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Abstract 
 
We study optimal security design when the issuer and market participants agree to disagree 
about the characteristics of the asset to be securitized. We show that pooling assets can be 
optimal because it mitigates the effects of disagreement between issuer and investors, whereas 
tranching a cash-flow stream allows the issuer to exploit disagreement between investors. 
Interestingly, pooling and tranching can be complements. The optimality of debt with or without 
call provisions can be derived as a special case. In a model with multiple financing rounds, 
convertible securities naturally emerge to finance highly skewed ventures. 
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1 Introduction

Which security does a firm optimally issue when firm and market participants agree to

disagree about the firm’s cash-flow distribution? Several earlier papers have employed the

assumption of belief disagreement between firm and investors – and in particular of optimistic

issuers – to explain capital structure choices, investment decisions, the choice of debt matu-

rities, or the emergence of intermediaries. By contrast, this paper studies how differences in

beliefs influence a firm’s optimal security design in the sense of Allen and Gale (1988), i.e., in

a model that imposes only minimal restrictions on the shape of the contract. We show that

disagreement in beliefs can generate various commonly observed financial contracts, includ-

ing the pooling and tranching of securities. Our model also explains empirical patterns in

the dynamics of securities issuance that are more difficult to reconcile with existing theories.

We consider an issuer who owns an asset that will pay uncertain cash-flows at a future

date. To raise capital, the issuer designs a security which is backed by the asset’s cash-flows.

Following DeMarzo and Duffie (1999), we assume the issuer discounts future cash-flows more

than the market does. We allow for different types of investors in the market, who may have

different beliefs about the asset’s cash-flow distribution. Our main assumption is that the

issuer is more optimistic than market participants about the asset’s cash-flow distribution.1

The issuer’s problem is to design the monotonic securities (one for each type of investor)

backed by the underlying asset that maximize her expected payoff, which is is given by the

sum of the market prices of the securities she sells and the expected discounted value of

retained cash-flows.

Our model generates four sets of results. First, we provide conditions under which it is

optimal for the issuer to sell different tranches to the different types of investors. Second,

1This assumption is different from assuming difference in the success probability of a project with binary
payoff, as has been employed in the previous literature. The difference is meaningful as it leads to a distinction
between outside equity and debt, among others.
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we show that selling a security backed by a pool of several underlying assets can be strictly

preferred to selling individual asset-backed securities. Third, we provide conditions under

which pooling and tranching are complements: there are situations in which pooling is strictly

optimal only when the issuer expects to tranch the pooled assets at a later stage. Fourth, we

show that, in a model with multiple financing rounds, the optimal security can be convertible

preferred stock, a security commonly used in venture capital (VC) financing.

The intuition behind the optimality of tranching is simple, and related to Garmaise

(2001): when there are differences in beliefs among investors, it is optimal for the issuer to

design different securities, targeted to the different investor types, and to retain the most

junior tranche.2

We then specialize to the case in which effectively all investors in the market share the

same beliefs and show that, under standard conditions, the optimal security is debt. The

intuition is similar to that driving earlier results on capital structure choice and investment

amid disagreement between issuer and market, including De Meza and Southey (1996);

Heaton (2002); Hackbarth (2008): the issuer finds it optimal to only sell cash-flows in the

left tail of the cash-flow distribution, which the market values relatively more, and to retain

the right tail of the distribution, which the issuer values relatively more. Our model also

predicts that pre-existing debt may lead the firm to optimally stop selling securities. This

prediction contrasts with that of the traditional “pecking order” model (Myers and Majluf,

1984), in which firms never issue equity or do so only as a “last resort” – firms in our model

sell equity when investors are confident. The fact that firms issue equity when stock prices

and sentiment are high (e.g., Marsh, 1982; Baker and Wurgler, 2002; Erel et al., 2011; McLean

and Zhao, 2014; Farre-Mensa, 2015) and when agreement between issuer and market is high

(Dittmar and Thakor, 2007) is in line with our model’s predictions.

2The latter prediction depends on the assumption that the issuer is more optimistic than the market. The
prediction would be reversed in a (perhaps trivial) twist on the model that involves allowing some investors
to be more optimistic than the issuer.
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For our result on pooling, we consider an issuer who owns two underlying assets.3 We

start by assuming that there is a single type of investor in the market. In this setting, we show

that an optimistic issuer may strictly prefer to sell a security backed by the pool of assets to

selling individual asset-backed securities. Intuitively, while outside investors might be very

pessimistic (relative to the issuer) about the probability of an individual asset delivering high

profits, they will typically be less pessimistic about the event that at least one of several

assets pays off a high return. As a result, an issuer who owns multiple assets may find it

strictly optimal to combine them and sell a “senior” security backed by the pool of assets.

The following example illustrates the mechanics.

Example 1. Consider first an issuer who owns a single asset, which can either pay a return

of 1 or a return of 0. The market believes that the probability of the asset paying off is 1
3
;

the issuer believes in an upside probability of 2
3
. The issuer discounts future cash-flows with

a factor of 0.6, whereas the market does not discount. The market is therefore willing to pay

1
3

for the asset. Since the asset is worth 2
3
· 0.6 = 0.4 to the issuer, she retains it.

Consider now an issuer who owns two of these assets with iid returns. The issuer’s payoff

from retaining the two assets is 0.8, which is strictly larger than her payoff from selling

two individual securities, each backed by an asset. Suppose instead that the issuer sells a

“senior” security backed by the pool of assets that pays 1 if at least one asset pays off and

zero otherwise. Investors are willing to pay 1 −
(
2
3

)2
= 5

9
for the security, while the issuer

assigns to it a value of
(

1−
(
1
3

)2) · 0.6 = 8
15
< 5

9
. Because the issuer retains a cash-flow

of 1 in the event that both assets pay off, her expected payoff from selling this security is

5
9

+
(
2
3

)2
0.6 ≈ 0.822.

We stress that differences in beliefs between the issuer and the market are crucial for pooling

to be optimal in this setting. Indeed, because the issuer discounts future cash-flows more

3For simplicity we focus on the case of two assets, although the results extend to the case in which the
issuer owns several assets.
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than the market, with homogenous beliefs it is always optimal for the issuer to sell the entire

firm. As a result, when issuer and market share the same beliefs, the issuer is indifferent

between pooling her assets or selling them as separate concerns. Moreover, our model has

the feature that the optimality of pooling assets breaks down when the correlation of the

underlying assets increases. This mechanism can explain empirically observed dynamics of

securitization, discussed below.

Next, we consider the case of an issuer who owns two assets, and who faces different types

of investors in the market. We impose assumptions on the primitives such that an issuer who

does not pool the assets will find it optimal to sell a single tranche (designed for one type

of investors), and under which an issuer who does not tranche (i.e., sells to only one type

of investors) will find it optimal not to pool. We show that, in this setting, it can still be

strictly optimal for the issuer to pool the assets and sell different tranches. In other words,

we show conditions under which pooling and tranching are complements.

Finally, we consider a model with multiple financing rounds and show that convertible

securities commonly used in VC financing become optimal (see, e.g., Gompers and Lerner,

2001; Kaplan and Strömberg, 2003, 2004). We assume that the issuer (here: the entrepreneur)

is more confident about the project’s prospects than the financier (here: the VC).4 Because

the entrepreneur assigns a relatively low probability to states in which performance is bad, she

finds it relatively cheap to rescind cash-flows to the VC in such states. At the time of initial

contracting, the entrepreneur also secures an option for a future financing round that enables

her to expand the project conditional on good interim performance.5 Given her optimistic

beliefs, the entrepreneur assigns a relatively high value to this option. By contrast, the VC

4See Cooper et al. (1988); Bernardo and Welch (2001); Moskowitz and Vissing-Jørgensen (2002);
Koellinger et al. (2007); Puri and Robinson (2007) for discussions of entrepreneurial optimism.

5Our predictions do not rely on assuming that the strike of the refinancing option is determined with
certainty at the time of initial contracting. Indeed, the fact that disagreement is reduced by learning about
project quality over time is one of the key reasons for using convertible securities in early-stage financing,
rather than securities that require a precise agreed-upon valuation of the project at the time of contracting.

4



finds it cheap to write this option to the entrepreneur, because the VC finds good interim

performance relatively unlikely. In addition to the optionality, the model also predicts that

the VC obtains a stake of the upside of the project conditional on refinancing and expanding

the project at the interim stage. It is the upside part of the contract that allows the VC to

break even.

Importantly, the key assumption that leads to the financier securing part of the upside

is that both the project’s required investment and its upside potential are high – in other

words, the payoff profile is highly skewed. Indeed, in practice many safer entrepreneurial

ventures are financed with straight (bank) debt, whereas VC financing with convertibles

are used only for projects with relatively high investment needs and high potential payoffs

(Cochrane, 2005). The model’s mechanics are also strongly consistent with practitioners’

accounts of the drivers of the use of convertibles in the financing of young firms.6

2 Related Literature

The idea that belief disagreement can shape the securities that firms issue goes back at least

to Modigliani and Miller (1958), who write “Grounds for preferring one type of financial

structure to another still exist within the framework of our model. If the owners of a firm

discovered a major investment opportunity which they felt would yield much more than [the

market’s discount rate], they might well prefer not to finance it via common stock. A better

course would be to finance the project initially with debt. Still another possibility might

be to [issue] a convertible debenture.” (excerpts from p. 292) This paper offers a formal

investigation into the role of disagreement in optimal design of securities.

