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1 Introduction

This paper studies optimal regulation of a stock pollutant under asymmetric information

with information updating over time. We build a dynamic model where damages are

caused by the stock of accumulated emissions, as in Hoel and Karp (2001, 2002); Newell

and Pizer (2003); Fell et al. (2012). Several important global environmental problems are

best described as resulting from a stock pollutant – there is, for instance, near-consensus

that climate change is caused by the stock of atmospheric CO2 (Stocker, 2014), and though

there is depreciation of atmospheric CO2, the intricate carbon cycle and temperature

feedbacks lead to cumulative emissions standing out as the best predictor of expected

temperature rise (Allen et al., 2009).1 Our analysis therefore complements a relatively

larger literature on optimal regulation of flow pollutants suited for other emission problems

such as local air pollution (e.g. Weitzman, 1974; Roberts and Spence, 1976; Cronshaw

and Kruse, 1996; Rubin, 1996; Kling and Rubin, 1997; Yates and Cronshaw, 2001; Newell

et al., 2005; Weitzman, 2018; Lintunen and Kuusela, 2018).2

The main complexity in analyzing a stock pollutant stems from its dynamic nature,

which often renders the formal analysis convoluted or even unsolvable, manifested in a

reliance on quantitative methods. We therefore study a 2-period model, enabling us to

derive relatively simple analytic results that still capture the profoundly dynamic nature

of stock pollutant regulation. Confined to this fairly limited time-frame, we can transcend

analysis of the static instruments traditionally considered by, in addition, studying inter-

temporally integrated policy instruments, such as banking, where firms can save unused

permits to be used in the future, or alternatively can give up future emission rights in order

to emit more today (Cronshaw and Kruse, 1996; Rubin, 1996; Kling and Rubin, 1997;

Yates and Cronshaw, 2001; Weitzman, 2018; Lintunen and Kuusela, 2018). Banking can

then be compared with essentially static instruments such as pricing and fixed per-period

quantities.

While our first contribution is that we consider a stock-pollutant rather than a flow

pollutant, the second contribution is that we add imperfect foresight of future shocks on

the side of the firms to the base case of perfect foresight. The intertemporal approach we

1If one assumes that atmospheric CO2 directly causes damages, without considering delayed temperature
adjustment (c.f. Newell and Pizer, 2003; Golosov et al., 2014), one (mistakenly) concludes that effects of
current emissions fade over time. Such an approximation can lead to quantitatively substantial deviations
in calculated optimal policies; see Dietz and Venmans (2017) and (Gerlagh and Liski, 2018, Fig 1) for a
discussion.

2Although it need not be a universally applicable rule, generally we find flow pollutants to be specific
both to a temporal and a geographical location. Conversely, stock pollutants, by being persistent over
time, tend to be diffuse and are more spread both temporally and geographically.
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follow warrants deliberation along such lines: whilst assuming that firms know perfectly

the realization of shocks that occur at the present time may be roughly correct, it is

certainly much less credible when we consider shocks yet to be realized in the future. This

holds true almost by definition of a shock, but even absent linguistic considerations it is

fairly obvious that we know more about the world today than about its fate tomorrow.

Nonetheless, this fact has been ignored by most of the papers studying a multi-period

setting in the literature (Cronshaw and Kruse, 1996; Rubin, 1996; Kling and Rubin, 1997;

Yates and Cronshaw, 2001; Newell et al., 2005; Weitzman, 2018). Notable exceptions

are Newell and Pizer (2003), Fell et al. (2012), and Lintunen and Kuusela (2018), who

explicitly take into account uncertainty of future shock realizations.

Optimal regulation when the regulator is uncertain about some parameters relevant to

the firms has a flavor of mechanism design. That literature searches for regulation rules

(contract offers) that implement the socially optimal outcome (Baron and Myerson, 1982).

It requires that the regulator is unconstrained by any pre-imposed structure to achieve

its goal, and efficient regulation can become increasingly complex (for a more in-depth

discussion of mechanism design, see Mas-Colell et al., 1995; Hurwicz and Reiter, 2006).

We start at the other end of the spectrum. The literature on emission control focuses

on very simple highly structured instruments – prices, quantities, banking – accepting

suboptimal ex-post outcomes for the benefit of policy feasibility. We add to the asymmetry

in information that is common in the emission permit market literature an alternative

environment in which both regulator and regulated firms share uncertainty about future

emission permit demand. As we will see, optimal policies in such an environment deviate

substantially from the optimal policies in an economy where firms perfectly anticipate

future demand shocks.

Our third contribution to the literature is that we add a refinement of the banking

instrument, labeled Stabilized Banking to the three most common instruments – Quantities,

Prices, and Banking. We introduce an automated quota updating into the basic banking

instrument, as an optimal stabilization mechanism. We show that a marginally more

complex regulation can achieve substantially higher ex-ante welfare compared to the

traditional instruments. We thereby contribute to a literature on banking refinements.

Roberts and Spence (1976) combine a quantity policy with price floors and ceilings, which,

if properly implemented, is shown to achieve higher efficiency than quantities or prices

in isolation. Kling and Rubin (1997) and Newell et al. (2005) propose that the regulator

depreciates or tops up banked permits, similar to the financial bank setting its interest

rate on loans and deposits. Similarly, Yates and Cronshaw (2001) consider banking with a

3
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discount rate for permits; they identify conditions under which the optimal discount rate

is non-zero. Newell et al. (2005) discuss adjusting quota in response to the quantity of

outstanding permits. The regulator’s response can stabilize permit prices over time and

mimic price-based policies. Their idea is conceptually close to ours, and their motivation

similar. Yet, their model is fundamentally different as they consider a flow pollutant, while

we consider a stock pollutant, such as CO2. Lintunen and Kuusela (2018) search for an

optimal Markov rule where the regulator chooses a new emissions cap every period in

response to the amount of outstanding allowances banked for future use. They find a

relatively simple rule that, as in Roberts and Spence (1976), combines characteristics of

both price and quantity instruments. The other papers in this literature generally consider

only the traditional instruments of prices, quantities, and banking.

Though highly stylized, our model yields important policy implications for greenhouse

gas emissions trading systems (ETSs) worldwide, such as Europe’s EU-ETS, California’s

Global Warming Solutions Act3, the Regional Greenhouse Gas Initiative (RGGI)4, and

China’s National ETS, the world’s largest carbon market.5 Recent developments in

Europe underscore its relevance. After a start with volatile and ‘low’ prices, the European

Commission decided early in 2015 to revise the EU-ETS, introducing a ‘Market Stability

Reserve’ (MSR), to be operative as of 2019 (Erbach, 2017). This was motivated by the

large surplus – the cumulative gap between planned auctioned allowances and allowances

surrendered by emitting firms – of above 2 billion tCO2 built up since 2009.6 The MSR

3California’s Global Warming Solutions Act was created in Assembly Bill 32, this plan constitutes a
comprehensive, multi-year program to reduce greenhouse gas (GHG) emissions in California. In its most
recent update of 2016, the plan codifies a 2030 GHG emissions reduction target of 40 percent below 1990
levels. The California Air Resources Board is charged with developing a Scoping Plan that describes the
approach California will take to achieve this goal.

4RGGI is the first mandatory market-based program in the United States to reduce greenhouse gas
emissions. It constitutes cooperation between the states of Connecticut, Delaware, Maine, Maryland,
Massachusetts, New Hampshire, New York, Rhode Island, and Vermont, whose joint effort aims to cap
and reduce CO2 emissions from the power sector.

5Launched on 19 December 2017, China’s National ETS is now the world’s largest carbon market,
regulating some 1,700 companies in the power sector that each emitted around 26,000 t/CO2 in any year
over the 2013-2015 period. In its initial phase, China’s National ETS covers more than 3 billion tons of
CO2, some 30% of national emissions, making it the largest emission trading system currently in existence.
By 2020, China’s National ETS is aimed to have achieved 40-45% reductions in carbon intensity compared
to 2005 levels; by 2030 CO2 emissions should peak, with best efforts to achieve the peak earlier. Although
for now the system covers only the power sector, over time it is planned to be expanded to also cover the
following industries: petrochemical, chemical, building materials, steel, nonferrous metals, paper, and
aviation.

6To assess the economic importance of this surplus, note that permit prices in the EU are currently
about 7e/tCO2, so that the monetary value of the surplus amounts to some e14 billion. However, these
prices are widely perceived as too low. Optimal prices, calculated in e.g. Nordhaus (2014), Golosov et al.
(2014), and Gerlagh and Liski (2018), are in the range of 25− 40e/tCO2, so that the value of the surplus

4
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takes allowances out of the market, to bring them back into the market at a later stage

when private holdings of unused permits has decreased.7 The rules set out imply a rate of

transfer from the private permits surplus to the MSR that varies between 12 and 24%.

In November 2017, a further revision was announced. By 2024, permits in the MSR will

be canceled when its level exceeds the amount of auctioned permits in the previous year

(Erbach, 2017). Combining the rules, we see the ultimate effect: a positive (negative)

demand shock in early years leads to reduced (increased) banking, and this leads to an

increase (decrease) of the cumulative amount of allowances available for auctioning. This

is a radical deviation from the typical banking principle in which cumulative permits are

fixed, and the market only decides on the inter-temporal allocation. Though the MSR

proposal is an endogenous policy response to prices perceived as too low, it raises the

question whether such a stabilization mechanism is ex ante optimal. Using our formal

model, we show that adjusting cumulative quota as an automatic response to early period

demand shocks is efficient indeed. Our results pin down a precise formula for the optimal

response rate.

The paper is organized as follows. In Section 2 we introduce the model and define ex-

post and ex-ante (expected) welfare losses. Section 3 analyzes different policy instruments

when firms perfectly observe the current and future cost-structure. The instruments

considered are Quantities, Prices, Banking, and Banking with Stabilization. We show

that specific parametric settings reduce our model to the one of Weitzman (1974), so that

these well-known results can be considered special cases of our more general conclusions.

Section 4 relaxes the perfect foresight assumption; now firms can forecast only part of

the future cost structure. For both the perfect and partial foresight model, we derive

optimal parameters for banking with a stabilization mechanism. Our results suggest

that, consistent with current EU-ETS proposals, optimal regulation dampens the effect

of emission permit demand shocks in early periods on later periods. Section 5 discusses

matters of implementation and concludes.

ranges between e50 and e80 billion. Moreover, Nordhaus (2014) shows that within the context of a limit
on the global temperature rise of 2� – which the EU has formulated as one of its goals for climate policy –
optimal permit prices may be as high as 60e/tCO2 for emissions today, reaching up to above 200e/tCO2

in 2050, with prices expressed in 2005 US dollars. These prices would imply the current surplus has a
value beyond e100 billion now. Gerlagh and Liski (2018), using non-exponential time preferences, find an
optimal permit price of e130 for emissions in 2010, yielding a value of the total surplus of e260 billion.

7In some way, the MSR is a form of ‘public savings’ of allowances. Indeed, it has been argued by many
economists that Ricardian equivalence holds: public savings decisions do not affect market permit prices
as it crowds out private savings one to one.
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2 Model Set Up

2.1 A Stock Pollutant and Complete but Asymmetric Informa-

tion

Our notation of the descriptive model, welfare analysis, and characterization of policies

builds on Weitzman (2018). We consider a two-period world and a representative profit-

maximizing firm in the business of producing a homogeneous good with polluting emissions

as a negative externality.8 At every time t, emitting an amount qt of the pollutant allows

the firm to produce a quantity Yt(qt; θt) of the good. The parameter θt may be thought of

as a ‘productivity shock’, affecting how much can be produced for a given emission input qt,

and is observed by the firm, but unknown to the regulator. Although the regulator cannot

discern the actual realization of θt, it is common knowledge that E[θt] = 0, E[θ2t ] = σ2
t ,

and E[θ1θ2] = ρσ1σ2. For the purposes of our study, the variance σ2
t provides a natural

measure of the amount of uncertainty present. In the remainder of the paper, we will use

the terms ‘variance’ and ’uncertainty’ interchangeably.

