δ = 1.6), which provide very

small minimum required sample sizes to receive detailed insights into whether the risk of an

13



occuring circular argument is apparent. The probability for the error of the first kind has

been fixed at α = 5%. For the probabilities of the second kind (β) we applied 5%, 10%, and

20%.

In the following, the results of the simulations at all conditions will be displayed separately

for one-sided and two-sided alternatives. Moreover, ne refers to those sample sizes that were

calculated using a test statistic’s exact distribution and na refers to those sample sizes that

were calculated using the new sample size analysis method based on linear rank test statistics’

asymptotical properties. For the normal distribution with σ2 = 1 the generating function

is ϕ(u; f0) = Φ−1(u), u ∈ (0, 1). For the Logistic distribution with variance σ2 = π2/3 it

is ϕ(u; f0) = u − 1/2 for u ∈ (0, 1). For the Laplace distribution with variance σ2 = 2 the

generating function is ϕ(u; f0) = sign(u− 1/2). Finally, the variance of a t distribution with

three degrees of freedom is σ2 = 3 and

ϕ(u; f0) =
4

3

t−1(u; 3)

1 + t−1(u; 3)2/3
, u ∈ [0, 1]

with quantile function t−1(.; 3).

4.1. Wilcoxon-Mann-Whitney statistic

For the WMW statistic the scores generating function is ϕ(u) = u − 1/2 for u ∈ (0, 1).

Therefore, ∫ 1

0

(ϕ(u)− ϕ)2du = 0.0833.

The sample size analysis results using the WMW statistic for the one-sided alternatives

are shown in Table 1, while for the two-sided alternatives the results are presented in Table

2.

Results displayed in Table 1 and Table 2 show that the new method operates relatively

precise. Overall, a slightly anti-conservative behavior can be observed, which means that the

sample size analysis method introduced in Section 3.2 slightly underestimates the minimum

required sample size to ensure an effect size with fixed probabilities for the errors of the

first and second kind. The calculated sample size is heavily influenced by the chosen size of

the effect. Thus, the higher the effect size, the smaller the minimum required sample size.

Moreover, the higher the fixed probability of the error of the second kind (β), the smaller the

14



Table 1: Sample size analysis results using the Wilcoxon-Mann-Whitney statistic for one-sided alternatives

Normal Logistic Laplace t(3)

δ β ne na ne na ne na ne na

0.2 0.05 568 567 495 494 368 361 287 285

0.10 450 449 395 391 293 286 228 226

0.20 324 324 283 282 210 207 162 163

0.5 0.05 92 91 81 79 62 58 48 46

0.10 72 72 63 63 51 46 39 37

0.20 53 52 47 46 37 33 29 27

0.8 0.05 37 36 33 31 27 23 21 18

0.10 29 29 26 25 22 18 17 15

0.20 22 21 19 18 17 13 13 11

1.2 0.05 17 16 16 14 15 11 12 8

0.10 14 13 13 11 12 8 9 7

0.20 10 9 9 8 9 6 7 5

1.6 0.05 10 9 9 8 9 6 7 5

0.10 9 8 9 7 7 5 6 4

0.20 7 6 6 5 6 4 5 3

minimum required sample size. Regarding the deviation between na to ne no severe difference

is observable for the one- and two-sided alternatives. However, the deviation is heavily

influenced by the population’s distribution’s variance. This means that for distributions

with a higher variance (e.g. the Laplace and the t(3) distribution) the deviation between

na to ne is larger than for distributions with a small to moderate variance (e.g. the normal

and the Logistic distribution). Moreover, as the effect size increases, thus the calculated

minimum required sample size decreases, the deviation becomes larger. For the WMW

test statistic, the results show that over both alternatives, for the normal and the Logistic

distribution the deviation of na to ne has a maximum of 1.34% at δ = 0.2, 2.75% at δ = 0.5,

and 6.45% at δ = 0.8. For the extremely large effect sizes, at which the minimum required
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Table 2: Sample size analysis results using the Wilcoxon-Mann-Whitney statistic for two-sided alternatives

Normal Logistic Laplace t(3)