Following a long literature in economics, our model assumes that there is open disagree-

6Entrepreneurs seeking VC funding are overoptimistic: “Guy Kawasaki, a venture capitalist, says that
when an entrepreneur promises to make $50m in four years he adds one year to the delivery time and divides
the revenue by ten.” (Economist, 2014). “Convertible[s] remains an attractive way to bridge the [resulting]
valuation gap.” (http://www.cognitionllp.com/convertible-debt-panacea-or-pain/)
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ment between issuer and market, and that there are no informational frictions. Our model’s

mechanism is thus sharply different from contributions that rationalize particular securities

(including debt, convertible debt) and pooling with informational asymmetries.7 Our model

also makes no use of moral hazard as a driver of the optimal security. In particular, the

alignment of incentives to exert effort plays no role in generating convertibles in our model.

This is in contrast to earlier contributions by Green (1984); Admati and Pfleiderer (1994);

Schmidt (2003); Cornelli and Yosha (2003).8

Several more papers than those cited above have invoked differences in beliefs to explain

stylized facts of entrepreneurship as well as corporate investment, financing, payout and

capital structure choices.9 By contrast, we allow for a much less restricted state space (N

states instead of two) and/or contracting space (all monotonic securities, rather than a choice

between equity and debt, debt of various maturities, or similar) and study the question which

security is optimal under these more general conditions.10 Our paper also relates to Garmaise

(2001), who shows that tranching can be optimal in a model in which there is disagreement

among investors and in which the prices of securities are determined through a first price

auction and Coval and Thakor (2005), who show that rational actors can arise to intermediate

between optimistic entrepreneurs and pessimistic investors, issuing safe debt and retaining

a mezzanine tranche of the projects they finance (see also Gennaioli et al., 2013).11

7See, for instance, Myers and Majluf (1984); Noe (1988); Innes (1990); Nachman and Noe (1990); Gorton
and Pennacchi (1990); Stein (1992); Nachman and Noe (1994); Manove and Padilla (1999); DeMarzo (2005);
Inderst and Mueller (2006); Axelson (2007). As a result, our predictions are less sensitive to changes in
distributional assumptions, as emphasized by Nachman and Noe (1990); Fulghieri et al. (2013). We discuss
differences in predictions throughout the paper.

8For other models linking moral hazard and security design, see Bergemann and Hege (1998); Winton
and Yerramilli (2008); Antic (2014); Hébert (2014).

9De Meza and Southey (1996); Boot et al. (2006, 2008); Landier and Thesmar (2009); Malmendier et al.
(2011); Boot and Thakor (2011); Bayar et al. (2011); Thakor and Whited (2011); Huang and Thakor (2013);
Adam et al. (2014); Bayar et al. (forthcoming). See also Simsek (2013), who studies how differences in beliefs
among investors affect asset prices in the presence of collateral constraints.

10Yang (2013) shows that limited channel capacity can render debt and pooling optimal; Yang and Zeng
(2015) explain the use of convertibles in venture capital financing with endogenous information choice.

11Our paper is also related to a literature on corporate financial choices amid an ambiguity-averse pool
of investors (e.g. Dicks and Fulghieri, 2015), because ambiguity aversion on behalf of the market collapses
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3 Basic Model

3.1 Payoffs, Beliefs, and Objectives

At date t = 0, an issuer owns a risky asset yielding state-contingent payoffs at date t = 1.

For now we treat this as a single asset, but this could be a pool of several assets. There is a

finite set of possible states of nature S = {1, .., K} at t = 1, and the asset pays an amount

Xs ∈ R+ in state s ∈ S.12 We assume that Xs > 0 for all s ∈ S and that there exists at

least one pair of states s, s′ ∈ S such that Xs 6= Xs′ . Without loss of generality, we order the

states so that X1 ≤ X2 ≤ ... ≤ XK .

We let πI be the probability distribution over S that represents the issuer’s beliefs, and

assume that πIs > 0 for all s ∈ S. Market participants have different beliefs about the cash-

flow distribution of the underlying asset than the issuer. In particular, we assume that there

are two types of investors in the market, τ = t1, t2.
13 The two types of investors differ in

their beliefs about the cash-flow distribution of the asset that the issuer owns. For j = 1, 2,

let πj be the probability distribution over S representing the beliefs of investors of type τi.

We assume that the issuer is more optimistic than both types of investors: for j = 1, 2, πI

first-order stochastically dominates πj.

The issuer has to design securities (F 1, F 2) ∈ RK
+ backed by the cash-flows X = (Xs)s∈S

to sell in the market. Thus, securities (F 1, F 2) must be such that 0 ≤ F 1
s + F 2

s ≤ Xs

for all s ∈ S. Following DeMarzo and Duffie (1999) we assume that the issuer discounts

retained cash-flows at a rate that is higher than the market rate (which is normalized to

to disagreement between issuer and market. Lee and Rajan (2017) study optimal security design when both
issuer and market are ambiguity averse.

12The assumption that states are finite is for simplicity. Our main results are robust to having a continuum
of states.

13The assumption that there are two types of investors is for simplicity; all of our results extend to the
case with n ≥ 1 types of investors. In particular, the number of tranches will depend on the number of
investors with different beliefs.
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1).14 Thus, the issuer attaches a value of δ
∑

s∈S π
I
s (Xs − F 1

s − F 2
s ) to retained cash-flows,

where δ ∈ (0, 1) is the issuer’s discount rate. The payoff of an issuer who sells to the market

securities (F 1, F 2) at a prices p1 and p2 (including the value of the retained cash-flows) is

then given by p1 + p2 + δ
∑

s∈S π
I
s (Xs − F 1

s − F 2
s ) .

The price that investors of type tj are willing to pay for security F is pj(F ) :=
∑

s π
j
sFs.

For any security F , let p(F ) = max {p1(F ), p2(F )} be the highest price that market partic-

ipants are willing to pay for F . Overall, the issuer’s payoff from selling securities (F 1, F 2)

is

U(F 1, F 2) := p(F 1) + p(F 2) + δ
∑
s∈S

πIs
(
Xs − F 1

s − F 2
s

)
. (1)

As is standard in the literature of optimal security design (e.g. DeMarzo and Duffie,

1999), we assume the issuer is restricted to sell monotonic securities.15

Definition 1. Say that securities F 1 and F 2 are monotonic if F 1
s and F 2

s are increasing in

s and if Xs − F 1
s − F 2

s is increasing in s.

Let F be the set of feasible securities

F :=
{
F 1, F 2 ∈ RK

+ : 0 ≤ F 1
s + F 2

s ≤ Xs∀s ∈ S and F 1 and F 2 are monotonic
}
. (2)

The issuer’s problem is to find the securities (F 1, F 2) ∈ F that solve

sup
(F 1,F 2)∈F

U
(
F 1, F 2

)
. (3)

14The assumption that the issuer discounts future cash-flows at a higher rate than the market is a
metaphor, for example for a situation in which the issuer has some profitable investment opportunity. Also,
the assumption will hold if the issuer faces credit constraints or, as in the case of financial entities, minimum-
capital requirements.

15As is well known, this assumption can be microfounded with a moral hazard problem. To avoid high
payments implied by a non-increasing security, the issuer could easily inflate cash-flows, e.g., by borrowing
privately, and thus decrease payments to the investor.
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3.2 Optimal Security Design with Divergent Beliefs

In this section we present the solution to problem (3). We introduce additional notation

before presenting our results. For any s ∈ S, let As := {s, s+ 1, ..., K} be the event that

the asset yields cash-flows weakly larger than Xs. For all s ∈ S, let πI(As) :=
∑

s′≥s π
I
s′ and

πj(As) :=
∑

s′≥s π
j
s′ be, respectively, the probability that the issuer and investors of type j

assign to event As. The assumption that πI first-order stochastically dominates πj implies

that πI(As) ≥ πj(As) for all s ∈ S and for j = 1, 2.

Lemma 1. Let (F 1, F 2) be a solution to (3). Then, there exists (F̂ 1, F̂ 2) ∈ F with U(F̃ 1, F̃ 2) =

U(F 1, F 2) such that, for j = 1, 2, p(F̃ j) = pj(F̃ j).

By Lemma 1, it is without loss of optimality to consider solutions (F 1, F 2) to (3) such

that, for j = 1, 2, security F j is bought by investors of type tj.

The following result characterizes the optimal security. In what follows, for j = 1, 2, we

use −j to denote the investors of type ti 6= tj.

Proposition 1. The optimal securities (F 1, F 2) satisfy: F 1
1 +F 2

1 = X1, and for j = 1, 2 and

for all s ∈ S\ {1},

F j
s =


F j
s−1 +Xs −Xs−1 if πj(As) > max

{
π−j(As), δπ

I(As)
}
,

F j
s−1 if πj(As) ≤ max

{
π−j(As), δπ

I(As)
}
.

(4)

The key value that determines the shape of the optimal securities (F 1, F 2) at each state s

is the difference between δπM(As) and max {π1(As), π
2(As)}; i.e., the difference between the

probability that the issuer and market assign to profits being larger than Xs. If δπM(As) <

max {π1(As), π
2(As)}, the optimal securities (F 1, F 2) pay the largest possible amount (sub-

ject to monotonicity constraints) in state s; i.e., F 1
s + F 2

s = F 1
s−1 + F 2

s−1 + Xs − Xs−1. In

9



contrast, if δπM(As) ≥ max {π1(As), π
2(As)}, the optimal securities pay the least possible

amount (again, subject to monotonicity constraints) at state s; i.e., F 1
s +F 2

s = F 1
s−1 +F 2

s−1.