Emissions damage the environment and potentially the economic system. The context

of our study is that of a long-lived pollutant, such as CO2. We focus on the simplest

possible case, where emissions add to a pure stock pollutant, and emission-related damages

only enter welfare through cumulative emissions. The rationale for this assumption is that,

for e.g. CO2, most damages appear after the regulation period.9 Thus, damages enter

welfare as a proxy for expected future welfare losses (see Gerlagh and Michielsen, 2015)

and are given by D(q1 + q2).

The problem facing the regulator is finding quantities q1 and q2 that maximize

Y1(q1; θ1) + Y2(q2; θ2)−D(q1 + q2). (1)

In the absence of asymmetric information, the fully knowledgeable regulator can set these

quantities directly or else put a price on emissions that will make the profit-maximizing

firm produce the same quantities, and these two instruments are perfectly equivalent,

see Montgomery (1972). However, as was first shown by Weitzman (1974), this formal

equivalence between instruments breaks down once we introduce an informational disparity,

8This simplest of possible settings is equivalent to a model with a continuum of competitive profit-
maximizing firms in a market without free entry or exit and households buying the good and supplying
labor. A micro-foundation of our simple model from such primitives can be found in Appendix B.

9Climate change has very persistent dynamics. See Gerlagh and Liski (2018) for an extensive discussion
of the time-structure and its implications for climate policies.
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captured here by θt.

It will serve the analysis to make some restrictive assumptions regarding the forms

productivity and damages take. Let optimal quantities and prices in expectations (when

θ1 = θ2 = 0) be labeled qt = q∗ and pt = p∗, respectively. We assume linear marginal

productivity, of the form:

MYt(qt) = p∗ − 2c(qt − q∗) + θt. (2)

Marginal damages due to emissions are also linear, and given by:

MD = p∗ + b(q1 + q2 − 2q∗). (3)

Although possibly unrealistic in several ways, these simplifications allow us to find neat

analytic solutions to the questions we wish to address. As any model is an abstraction from

reality, so too is ours, and we acknowledge that the world functions in a way much more

complicated than would appear from the simple structure imposed in this work. We do,

however, believe that our model captures some important mechanisms governing existing

emission trading markets and our results to be relevant outside the realm of economic

theories.

Before proceeding to the analysis, we introduce some notation. We use an asterisk for

the quantities and prices that are optimal in expectations. We use superscripts scenario

labels for equilibrium outcomes. We use superscripts SO, Q, P , B, SB, for the social

optimum, and the equilibria outcomes with quantities set per period, prices set per period,

banking, and banking with quota updating for stabilization, respectively. Moreover, let xi

denote the value of a variable x under policy i. Let ∆i
jx := xi − xj be the difference in x

under scenario i and j, respectively. Finally, let ∆ix := ∆i
∗x = xi−x∗ be the deviation of x

under policy i from the ex-ante expected optimal value x∗, and let ∆̃ix := ∆i
SO = xi−xSO

denote the difference between the value of x under scenario i and its ex post socially

optimal value.

The game has the following stages:

1. The regulator chooses its policy instruments and their levels, which can be either

prices or quantities including rules for banking.

2. The firms observe the productivity shocks θ1 and θ2.

3. Prices and quantities are chosen, jointly in both periods, consistent with profit

7
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maximization by the firms,

−2c∆iqt + θt = ∆ipt, (4)

while the policy rules determine the relation between quantities and prices within

and across periods.

The special case of perfectly correlated and equally sized shocks, ρ = 1, σ1 = σ2, brings

us back to the well-known (one-period) model of Weitzman (1974). Throughout the paper,

we consider that specific parametric setting to compare our results with those in Weitzman

(1974). This will help us develop an intuition for the more general results obtained.

2.2 Ex-post Social Optimum With Complete Information

Since damages are caused by a stock pollutant, the marginal damage of a unit of emissions

is the same in period 1 as in period 2. Because in the social optimum, marginal productivity

should equal marginal damage, marginal productivity must therefore also be alike in both

periods. The optimal quantities qSO1 and qSO2 set by the regulator are thus given by the

condition MY1 = MY2 = MD, that is, matching prices in both periods, ∆SOp1 = ∆SOp2,

so that we can omit the price time subscript. This condition is a major deviation from

analysis of a flow pollutant and will prove to be of fundamental importance for comparison

between instruments. Since prices are equal, we have (4) and

b(∆SOq1 + ∆SOq2) = ∆SOp.

By solving the above FOCs, we can easily characterize the social optimum:

∆SOp =
b

2(b+ 2c)
(θ1 + θ2), (5)

∆SOq1 =
1

4c
θ1 −

b

4(b+ 2c)c
θ2, (6)

∆SOq2 = − b

4(b+ 2c)c
θ1 +

1

4c
θ2, (7)

∆SOQ =
1

2(b+ 2c)
(θ1 + θ2). (8)

In case of constant marginal damages that do not depend on cumulative emissions, b = 0,

we immediately see that optimal prices do not change, ∆SOp = 0, so that shocks are fully

absorbed by changes in emission levels in the same period that the shock occurs. In case

8
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of an almost flat marginal productivity, c ↘ 0, we can think of a backstop technology

that provides an alternative for fossil fuels at constant marginal costs. An unforeseen

cost rise of the backstop leads to a (positive) shock in marginal productivity, which is

then half absorbed by higher prices, while the other half is absorbed by increased overall

emissions. But, more importantly, abatement will move sharply between periods, with a

sharp increase (decrease) in emissions in the period with increased (decreased) marginal

productivity.

2.3 Welfare Costs of Policies

By definition of the difference under policy i with the social optimum and considering the

firms’ optimization (4), it is immediate that quantity deviations from the social optimum

scale with price deviations:

∆̃ipt = 2c∆̃iqt. (9)

The welfare loss is then given by:

∆̃iW = E
[
∆̃iY1 + ∆̃iY2 − ∆̃iD

]
= E

[∑
t

∆̃iqt

(
pSOt − c∆̃iqt

)
− ∆̃iQ

(
pSOt +

b

2
∆̃iQ

)]
= − b

2
E
[(

∆̃iQ2
)]
− c

∑
t

E
[(

∆̃iq2t

)]
(10)

Through adding parameters to our notation, ∆̃iW (σ1, σ2, ρ), we spell out that the

welfare loss of policy i depends on specific parametric values, which facilitates comparison

of our results to those in for example Weitzman (1974) (σ1 = σ2, ρ = 1) as a means of

guiding our intuition.

3 Policies

3.1 Quantities

The first policy we consider fixes quantities in each period:

Definition 1 (Quantities). In both periods, independently, the regulator auctions the

9
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ex-ante optimal amount of permits q∗:

∆Qq1 = ∆Qq2 = 0, (11)

while prices adjust to reach equilibrium on the emission permits market (4).

We can substitute (6-8) into equation (10), and readily obtain expected welfare losses:

−∆̃QW =
1

8c

1

b+ c

[
(b+ 2c)

(
σ2
1 + σ2

2

)
− 2bρσ1σ2

]
(12)

For the reader’s convenience, we relegate this and future derivations to Appendix C.

Inspecting (12), we find the expected welfare losses −∆̃QW to be decreasing in the

correlation between shocks, ρ. That is, the expected ex post welfare loss from quantities

as a policy instrument are lower for higher correlation between shocks over time. We can

understand this as follows. Consider (6); while a positive shock in the first period increases

the efficient level of first-period emissions, a positive shock in the second period decreases

efficient first-period emissions. Thus, shocks of equal sign in both periods tend to mitigate

each other, reducing the welfare loss of fixed quantities. On the other hand, considering

(8), we see that a positive correlation increases the welfare loss associated with cumulative

emissions. Yet, a careful writing out of welfare losses establishes that the former effect

strictly dominates the latter.

3.2 Prices

The second policy we consider fixes permit prices in each period:

Definition 2 (Prices). The regulator fixes permit prices at the ex-ante optimal level

p1 = p2 = p∗:

∆Pp1 = ∆Pp2 = 0. (13)

The firm can buy any number of permits from the regulator at the stated price; quantities

adjust to reach equilibrium on the emission permits market (4).

Firms respond to a shock θt by adjusting quantities according to ∆P qt = θt/2c, see (4).

Recall from our previous discussion that, since optimally MD = MY1 = MY2, in social

optimum prices should be equal in both periods, ∆SOp1 = ∆SOp2 = ∆SOp. Thus the price

distortion is the same in both periods: ∆̃Ppt = ∆Ppt −∆SOp = −∆SOp. We now invoke

(9) and get our welfare loss measure, expressed in the price gap with the ex post Social

10
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Optimum:

∆̃iW = − b
2
E
[(

∆̃iQ
)2]
−
∑
t

cE
[(

∆̃iqt

)2]
= −1

2

(
b+ c

c2

)
E
[(

∆̃ip
)2]

. (14)

The above equation holds for all scenarios with constant prices, such as Banking and

Stabilized Banking.10 Considering a Prices policy, we find:

−∆̃Pp =
1

2

b

b+ c
(θ1 + θ2) = −∆SOp, (15)

and combination of (15) with (14) yields:

−∆̃PW =
1

8

b2

c2
1

b+ c
(σ2

1 + σ2
2 + 2ρσ1σ2). (16)

In contrast to the Quantities policy, we now find that expected welfare losses ∆̃PW are

increasing with the correlation ρ. We can understand the intuition as follows. In social

optimum, prices are the same in both periods; this feature is copied in the fixed-prices

policy. That is, the fixed-price policy ensures an efficient allocation of emissions over both

periods, conditional on cumulative emissions. Consequently, welfare losses brought by the

fixed-price policy must come from a distortion with respect to total cumulative emissions.

We can thus consider (8) and compare it with the fixed-prices allocation ∆PQ = (θ1+θ2)/c.

We immediately see that cumulative emissions differ by a constant factor (b+ 2c)/c. That

is, the distortion is proportional to the change in the social-optimal (SO) cumulative

emissions. As a positive shock in either period tends to increase SO cumulative emissions,

the variation in cumulative emissions is minimal when shocks are negatively correlated

and maximal when shocks are positively correlated. There are no welfare losses if σ1 = σ2

and ρ = −1.

We can now compare the Quantities and Prices (policies) in our economy with a stock

pollutant under complete but asymmetric information:

Proposition 1. Quantities outperform Prices, ∆̃Q
PW < 0, iff:

2σ1σ2
σ2
1 + σ2

2

ρ >
1 + b

2c
− 2

(
b
2c

)2
b
2c

(
1 + 2 b

2c

) (17)

10When permits can be banked, equal prices across periods is a result of the profit-maximizing behavior
of the firm.

11
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A higher correlation between the two periods, ρ, increases the domain of parameter value

ratios b/c for which Quantities outperform Prices.

See Figure 1, which illustrates the proposition by showing iso-welfare lines of Prices

and Quantities for perfectly negatively, perfectly positively, and uncorrelated shocks,

ρ ∈ {−1, 0, 1}.11 Consider the horizontal line at b/(b+ c) = 2/3, labeled “P = Q (ρ = 0)”,

which depicts parameter values yielding equal welfare under Quantities and Prices when

shocks are uncorrelated over time. Below this line, Prices outperform Quantities. Above,

vice versa. The curved lines depict the same condition, but for shocks that are (negatively

or positively) correlated over time.