δ β ne na ne na ne na ne na

0.2 0.05 683 681 604 596 438 434 347 343

0.10 555 551 479 480 357 351 280 277

0.20 410 411 368 358 268 262 210 207

0.5 0.05 112 109 97 95 76 70 59 55

0.10 89 89 79 77 62 57 47 45

0.20 66 66 59 58 47 42 36 34

0.8 0.05 45 43 39 38 33 28 25 22

0.10 36 35 33 30 27 22 20 18

0.20 27 26 24 23 20 17 16 13

1.2 0.05 20 19 19 17 17 13 14 10

0.10 17 16 16 14 14 10 11 8

0.20 13 12 11 10 11 8 8 6

1.6 0.05 13 11 11 10 11 7 10 6

0.10 11 9 10 8 10 6 8 5

0.20 8 7 8 6 8 5 7 4

sample size is small, the maximum deviation is 18.18% at δ = 1.2 and 33.33% at δ = 1.6.

Over both alternatives, for those distributions with larger variances, thus the Laplace and

t(3) distribution, the maximum deviation of na to ne is 2.45% at δ = 0.2, 12.12% at δ = 0.5,

and 30.77% at δ = 0.8. For the extremely large effect sizes the maximum deviation is 50%

at δ = 1.2 and 75% at δ = 1.6.

4.2. Mood’s Median statistic

Mood’s Median test is known to have poor relative efficiency in comparison to alternate

linear rank tests (Büning and Trenkler (1994), Mood (1954)), has low power at small sample

sizes, and is even suggested to be ’retired from general use’ (Freidlin and Gastwirth (2000)).

Despite this, this test is one of the most well-known linear rank tests, is presented in many sta-
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tistical textbooks, and included in most statistical software packages (Freidlin and Gastwirth

(2000)). Therefore, we decided to present the new sample size analysis method’s performance

for this test, although we are aware of its slow convergence rate to the normal distribution

(Klein (1978)).

For Mood’s Median statistic the scores generating function is ϕ(u) = sign(u − 1/2), for

u ∈ (0, 1). Therefore, ∫ 1

0

(ϕ(u)− ϕ)2du = 1.

The sample size analysis results for Mood’s Median test for the one-sided alternatives

are shown in Table 3 and for the two-sided alternatives in Table 4.

Table 3: Sample size analysis results using Mood’s Median statistic for one-sided alternatives

Normal Logistic Laplace t(3)

δ β ne na ne na ne na ne na

0.2 0.05 836 850 645 658 290 271 325 334

0.10 662 673 509 521 229 215 255 265

0.20 474 486 366 376 164 155 180 191

0.5 0.05 127 136 98 106 53 44 50 54

0.10 100 108 75 84 40 35 38 43

0.20 70 78 52 61 29 25 25 31

0.8 0.05 47 54 37 42 22 17 18 21

0.10 36 43 28 33 18 14 14 17

0.20 24 31 18 24 9 10 8 12

1.2 0.05 19 24 14 19 11 8 7 10

0.10 14 19 9 15 7 6 6 8

0.20 8 14 6 11 4 5 3 6

1.6 0.05 9 14 7 11 6 5 4 6

0.10 6 11 5 9 4 4 3 5

0.20 4 8 3 6 3 3 3 3
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Table 4: Sample size analysis results using Mood’s Median statistic for two-sided alternatives

Normal Logistic Laplace t(3)

δ β ne na ne na ne na ne na

0.2 0.05 1008 1021 779 790 345 325 392 401

0.10 812 826 625 638 282 263 312 325

0.20 607 617 466 478 212 197 233 243

0.5 0.05 157 164 121 127 66 52 61 65

0.10 124 133 95 103 52 43 48 52

0.20 88 99 68 77 37 32 34 39

0.8 0.05 59 64 45 50 29 21 24 26

0.10 45 52 36 40 24 17 20 21

0.20 32 39 26 30 16 13 13 16

1.2 0.05 24 29 20 22 14 10 11 12

0.10 20 23 15 18 11 8 9 10

0.20 14 18 9 14 7 6 5 7

1.6 0.05 13 16 11 13 9 6 6 7

0.10 10 13 8 10 7 5 5 6

0.20 7 10 5 8 5 4 4 4

Table 3 and Table 4 show a good performance of the new sample size analysis method for

the one-sided as well as for the two-sided alternatives, especially considering Mood’s Median

test’s slow convergence rate to normality (Klein (1978)). Overall, except for the Laplace

distribution, Mood’s Median test requires a higher minimum sample size to cover a decision

that the null hypothesis is correct with error probability α or the alternative holds with

error probability β than does the WMW test. This can be explained by its smaller relative

efficiency in comparison to the WMW test (see e.g. Freidlin and Gastwirth (2000)) and its

slower convergence rate to the normal distribution (Klein (1978)). In general, a conservative

behavior can be observed. The only exception are the sample size analysis results for the