The following corollaries immediately follow.

Corollary 1. Suppose that there exists s1, s2 ∈ S, s1 < s2, such that

(i) π1(As) > max
{
π2(As), δπ

I(As)
}

if and only if s ≤ s1, and

(ii) π2(As) > max
{
π1(As), δπ

I(As)
}

if and only if s ∈ (s1, s2].

Then, the optimal securities (F 1, F 2) are F 1
s = min{Xs,Xs1} (i.e., F 1 is debt with face value

Xs1) and

F 2
s =


0 if s ≤ s1,

Xs −Xs1 if s ∈ (s1, s2],

Xs2 −Xs1 if s > s2.

Under the conditions in Corollary 1, the issuer sells a senior tranche F 1, which is bought

by investors of type t1, and a mezzanine tranche F 2, which is bought by investors of type

t2. Finally, the issuer only retains the most junior cash-flows Xs−Xst2
at states s > ss. The

real-world correspondence of the mezzanine tranche may be preferred equity or junior debt.

3.3 Single Investor

A special case of the model is one in which there is effectively a single investor in the market.

To formalize this, suppose that π1 FOSD π2, so investors of type 1 are relatively more

optimistic than investors of type 2. We use the convention that F0 = X0 = 0 for any security

F.

Corollary 2. Suppose that π1 FOSD π2. Then, the optimal securities (F 1, F 2) have F 2
s = 0

10



for all s, and

∀s ∈ S, F 1
s =


F 1
s−1 +Xs −Xs−1 if π1(As) > δπI(As),

F 1
s−1 if π1(As) ≤ δπI(As).

(5)

Corollary 2 characterizes the optimal security in the case in which all (relevant) investors

share the same beliefs. By Corollary 2, when the ratio π1(As)
δπI(As)

is decreasing in s, the optimal

security is given by a debt contract with face value s∗ = min
{
s ∈ S : π1(As) > δπI(As)

}
.

Holding δ fixed, the face value of debt s∗ depends on how different the beliefs of the issuer

and market are. When the market is extremely pessimistic, the firm issues only risk-free debt.

(Once that option is exhausted, it stops issuance altogether, as we show below.) By contrast,

the issuer sells the whole firm when the market is optimistic and there is less disagreement.

This prediction is strongly consistent with the timing of securities issuances to meet

market sentiment (e.g., Marsh (1982); Baker and Wurgler (2002), and in particular Dittmar

and Thakor (2007)). At the same time, our prediction is in stark contrast to several theories of

security design based on asymmetric information. Most prominently, the traditional “pecking

order” hypothesis holds that firms issue equity only as a “last resort” (e.g., Myers, 1984) –

hence, only the worst firms that have run out of other options issue equity. Contrasting that

prediction is the empirical evidence, which indicates that firms issue equity also (and indeed

predominantly) when not in financial distress (Frank and Goyal, 2003; Fama and French,

2005). The empirical evidence is arguably more consistent with the disagreement prediction

that the relative optimism of investors versus firms drives issuance decisions: Farre-Mensa

(2015) analyses firms that are hit with negative cash-flow shocks and thus face a need to

issue securities (a decrease in δ in our model), and shows that firms whose stock is overvalued

issue equity, whereas undervalued firms issue debt. Similar in spirit, Erel et al. (2011) and
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McLean and Zhao (2014) find that equity issuance is cyclical and higher amid positive

investor sentiment, whereas firms turn to issuing safer securities during market downturns.

Pre-existing Debt

We now briefly consider the problem of an issuer who has senior debt outstanding that is

backed by the cash-flows that her asset will generate, and who is considering to issue a new

security backed by the remaining cash-flows. For simplicity, we maintain the assumption that

there is effectively one single investor type.

Suppose the issuer has debt outstanding with face value D < XK . The issuer’s goal is to

design a security F ∈ RK
+ to sell to the market, with F backed by the remaining cash-flows;

i.e., for all s, F satisfies 0 ≤ Fs ≤ Xs − min{Xs, D}. As before, we restrict the issuer to

design monotonic securities; that is, securities F such that Fs and Xs − Fs − min{Xs, D}

are increasing in s. Let FD denote the set of feasible securities.16 The issuer’s problem is

supF∈FD
UD(F ), where for any F ∈ FD,

UD(F ) : =
∑
s∈S

π1
sFs + δ

∑
s∈S

πIs(Xs −min{Xs, D} − Fs).

Let sD = max{s ∈ S : Xs ≤ D}, and note that any security F ∈ FD must be such that

Fs = 0 for all s ≤ sD.

Corollary 3. Suppose the issuer already has debt outstanding with face value D. Then, the

16That is, FD := {F ∈ RK : 0 ≤ Fs ≤ Xs −min{Xs, D}∀s ∈ S and Fs and Xs − Fs −min{Xs, D} are
increasing in s}.
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optimal security is described by

∀s ∈ S, Fs =


0 if s ≤ sD

Fs−1 +Xs −Xs−1 if π1(As) ≥ δπI(As) and s > sD,

Fs−1 if π1(As) < δπI(As) and s > sD.

(6)

Corollary 3 shows that the firm in our model may stop the issuance of all securities when

it becomes over-levered, and is thus similar to the underinvestment result in Heaton (2002).

This prediction contrasts with that of informational theories of security design as well as

with tradeoff models, in which the firm may start to issue equity instead of debt when it has

preexisting debt. The existing evidence supports the prediction made here: Erel et al. (2011)

show that low market sentiment can indeed lead firms not only to stop equity issuances but

to not access credit markets at all.

4 Pooling

This section shows how an issuer who has more optimistic beliefs than the market can

strictly benefit from pooling different assets and designing a security backed by the cash-

flows generated by the pool. By exploring a new mechanism that can lead to pooling, this

result speaks to a question in security design that has become a central item of the policy

discussion in the aftermath of the financial crisis. In particular, the mechanism helps explain

the dynamics of securitization (Chernenko et al., 2013; Fuster and Vickery, 2014) in ways

that is consistent with the empirical evidence on issuers’ relatively optimistic beliefs (Cheng

et al., 2014) and the procyclical nature of belief disagreement (see e.g. Chen et al., 2002;

Scheinkman and Xiong, 2003; Hong and Stein, 2007). Moreover, we show how pooling and
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tranching can be complements.

4.1 General Framework

Consider an issuer who owns two assets, X1 and X2, with iid returns.17 Let S = {1, ..., K}

and let {Xs}s∈S be the possible cash-flow realizations of asset Xa, a = 1, 2. Without loss of

generality we assume that X1 ≤ X2 ≤ ... ≤ XK .

As in Section 3, we assume that there are two types of investors. Let πI be the probability

distributions over S representing the beliefs of the issuer; let π1 and π2 be the probability

distributions over S representing, respectively, the beliefs of investors of type t1 and t2. The

issuer is more optimistic than the market, so πI first-order stochastically dominates π1 and

π2. The issuer discounts future profits at rate δ < 1, whereas the market discounts future

profits at rate 1.

The timing of events is as follows. First, the issuer decides whether to pool the assets

or not. If she pools the asset, she designs securities (F 1, F 2) backed by the asset pool Y =

X1 + X2. For j = 1, 2, let F j
s,s′ be the money that security F j pays when asset 1’s realized

return is Xs and asset 2’s realized return is Xs′ . We restrict the issuer to sell securities

(F 1, F 2) that satisfy the following monotonicity requirements:

Definition 2. Say that securities F 1 and F 2 backed by asset Y = X1 + X2 are X1X2-

monotonic if:

(i) for j = 1, 2, F j
s,s′ is increasing in s and s′;

(ii) Xs +Xs′ − (F 1
s,s′ + F 2

s,s′) is increasing in s and s′.

This monotonicity restriction assumes it is difficult for the issuer to manipulate profits

17We focus on the case of two assets for simplicity. The results can be extended to the case of n > 2
assets.
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across assets. For example, the issuer may face legal constraints that make it difficult for her

to transfer profits from one asset to another.

Let Ŝ = S × S, and let FY be the set of feasible securities:

FY :=
{
F 1, F 2 ∈ R|Ŝ| : 0 ≤ F 1

s,s′ + F 2
s,s′ ≤ Xs +Xs′∀(s, s′) ∈ Ŝ and (F 1, F 2) are X1X2-monotonic

}
.

Note that the price that market participants of type j are willing to pay for security F is

pjY (F ) :=
∑

s∈S
∑

s′∈S π
j
sπ

j
s′Fs,s′ .

If the issuer does not pool the assets, for each asset a = 1, 2, the issuer designs securities

(F a,1, F a,2) backed by asset Xa. In this case, securities (F a,1, F a,2) have to be monotonic

with respect to asset Xa, as in Section 3.