Figure 1: Iso-welfare curves for Prices, Quantities, and (Stabilized) Banking. Below the
iso-welfare lines, Prices perform better; above Prices perform worse.

As a corollary to Proposition 1, we list some special cases of our proposition, including

the third case that replicates Weitzman (1974):

Corollary 1. For equally sized negatively correlated shocks, σ1 = σ2 and ρ = −1, Prices

reproduce the Social Optimum and always outperform Quantities. For independent shocks,

11These curves represent cuts (for fixed ρ) of the iso-welfare planes visualizing the proposition for any
possible ρ. Due to its three dimensions, such a figure is less straightforward to read – for completeness,
we nonetheless present it in Figure 2.
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Figure 2: Indifference planes under perfect foresight.

ρ = 0, Quantities outperform Prices if and only if b > 2c. For σ1 = σ2 and ρ = 1,

Quantities outperform Prices if and only if b > c.

As the Corollary states, when uncertainty is equally large in both periods and shocks

are perfectly correlated, Quantities are preferred to Prices, ∆̃Q
PW (σ, σ, ρ = 1) < 0, only

when b > c, which is the canonical result of Weitzman (1974). If the productivity curve is

very flat, or the damage curve very steep, fixing prices is a risky endeavor: the slightest

error in setting the price right yields a large deviation from socially optimal emissions

(as firms will produce up to the point where marginal productivity equals the stipulated

price), with all associated critical consequences. Under such conditions, it is thus natural

to favor the more conservative instrument of anchoring quantities.

3.3 Banking

Definition 3 (Banking). The regulator auctions the ex-ante optimal amount of permits q∗

in both periods. Firms can freely substitute permits between periods. They bank permits

not used in the first period, for use in the second period, or borrow permits if first-period

13



Gerlagh and Wan, 2018 Optimal Stabilization

demand exceeds supply, subject to:

∆Bq1 + ∆Bq2 = 0. (18)

Equilibrium on the emission permits market implies (4). Profit maximization and free

banking and borrowing ensures that permits are allocated so that marginal productivity is

equal in both periods:

∆Bp1 = ∆Bp2.

Banking allows firms the flexibility to efficiently distribute their permit use over time

subject to the constraint that total emissions are fixed. Note that our model abstracts from

the borrowing constraint applied in the EU-ETS. We briefly elaborate on these matters in

our discussion section (Section 5).

Combining these observations with the firms’ FOCs, (4), we find the change in permit

use by period:

∆Bq1 =
θ1 − θ2

4c
(19)

∆Bq2 =
θ2 − θ1

4c
. (20)

From (19) and (20) and using (4), we can solve:

∆Bp =
θ1 + θ2

2
= (b+ c)

θ1 + θ2
2(b+ c)

. (21)

The socially optimal price response to shocks θ1 and θ2 is given by (5). Hence:

∆̃Bp = ∆Bp−∆SOp =
1

2

c

b+ c
(θ1 + θ2). (22)

If we compare the deviation from the socially optimal price under a Banking policy to

that under a Prices policy, (22) versus (15), we find these to be linearly related:

∆̃Bp = −c
b
∆̃Pp. (23)

It is easily seen that:12 ∣∣∣∆̃Pp
∣∣∣ > ∣∣∣∆̃Bp

∣∣∣ ⇐⇒ b > c. (24)

From (14) we know that the welfare loss of Banking and Prices depends on the squared

12Not only in expectations, but also ex-post.
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deviation of prices from their socially optimal level only. Thus, we conclude immediately

that Banking outperforms Prices if and only if b > c. In general, using (15) we see that

the welfare loss of a Banking policy is given by:

−∆̃BW =
1

8

1

b+ c
(σ2

1 + σ2
2 + 2ρσ1σ2). (25)

Like deviations from socially optimal prices, welfare losses under a Banking and a Prices

policy are linearly related. This conclusion can be drawn directly by comparing (16) and

(25) or, alternatively, by feeding (23) into (14). Specifically, we find:

∆̃BW =
c2

b2
∆̃PW.

The following proposition is now immediate:

Proposition 2. Banking always outperforms Quantities. Banking outperforms Prices if

and only if b > c.

The iso-welfare line for Banking compared to either Prices or Quantities is depicted in

Figure 1 at b/(b+ c) = 0.5.

That banking outperforms quantities comes as no surprise; banking allows firms to use

their superior information, quantities doesn’t. What is, at first, surprising in the result

is that the comparison between banking and prices does not depend on the measure of

uncertainty in either period, nor the correlation between shocks. On further inspection,

this result has a clear background. Both Prices and Banking as policies secure equal prices

in both periods, so that the only deviation from the Social Optimum must come from

cumulative emissions. Prices as well as Banking prompt a change in aggregate emissions

proportional to the cumulative shock, so that only the proportionality between the change

in cumulative emissions in equilibrium and in social optimum matters. For both policies,

that fraction is a constant, dependent on the ratio b/c.

Our result is complementary to a major conclusion in Weitzman (2018), where Banking

is always outperformed by either Prices or Quantities. The different ordering of instruments

signifies the importance of carefully considering whether an emission trading market is set

up for a stock or a flow pollutant. While Banking is superior for a stock pollutant, it is

not for a flow pollutant.
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3.4 Banking with stabilization

The standard approach towards banking, as described above, presumes a unity marginal

rate of substitution between permits used in period 1 and 2, for both individual firms

(MRSi = 1), and at the aggregate level (MRSA = 1). In principle, both rates can be

chosen independently, and differently from unity.

The individual firm’s marginal rate of substitution, MRSi, measures the number of

permits that an individual firm receives (has to pay back) in the second period for each

permit it banks (borrows) in the first period. Commonly, and often implicitly, this rate of

conversion is assumed to be unity. Profit maximization by firms then implies that permit

prices rise by the interest rate, the Hotelling rule (Cronshaw and Kruse, 1996; Rubin, 1996;

Kling and Rubin, 1997; Fell et al., 2012). A few studies consider the firm’s marginal rate

of substitution MRSi as a policy instrument, chosen at the discretion of the regulator

(Yates and Cronshaw, 2001; Newell et al., 2005). The resulting deviation from Hotelling’s

rule is part of an efficient policy if marginal damages differ between periods. From our

assumption that emissions contribute to a perfect stock pollutant, with marginal damages

unconnected to the period of emissions, it follows that equal prices in both periods is an

essential characteristic of the ex-post social optimum.13 We therefore keep MRSi = 1 in

our Stabilized Banking analysis.

The aggregate rate of substitution, MRSA, measures the change in the amount of

permits available for use in the second period, at the aggregate level, if one more permit

remains unused (banked) in the first period. This aggregate rate of substitution differs

from unity if the regulator dynamically adapts the total amount of auctioned permits in

the second period, conditional on the amount of used permits in the first period. Indeed,

this procedure is part of the EU-ETS revisions proposed in November 2017. Lintunen

and Kuusela (2018) study rules for efficient aggregate substitution rates in the context

of a flow pollutant. Our analysis extends theirs by considering the stock pollutant-case.

We follow the custom that only information on quantities is used. Thus, the regulator

can decide to increase or decrease the amount of auctioned permits in the second period,

dependent on the number of used permits in the first period. We call this policy Banking

with Stabilization, or Stabilized Banking, and abbreviate it as SB. We use δ = MRSA for

notational convenience, and we will refer to it as the stabilization rate.

Definition 4 (Stabilized Banking). The regulator adapts the total amount of auctioned

13Extending our model to cover time discounting, it is easily shown that Hotelling’s rule would hold in
our model. Our base model can be interpreted as the special case where r = 0, with r the interest rate, so
that the discount factor 1/(1 + r) = 1 by construction.
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permits in the second period based on permits used in the first period for fixed MRSA = δ:

δ∆SBq1 + ∆SBq2 = 0. (26)

Profit maximization and free banking and borrowing with MRSi = 1 ensures that firms

allocate permits so that marginal productivity is equal in both periods:

∆SBp2 = ∆SBp1. (27)

We can now derive welfare losses:

−∆̃SBW =
1

2

b+ c

c2

[
δ

1 + δ
− b

2(b+ c)

]2
σ2
1 +

1

2

b+ c

c2

[
1

1 + δ
− b

2(b+ c)

]2
σ2
2

+
b+ c

c2

[
δ

1 + δ
− b

2(b+ c)

] [
1

1 + δ
− b

2(b+ c)

]
ρσ1σ2. (28)

Note that regular Banking is equivalent to Stabilized Banking with stabilization rate δ = 1

(this is easily verified by plugging δ = 1 into (28) and comparing to (25) or by setting

δ = 1 in (26) and comparing to (18)).

From (28) we see that the stabilization rate δ is an important determinant of the

welfare loss under Stabilized Banking. This rate is chosen by the regulator and can in

principle be any real number. Choosing the stabilization rule optimally reduces welfare

losses substantially. To see this, consider the special case where first period marginal

productivity is publicly observed (ex-ante known by the regulator), θ1 = 0, and only

second-period productivity is privately observed. That specific case requires a stabilization

rate δ∗ = b+2c
b

, which allows the regulator to perfectly reproduce the outcome of the social

optimum, despite uncertainty. That is, ∆̃SB(0, σ2, ρ,
b+2c
b

) = 0. This seems surprising. Yet,

by inspection of the Social Optimum, (6) and (7), and substituting θ1 = 0, we indeed find

that:

−∆SBq1
∆SBq2

= δ =
b+ 2c

b
= −∆SOq1

∆SOq2
. (29)

Similarly, we have δ∗ = b
b+2c

and ∆̃SB(σ1, 0, ρ,
b

b+2c
) = 0 (for θ2 = 0). We can more

generally solve for the optimal stabilization rate δ∗ as a function of any feasible vector of

parameter values, as stated in the following proposition:

Proposition 3. Optimal Stabilized Banking equals Banking (δ = 1) when σ1 = σ2. In

all other cases, Optimal Stabilized Banking strictly outperforms Banking; the optimal
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stabilization rate δ∗ is given by:

δ∗ =
bσ2

1 + (b+ 2c)σ2
2 − 2(b+ c)ρσ1σ2

(b+ 2c)σ2
1 + bσ2

2 − 2(b+ c)ρσ1σ2
. (30)

The optimal stabilization rate as a function of any possible vector (σ1, σ2, ρ) when

b = c (i.e. when Banking and Prices perform equally well in terms of welfare) is illustrated

in Figure 3. It has a few outstanding features. First, when the measure of uncertainty

in both periods is equal, σ1 = σ2, then independently of the correlation between shocks

ρ, the optimal stabilization rate δ∗ is unity, so that Stabilized Banking and Banking are

equivalent.

Second, if the first (second) period has larger measure of uncertainty, then the optimal

stabilization dampens its effect on overall emissions through a below-unity (above-unity)

exchange rate between the two periods. This result is stated formally in the following

corollary:

Corollary 2. The optimal stabilization rate is less (more) then unity, δ∗ < 1 (δ∗ > 1), if

first-period uncertainty exceeds second-period uncertainty, σ1 > σ2 (σ1 < σ2).