Laplace distribution, while here the smallest minimum sample size is required for this test to
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ensure an effect. Deviations between na and ne are larger for Mood’s Median test than for

the WMW test. Overall, the deviations are larger the higher the population’s distribution’s

variance. Thus, over both alternatives, for the normal and the Logistic distribution na to ne

has a maximum deviation of 2.66% at δ = 0.2, 14.75% at δ = 0.5, and 22.58% at δ = 0.8.

For the extremely large effect sizes, at which the minimum required sample size is small,

the maximum deviation is 45.45% at δ = 1.2 and 50% at δ = 1.6. For the distributions

with higher variance, thus, the Laplace and the t(3) distribution, the deviations are larger.

For the t(3) distribution a conservative behavior, thus an overestimation of the minimum

required sample size can be observed, which is in line with results for the normal and the

Logistic distribution. Over both alternatives, the maximum deviation between na and ne is

5.75% at δ = 0.2, 19.35% at δ = 0.5, 33.33% at δ = 0.8, 50% at δ = 1.2, and 40% at δ = 1.6.

For the Laplace distribution, for which this test is the asymptotically optimal one, an anti-

conservative behavior, thus an underestimation of the minimum required sample size can be

observed. In this case, over both alternatives, the maximum deviation between na and ne is

7.61% at δ = 0.2, 26.92% at δ = 0.5, and 41.17% at δ = 0.8. For the extremely large effect

sizes the maximum deviation is 37.5% at δ = 1.2, and 50% at δ = 1.6. These results show,

that despite the slow convergence rate, the new sample size analysis also can be applied

for Mood’s Median test without any adjustments. To achieve a better approximation, a

continuity correction could be implemented for the sample size analysis for Mood’s Median

test.

4.3. Van der Waerden statistic

For the van der Waerden statistic the scores generating function is ϕ(u) = Φ−1(u), for

u ∈ (0, 1). Therefore, ∫ 1

0

(ϕ(u)− ϕ)2du =

∫ 1

0

Φ−1(u)2du = 1.

The sample size analysis results for the van der Waerden test for the one-sided alterna-

tives are shown in Table 5 and for the two-sided ones in Table 6.

Results presented in Table 5 and Table 6 for the van der Waerden test show a slightly

anti-conservative behavior, displayed by a slight underestimation of the required sample size.
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Table 5: Sample size analysis results using the van der Waerden statistic for one-sided alternatives

Normal Logistic Laplace t(3)

δ β ne na ne na ne na ne na

0.2 0.05 540 542 519 517 428 425 331 331

0.10 431 429 409 409 339 337 262 262

0.20 310 310 295 296 242 243 190 189

0.5 0.05 89 87 85 83 71 68 55 53

0.10 69 69 67 66 57 54 43 42

0.20 52 50 49 48 42 39 31 31

0.8 0.05 35 34 34 33 30 27 23 21

0.10 28 27 27 26 25 22 18 17

0.20 21 20 20 19 18 16 14 12

1.2 0.05 17 16 16 15 15 12 12 10

0.10 14 12 13 12 12 10 10 8

0.20 10 9 10 9 9 7 7 6

1.6 0.05 10 9 10 9 10 7 8 6

0.10 8 7 8 7 8 6 7 5

0.20 6 5 6 5 6 4 5 3

The general behavior is similar to the one of the WMW test, while results are found to be

more precise. Thus, for the van der Waerden test statistic, the results diplay that over both

alternatives, for the normal and the Logistic distribution na to ne has a maximum deviation

of 1.08% at δ = 0.2, 2.47% at δ = 0.5, and 8% at δ = 0.8. For the extremely large effect

sizes, at which the minimum required sample size is small, the maximum deviation is 18.18%

at δ = 1.2 and 33.33% at δ = 1.6. Over both alternatives, for those distributions with larger

variances, thus the Laplace and the t(3) distribution, the maximum deviation of na to ne is