Pooled assets

The issuer’s profits from pooling the assets and selling securities (F 1, F 2) ∈ F(Y ) are

UY (F 1, F 2) = pY (F 1) + pY (F 2) + δ
∑
s∈S̃

πIsπ
I
s′(Xs +Xs′ − F 1

s − F 2
s ), (7)

where, for any security F , pY (F ) = maxj=1,2 p
j
Y (F ) is the highest price that investors are

willing to pay for F . The problem of an issuer who pools the asset is then

sup
(F 1,F 2)∈FY

UY (F 1, F 2). (8)

Separate assets

For each asset Xa, let FXa be the set of securities (F 1, F 2) backed by Xa that are monotonic;

i.e., that satisfy the conditions in definition 1. For any (F 1, F 2) ∈ FXa , we let UXa(F 1, F 2)

be the profits that the issuer obtains from selling securities (F 1, F 2) (calculated as in Section

15



3). Then, an issuer who doesn’t pool the assets solves the following problem for each asset

a = 1, 2:

sup
(F 1,F 2)∈FXa

UXa(F 1, F 2). (9)

The solution to this problem is characterized by Proposition 1. We are interested in whether

pooling can be preferred to selling the assets as separate concerns.

4.2 Single investor

We start by considering the case in which π1 = π2, so there is one type of investor in the

market. For notational simplicity, we will assume that the issuer sells the security to investor

1. We start with a simple example:

Example 2. Suppose the issuer has two assets, X1 and X2. Each of the assets can produce

cash-flows in {X1, X2}, with X2 > X1 > 0. Let πI ∈ (0, 1) and π ∈ (0, 1) be, respectively,

the probability the issuer and market assigns to the asset yielding cash-flows X1. The issuer

is more optimistic than the market, so πI < π. We further assume that π > 1− δ(1− πI).

Consider first the problem of an issuer who does not pool the assets. By Proposition 1,

for each asset Xa, an optimal security F has F1 = X1 and F2 = X1 (since δ(1−πI) > 1−π).

The issuer’s profits from selling the securities separately are 2X1 + 2δ(1− πI)(X2 −X1).

Suppose instead that the issuer pools the two assets and sells a single security backed by

the pool. Let Y = X1 +X2 and FY = min{Y,X1 +X2}. The market-price of security FY is

p(FY ) = π22X1 + (1 − π2)(X1 + X2), and the issuer’s payoff from selling FY is 2X1 + (1 −

π2 + δ(1− πI)2)(X2−X1). The issuer strictly prefers to pool the assets and sell security FY

if π <
√

1− δ(1− (πI)2). Therefore, for π ∈
(

1− δ(1− πI),
√

1− δ(1− (πI)2)
)

, pooling is

strictly optimal.

Intuitively, the market is relatively less pessimistic about the event that one of the two
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assets yields a cash-flow of X2. By pooling the two assets, the issuer is able to design a

security that pays off a high return precisely when this event occurs. The example illustrates

why changes in belief divergence between issuers and the market should relate to the time-

series variation in the issuance of asset-backed securities, as documented by Chernenko et

al. (2013).

We now present a general result. Let F̂ be the optimal security backed by a single asset

Xa. The issuer’s profits from selling the two assets separately are then 2UXa(F̂ ). As before,

for each s ∈ S let As = {s, s + 1, ..., K} be the event that an asset pays weakly more than

Xs. Recall that π1 are the beliefs of the investors in the market. We make the following

assumption.

Assumption 1. There exists k ∈ S\{K} such that

(i) π1(As) ≥ δπI(As) if and only if s ≤ k, and

(ii) π1(Ak+1)

δπI(Ak+1)
> 2−πI(Ak+1)

2−π1(Ak+1)
.

Let

F1
Y :=

{
(F 1, F 2) ∈ FY : F 2

s = 0 for all s ∈ S
}
, (10)

denote the set of feasible securities when the issuer pools the assets and designs a single

security to investors with beliefs π1. Note that the seller’s profits from pooling in this case

are supF∈F1
Y
UY (F ). Our next result shows that, under Assumption 1, pooling is strictly

optimal.

Proposition 2. Suppose that Assumption 1 holds. Then, pooling is optimal: supF∈F1
Y
UY (F ) >

2UXa(F̂ ).
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4.3 Multiple investors

We now consider a setting in which there are two types of investors. We show that belief

disagreement among them can make pooling and tranching complements.

We make the following assumptions.

Assumption 2. (i) There exists k ∈ S such that π1(As′) ≥ π2(As′) for all s′ ≤ k (with

strict inequality for all s′ 6= 1) and π1(As′) < π2(As′) for s′ > k.

(ii) π1(As′) > δπI(As′) for all s′ ≤ k and δπI(As′) ≥ π2(As′) > π1(As′) for all s′ > k.

Assumption 2(i) implies that the c.d.f.’s of the investors’ beliefs cross at exactly one

point. When the two types of investors assign the same value to the underlying assets (i.e.,

when
∑

s π
1
sX

a
s =

∑
π2
sX

a
s ), Assumption 2(i) implies that π1 second-order stochastically

dominates π2.

Assumption 2(ii) implies that an issuer who sells the two assets separately finds it optimal

to not tranch the assets: for each asset a = 1, 2, she will sell a single security F a targeted

to investors with beliefs π1. Indeed, by Proposition 1, under this assumption the optimal

securities (F 1, F 2) when selling assets (Xa)a=1,2 separately are given by F 1,a
s = min {Xk, Xs}

and F 2,a
s = 0 for all s and for a = 1, 2. The issuer’s profits from selling the two assets

separately are then 2UXa(F 1,a, F 2,a).

Our next result shows that, under further conditions, an issuer who only sells securities

designed to investors with beliefs π1 does not benefit from pooling the assets.

Proposition 3. Suppose Assumption 2 holds, and that

π1(As)(2π
1(As′)− π1(As)) < δπI(As)(2π

I(As′)− πI(As)) (11)

for all s, s′ with s > k or s′ > k. Then, there are no gains from pooling: supF∈F1
Y
UY (F ) =

2UXa(F 1,a, F 2,a).
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Our next result shows that, in this environment, the issuer finds it strictly optimal to

pool the assets: by doing so, she can profit from selling an additional tranch to consumers

of type t2.

Proposition 4. Suppose that the conditions in Proposition 3 hold, and that π2(Ak+1)

δπI(Ak+1)
>

2−πI(Ak+1)

2−π2(Ak+1)
. Then, pooling is strictly optimal: sup(F 1,F 2)∈FY

UY (F 1, F 2) > 2UXa(F 1,a, F 2,a).

The results above show that pooling and tranching may be complements: while neither

pooling nor tranching and beneficial on their own, the issuer finds it stricly optimal to pool

the assets and then tranche them.

We conclude this section by briefly discussing two extensions. For simplicity, we focus on

the case in which there is a single investor. Consider first the case in which the underlying

assets’ returns are not iid. In Appendix B we generalize Example 2 to the case of non-

zero correlations. Consistent with the time-series variation in the issuance of asset-backed

securities discussed above, pooling remains optimal as long as the correlation between the

underlying assets is not too high relative to the disagreement in beliefs.

Second, our model assumes that issuer and market disagree about the return distribution

of each of the underlying assets, but agree on the correlation between these assets. We stress

that disagreement about the correlation in the assets’ return can strengthen the investor’s

incentives for pooling. To see this, consider again the setting in Example 2. Suppose that

the market believes that the two assets are iid, while the issuer believes that the two assets

are perfectly correlated. Assume again that π > 1− δ(1− πI), so that the optimal security

backed by asset Xa has Fs = X1 for s = 1, 2. The issuer’s profits from selling the securities

separately are given by 2X1 + 2δ(1 − πI)(X2 − X1), while her payoff from selling security

FY = min{Y,X1 +X2} now is 2X1 +(1−π2+δ(1−πI))(X2−X1). Pooling is strictly optimal

whenever π ∈ (1− δ(1− πI),
√

1− δ(1− πI)).
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5 Convertibles

This section provides a simple dynamic extension of the disagreement framework. The styl-

ized version of the model presented here introduces the possibility of financing a project in

multiple stages and contracts between the issuer (here called an entrepreneur) and investor

(the bank or venture capitalist) that can depend on interim performance. Given that in-

formation about the characteristics of novel types of entrepreneurial ventures tends to be

scarce, we find the assumption that beliefs may differ across market participants particularly

realistic in this setting. In what follows, we show that a conversion option can be a natural

feature of optimal securities when the issuer and investor’s beliefs differ. Aside from differ-

ences in beliefs, a key assumption needed for the optimality of convertibles (as opposed to

straight debt) is that the investment project requires a relatively large investment and has

high upside potential – i.e., a highly skewed payoff profile.18

The setup is as follows. The entrepreneur is endowed with an investment opportunity,

which requires an initial investment I0 at time t = 0, and offers in period t = 2 a risky payoff.

There are two states of nature, {H,L} (high or low). In the interim period, t = 1, a public

and contractible signal is observed, which we specify below. In response to the signal, there

are two options for the project:

• the project can be left as is, in which case the returns of the investment at state

s ∈ {H,L} are Xs, with XH > XL > 0;

• the project can be expanded by way of an interim investment I1 > 0, in which case

the returns of the investment at state s ∈ {H,L} are K ×Xs, where K > 1.

Let πE ∈ (0, 1) and πV C ∈ (0, 1) be, respectively, the entrepreneur’s and the venture capi-

talist’s initial beliefs that the realized state at t = 2 will be H. We assume that πE > πV C ,

18To be able to most clearly illustrate the role of belief differences, we abstract away from many frictions
that are relevant for VC contracting, like moral hazard, adverse selection, taxes, etc., which may help explain
other features of contracts used in VC financing.
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so the entrepreneur is more optimistic about the project’s outcome than the VC.