Third, the deviation of the optimal stabilization rate from unity increases with a higher

correlation between the two shocks.14 We look at the cut through the surface for fixed

σ2 > σ1, and we increase the correlation between shocks ρ from −1 to 1. Along this cut,

we see that δ∗ exceeds unity, and the more so for higher correlations ρ. The intuition is as

follows. Assume that shocks are negatively correlated, ρ < 0. Recall that the regulator

does not observe the realization of shocks, only firms do. Furthermore, recall that, upon

observing borrowing of permits, ∆̃SBq1 > 0, the regulator changes cumulative emissions by

(δ∗−1)∆SBq1. Having noticed firms borrow emission permits in the first period, ∆̃SBq1 > 0,

and knowing shocks are negatively correlated, the regulator discerns a scenario along the

lines of θ2 < 0 < θ1 has realized. Moreover, since σ2 > σ1, the regulator concludes that the

aggregate shock has been negative, θ1 + θ2 < 0. Next, consider positively correlated shocks,

and again assume the regulator observes first-period borrowing: ∆̃SBq1 > 0. Shocks

being positively correlated, this means the regulator expects that θ2 > θ1 and, since

σ2 > σ1, that θ1 < θ2 < 0. Thus, the aggregate shock is now ‘more negative’ than for

negatively correlated shocks. The more negative the aggregate shock, the cheaper it is

to cut emissions, and thus second-period emission allowances should be adjusted much

more strongly, ie the stabilization rate δ∗ should be more different from unity, the more

14See also Figure 8 in the appendix.
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Figure 3: The optimal stabilization rate δ∗ as a function of the correlation between shocks
over time, ρ, and the relative magnitude of per-period shocks, σ2/(σ1 + σ2), when b = c,
that is, when Prices and Banking do equally well.

negative is the cumulative shock. That is, for a given relative measure of uncertainty, the

optimal stabilization rate δ∗ deviates more from unity as we increase the correlation ρ.

Having derived the welfare loss under Stabilized Banking for any stabilization rate δ

given by (28), as well as the optimal or welfare loss minimizing stabilization rate δ∗ given

by (30), we can solve for the welfare loss under Stabilized Banking with an optimally

chosen stabilization rate for any feasible vector of parameters (σ1, σ2, b, c, ρ). With a slight

abuse of notation, we obtain the following remarkably simple expression:

−∆̃SBW (δ∗;σ1, σ2, b, c, ρ) =
1

2

1

b+ c

(1− ρ2)σ2
1σ

2
2

σ2
1 + σ2

2 − 2ρσ1σ2
. (31)

Consider as a special case the situation where σ1 = σ2 = σ. This allows us to rewrite (31)

as:

−∆̃SBW (δ∗;σ, σ, b, c, ρ) =
1

4

1

b+ c
(1 + ρ)σ2. (32)

Figure 4 illustrates the normalized welfare losses under Banking and Stabilized Banking
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as a function of the correlation between shocks and the relative magnitude of period-

specific uncertainty σ2/(σ1 + σ2). The welfare loss under Banking always exceeds that

under Stabilized Banking, and, moreover, this difference is generally increasing in the

correlation between shocks ρ. Consider, for instance, the case when σ2 = 2σ1 and shocks

are perfectly correlated, ρ = 1. The loss (vis-a-vis the social optimum) under Banking

is then approximately twice as large as under Stabilized Banking, or stated inversely

Stabilized Banking (with an optimal stabilization rate δ) yields welfare gains of more than

50% as compared to regular Banking.

Figure 4: Welfare losses for Banking and Stabilized Banking plotted against the correlation
between shocks over time, ρ, and the relative magnitude of per-period shocks, σ2/(σ1 +σ2).
We assume b = c, so that Banking and Prices have the same expected welfare loss.

The next corollary establishes monotonicity of the stabilization rate for the special

case of independent or negatively correlated shocks.

Corollary 3. For independent or negatively correlated shocks, ρ ≤ 0, the optimal stabi-

lization rate, δ∗ increases with the relative size of second-period uncertainty, σ2/σ1. The

optimal ratio ranges between b/(b+ 2c) and its inverse (b+ 2c)/b.

Notably, monotonicity does not hold for positively correlated shocks. The ratio can

fall below b/(b+ 2c), or reach above (b+ 2c)/b:
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Corollary 4. For positively correlated shocks, ρ > 0, there is a value for the relative

measure of second-period uncertainty, 0 < σ2/σ1 < 1 such that the optimal ratio satisfies

δ∗ < b/(b+ 2c). Similarly, there exists 1 < σ2/σ1 such that δ∗ > (b+ 2c)/b.

What is important to realize is that Figures 3 and 4 are graphical illustration of

analytic results, where the only chosen parameter values are b = c, which has the

advantage that Prices and Banking have the same expected welfare costs. The figures are

thus inclusive; they present fundamental features of a general model, and are not mere

numerical simulations for a convenient set of parameters.

Finally, we can analytically compare welfare losses under Prices and (optimal) Stabilized

Banking. The precise condition for the former to outperform the latter is stated in the

following proposition:

Proposition 4. Stabilized Banking with optimally chosen stabilization rate δ∗ outperforms

Prices, ∆̃SB
P W (δ∗) < 0, if and only if:[

σ2
1 + σ2

2

2σ1σ2

]2
>
ρ2(b2 − c2) + c2

b2
. (33)

The left-hand side measures the skewness of uncertainty. Stabilization is able to

correct for a skewed uncertainty distribution, while Prices performs better, in relative

terms, under uniform uncertainty. Whether positive or negative correlated shocks improve

the performance of Price or Stabilized Banking depends not only on the correlation

between shocks, but this interacts with the relative slopes of benefits and costs of emission

reductions.

This concludes our analysis of Quantities, Prices, Banking and Stabilized Banking

with an optimal stabilization mechanism. We have found that it is almost always optimal

to deviate from the one-to-one aggregate exchange rate between periods. Typically, the

optimal stabilization rate is such that it dampens the largest shock. The model so far

assumes that firms perfectly observe the shocks to their marginal productivity in the second

period before deciding on first-period emissions. This is an assumption that stretches the

boundaries of credulity. We therefore relax it in the next section.

4 Imperfect foresight

Now assume that the second-period shocks are not known by the firms when period-one

production decisions are made. The stages of the game become:
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1. The regulator chooses its policy instruments and their levels, which can be either

Prices or Quantities including rules for Banking.

2. The firms observe the first-period productivity shock θ1.

3. First-period prices and quantities are chosen, that maximize expected production,

given policies.

4. The firms observe the second-period shock θ2.

5. Second-period prices and quantities are chosen, that maximize production, given

policies.

For this model, it serves the analysis to write the shock as an AR(1) process. We decompose

θ2 in two parts:

θ2 = αθ1 + µ, (34)

with −1 ≤ α ≤ 1 and µ white noise, so that σ2
2 = α2σ2

1 + σ2
µ, and ρ = ασ1/σ2. For α > 0,

we can think of θt as a persistent technology shock, where the better technology of the

first period is carried on to the second, positively affecting productivity in both periods.

For α < 0, we can think of θt as demand shocks in a business cycle framework, where

a negative demand shock in the first period is met with counter-cyclical policy by the

government, boosting demand in the second period. For realism, we restrict ourselves to

|α|≤ 1; it appears unlikely for firms to expect shocks of ever-increasing magnitude. We

think of a small positive value of α as the most realistic case.

When considering the different policies, we immediately see that Quantities and Prices

give identical outcomes to the perfect foresight economy, independent of when the firms

observe the shock. With these ‘static’ policies, knowledge about future conditions does

not affect current decisions. The analysis of Section 2 thus also applies to the model with

imperfect foresight. We only need to analyze Banking with and without Stabilization.

Note, however, that the comparison of Prices versus Banking must be strictly better for

Prices under imperfect foresight as compared to perfect foresight. Lengthy derivations in

this section are relegated to Appendix D. Deviations from the socially optimal level will

be notated shorthand with a .̂

4.1 Banking

Ex post, we maintain the price-emissions conditions (4) from profit-maximization, and

fixed cumulative emissions from the policy rule (18). Yet firms can equalize prices between
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periods only in expectations, not ex-post:

E[∆Bp2|θ1] = ∆Bp1, (35)

where expected prices depend on expected changes in productivity:

2cE[∆Bq2|θ1] + E[θ2|θ1] = E[∆Bp2|θ1]. (36)

Combining the price-emissions condition (4) and the fixed total emissions (18) with the

above equations and using that, by hypothesis, E[θ2|θ1] = αθ1, we derive deviations in

permit use in both periods:

∆Bq1 =
(1− α)θ1

4c
(37)

∆Bq2 =
(α− 1)θ1

4c
. (38)

Equations (37) and (38) have the following interpretation. A profit-maximizing firm

equates expected marginal productivity in both periods by smoothing shocks over time.

When making production decisions, the firm has only observed the first-period shock.

Thus, both first- and second-period emission levels depend on the realization of the first

shock and the expectation of the second shock. This expectation depends on the realized

first shock, namely E[θ2|θ1] = αθ1. The firm thus chooses emission levels as if smoothing

shocks θ1 and αθ1. Consider then α = 1, i.e. the firm expects shocks of exactly equal

magnitude in both periods. In that case, there is nothing to smooth, and hence emission

levels should be unaffected by the realization of θ1. Similarly, consider α = −1, i.e. the

firm expects a second-period shock which fully ‘cancels out’ the first period shock. Then,

since for any given level of permit use marginal productivity will be higher in the first

period as compared to the second, profit maximization will shift permit use very strongly

from period 1 to period 2. Equations (37) and (38) show this to be true indeed.

From the per-period emissions given by (37) and (38) we obtain a measure for welfare

losses:

−∆̂BW =
1

8

(1 + α)2

b+ c
σ2
1 +

1

8c

b+ 2c

b+ c
σ2
µ (39)

This and subsequent results are equivalently presented in the notation familiar from the

analysis of perfect foresight in Appendix D. When comparing the above result to the
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welfare loss of Banking under perfect foresight, given by (25), it is immediate that:

−∆̂BW = −∆̃BW +
1

8c
σ2
µ ≥ −∆̃BW, (40)

with equality if and only if σµ = 0. That is, the welfare loss of a Banking policy under

perfect and imperfect foresight is the same, ∆̂WB = ∆̃WB, exactly when de facto there

is no second period uncertainty for firms. In all other cases, imperfect foresight strictly

increases welfare costs. This result is formalized in the following proposition:

Proposition 5. The welfare loss of Banking under imperfect foresight is as least as large

as under perfect foresight. Welfare losses are equal if and only if there is no second-period

uncertainty for firms (σµ = 0).

Next, we compare the welfare outcomes under Banking and Prices and provide condi-

tions under which the former outperforms the latter:

Proposition 6. Banking outperforms Prices, ∆̂B
P > 0, if and only if

σ2
µ

(1 + α)2σ2
1 + σ2

µ

<
b− c
c

. (41)

Proof. See Appendix D. Q.E.D.

The proposition is visualized in Figure 7, which allows for the immediate conclusion

that under imperfect insight, too, Quantities cannot outperform Banking in terms of

welfare losses: the indifference plane for Quantities is consistently at the same level or

above that for Banking. Thus, a fundamental insight supported by a clear economic

intuition in the setting with perfect foresight is carried over to the case where foresight

is less than perfect. Therefore, and importantly, even under imperfect predictability of

future productivity shocks, our conclusions continue to deviate from the main finding in

Weitzman (2018) that Banking is always outperformed by either Prices or Quantities. This

once again stresses the critical importance of expertly assessing whether the externality

under regulation is caused by a stock or a flow pollutant.