1.69% at δ = 0.2, 7.69% at δ = 0.5, and 16.67% at δ = 0.8. For the extremely large effect

sizes the maximum deviation is 42.86% at δ = 1.2 and 75% at δ = 1.6.
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Table 6: Sample size analysis results using the van der Waerden statistic for two-sided alternatives

Normal Logistic Laplace t(3)

δ β ne na ne na ne na ne na

0.2 0.05 657 650 622 621 519 511 397 397

0.10 530 526 501 502 420 413 325 321

0.20 395 393 377 375 309 309 242 240

0.5 0.05 104 104 103 100 87 82 65 64

0.10 87 85 83 81 72 67 52 52

0.20 64 63 61 60 52 50 39 39

0.8 0.05 43 41 42 39 37 32 28 25

0.10 35 33 32 32 30 26 22 21

0.20 27 25 24 24 21 20 17 15

1.2 0.05 20 19 19 18 19 15 15 12

0.10 16 15 16 14 15 12 12 9

0.20 13 11 13 11 12 9 10 7

1.6 0.05 12 11 12 10 12 8 10 7

0.10 10 9 10 8 10 7 8 6

0.20 8 7 8 6 8 5 7 4

Overall, the new sample size analysis method based on score generating functions shows

to perform well for the one-sided as well as for the two-sided alternatives as shown in Ta-

bles 1 to 6. In general, a higher sample size is required to ensure a fixed effect with given

probabilities for the errors of the first and second kind the larger the distribution’s vari-

ance. For those distributions, for which one of the here compared linear rank tests is the

asymptotically optimal one, the respective test presents the lowest minimum required sample

size. Thus, at normal distributions, the van der Waerden test displays the lowest minimum

required sample size for the one- as well as for the two-sided alternatives, at the Logistic

distribution the WMW test, and at the Laplace distribution Mood’s Median test. At the

t(3) distribution, the new sample size analysis method also provides a good performance.
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However, a slightly anti-conservative behavior was observable using the WMW as well as

using the van der Waerden statistic. This is displayed by a slight underestimation of the

minimum required sample size compared to those sample sizes calculated using a test statis-

tic’s exact distribution. In contrast to this, in general, a rather conservative behavior was

observable at using Mood’s Median statistic, which overestimated the minimum required

sample size. Therefore, the results are in line with the respective test statistics’ convergence

rates to the normal distribution (Klein (1978)). Thus, smallest deviations between na to

ne are found for the van der Waerden test and the largest ones for Mood’s Median test.

Already Mann and Whitney (1947) stated the WMW test statistic’s approximation to nor-

mality to be sufficient for sample sizes up from n = m = 8. Thus, the rather precise results

of the new method for the conditions with small to moderate distributions’ variances, even

at extremely high effect sizes, lead to the interpretation that the risk of an occuring circular

argument seems to be not severe. However, at those conditions with extremely large effect

sizes for the distributions with higher variance the risk could be apparent. In these cases,

e.g. for the WMW test, exact sample size methods are computationally feasible and thus

could be applied. Moreover, as the limitation of the method introduced in Section 3.2 is a

slight underestimation of the required minimum sample size using the WMW and the van

der Waerden test statistic, one possibility to avoid the occurence of underestimating the

minimum required sample size in the extreme cases could be to multiply the results by the

factor 1.75. This is, as for the most extreme case, thus for the t(3) distribution with the

extreme effect size of 1.6, the maximum deviation found for either test statistic was 75%.

In addition to that, regardless the size of the effect, another possibility could be to add 2

(4) observations to the calculated required minimum sample size at distributions with low

(high) variance to avoid the slight underestimation in almost 90% of all considered cases.

Besides focussing on the new method’s performance at different conditions, it is of interest

to compare its performance to the one of alternate sample size analysis methods. This will

be done in the next section.
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5. Performance Comparison of Sample Size Analysis Methods for the Wilcoxon-

Mann-Whitney Test

In this section we compare the new sample size analysis method to common alternate

methods. The comparison was done for the WMW test, as to our knowledge the sample

size analysis method provided by Chakraborti et al. (2006) is so far the only one suitable for

arbitrary linear rank tests on location shifts. Therefore, using Wilcoxon scores, next to the

method of Chakraborti et al. (2006) (Chak.), the most common sample size analysis methods

for the WMW test will be used for the performance comparison. Those sample size analysis

methods are the ones presented by Al-Sunduqchi (1990) (Al-S.), Vollandt and Horn (1997)

(V&H), Noether (1987) (Noeth.), and Lehmann (1975) (Leh.) (see Section 2). Moreover,

Table 7 displays the sample size analysis results using the test statistic’s exact distribution

(ne), as well as the new method’s results (na). The performance comparison was conducted

for one-sided alternatives on a normal distribution (compare Table 1).