The interim signal at time t = 1, σ, can take either of two values: σ ∈ {h, l}. We assume

that signals σ = h, l are informative about the state of nature: the entrepreneur and the VC

believe that

P (σ = h|s = H) = P (σ = l|s = L) = α >
1

2
. (12)

For σ ∈ {h, l} and for i = E, V C, let πi(σ) denote the probability that i assigns to the state

being H after observing signal σ; πi(l) = (1−α)πi

(1−α)πi+α(1−πi)
< πi < απi

απi+(1−α)(1−πi)
= πi(h).

The contract, in exchange for which the entrepreneur receives funding from a competitive

VC sector, specifies:

(i) an expansion decision 1(σ) ∈ {0, 1} to be made at t = 1 as a function of the signal σ;

1(σ) = 1 denotes expanding the firm and 1(σ) = 0 denotes not expanding the firm;

and

(ii) repayments z = (zL(σ), zH(σ)) from the entrepreneur to the VC to be made at t = 2:

for s ∈ {H,L} and σ ∈ {h, l}, zs(σ)× (1 + (K − 1)1(σ)) is the repayment at state s if

signal σ was observed at the interim stage (with zs(σ) ∈ [0, Xs]).

We make the following assumptions:

Assumption 3. (i) the VC believes that the project is profitable enough to invest I1 at

t = 1 only after observing signal σ = h:

(K − 1)
(
πV C(h)XH + (1− πV C(h))XL

)
> I1 > K

(
πV C(l)XH + (1− πV C(l))XL

)
.

(13)
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(ii) the VC believes that the project is profitable but risky:

πV CXH + (1− πV C)XL > I0 > XL. (14)

The entrepreneur’s expected payoff from contract (z,1) is

UE (z,1) :=
[
(1− α)πE(XH − zH(l)) + α(1− πE)(XL − zL(l))

]
(1 + 1(l)(K − 1))

+
[
απE(XH − zH(h)) + (1− α)(1− πE)(XL − zL(h))

]
(1 + 1(h)(K − 1)).(15)

The VC’s payoff from this contract is

UV C (z,1) :=
[
(1− α)πV CzH(l) + α(1− πV C)zL(l)

]
(1 + 1(l)(K − 1))

+
[
απV CzH(h) + (1− α)(1− πV C)zL(h)

]
(1 + 1(h)(K − 1)) (16)

−ρl1(l)I1 − ρh1(h)I1 − I0,

where ρl and ρh denote, respectively, the probability that the VC assigns to the signal taking

values l and h, respectively, i.e., ρl = (1−α)πV C +α(1−πV C) and ρh = απV C + (1−α)(1−

πV C). The problem of the entrepreneur is

max
(z,1)

UE (z,1) s.t. (17)

UV C (z,1) ≥ 0, (BE)

K
(
πV C(σ)zH(σ) + (1− πV C(σ))zL(σ)

)
≥ I1 if 1(σ) = 1. (EC)

Constraint (BE) is the VC’s break-even condition. Constraint (EC) requires that, if the VC

expands the project at t = 1, her expected return should cover the investment cost.

Proposition 5. If Assumption 3 holds, the solution to (17) is such that:
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(i) the project is expanded if and only if σ = h; i.e., 1(l) = 0 and 1(h) = 1;

(ii) for σ ∈ {l, h}, zL(σ) = XL;

(iii) zH(l) and zH(h) are such that (BE) holds with equality.

Proposition 5 characterizes the main properties of the solution to (17). Part (i) follows

immediately from Assumption 3. Part (ii) follows from the fact that the entrepreneur is

relatively more optimistic than the VC, and so the cheapest way to satisfy the VC’s break-

even condition is to repay the entire cash-flows at the low state. (This feature is reminiscent

of the results in the optimality of debt in Section 3.2.)

Proposition 5 does not pin down what the exact payments at state H are.19 However,

under further parametric conditions, convertible preferred stock is an optimal contract:

ρHKXL + ρlXL < I0 + ρhI1 < K
[
(1− α)πV CXH + α(1− πV C)XL

]
+ ρlXL. (18)

The first inequality in equation (18) states that the VC does not break even under a contract

that specifies repayments zs(σ) = XL for s ∈ {L,H} and σ ∈ {l, h}. The second inequality

in equation (18), on the other hand, states that the VC makes a strict profit under a contract

that specifies repayments zH(l) = zL(l) = zL(h) = XL and zH(h) = XH .

Corollary 4. Suppose Assumption 3 and (18) hold. Then, the following contract solves (17):

(i) the project is expanded if and only if σ = h; i.e., 1(l) = 0 and 1(h) = 1;

(ii) zL(σ) = XL for σ ∈ {l, h}.

(iii) zH(l) = XL and zH(h) ∈ (XL, XH) such that (BE) holds with equality.

19Indeed, given the linearity of the entrepreneur and the VC’s payoffs, there is a continuum of optimal
contracts. Increasing zH(l) by ∆ allows the entrepreneur to reduce zH(h) by 1−α

α
1
K∆ (so that the break

even constraint is still satisfied with equality). This change in the contract leaves the entrepreneur indifferent
since −∆πE(1− α) + 1−α

α
1
K∆απEK = 0.
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The optimal contract in Corollary 4 can be implemented by a convertible security that

promises min{R,K ×XL} (where R is the return of the project) to the VC, and gives the

VC the following options: (i) after observing interim performance, choose whether or not to

invest in expanding the project; and (ii) if the project is expanded, choose whether or not

to convert the original security into a fraction zH(h) of equity after observing profits.

The intuition for the result is simple: because the entrepreneur is relatively optimistic

about the project’s success probability, she finds it relatively valuable to secure the option

to expand the project in the future. The VC, on the other hand, finds it relatively cheap

to write that option. Of course, both VC and entrepreneur also find it optimal to leave the

cash-flows to the VC in case of failure.

Discussion

The above model illustrates that a disagreement-based theory of security design can explain

convertible contracts between entrepreneurs and financiers in a natural way. Optimism may

not only be a driving force behind the entrepreneur’s venture, but also behind the financing

vehicle that helps her realize the project. Aside from its simplicity, an attractive feature of

the model presented here is that highly skewed projects (those with high investment needs

and high potential payoffs) receive financing with convertible securities as typically used

in VC, whereas optimistic entrepreneurs with less ambitious and risky projects optimally

finance their ventures with straight debt.20

20Our results are derived in a simplified framework with only two states of nature; the VC shares in on the
upside because the compensation on the downside does not allow her to break her even. In a model with more
states, the VC’s stake would be capped on the upside – unlike in straight convertible preferred contracts.
Kramer and Tran (2016) document that 40% of participating convertible preferred stakes are indeed capped.
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6 Conclusion

This paper offers a simple but broadly applicable theory of security design based on the

premise that issuer and market openly disagree about the asset’s cash-flow distribution.

We show that issuing securities backed by a pool of assets (instead of issuing one security

for each asset) can be optimal. In addition, when there is disagreement among investors,

the issuer optimally sells different tranches to the market. Importantly, the possibility of

tranching can make pooling more opportune, and vice versa. This result appears useful for

our understanding of the procyclical dynamics of securitization.

Straight or callable debt can arise as special cases of our model, namely when disagree-

ment between investors is negligible but issuers are significantly more optimistic than the

market. Moreover, when disagreement between issuers and markets is low, the issuer may

choose to sell the entire firm. These features are strongly consistent with existing empirical

results on the dynamics of issuances in general, and the dynamics of the debt-equity mix

in issuances in particular. Viewing a corporation as a pool of assets through the lense of

our model can potentially also help shed light into the dynamics of corporate events such as

mergers and splits, the dynamics of the conglomerate discount, and the issuance of mezzanine

tranches.

Finally, in a stylized setting with multiple financing rounds, we show that conversion

features similar to those observed in venture capital contracts are optimal to finance high-

risk projects with right-skewed payoff profiles. Consistent with empirical realities, the same

model also predicts that lower-risk projects or projects run by less optimistic entrepreneurs

are financed with straight debt.

In sum, we find that disagreement between issuer and market can help explain a variety of

real-world security designs that have thus far required multiple distinct models and frictions

as explanations. For tractability, our model abstracts away from other frictions that are
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known to be important for security design, such as moral hazard, adverse selection, taxes,

etc. Combining disagreement with these frictions may help researchers explain other features

of real-world financial contracts that the present study leaves unaddressed. Testing the new

empirical predictions arising from our model is also left for future research.

26



A Proofs

Proofs of Section 3

Proof of Lemma 1. Let (F 1, F 2) ∈ F be a solution to the issuer’s problem. Note that the

lemma clearly holds if the two securities (F 1, F 2) are bought by different types of investors.

If the two securities (F 1, F 2) are bought by investors of type ti, then the issuer’s payoff from

selling security (F 1, F 2) is

U(F 1, F 2) = pi(F 1) + pi(F 2) + δ
∑
s∈S

πIs(Xs − F 1
s − F 2

s )

=
∑
s∈S

πi(F 1
s + F 2

s ) + δ
∑
s∈S

πIs(Xs − F 1
s − F 2

s ).