4.2 Banking With Stabilization

Under imperfect foresight of future shocks, Banking with Stabilization is defined through

the demand equation (4), the stabilization rule (26), constant expected prices (35), and
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expected efficient allocation of permits (36). Since E[θ2|θ1] = αθ1, we can derive:

∆SBq1 =
(1− α)θ1

2c

1

1 + δ
(42)

∆SBq2 =
(α− 1)θ1

2c

δ

1 + δ
(43)

∆SBQ =
(1− α)θ1

2c

1− δ
1 + δ

. (44)

Through straightforward (but tedious) algebra, we can derive welfare losses:

∆̂SBW =
1

2

b+ c

c2

[
δ

1 + δ
− b

2(b+ c)

]2
σ2
1 +

1

2

b+ c

c2

[
1

1 + δ
− b

2(b+ c)

]2
α2σ2

1

+
b+ c

c2

[
1

1 + δ
− b

2(b+ c)

] [
δ

1 + δ
− b

2(b+ c)

]
ρσ2

1 +
b+ 2c

b+ c

1

8c
σ2
µ. (45)

Comparing (45) to the welfare loss of Stabilized Banking under perfect foresight, (28), we

see immediately that imperfect foresight increases expected welfare costs:

∆̂SBW = ∆̃SBW +
1

2

b+ c

c2

[
1

1 + δ
− b

2(b+ c)

]2
σ2
µ +

b+ 2c

b+ c

1

8c
σ2
µ ≥ ∆̃SBW

≥ ∆̃SBW (46)

with equality if and only if σµ = 0, i.e. if there is no second-period uncertainty for the

firms. From (45), we find the optimal δ∗ to depend only on the relative size of predictable

shocks, α, and the relative slope of benefits and costs b/c, but not on the relative size of

unpredictable uncertainty for the regulator nor firms (σµ/σ1):

Proposition 7. Under imperfect foresight, optimal Stabilized Banking equals Banking

(δ = 1) when α = −1. In all other cases, Optimal Stabilized Banking strictly outperforms

Banking; the optimal stabilization rate δ∗ is given by:

δ∗ =
b+ (b+ 2c)α2 − 2(b+ c)α

(b+ 2c) + bα2 − 2(b+ c)α
. (47)

The optimal stabilization rate δ∗ is graphically illustrated in Figure 5. Note, importantly,

that under imperfect foresight, the optimal stabilization rate δ∗ is at most unity, which a

careful writing out of (47) will show. This is a major deviation from the case of perfect

foresight, where the optimal stabilization rate δ∗ could reach values considerably larger

than one.
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*

Figure 5: Optimal Stabilization Rate δ∗, for different ratios b/c, dependent on the correla-
tion between shocks α.

Corollary 5. The optimal stabilization rate δ∗ is monotone decreasing in α. For α = −1,

the optimal stabilization rate δ∗ is unity, that is, regular Banking is ex ante optimal. For

all other α ∈ (−1, 1] the optimal stabilization rate is less than unity, δ∗ < 1. For α = 1,

δ∗ = −1.

How do these mathematical observations translated in economists’ language? Recall

from the definition of Stabilized Banking that δ∆̂SBq1 = −∆̂SBq2 and assume, for simplicity,

that σ2 = σ1. First, let us examine a world in which subsequent shocks are expected to

perfectly offset each other, that is, α = −1 and thus E[θ2|θ1] = −θ1. This means that an

increase in marginal productivity today is met by a decrease in marginal productivity

tomorrow. As it is more costly at present to cut emissions, the firms ideally produce

more now, cutting emissions in the future, when productivity is low. Since these shocks

to productivity are expected to be equal in magnitude but opposite in direction, and

combined with unchanged marginal damages, socially optimal total emissions remain

unchanged. It is then clearly efficient to allow banking and borrowing of permits on a

one-to-one basis, where every extra unit emitted at present translates into exactly one

unit forfeited in the future, i.e. to set δ = 1. Next, consider the case where α = 1, so that

the second period shock is expected to be the exact same magnitude as the first period
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shock: E[θ2|θ1] = θ1. For a positive productivity shock, it is then optimal to produce

more in both periods, since the costs of cutting production have risen in both periods as

well. In fact, due to the perfect persistence of shocks and period-independence of marginal

damages, this increase of production should be the same in both periods. This can be

achieved by setting δ = −1.

Armed with equation (45) – the welfare loss under Stabilized Banking for generic

stabilization rate δ – as well as with equation (47) – the optimal stabilization rate δ∗ –,

we can solve for the welfare loss under Stabilized Banking when δ = δ∗ is implemented.

Almost magically, this yields us a short formula, which provides a decisive and profound

insight, of key importance both for theory and policy. For that reason, we state it as

Theorem:

Theorem 1. Under imperfect foresight, Stabilized Banking enables the regulator to mitigate

all shocks that are anticipated by the market through setting the stabilization rate δ optimally

(at δ∗). That is, shocks anticipated by the regulated firms do not induce welfare losses.

Only those shocks which market participants cannot predict cause welfare losses under

optimal Stabilized Banking:

−∆̂SBW (δ∗;σ1, σ2, b, c, ρ) =
1

8c

b+ 2c

b+ c
σ2
µ. (48)

By dynamically adapting future permit allocations in response to information revelation

through firms’ production choices, the regulator can fully incorporate all knowledge about

present and future (productivity) shocks. Thus, any remaining ex post sub-optimality in

total permit allowances derives no longer from an asymmetry of information between firms

and regulator but solely from the unpredictable element, for both parties, in productivity

shocks. Only those shocks which take by surprise both regulated and regulating parties

cannot be overcome by setting the optimal δ∗, and therefore are the only factor driving

welfare away from its socially optimal level. What is important to note is that all the

other instruments considered in this work – Quantities, Prices, and Banking – generally

fail to achieve this, save for some exceptional parametric cases.

Our discussion has now brought to light another critical piece of understanding: namely,

that the welfare loss under regular Banking when compared to that under optimal Stabilized

Banking derives entirely from the failure of the former to wholly incorporate all anticipated

productivity shocks into aggregate permit allocations. Indeed, comparing the welfare loss

under Stabilized Banking to that under regular Banking, given by (39), we obtain the
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following:

−∆̂BW = −∆̂SBW +
1

8

(1 + α)2

b+ c
σ2
1 ≥ −∆̂SBW, (49)

which shows that Banking cannot do better than Stabilized Banking in terms of welfare,

also when foresight is imperfect, and that the difference between the two is proportional

to the measure of cumulative uncertainty (1 + α)2σ2
1, multiplied that is, of anticipated

productivity shocks, only. Finally, we see that the two instruments are equivalent if and

only if α = −1. The latter remark in turn corroborates Corollary 5.

Figure 6: Normalized welfare losses under Banking and Stabilizefd Banking for σ1 = σ2
and b = c.

Figure 6 illustrates Proposition 7 and equation (49), by plotting (for b = c) the

normalized welfare losses of regular Banking and Stabilized Banking with optimally chosen

stabilization rate δ = δ∗(α) when foresight is imperfect and uncertainty is of equal measure

in both periods (σ1 = σ2). We see that, as was stated in Proposition 7, Stabilized Banking

always outperforms regular Banking, except in the extreme cases where α = −1, when

welfare losses are equal. The graph shows that Stabilized Banking can yield welfare

gains of up to ∼ 50% for relevant small but positive values of α. For any given α, the

distance between the solid line (depicting normalized welfare losses under optimal Stabilized

Banking) and the dashed line (giving normalized welfare losses under regular Banking) is

proportional to σ2
1 and represents the additional welfare losses caused by sub-optimally
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adjusting aggregate permit availability conditional on the revelation of information through

an efficient stabilization mechanism.

It has now become straightforward to compare the welfare losses under Stabilized

Banking with those under Prices and to identify conditions under which the either

instrument is preferred. We do so formally in the following proposition:

Proposition 8. Stabilized Banking with optimally chosen stabilization rate δ∗ outperforms

Prices, ∆̂SB
P W (δ∗) < 0, if and only if:

σ2
µ

(1 + α)2σ2
1 + σ2

µ

<
b2

c(b+ 2c)
. (50)

Proposition 8 is illustrated in Figure 7. We observe that, as the future becomes more

unpredictable even for firms, σµ ↗, the comparative advantage of different instruments

over Prices becomes more similar. Indeed, for σµ/(σµ + σ1) → 1, that is, when first-

period uncertainty is very small compared to added second-period uncertainty, we see that

Quantities, Banking, and Stabilized Banking are all favored over Prices if and only if b < 2c,

whilst the latter instrument is superior with a reversed inequality. Alternatively, when

period 2 shocks are perfectly predictable, σµ = 0, Stabilized Banking takes out all welfare

losses whereas the other instruments do not, so that Stabilized Banking outperforms Prices,

Quantities, and Banking for all parameter vectors (b, c, α).

5 Discussion and Conclusions

5.1 Implementation

Many real-world emissions trading systems allow banking of unused permits to be used

in future periods but at the same time do not allow borrowing of future endowments to

support present-day production. In the EU-ETS, for example, this holds by construction

of the system: in every regulatory period i a total amount ai of emissions permits is

auctioned (or grandfathered) by the regulator, and emissions in period i cannot exceed

the total amount auctioned plus those permits that remain unused from previous periods.

Thus, in every period i emissions permits can be banked, but not borrowed. To some

extent, this is surprising. The advantage of banking and borrowing over period-specific

quantity-setting derives from allowing firms to make use of their superior information

regarding the value of emissions permits for production. By (de facto) allowing only

banking and not borrowing, the regulator exploits only half of the better information.
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Figure 7: Indifference planes under imperfect foresight.

Consequently, in terms of economic efficency, the system performs worse than when full

banking and borrowing are allowed. Yet, the inefficiency induced by prohibiting borrowing

can be mitigated by increasing the auctioned allowances in early periods. Indeed, this is

how the EU-ETS has been implemented.

In the extreme case, for the model developed in this paper, a Banking policy can

effectively be implemented by auctioning all permits in the first period, setting a1 = 2q∗

and a2 = 0, and allowing firms to spread use of these permits over time. That is, firms

are at once endowed with the emission permits for all periods, and it is left to the market

how these permits are allocated intertemporally. The resulting allocation is at least as

efficient as the allocation imposed by the regulator if it chose any other auctioned amounts

in periods 1 and 2.

Stabilized Banking can achieve substantial welfare gains, and be implemented if in the

first period, the minimum amount of cumulative permits is auctioned, a1 = (1 + δ∗)q∗.

We define banking through s1 ≡ a1 − q1. The remaining permits are auctioned in the

second period, a2 = (1− δ∗)q1 ≥ 0. Second-period auctioning decreases with first-period

banking: ∂a2/∂s1 = −(1− δ∗). The new EU-ETS rules suggest still a modest stabilization

mechanism, 0.5 < δ < 1, while our findings as presented in Fig 5 suggest a more aggressive

stabilization mechanism is efficient; for a positive correlation between shocks, α > 0, it
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is optimal to reduce future auctioning close to one-to-one in response to above-expected

current banking.

5.2 Empirical Predictions

The model we developed provides predictions that can be empirically tested when the

EU-ETS changes of rules become internalized in the market. The model predicts that

exogenous shocks (e.g. weather or oil price shocks) have a lesser effect on price volatility

after implementation of the stabilization rule. The high volatility of permit prices in

the initial phase has been documented, among others, in Paolella and Taschini (2008);

Hintermann (2010); Chesney and Taschini (2012). Our theoretical predictions about price

volatility are formally stated and proven in Propositions 9 and 10 for the case of perfect

and imperfect foresight, respectively. We show that, in both cases, Stabilized Banking

with the stabilization rate δ chosen optimally reduces price volatility of emission permits

as compared to regular Banking.

Proposition 9. With perfect foresight, Stabilized Banking with optimally chosen stabiliza-

tion rate δ has lower price volatility in both periods compared to Banking. More generally,

E
[
(∆SBpt)

2
]
< E

[
(∆Bpt)

2
]
⇐⇒ (δ − 1)(σ1 − σ2) < 0. (51)

The RHS condition is always satisfied for δ = δ∗(ρ, σ1σ2).

Proof. In Appendix C. Q.E.D.

Proposition 10. With imperfect foresight, Stabilized Banking with optimally chosen

stabilization rate δ has lower price volatility in both periods compared to Banking. More

generally,

E
[
(∆SBpt)

2
]
< E

[
(∆Bpt)

2
]
⇐⇒ δ < 1. (52)

The RHS condition is always satisfied for δ = δ∗(α).