Table 7 demonstrates that the sample size analysis method presented in Section 3.2

performes well in comparison to alternate methods for theWMW test. In contrast to its slight

underestimation, most of the common alternate methods overestimate the minimum required

sample size. As expected, the highest overestimation of minimum required sample sizes,

especially for small effect sizes, can be observed for the method proposed by (Al-Sunduqchi,

1990), which is based on the asymptotic relative efficiency of the WMW test to the t-test, as

well as the method proposed by Vollandt and Horn (1997), which is based on the WMW test

statistic’s variance’s upper bound. Not surprisingly, using WMW scores, the ’Noether-like’

method of Chakraborti et al. (2006) and the method proposed by Noether (1987) provide

the same results. Furthermore, the method based on score generating functions introduced

in Section 3.2 (na) is similar to the one proposed by Lehmann (1975). In addition to that,

adding 2 observations to the minimum required sample size na calculated using the new

method still provides more precise results than the alternate methods that overestimate the

minimum required sample size.

However, in general, for sample size analyses for linear rank tests at an underlying normal

distribution, it is recommended to apply the van der Waerden test, as it is the asymptotically

optimal one. Referring to Table 5, it is observable that this test requires a minimum sample
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Table 7: Comparison between different sample size analysis methods on normal distribution for the Wilcoxon-

Mann-Whitney statistic for one-sided alternatives

δ β ne na Al-S. V&H Noeth. Chak. Leh.

0.2 0.05 568 567 627 589 571 571 567

0.10 450 449 496 465 452 452 449

0.20 324 324 358 334 326 326 325

0.5 0.05 92 91 101 98 95 95 91

0.10 74 72 80 78 75 75 73

0.20 53 52 59 56 54 54 53

0.8 0.05 37 36 40 40 40 40 36

0.10 29 29 32 32 32 32 29

0.20 22 21 24 23 23 23 22

1.2 0.05 17 16 18 19 20 20 16

0.10 14 13 15 15 16 16 13

0.20 10 9 11 12 12 12 10

1.6 0.05 10 9 11 11 14 14 9

0.10 9 8 9 9 11 11 8

0.20 7 6 6 7 8 8 7

size to ensure a fixed effect with fixed probabilities of the errors of first and second kind that

is lower than the minimum sample sizes needed by all compared methods for the WMW test

(see Table 7).

6. Conclusion

A new sample size analysis method for arbitrary linear rank tests for location shifts of

continuous distributions was introduced. This method is based on score generating func-

tions and Section 3.1 showed its asymptotic normality. In Section 4 its good performance

at different distributions was demonstrated, while in general a slightly anti-conservative be-

havior was observable. Moreover, the risk of an occuring circular argument was examined
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by comparing the new method’s results to sample sizes calculated using a test statistic’s

exact distribution. Focussing on those conditions at extremely large effect sizes of 1.2 and

1.6 suggests the risk to not be severe when the distribution’s variance is small to moderate.

Caution has to be taken when the underlying distribution’s variance is high. Furthermore,

at a performance comparison for the Wilcoxon-Mann-Whitney test on normal distributions

it could be shown that most alternate sample size analysis methods overestimate the mini-

mum required sample size, while the method introduced in Section 3.2 demonstrates to be

more precise than these alternate methods. However, as at different population’s distribu-

tions different linear rank tests are the preferred ones by being (asymptotically) optimal,

sample size analysis methods for linear rank tests besides the Wilcoxon-Mann-Whitney tests

are needed. Thus, the here introduced method provides sample size analysis for arbitrary

linear rank tests and also demonstrated its performance for Mood’s Median test and the

van der Waerden test. In addition to providing a sample size analysis method for arbitrary

linear rank tests, the method proposed in Section 3.2 has the big advantages of being easy

to implement and not being computationally and time intensive. As sample size analysis is

of central importance for any experimental research’s planning phase and limited literature

is yet available providing methods for sample size analysis for linear rank tests besides the

Wilcoxon-Mann-Whitney test, this paper proposes a new method to account for this need.
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