Consider the pair of securities (F̃ 1, F̃ 2) with F̃ i
s = F 1

s + F 2
s for all s and F̃ j

s = 0 for all s.

Since investors of type ti buy the two securities F 1, F 2, it must be that pi(F j) ≥ p−i(F j)

for j = 1, 2. Note that pi(F̃ i) = pi(F 1) + pi(F 2) and p−i(F̃ i) = p−i(F 1) + p−i(F 2). Hence,

p(F̃ i) = pi(F̃ i). Moreover, pj( ˜F−i) = 0 for j = 1, 2, and p(F̃−i) = p−i(F̃−i). Finally, note

that

U(F̃ 1, F̃ 2) = pi(F̃ i) + δ
∑
s∈S

πIs(Xs − F 1
s − F 2

s )

=
∑
s∈S

πis(F
1
s + F 2

S) + δ
∑
s∈S

πIs(Xs − F 1
s − F 2

s ) = U(F 1, F 2).

Proof of Proposition 1. Fix a pair of securities (F 1, F 2) ∈ F such that, for j = 1, 2, security
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F j is bought by investors of type tj. The issuer’s payoff from selling this pair of securities is

U(F 1, F 2) =
K∑
s=1

π1
sF

1
s +

K∑
s=1

π2
sF

2
s + δ

K∑
s=1

πIs(Xs − F 1
s − F 2

s )

= F 1
1 + F 2

1 +
K∑
s=2

(
π1(As)− δπI(As)

) (
F 1
s − F 1

s−1
)

+
K∑
s=2

(
π2(As)− δπI(As)

) (
F 2
s − F 2

s−1
)

+ δ
K∑
s=1

πIsXs. (19)

Note that any pair of securities (F 1, F 2) ∈ F must be such that: (i) F 1
1 +F 2

1 ∈ [0, X1], (ii) for

all s > 1, F 1
s + F 2

s ∈ [F 1
s−1 + F 2

s−1, F
1
s−1 + F 2

s−1 +Xs−Xs−1] and (iii) for i = 1, 2, F i
s ≥ F i

s−1.

From equation (19), it is optimal for the issuer to set F 1
1 +F 2

1 = X1. Moreover, for s ∈ S\ {1}

and j = 1, 2, it is optimal to set F j
s = F j

s−1 +Xs−Xs−1 if πj(As) > max
{
δπI(As), π

−j(As)
}

,

and to set F j
s = F j

s−1 otherwise.

Proof of Corollary 3. The proof uses arguments similar to those in the proof of Proposition

1. For any security F ∈ FD, the issuer’s payoff is

U(F ) =
K∑
s=1

πMs F s + δ
K∑
s=1

πIs(Xs −min{Xs, D} − Fs)

= F1 +
K∑
s=2

(
πM(As)− δπI(As)

)
(F s − Fs−1) + δ

K∑
s=1

πIs(Xs −min{Xs, D}), (20)

Note that any security F ∈ FD must be such that Fs = 0 and for all s ≤ sD, Fs ∈

[Fs−1, Fs−1 + Xs − Xs−1] for all s > sD and Fs ≥ Fs−1 for all s. Moreover, any security

that satisfies these conditions belongs to FD. Mechanically, any optimal security F must

have Fs = 0 and for all s ≤ sD. From equation (20), for any s > sD it is optimal to set

Fs = Fs−1 +Xs −Xs−1 if πM(As) ≥ δπI(As), and to set Fs = Fs−1 if πM(As) < δπI(As).
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Proofs of Section 4

Proof of Proposition 2. By Proposition 1, under Assumption 1 the optimal security backed

by a single asset Xa is F = min{Xs, Xk}. Note that selling two individual securities F , each

backed by one of the assets, is the same as selling security F̃ ∈ FY such that

F̃s,s′ =



Xs +Xs′ if s, s′ ≤ k,

Xk +Xs′ if s > k, s′ ≤ k,

Xs +Xk if s ≤ k, s′ > k,

2Xk if s > k, s′ > k.

(21)

Consider the following alternative security F ∈ FY :

Fs,s′ =



Xs +Xs′ if s, s′ ≤ k,

Xk+1 +Xs′ if s > k, s′ ≤ k,

Xs +Xk+1 if s ≤ k, s′ > k,

Xk +Xk+1 if s > k, s′ > k.

(22)

Note that, for any beliefs π over S,

∑
s

∑
s′

πsπs′(Fs,s′ − F̃s,s′) =
k∑
s=1

πs

(
K∑

s′=k+1

πs′(Xk+1 −Xk)

)
+

K∑
s=k+1

πs

K∑
s′=1

πs′(Xk+1 −Xk)

= (2− π(Ak+1))π(Ak+1)(Xk+1 −Xk). (23)
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Note then that

UY (F )− 2UXa(F ) = UY (F )− UY (F̃ )

= pY (F )− pY (F̃ ) + δ
∑
s

∑
s′

πIsπ
I
s′(F̃s,s′ − Fs,s′)

=
∑
s

∑
s′

π1
sπ

1
s′(Fs,s − F̃s,s′) + δ

∑
s

∑
s′

πIsπ
I
s′(F̃s,s′ − Fs,s′)

=
(
(2− π1(Ak+1))π

1(Ak+1)− δ(2− πI(Ak+1))π
I(Ak+1)

)
(Xk+1 −Xk) > 0,

where we used equation (23) and Assumption 1.

Proof of Proposition 3. Let F 1 be the optimal security when the issuer pools the two assets

and sells a single security to market participants with beliefs π1. Since the two assets have iid

returns, it is without loss to assume that F 1 is symmetric: F 1
s,s′ = F 1

s′,s for all s, s′ ∈ S.21 We

show that F 1
s,s′ = F̃ 1

s,s′ for all s, s′ ∈ S, where F̃ 1 is the security that the issuer will effective

sell if she were to sell two individual securities, each backed by its own asset:

F̃ 1
s,s′ =



Xs +Xs′ if s, s′ ≤ k,

Xk +Xs′ if s > k, s′ ≤ k,

Xs +Xk if s ≤ k, s′ > k,

2Xk if s > k, s′ > k.

(24)

We start by showing that F 1
s,s′ = F̃ 1

s,s′ for all s, s′ such that s ≤ k and s′ ≤ k. Towards a

contradiction, suppose not, and let ŝ, ŝ′ ≤ k be such that F 1
ŝ,ŝ′ 6= F̃ 1

ŝ,ŝ′ = Xŝ +Xŝ′ . Note that

21To see why, suppose the seller finds it optimal to sell a security F 1 that is not symmetric. Let F̂ 1 be
the security such that, for all s, s′ ∈ S, F̂ 1

s,s′ = F 1
s′,s. Since the two assets have iid returns, securities F 1 and

F̂ 1 yield the same profits to the issuer. Since F 1 satisfies the monotonicity requirements, so does F̂ 1. Let G
be a security such that, for all s, s′, Gs,s′ = 1

2 (F 1
s,s′ + F̂ 1

s,s′). Note that security G is symmetric, satisfies the
monotonicity requirements, and give the same profits to the issuer as security F1.
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it must be that F 1
ŝ,ŝ′ = Xŝ +Xŝ′ − ε for some ε > 0. Consider the security F̂ such that

F̂s,s′ =

 F 1
s,s′ s < ŝ and s′ < ŝ′

F 1
s,s′ + ε otherwise.

(25)

Note that F̂ satisfies the monitonicity requirements.

For any beliefs π,

∑
s

∑
s′

πsπs′(F̂s,s′ − F 1
s,s′) =

ŝ−1∑
s=1

πs

K∑
s′=ŝ′

πs′ε+
K∑
s=ŝ

πs

K∑
s′=1

πs′ε

= ε [(1− π(Aŝ))π(Aŝ′) + π(Aŝ)] . (26)

Note that

UY (F̂ )− UY (F 1) = pY (F̂ )− pY (F 1) + δ
∑
s

∑
s′

πIsπ
I
s′(F

1
s,s′ − F̂s,s′)

=
∑
s

∑
s′

π1
sπ

1
s′(F̂s,s′ − F 1

s,s′) + δ
∑
s

∑
s′

πIsπ
I
s′(F

1
s,s′ − F̂s,s′)

= ε
[
(1− π1(Aŝ))π

1(Aŝ′) + π1(Aŝ)− δ(1− πI(Aŝ))πI(Aŝ′)− δπI(Aŝ)
]
,

where we used equation (26). By Assumption 2, π1(Aŝ) > δπI(Aŝ) (since ŝ ≤ k). More-

over, since πI fosd π1, πI(Aŝ) ≥ π1(Aŝ). Since π1(Aŝ) > δπI(Aŝ), it follows that (1 −

π1(Aŝ))π
1(Aŝ′) > δ(1− πI(Aŝ))πI(Aŝ′). Therefore, UY (F̂ ) > UY (F 1), a contradiction to the

fact that F 1 is optimal. Hence, F 1 is such that F 1
s,s′ = Xs +Xs′ for all s, s′ ≤ k.