Proof. In Appendix D. Q.E.D.

5.3 Perfect Versus Imperfect Foresight

Our analysis of optimal policy instruments for a stock pollutant under asymmetric in-

formation shows some remarkable differences between scenarios where markets can fully
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anticipate future shocks, versus those with incomplete private foresight. Comparison of

findings in Sections 3 and 4 shows that the comparison between prices and quantities

remains unchanged, but banking performs worse, under imperfect foresight, as private

firms cannot correctly anticipate future demand shocks. Also, we find that the stabilization

rate used for stabilized banking is very different between the two scenarios. Whereas

perfect foresight implies a stabilization rate above unity when shocks increase over time,

the stabilization rate δ drops below unity, and substantially, with imperfect foresight.

What matters, in the latter case, is not the size of future shocks, but the size of the shock

that can be correctly forecast. It is natural to assume that shocks increase over time, but

that the part of shocks that can be predicted decreases over time. Thus, while perfect

foresight suggests a high stabilization rate, imperfect foresight suggests a low stabilization

rate. This feature was illustrated in Figures 3 and 5.

A peculiar feature that arises from our model is that a more complex economic model,

with imperfectly anticipated future shocks, results in a more simple rule for optimal

stabilization. This can be seen from the optimal stabilization rate δ∗ as established in

equations (30) and (47), respectively. Whilst remarkable upon first sight, there is support

for economic intuition. The model evaluates instruments for asymmetric information;

heterogeneity between the information sets of firms and the regulator is largest when firms’

foresight is perfect and the regulator has to choose its instruments while knowing nothing.

Assuming the firms’ foresight to be imperfect renders their knowledge set more similar to

that of the regulator. We recognize that the complexity of regulation increases with the

information advantage of the regulated agents.

5.4 Internationally Connected Permit Markets

Our model under perfect foresight can also be interpreted in terms of spatially (rather

them temporally) connected permit markets. Although in that context it is perhaps less

natural to consider the amount of permits auctioned in one jurisdiction as independent of

that in another jurisdiction, we may nonetheless carry over a fundamental insight insight

from our basic model to this alternative interpretation: that it is not, in general, efficient

to fix the total amount of auctioned permits exogenously. Rather, it should take into

account the uncertainty measures for demand in both jurisdictions, as well as information

revealed through inter-jurisdictional trade of permits.
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5.5 Conclusions

We built and analyzed a formal model to compare policy instruments for regulating a

stock pollutant under uncertainty. Conditions were found under which prices outperform

quantities in terms of welfare (Proposition 1) and these were shown to be a generalization

of Weitzman (1974). We then compared Prices to Banking (and borrowing) of permits and

derived when Banking is preferable (Propositions 2 and 6; Figure 1). Although Banking

has been analyzed previously in the context of a flow pollutant Cronshaw and Kruse

(1996); Rubin (1996); Kling and Rubin (1997); Yates and Cronshaw (2001); Weitzman

(2018); Lintunen and Kuusela (2018), we contribute to the literature by considering a stock

pollutant, which is relevant for several important global environmental problems, notably

climate change. Our results are radically different from those derived for a flow pollutant.

Having analyzed the policy instruments traditionally considered in the literature, we

next introduced a slightly more evolved instrument where periodic permit issues respond

automatically to the amount of permits banked in the system, called Stabilized Banking.

We showed that Stabilized Banking yields substantial welfare gains compared to the

traditional instruments (Propositions 3 and 7), cutting welfare losses by up to 50% as

compared to regular Banking (Figures 4 and 6). In November 2017, a modification of

EU-ETS rules was proposed. Permits in the Market Stability Reserve (MSR) will be

canceled when its level exceeds the amount of auctioned permits in the previous year

(Erbach, 2017). That is, the new rules describe a stabilization mechanism akin to our

Stabilized Banking policy. Using our model, we can conclude that the ad hoc change of

rules indeed appears to be welfare improving, possibly substantially so. Moreover, as an

addendum we predict that permit price volatility will be lower under Stabilized Banking

(with an optimal stabilization rate) as compared to regular Banking (Propositions 9 and

10). It would be an interesting avenue for future investigation to test this hypothesis

empirically once Stabilized Banking has been implemented.
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A Onlinde Appendix A: Figures for Comparative Stat-

ics

In Figure 8 we present cuts for three different correlations between shocks, ρ = −1, 0, 0.95,

of Figure 3 in the main text. It clearly illustrates the property that the optimal stabilization

rate deviated more from unity the larger is the correlation ρ.

*

Figure 8: Optimal stabilization rate δ∗ when b = c for ρ ∈ {−1, 0, 0.95}.

B Online Appendix B: Micro-foundation of the Model

Firms

Consider a continuum of competitive profit-maximizing firms, indexed i ∈ [0, 1], each
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producing at every time t ∈ {1, 2, ..., T} quantity Yit of a homogeneous good.15 Production

by the firm causes environmental damages to consumers as an externality, which the firm

does not take into account. The production technology Y : R2
+ → R+ has decreasing

returns to scale, with inputs emission permits qit and labor lit. Permit prices and wages

are equal for all firms and given by price pt and wt, respectively. Marginal productivity of

emission permits by firm i at time t is subject to random vertical shocks θit, while labour

productivity is unaffected. Shocks are observed by the firm but not by the regulator.

Given these assumptions, firm i solves:

max
qit,lit

T∑
t=1

Yit(qit, lit; θit)− ptqit − wtlit. (53)

We assume symmetry between firms and strictly decreasing returns to scale (positive

profits) so that lit = lt, and we label the optimal quantities in expectations qt = q∗ and

prices pt = p∗. In particular, we assume linear marginal productivity, of the form:

∀i :
∂Yit
∂qit

= p∗ − Tc(qit − q∗) + θit (54)

Aggregate emissions, shocks, and production at time t are given by:

qt =

1∫
0

qitdi (55)

θt =

1∫
0

θitdi, (56)

Yt(qt; θt) =

1∫
0

Yit(qit, lit; θit)di, (57)

with E[θt] = 0 and variance captured by the parameter E[θ2t ] = σ2
t ≥ 0. We denote

correlations between periods t and t+ s by E[θtθt+s] = ρsσtσt+s.
16 Because of competitive

markets and separation of emission productivity shocks from labor productivity, we can

15Environments where firms are not competitive and permit allocations or prices can be manipulated
by dominant firms are studied in Liski and Montero (2011), Hintermann (2011), Hintermann (2017).

16We do not need more structure, such as the distribution. Only expectations, standard deviations, and
correlations enter our results.
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reduce equilibrium through the aggregate or representative firm, which faces the problem:

max
qt,lt

T∑
t=1

[Yt(qt; θt)− ptqt − wtlt] . (58)

In equilibrium, marginal productivity for emission permits of the representative firm equals

prices:

pt =
∂Yt
∂qt

= p∗ − Tc(qt − q∗) + θt. (59)

Note that for the special cases where T = 1 or θ1 = θ2 = ... = θT = θ, pt = p, the first

order condition (59) simplifies to c(Tq∗ −
∑

t qt) + θt = p− p∗, which exactly reproduces

the model in Weitzman (1974) (with
∑

t qt aggregate emissions over all periods).

Finally, note that a decreasing returns to scale technology implies positive profits, so

that:

Yit = ptqit + wtlt + πit (60)

=⇒ Yt = ptqt + wtlt + Πt. (61)

Households

Households, normalized to size 1, maximize utility, which is derived from consumption

Ct and environmental damages resulting from the stock of emissions as determined by

the damage function D : R+ → R+. We focus on the simplest possible case, wherein

emission-related damages only enter welfare through cumulative emissions. The rationale

for this assumption is that, for long-lived pollutants such as CO2, most damages appear

after the regulation period.17 Thus, damages enter welfare as a proxy for expected future

welfare losses (see Gerlagh and Michielsen, 2015). Moreover, we abstract from discounting

between periods.

To defray their consumption, households supply labor inelastically Lt = 1 and earn

wages wt in every period t. Households receive profits from the firm and a lump-sum

transfer τt from the regulator.

17Climate change has very persistent dynamics. See Gerlagh and Liski (2018) for an extensive discussion
of the time-structure and its implications for climate policies.
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Households face the constrained optimization problem given by:

max
Ct

[
T∑
t=1

Ct

]
−D

(
T∑
t=1

qt

)
(62)

s.t.
T∑
t=1

Ct ≤
T∑
t=1

[wt + Πt + τt] . (63)

We assume marginal damages are linear in emissions. Specifically:

MD = p∗ + b

[
T∑
t=1

qt − Tq∗
]
. (64)

Market and Regulator

Since all consumption must be produced and vice versa, we have:

Yt(qt, lt; θt) = Ct, (65)

for all t. Moreover, the market for labor equates supply and demand, so that

lt = Lt = 1, (66)

which in turn determines the wage wt, for all t.

Households receive a lump-sum amount of money τt from the regulator in every period

t. From the fact that the regulator collects money only through selling (or auctioning)

permits, its budget-balancing constraint implies:

τt = ptqt. (67)

The regulator maximizes the sum of consumer surplus and producer surplus, which

equals consumer welfare (62). From the equilibrium in the goods market (65), we see that

the welfare-maximizing regulator’s objective is given by:

maxW = max
qt

T∑
t=1

Yt(qt; θt)−D

(
T∑
t=1

qt

)
(68)

For purposes of tractability, in the main text of the paper we study a two-period model,

T = 2, which allows to derive neat analytic expressions while still capturing the dynamic

nature of a stock pollutant.
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C Online Appendix C: Derivations Perfect Foresight

Here we provide the derivations of various results under perfect foresight.

C.1 Quantities

DERIVATION OF (12):

−∆̃QW =
1

(2b+ 2c)24c2

[
cE[((b+ 2c)θ1 − bθ2)2] + cE[((b+ 2c)θ2 − bθ1)2] +

b

2
E[(2c(θ1 + θ2))

2]

]
=

1

(2b+ 2c)24c2
[
cE
[
((b+ 2c)2 + b2 + 2bc)(θ21 + θ22) + (4bc− 4b(b+ 2c)) θ1θ2

]]
=

1

(2b+ 2c)24c2
[
cE
[
(2b+ 2c)(b+ 2c)

(
θ21 + θ22

)
− 2b(2b+ 2c)θ1θ2

]]
=

1

2(2b+ 2c)2c

[
E
[
(b+ 2c)(θ21 + θ22)− 2bθ1θ2

]]
=

1

8

1

(b+ c)c

[
(b+ 2c)

(
σ2
1 + σ2

2

)
− 2bρσ1σ2

]
(69)

C.2 Prices

DERIVATION OF (16):

−∆̃PW = cE

[(
−θ1

2c
+

b+ 2c

(2b+ 2c)2c
θ1 −

b

(2b+ 2c)c
θ2

)2

+

(
−θ2

2c
+

b+ 2c

(2b+ 2c)2c
θ2 −

b

(2b+ 2c)2c
θ1

)2
]

+
b

2
E

[(
− 2b

(2b+ 2c)2c
(θ1 + θ2)

)2
]

=
1

16

1

(b+ c)2c2
[
2cb2(σ2

1 + σ2
2 + 2ρσ1σ2) + 2b3(σ2

1 + σ2
2 + 2ρσ1σ2)

]
=

1

8

b2

(b+ c)c2
(σ2

1 + σ2
2 + 2ρσ1σ2). (70)

C.3 Prices versus Quantities

PROOF OF PROPOSITION 1:
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Proof.