Next we show that F 1
s,s′ = F̃ 1

s,s′ for all s, s′ with s > k or s′ > k. Since F 1
s,s′ = F̃ 1

s,s′ =

Xs + Xs′ for all s, s′ with s ≤ k and s′ ≤ k, by monotonicity it must be that that F 1
s,s′ ≥

min{Xs, Xk}+min{Xs′ , Xk} = F̃ 1
s,s′ for all s, s′ with s > k or s′ > k. Towards a contradiction,

suppose that there is s, s′ with s > k or s′ > k such that F 1
s,s′ > F̃ 1

s,s′ . Let ŝ′ := min{s′ > k :

F 1
s,s′ > F̃ 1

s,s′ for some s}, and let ŝ := min{s : F 1
s,ŝ′ > F̃ 1

s,ŝ′}. By monotonicity, it must be that
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F 1
s,s′ > F̃ 1

s,s′ for all s, s′ with s ≥ ŝ and s′ ≥ ŝ′. Moreover, since F 1 and F̃ 1 are symmetric, it

must also be that F 1
s,s′ > F̃ 1

s,s′ for all s, s′ with s ≥ ŝ′ and s′ ≥ ŝ. Lastly, by symmetry of F 1,

it must be that ŝ′ ≥ ŝ.

Let Ŝ = {s, s′ ∈ S2 : s ≥ ŝ and s′ ≥ ŝ′ or s ≥ ŝ′ and s′ ≥ ŝ}, and ε = mins,s′∈Ŝ F
1
s,s′ −

F̃ 1
s,s′ > 0. Let F̂ be an alternative security with

F̂s,s′ =

 F 1
s,s′ s, s′ /∈ Ŝ

F 1
s,s′ − ε s, s′ ∈ Ŝ

(27)

One can check that, since F 1 satisfies the monotonicity requirements, so does F̂ . Note that,

for any beliefs π

∑
s

∑
s′

πsπs′(F̂s,s′ − F 1
s,s′) =

K∑
s=ŝ

πs

K∑
s′=ŝ′

πs′(−ε) +
K∑
s=ŝ′

πs

ŝ′−1∑
s′=ŝ

πs′(−ε)

= −ε [π(Aŝ)π(Aŝ′) + π(Aŝ′)(π(Aŝ)− π(Aŝ′))]

= −ε [π(Aŝ′)(2π(Aŝ)− π(Aŝ′))] . (28)

Note that

UY (F̂ )− UY (F 1) = pY (F̂ )− pY (F 1) + δ
∑
s

∑
s′

πIsπ
I
s′(F

1
s,s′ − F̂s,s′)

=
∑
s

∑
s′

π1
sπ

1
s′(F̂s,s′ − F 1

s,s′) + δ
∑
s

∑
s′

πIsπ
I
s′(F

1
s,s′ − F̂s,s′)

= −ε
[
π1(Aŝ′)(2π

1(Aŝ)− π1(Aŝ′))− δπI(Aŝ′)(2πI(Aŝ)− πI(Aŝ′))
]
,

where we used equation (28). By the conditions in the Proposition, π1(Aŝ′)(2π
1(Aŝ) −

π1(Aŝ′)) < δπI(Aŝ′)(2π
I(Aŝ) − πI(Aŝ′)), and so UY (F̂ ) > UY (F 1), which contradicts the

fact tha F 1 is optimal. Hence, it must be that F 1
s,s′ = F̃ 1

s,s′ for all s, s′, and so there are no
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gains from pooling.

Proof of Proposition 4. By the arguments in the main text, under Assumption 2 the optimal

securities (F 1,i, F 2,i) backed by a single asset X i are F 1,i
s = min{Xs, Xk} and F 2,i

s = 0. Note

that selling two securities F 1,i, each backed by one of the assets, is the same as selling security

F̃ 1 ∈ FY such that

F̃ 1
s,s′ =



Xs +Xs′ if s, s′ ≤ k,

Xk +Xs′ if s > k, s′ ≤ k,

Xs +Xk if s ≤ k, s′ > k,

2Xk if s > k, s′ > k.

(29)

Suppose the issuer pools the assets and sells securities
(
F̃ 1, F̃ 2

)
∈ FY , with

F̃ 2
s,s′ =

 0 if s, s′ ≤ k,

Xk+1 −Xk if s > k or s′ > k.
(30)

Note that, for any beliefs π,

∑
s

∑
s′

πsπs′F̃
2
s,s′ = π(Ak+1)(2− π(Ak+1))(Xk+1 −Xk). (31)

The issuer’s payoff from selling the two assets as separate concerns, issuing for each asset

Xa securities (F 1,a, F 2,a) with F 1,a
s = min{Xs, Xk} and F 2,a

s = 0, is equal to

2UXa(F 1,a, F 2,a) =
∑
s

∑
s′

π1
sπ

1
s′F̃

1
s,s′ + δ

∑
s

∑
s′

πIsπ
I
s′(Xs +Xs′ − F̃ 1

s,s′). (32)

On the other hand, the payoff that the issuer gets from pooling the assets and selling securities
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(
F̃ 1, F̃ 2

)
∈ FY is

UY

(
F̃ 1, F̃ 2

)
=
∑
s

∑
s′

π1
sπ

1
s′F̃

1
s,s′ +

∑
s

∑
s′

π2
sπ

2
s′F̃

2
s,s′ +δ

∑
s

∑
s′

πIsπ
I
s′(Xs+Xs′− F̃ 1

s,s′− F̃ 2
s,s′).

(33)

Comparing (32) and (33), it follows that

UY

(
F̃ 1, F̃ 2

)
− 2UXa(F 1,a, F 2,a) =

∑
s

∑
s′

π2
sπ

2
s′F̃

2
s,s′ − δ

∑
s

∑
s′

πIsπ
I
s′F̃

2
s,s′

= (π2(Ak+1)(2− π2(Ak+1))− δπI(Ak+1)(2− πI(Ak+1))(Xk+1 −Xk) > 0,

where the second equality follows from (31) and the strict inequality follows from the as-

sumption in the statement of the Proposition.

Proofs of Proposition 5 and Corollary 4

Before presenting the proofs of Proposition 5 and Corollary 4, we establish two useful lemmas.

Lemma 2. Let (z,1) be a solution to (17). If zH(σ) > 0 for σ ∈ {l, h}, then it must be that

zL(σ) = XL.

Proof. Suppose by contradiction that zH(σ) > 0 and zL(σ) < XL for σ ∈ {l, h}. Suppose

first that σ = h, and consider a contract (z̃,1) such that z̃s(l) = zs(l) for s = H,L, z̃L(h) =

zL(h) + ε and z̃H(h) = zH(h) − 1−α
α

1−πV C

πV C ε, with ε > 0. Note that contract (z̃,1) gives the

VC the same expected payoff as contract (z,1). Note further that

UE (z̃,1)− UE (z,1) = (1 + 1(h)(K − 1))

(
απE

1− α
α

1− πV C

πV C
ε− (1− α)(1− πE)ε

)
= (1 + 1(h)(K − 1))

(1− α)ε

πV C
(
πE(1− πV C)− πV C(1− πE)

)
> 0,
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where we used πE > πV C . This contradicts the assumption that (z,1) is optimal.

Suppose next that σ = l. Consider a contract (z̃,1) such that z̃s(h) = zs(h) for s = H,L,

z̃L(l) = zL(l) + ε and z̃H(l) = zH(l)− α
1−α

1−πV C

πV C ε, with ε > 0. Note that contract (z̃,1) gives

the VC the same expected payoff as contract (z,1), and

UE (z̃,1)− UE (z,1) = (1 + 1(l)(K − 1))

(
(1− α)πE

α

1− α
1− πV C

πV C
ε− α(1− πE)ε

)
= (1 + 1(l)(K − 1))

αε

πV C
(
πE(1− πV C)− πV C(1− πE)

)
> 0.

Again this contradicts the assumption that (z,1) is optimal.

Lemma 3. Let (z,1) be a solution to (17). Under Assumption 3, zL(σ) = XL for σ ∈ {l, h}.

Proof. Let (z,1) be a solution to (17). The conditions in Assumption 3 imply that, in order

for the VC to break even, it must be that zH(h) > 0 and/or zH(l) > 0. If both of these

quantities are strictly positive, then the result follows from Lemma 2.

Suppose next that zH(h) = 0 and zH(l) > 0. By Lemma 2, zL(l) = XL. Towards a

contradiction, suppose zL(h) < XL. Let (ẑ,1) be an alternative contract with ẑL(σ) = zL(σ)

for σ = h, l, ẑH(l) = zH(l) − ε and ẑH(l) = zH(h) + 1−α
α

1+1(l)(K−1)
1+1(h)(K−1)ε, with ε > 0. Contract

(ẑ,1) gives entrepreneur and VC the same expected payoff as contract (z,1), so it is also an

optimal contract. But this contradicts Lemma 2, since ẑL(h) = zL(h) < XL and ẑH(h) > 0.

Hence, if (z,1) is an optimal contract with zH(h) = 0 and zH(l) > 0, it must that zL(σ) = XL

for σ ∈ {l, h}.

Finally, consider the case with zH(h) > 0 and zH(l) = 0. By Lemma 2, zL(h) = XL.

Towards a contradiction, suppose zL(l) < XL. Let (ẑ,1) be an alternative contract with

ẑL(σ) = zL(σ) for σ = h, l, ẑH(l) = zH(l) + ε and ẑH(l) = zH(h) − 1−α
α

1+1(l)(K−1)
1+1(h)(K−1)ε. Again,

contract (ẑ,1) gives entrepreneur and VC the same expected payoff as contract (z,1), so it

is also an optimal contract. But this contradicts Lemma 2, since ẑL(l) = zL(l) < XL and
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ẑH(l) > 0. Hence, if (z,1) is an optimal contract with zH(h) > 0 and zH(l) = 0, it must be

that zL(σ) = XL for σ ∈ {l, h}.