(b+ 2c)
(
σ2
1 + σ2

2

)
− 2bρσ1σ2 ≤

b2

c
(σ2

1 + σ2
2 + 2ρσ1σ2)⇒(

b+ 2c− b2

c

)
(σ2

1 + σ2
2) ≤

(
2b2

c
+ 2b

)
ρσ1σ2 ⇒(

bc+ 2c2 − b2
)
≤ 2

(
b2 + bc

) ρσ1σ2
(σ2

1 + σ2
2)
⇒

2ρσ1σ2
σ2
1 + σ2

2

≥ bc+ 2c2 − b2

b(b+ c)
⇒

2σ1σ2
σ2
1 + σ2

2

ρ ≥
1 + b

2c
− 2

(
b
2c

)2
b
2c

(1 + 2 b
2c

)
(71)

Q.E.D.

C.4 Banking

DERIVATION OF (25):

−∆̃BW = cE

[(
θ2 − θ1

2c
+

b+ 2c

(2b+ 2c)2c
θ1 −

b

(2b+ 2c)2c
θ2

)2
]

+ cE

[(
θ1 − θ2

4c
+

b+ 2c

(2b+ 2c)2c
θ2 −

b

(2b+ 2c)2c
θ1

)2
]

+
b

2
E

[(
− θ1 + θ2

2b+ 2c

)2
]

=
1

4(b+ c)2
E
[

2c

4
(θ1 + θ2)

2 +
b

2
(θ1 + θ2)

2

]
=

1

8

1

b+ c
(σ2

1 + σ2
2 + 2ρσ1σ2). (72)

C.5 Banking with Stabilization

DERIVATION OF (28):

After substituting ∆̃SBp1 = ∆̃SBp2 in the firms’ FOCs, (4), changes in permit use are

given by:

∆̃SBq1 =
θ1 − θ2

2c

1

1 + δ
(73)

∆̃SBq2 =
θ2 − θ1

2c

δ

1 + δ
(74)

∆̃SBQ =
θ1 − θ2

2c

1− δ
1 + δ

. (75)
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Combining (73)-(75) with (5)-(8), it follows that:

∆̃SBq1 = ∆̃SBq2 =

[
δ

1 + δ
− b

2b+ 2c

]
θ1
2c

+

[
1

1 + δ
− b

2b+ 2c

]
θ2
2c

(76)

and after some algebra we furthermore obtain:

∆̃SBQ = 2∆̃SBq1. (77)

Consequently, from (10), we derive:

−∆̃SBW = 2(b+ c)E
[(

∆̃SBq1

)2]
(78)

=
1

2

b+ c

c2

[
δ

1 + δ
− b

2(b+ c)

]2
σ2
1 +

1

2

b+ c

c2

[
1

1 + δ
− b

2(b+ c)

]2
σ2
2

+
b+ c

c2

[
δ

1 + δ
− b

2(b+ c)

] [
1

1 + δ
− b

2(b+ c)

]
ρσ1σ2. (79)

C.5.1 Optimal Stabilization Rate

DERIVATION OF (30):

For analytical tractability, we define z ≡ δ
1+δ

, mapping δ ∈ R+ onto [0, 1]. The variable z

is symmetric around 1
2
. Furthermore, we define a ≡ b+c

2c2
, and γ ≡ b

2(b+c)
. We rewrite (28)

as:

a[z − γ]2σ2
1 + a[1− z − γ]2σ2

2 + 2a[z − γ][1− z − γ]ρσ1σ2,

which can be differentiated with respect to z:

∂

∂z
(28) = 2a[z − γ]σ2

1 − 2a[1− z − γ]σ2
2 + 2a[[1− z − γ]− [z − γ]]ρσ1σ2.

The first order condition reads:

2z[σ2
1 + σ2

2 − 2ρσ1σ2] = 2γσ2
1 + 2(1− γ)σ2

2 − 2ρσ1σ2. (80)

In optimum, z should therefore satisfy:

z =
γσ2

1 + (1− γ)σ2
2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2
. (81)
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Plugging in γ ≡ b
2b+2c

and z ≡ δ
1+δ

, we find the optimal δ∗:

δ∗ =
bσ2

1 + (b+ 2c)σ2
2 − 2(b+ c)ρσ1σ2

(b+ 2c)σ2
1 + bσ2

2 − 2(b+ c)ρσ1σ2
, (82)

as given.

PROOF OF PROPOSITION 9:

Proof. From (4), we know that ∆ipt = θt − 2c∆iqt. Hence, if we plug in ∆Bqt found in

(19) and (20), we obtain:

∆Bp1 = ∆Bp2 =
θ1 + θ2

2
.

Thus:

E
[
(∆Bp1)

2
]

= E
[
(∆Bp2)

2
]

=
σ2
1 + σ2

2 + 2ρσ1σ2
4

Next we analyze Stabilized Banking. From (73) and (74), giving us ∆SBqt, we know:

∆SBp1 = ∆SBp1 =
δ

1 + δ
θ1 +

1

1 + δ
θ2.

Thus:

E
[
(∆SBp1)

2
]

= E
[
(∆SBp2)

2
]

=
σ2
1 + δ2σ2

2 + 2ρδσ1σ2
(1 + δ)2

It is immediate that E
[
(∆SBpt)

2
]

= E
[
(∆Bpt)

2
]

if and only if δ = 1. Next:

E
[
(∆Bpt)

2 − (∆SBpt)
2
]

=
((1 + δ)2 − 4)σ2

1 + ((1 + δ)2 − 4δ2)σ2
2 + 2 ((1 + δ)2 − 4δ) ρσ1σ2

4(1 + δ)2
.

We showed that for δ = 1, Banking and Stabilized Banking have equal price deviations.

After careful manipulation, we find that for δ > 1, E
[
(∆SBpt)

2
]
< E

[
(∆Bpt)

2
]

whenever:

σ1 < σ2,

with the reversed inequality for δ < 1. It follows that:

E
[
(∆SBpt)

2
]
< E

[
(∆Bpt)

2
]
⇐⇒ (δ − 1)(σ1 − σ2) < 0.

Next, as we show in Corollary 2, δ∗(ρ, σ1, σ2) ≶ 1 if and only if σ2 ≶ σ1, which establishes

the result. Q.E.D.
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D Online Appendix D: Derivations Imperfect Fore-

sight

Here we provide the derivations of various results under imperfect foresight.

D.1 Banking

DERIVATION OF (39):

Comparison of (37) and (38) with the SO (6)-(8) yields:

∆̂q1 =
1

4

1

(b+ c)c
[(α(b+ c) + c)θ1 − bθ2]

∆̂q2 =
1

4

1

(b+ c)c
[(−α(b+ c) + c)θ1 + (b+ 2c)θ2]

∆̂Q =
1

2(b+ c)
(θ1 + θ2).

Therefore:

−∆̂BW = cE

[(
(α(2b+ 2c) + 2c)θ1 − 2bθ2

8(b+ c)c

)2

+

(
(α(2b+ 2c)− 2c)θ1 − 2(b+ 2c)θ2

8(b+ c)c

)2
]

+
b

2
E

[(
θ1 + θ2
2(b+ c)

)2
]

=
1

8(b+ c)2c

[
4c2(σ2

1 + σ2
2 + 2ρσ1σ2) + (1− ρ2)(2b+ 2c)2σ2

2

]
+

1

8(b+ c)2
b(σ2

1 + σ2
2 + 2ρσ1σ2)

=
1

8

1

b+ c
(σ2

1 + σ2
2 + 2ρσ1σ2) +

(1− ρ)(1 + ρ)

8c
σ2
2 (83)

=
1

8

(1 + α)2

b+ c
σ2
1 +

1

8c

b+ 2c

b+ c
σ2
µ (84)

D.2 Banking versus Prices

PROOF OF PROPOSITION 5:

Proof. Banking outperforms prices if and only if ∆̂B
PW < 0. First, as noted, expected

welfare losses under Prices are equal in perfect and imperfect foresight. From equation
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(39) and (16), we have:

∆̂B
PW =

c2 − b2

c2
[σ2

1 + σ2
2 + 2ρσ1σ2] +

b+ c

c
(1− ρ2)σ2

2 < 0

=⇒ b+ c

c
(1− ρ2)σ2

2 <
b2 − c2

c2
[σ2

1 + σ2
2 + 2ρσ1σ2]

=⇒ (1− ρ2)σ2
2 <

b− c
c

[σ2
1 + σ2

2 + 2ρσ1σ2]

=⇒ (1− ρ2)σ2
2

σ2
1 + σ2

2 + 2ρσ1σ2
<
b− c
c

(85)

Using that σ2
2 = α2σ2

1 + σ2
µ and (1− ρ2)σ2

2 = σ2
2 − α2σ2

1 = σ2
µ, we can rewrite the above

condition as:
σ2
µ

(1 + α)2σ2
1 + σ2

µ

<
b− c
c

, (86)

as stated in the Proposition. Q.E.D.

D.3 Banking with Stabilization

DERIVATION OF (45):

Simply using the five equations defining the policy and plugging in that E[θ2|θ1] = αθ1,

we obtain:

∆q1 =
(1− α)θ1

2c

1

1 + δ

∆q2 =
(α− 1)θ1

2c

δ

1 + δ

∆Q =
(1− α)θ1

2c

1− δ
1 + δ

,

so that from equations (6)-(8) it follows:

∆̂q1 = ∆q1 −∆SOq1 =
(1− α)

2c

1

1 + δ
θ1 +

b+ 2c

(2b+ 2c)2c
θ1 −

b

(2b+ 2c)2c
θ2

=
1

4

(1− α)(2b+ 2c) + (1 + δ)(b+ 2c)

(1 + δ)(b+ c)c
θ1 −

1

4

(1 + δ)b

(1 + δ)(b+ c)c
θ2
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∆̂q2 = ∆q2 −∆SOq2 =
(α− 1)

2c

δ

1 + δ
θ1 +

b+ 2c

(2b+ 2c)2c
θ2 −

b

(2b+ 2c)2c
θ1

=
1

4

(α− 1)(2b+ 2c)δ − (1 + δ)b

(1 + δ)(b+ c)c
θ1 −

1

4

(1 + δ)(b+ 2c)

(1 + δ)(b+ c)c
θ2

∆̂Q = ∆Q−∆SOQ =
(1− α)

2c

1− δ
1 + δ

θ1 +
1

2b+ 2c
(θ1 + θ2)

=
1

4

(1− α)(1− δ)(2b+ 2c) + 2c(1 + δ)

(1 + δ)(b+ c)c
θ1 +

1

4

(1 + δ)c

(1 + δ)(b+ c)c
θ2

Note that ∆q1, ∆q2, and ∆Q are functions of the expected θ2, given the realization of θ1.

This is given by E[θ2|θ1] = αθ1. Thus, effectively they are functions of θ1 only. This makes

sense: the firm only knows θ1 and can therefore only operate on the basis of beliefs derived

from θ1. However, ∆SO is a function of the true, real, or realized θ2, which is given by

θ2 = E[θ2|θ1] + µ = αθ1 + µ. We can plug this into the equations derived above to obtain:

∆̂q1 =
(1− α)(2b+ 2c) + (1 + δ)(b+ 2c)

(1 + δ)(2b+ 2c)2c
θ1 −

(1 + δ)b

(1 + δ)(2b+ 2c)2c
θ2

=
(1− α)(2b+ 2c) + (1 + δ)(b+ 2c)

(1 + δ)(2b+ 2c)2c
θ1 −

(1 + δ)b

(1 + δ)(2b+ 2c)2c
(αθ1 + µ)

=
(1− α)(2b+ 2c) + (1 + δ)(1− α)b+ (1 + δ)2c

(1 + δ)(2b+ 2c)

θ1
2c
− b

2b+ 2c

µ

2c

=
(1− α)(2b+ 2c) + (1 + δ)(2b+ 2c)− (1 + δ)(1 + α)b

(1 + δ)(2b+ 2c)

θ1
2c
− b

2b+ 2c

µ

2c

=

[
α + δ

1 + δ
− 1 + α

2b+ 2c
b

]
θ1
2c
− b

2b+ 2c

µ

2c
.

∆̂q2 =
(α− 1)(2b+ 2c)δ − (1 + δ)b

(1 + δ)(2b+ 2c)2c
θ1 −

(1 + δ)(b+ 2c)

(1 + δ)(2b+ 2c)2c
θ2

=
(α− 1)(2b+ 2c)δ − (1 + δ)b

(1 + δ)(2b+ 2c)2c
θ1 −

(1 + δ)(b+ 2c)

(1 + δ)(2b+ 2c)2c
(αθ1 + µ)

=
(α− 1)(2b+ 2c)δ − (1 + δ)b+ α(1 + δ)(b+ 2c)

(1 + δ)(2b+ 2c)

θ1
2c

+
b+ 2c

(2b+ 2c)2c

µ

2c

=

[
α + δ

1 + δ
− 1 + α

2b+ 2c
b

]
θ1
2c

+
b+ 2c

2b+ 2c

µ

2c
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∆̂Q =
(1− α)(1− δ)(2b+ 2c) + 2c(1 + δ)

(1 + δ)(2b+ 2c)2c
θ1 +

(1 + δ)2c

(1 + δ)(2b+ 2c)2c
θ2

=
(1− α)(1− δ)(2b+ 2c) + 2c(1 + δ)

(1 + δ)(2b+ 2c)2c
θ1 +

(1 + δ)2c

(1 + δ)(2b+ 2c)2c
(αθ1 + µ)

=
(1− α)(1− δ)(2b+ 2c) + (1 + δ)(1 + α)2c

(1 + δ)(2b+ 2c)

θ1
c

+
2c

2b+ 2c

µ

2c

= 2

[
α + δ

1 + δ
− 1 + α

2b+ 2c
b

]
θ1
2c

+
2c

2b+ 2c

µ

2c
.

Before proceeding, note that:

α + δ =
ρσ2 + δσ1

σ1

1 + α =
ρσ2 + σ1

σ1

(α + δ)2 =
ρ2σ2

2 + σ2
1 + 2ρσ1σ2
σ2
1

(1 + α)2 =
ρ2σ2

2 + σ2
1 + 2ρσ1σ2
σ2
1

(1 + α)(α + δ) =
ρ2σ2

2 + δσ2
1 + (1 + δ)ρσ1σ2
σ2
1
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and that E[θ1µ] = 0. Finally, note that σ2
µ = (1− ρ2)σ2

2. It thus follows that:

−∆̂SBW = cE
[(

∆̂q1

)2]
+ cE

[(
∆̂q2

)2]
+
b

2
E
[(

∆̂Q
)2]

= c

[[
α + δ

1 + δ
− 1 + α

2b+ 2c
b

]2
σ2
1

4c2
+

b2

(2b+ 2c)2
σ2
µ

4c2

]
+ c

[[
α + δ

1 + δ
− 1 + α

2b+ 2c
b

]2
σ2
1

4c2
+

(b+ 2c)2

(2b+ 2c)2
σ2
µ

4c2

]

+
b

2

[[
α + δ

1 + δ
− 1 + α

2b+ 2c
b

]2
4σ2

1

4c2
+

4c2

(2b+ 2c)2
σ2
µ

4c2

]

= (2b+ 2c)

[
α + δ

1 + δ
− 1 + α

2b+ 2c
b

]2
σ2
1

4c2
+

1

2

b2c+ (b+ 2c)2c+ 4bc2

4(b+ c)2
σ2
µ

4c2

= (b+ c)

[
α + δ

1 + δ
− 1 + α

2b+ 2c
b

]2
σ2
1

2c2
+
b+ 2c

8c

1

b+ c
σ2
µ

=
b+ c

2c2

[
(α + δ)2

(1 + δ)2
+

(1 + α)2b2

4(b+ c)2
− 2

(α + δ)(1 + α)b

(1 + δ)(2b+ 2c)

]
σ2
1 +

b+ 2c

8c

(1− ρ2)
b+ c

σ2
2

=
b+ c

2c2

[
ρ2σ2

2 + δ2σ2
1 + 2ρσ1σ2

(1 + δ)2
+
ρ2σ2

2 + σ2
1 + 2ρσ1σ2

4(b+ c)2
b2 − 2

ρ2σ2
2 + δσ2

1 + (1 + δ)ρσ1σ2
2(1 + δ)(b+ c)

b

]
+
b+ 2c

8c

(1− ρ2)
b+ c

σ2
2

=
b+ c

2c2

[
δ

1 + δ
− b

2(b+ c)

]2
σ2
1 +

b+ c

2c2

[
1

1 + δ
− b

2(b+ c)

]2
ρ2σ2

2

+ 2
b+ c

2c2

[
1

1 + δ
− b

2(b+ c)

] [
δ

1 + δ
− b

2(b+ c)

]
ρσ1σ2 +

b+ 2c

8c

(1− ρ2)
b+ c

σ2
2

D.3.1 Optimal Stabilization Rate

PROOF OF PROPOSITION 7:

We can rewrite (45) as:

a[z − γ]2σ2
1 + a[1− z − γ]2ρ2σ2

2 + 2a[z − γ][1− z − γ]ρσ1σ2,

which we can differentiate with respect to z:

∂

∂z
(45) = 2a[z − γ]σ2

1 − 2a[1− z − γ]ρ2σ2
2 + 2a[[1− z − γ]− [z − γ]]ρσ1σ2.
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The optimal z should therefore satisfy:

z =
γσ2

1 + (1− γ)ρ2σ2
2 − ρσ1σ2

σ2
1 + ρ2σ2

2 − 2ρσ1σ2
(87)

=
γ + (1− γ)α2 − α

(1− α)2
(88)

Plugging in γ ≡ b
2(b+c)

and z ≡ δ
1+δ

, using that α = ρσ2
σ1

and dividing through by σ2
1, we

find the optimal stabilization rate δ∗:

δ∗ =
bσ2

1 + (b+ 2c)ρ2σ2
2 − 2(b+ c)ρσ1σ2

(b+ 2c)σ2
1 + bρ2σ2

2 − 2(b+ c)ρσ1σ2
(89)

=
b+ (b+ 2c)α2 − 2(b+ c)α

(b+ 2c) + bα2 − 2(b+ c)α
, (90)

as given.
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DERIVATION OF (48):

∆̂SBW (δ∗; ·) =
1

2

b+ c

c2

[
δ

1 + δ
− b

2(b+ c)

]2
σ2
1 +

1

2

b+ c

c2

[
1

1 + δ
− b

2(b+ c)

]2
ρ2σ2

2

+
b+ c

c2

[
1

1 + δ
− b

2(b+ c)

] [
δ

1 + δ
− b

2(b+ c)

]
ρσ1σ2 +

b+ 2c

b+ c

1− ρ2

8c
σ2
2

=
1

2

b+ c

c2

[
1

2(b+ c)

bσ2
1 + (b2 + c)ρ2σ2

2 − 2(b+ c)ρσ1σ2 − bσ2
1 − bρ2σ2

2 + 2bρσ1σ2
σ2
1 + ρ2σ2

2 − 2ρσ1σ2

]2
σ2
1

+
1

2

b+ c

c2

[
1

2(b+ c)

(b2 + c)σ2
1 + bρ2σ2

2 − 2(b+ c)ρσ1σ2 − bσ2
1 − bρ2σ2

2 + 2bρσ1σ2
σ2
1 + ρ2σ2

2 − 2ρσ1σ2

]2
ρ2σ2

2

+
1

2

b+ c

c2

[
1

2(b+ c)

bσ2
1 + (b2 + c)ρ2σ2

2 − 2(b+ c)ρσ1σ2 − bσ2
1 − bρ2σ2

2 + 2bρσ1σ2
σ2
1 + ρ2σ2

2 − 2ρσ1σ2

]
×[

1

2(b+ c)

(b2 + c)σ2
1 + bρ2σ2

2 − 2(b+ c)ρσ1σ2 − bσ2
1 − bρ2σ2

2 + 2bρσ1σ2
σ2
1 + ρ2σ2

2 − 2ρσ1σ2

]
ρσ1σ2

+
b+ 2c

b+ c

1− ρ2

8c
σ2
2

=
1

2

1

b+ c

[
ρσ2

2 − ρσ1σ2
σ2
1 + ρ2σ2

2 − 2ρσ1σ2

]2
σ2
1 +

1

2

1

b+ c

[
σ2
1 − ρσ1σ2

σ2
1 + ρ2σ2

2 − 2ρσ1σ2

]2
ρ2σ2

2

+
1

b+ c

[
ρσ2

2 − ρσ1σ2
σ2
1 + ρ2σ2

2 − 2ρσ1σ2

] [
σ2
1 − ρσ1σ2

σ2
1 + ρ2σ2

2 − 2ρσ1σ2

]
ρσ1σ2 +

b+ 2c

b+ c

1− ρ2

8c
σ2
2

=
1

b+ c

(
1

σ2
1 + ρ2σ2

2 − 2ρσ1σ2

)2 [
(ρ4σ2

1σ
4
2 + ρ2σ4

1σ
2
2 − 2ρσ3

1σ
3
2)− (ρ4σ2

1σ
4
2 + ρ2σ4

1σ
2
2 − 2ρσ3

1σ
3
2)
]

+
b+ 2c

b+ c

1− ρ2

8c
σ2
2

=
b+ 2c

b+ c

1− ρ2

8c
σ2
2

=
1

8c

b+ 2c

b+ c
σ2
µ. (91)

PROOF OF PROPOSITION 10:

Proof. We know that θ1 − 2c∆iq1 = ∆̂ip1. Moreover, we derived in the main text the

quantity responses to a shock θ1, which are given by equations (37) and (42) for Banking

and Stabilized Banking, respectively. It is thus easily seen that:

∆Bp1 =
1 + α

2
θ1

∆SBp1 =
α + δ

1 + δ
θ1,
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from which it follows:

E
[(

∆Bp1
)2]

=
(1 + α)2

4
σ2
1

E
[(

∆SBp1
)2]

=
(δ + α)2

(1 + δ)2
σ2
1.

Thus:

E
[
(∆SBp1)

2
]
< E

[
(∆Bp1)

2
]
⇐⇒ δ < 1.

From Corollary 5, we know that under imperfect foresight the optimal stabilization rate is

less than unity, δ∗ ≤ 1, for all α, with equality if and only if α = −1, which establishes

the result for period 1.

For period 2, we have the derived the quantity deviations conditional on first-period

shocks. Using that δip2 = θ2 − 2c∆iq2 and that θ2 = αθ1 + µ, we can write:

∆Bp2 =
1 + α

2
θ1 + µ

∆SBp2 =
α + δ

1 + δ
θ1 + µ,

, and thus we can derive:

E
[(

∆Bp2
)2]

=
(1 + α)2

4
σ2
1 + σ2

µ

E
[(

∆SBp2
)2]

=
(δ + α)2

(1 + δ)2
σ2
1 + σ2

µ.

Thus:

E
[
(∆SBp2)

2
]
< E

[
(∆Bp2)

2
]
⇐⇒ δ < 1.

From Corollary 5, we know that under imperfect foresight the optimal stabilization rate is

less than unity, δ∗ ≤ 1, for all α, with equality if and only if α = −1. This establishes our

result. Q.E.D.

FIGURE 7 IN TERMS OF CORRELATION ρ:
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Figure 9: Indifference planes under imperfect foresight.
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