Proof of Proposition 5. Part (ii) follows from Lemma 3.

We now prove part (i). Note first that, under Assumption 3, any optimal contract (z,1)

must be such that 1(l) = 0: indeed, under the condition (i) in Assumption 3, there are no

feasible repayments z that satisfy constraint (EC) for σ = l when 1(l) = 1.

We now show that, under an optimal contract, 1(h) = 1. Suppose that there exists an

optimal contract (z,1) with 1(h) = 0. Let (z̃, 1̃) be an alternative contract with 1̃(h) = 1,

1̃(l) = 1(l) = 0, z̃L(σ) = zL(σ) = XL, z̃H(l) = zH(l) and

z̃H(h) =
ρhI1 + απV CzH(h) + (1− α)(1− πV C)zL(h)

KαπV C
− 1− α

α

1− πV C

πV C
zL(h)

=
ρhI1 + απV CzH(h) + (1− α)(1− πV C)XL

KαπV C
− 1− α

α

1− πV C

πV C
XL,

where the second equality follows since, under any optimal contract, zL(h) = XL. Note that

the VC’s expected payoff under contract (z̃, 1̃) is the same as her expected payoff under

contract (z,1). Note further that

UE(z̃, 1̃)− UE(z,1) = KαπE(XH − z̃H(h))− απE(XH − zH(h))

= απE
[
(K − 1)XH + (K − 1)

1− α
α

1− πV C

πV C
XL −

ρhI1
απV C

]
=

πE

πV C
[
(K − 1)απV CXH + (K − 1)(1− α)(1− πV C)XL − ρhI1

]
> 0,

where the strict inequality follows from Assumption 3. Hence, if (z,1) is an optimal contract

it must have 1(h) = 1. This establishes part (i).

Finally, part (iii) follows since any optimal contract (z,1) must be such that UV C(z,1) =

0. Further, we note that if there exists an optimal contract (z,1) such that UV C(z,1) = 0

36



and such that (EC) is satisfied with slack, then there exists a continuum of optimal contracts.

Indeed, increasing zH(l) by ε allows the entrepreneur to reduce zH(h) by 1−α
α

1
K
ε while still

satisfying the VC’s break even condition. This change in the contract leaves the entrepreneur

indifferent since −επE(1− α) + 1−α
α

1
K
εαπEK = 0.

Proof of Corollary 4. Parts (i) and (ii) follow from Proposition (5). Finally, when the first

inequality in (18) holds, the VC must get strictly more than XL at state s = H when σ = l

and/or σ = h (otherwise the VC does not break even). When the second inequality in (18)

holds, there exists z ∈ (XL, XH) such that

I0 + ρhI1 = K
[
(1− α)πV Cz + α(1− πV C)XL

]
+ ρlXL. (34)

By equation (34), the VC breaks even under a contract (z,1) with 1(h) = 1, 1(l) = 0,

zL(l) = zL(h) = zH(l) = XL and zH(h) = z. Finally, since I0 > ρLXL (by Assumption (3)),

equation (34) implies that

K
[
(1− α)πV Cz + α(1− πV C)XL

]
> ρHI1, (35)

so that (EC) holds. Hence, by Proposition (5), contract (z,1) is optimal.

B Generalization of the Simple Pooling Example

This appendix extends the example of section 4.2 to allow for non-zero correlation between

the assets to be securitized. As in section 4.2, suppose the issuer owns two assets, X1 and X2,

each of which can generate a return in {X1, X2} (with X1 < X2). In contrast to section 4.2,

suppose that the returns of assets X1 and X2 are correlated. Let sk ∈ Ŝ = {11, 12, 21, 22}

denote the event that asset 1’s return is Xs and asset 2’s return is Xk. The beliefs of the
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issuer and market over the set of possible return realizations are, respectively, π̂I and π̂M .

For j = I,M , π̂jsk denotes the probability that j assigns to the event sk. We assume that

the assets are symmetric, so that π̂j12 = π̂j21 for j = I,M . The iid case of section 4.2 is the

special case with π̂jsk = πjsπ
j
k for j = I,M and for all sk ∈ Ŝ.

Suppose first that the issuer sells two individual securities, each backed by an asset. By

Proposition 1 an optimal security F has F1 = X1 and F2 ≥ F1. The price that the market

is willing to pay for security F is p(F ) = X1(π̂
M
11 + π̂M12 ) + F2(π̂

M
21 + π̂M22 ); the issuer’s payoff

from selling this security is

p(F ) + δ(X2−F2)(π̂
M
21 + π̂M22 ) = X1(π̂

M
11 + π̂M12 ) +F2(π̂

M
21 + π̂M22 ) + δ(X2−F2)(π̂

I
21 + π̂I22). (36)

The issuer finds it optimal to set F2 = X1 if δ(π̂I21 + π̂I22) > π̂M21 + π̂M22 and F2 = X2 if

δ(π̂I21 + π̂I22) ≤ π̂M21 + π̂M22 . In what follows we maintain the assumption that δ(π̂I21 + π̂I22) >

π̂M21 +π̂M22 , so that an issuer who sells individual securities F 1 and F 2, each backed respectively

by asset X1 and X2, finds it optimal to set F 1
s = F 2

s = X1 for s = 1, 2.

Suppose next that the issuer pools the two assets and sells a single security backed by

cash-flows Y = X1 + X2. Consider a security FY = min{Y,X1 + X2}. The price that the

market is willing to pay for security FY is p(FY ) = π̂M112X1 + (1 − π̂M11 )(X1 + X2), and the

issuer’s payoff from selling this security is

p(FY ) + δπ̂I22(X2 −X1) = π̂M112X1 + (1− π̂M11 )(X1 +X2) + δπ̂I22(X2 −X1). (37)

Comparing (36) and (37), the issuer strictly prefers selling security FY backed by the pool

of assets than selling the two individual securities F 1
s = F 2

s = X1 for s = 1, 2 if and only if

2π̂M21 +π̂M22 = 1−π̂M11 > δ(1−πI11) = δ(2π̂I21+π̂I22). Combining this with δ(π̂I21+π̂I22) > π̂M21 +π̂M22 ,
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the issuer strictly prefers to pool the assets and sell security FY if

π̂M11 ∈
(
1− δ(π̂I21 + π̂I22)− π̂M21 , 1− δ(2π̂I21 + π̂I22)

)
. (38)

If the issuer and the market both perceive the asset to be perfectly correlated (so that π̂j21 = 0

for j = 1, 2), the condition in (38) can never be satisfied, and hence pooling does not obtain.

39



References

Adam, Tim R., Valentin Burg, Tobias Scheinert, and Daniel Streitz, “Managerial

Optimism and Debt Contract Design: The Case of Syndicated Loans,” Working Paper,

2014.

Admati, Anat R. and Paul Pfleiderer, “Robust Financial Contracting and the Role of

Venture Capitalists,” The Journal of Finance, 1994, 49 (2), 371–402.

Allen, Franklin and Douglas Gale, “Optimal security design,” Review of Financial Stud-

ies, 1988, 1 (3), 229–263.

Antic, Nemanja, “Contracting with unknown technologies,” Working Paper, 2014.

Axelson, Ulf, “Security design with investor private information,” The Journal of Finance,

2007, 62 (6), 2587–2632.

Baker, Malcolm and Jeffrey Wurgler, “Market timing and capital structure,” The Jour-

nal of Finance, 2002, 57 (1), 1–32.

Bayar, Onur, Thomas J Chemmanur, and Mark H Liu, “A theory of equity carve-outs

and negative stub values under heterogeneous beliefs,” Journal of Financial Economics,

2011, 100 (3), 616–638.

, , and , “A theory of capital structure, price impact, and long-run stock returns

under heterogeneous beliefs,” Journal of Corporate Finance Studies, forthcoming.

Bergemann, Dirk and Ulrich Hege, “Venture capital financing, moral hazard, and learn-

ing,” Journal of Banking & Finance, 1998, 22 (6), 703–735.

Bernardo, Antonio E and Ivo Welch, “On the evolution of overconfidence and en-

trepreneurs,” Journal of Economics & Management Strategy, 2001, 10 (3), 301–330.

40



Boot, Arnoud WA and Anjan V Thakor, “Managerial autonomy, allocation of control

rights, and optimal capital structure,” Review of Financial Studies, 2011, pp. 3434–3485.

, Radhakrishnan Gopalan, and Anjan V Thakor, “The entrepreneur’s choice be-

tween private and public ownership,” The Journal of Finance, 2006, 61 (2), 803–836.

, , and , “Market liquidity, investor participation, and managerial autonomy: why do

firms go private?,” The Journal of Finance, 2008, 63 (4), 2013–2059.

Chen, Joseph, Harrison Hong, and Jeremy C Stein, “Breadth of ownership and stock

returns,” Journal of Financial Economics, 2002, 66 (2), 171–205.

Cheng, Ing-Haw, Sahil Raina, and Wei Xiong, “Wall Street and the housing bubble,”

The American Economic Review, 2014, 104 (9), 2797–2829.

Chernenko, Sergey, Sam Hanson, and Adi Sunderam, “The Rise and Fall of Securi-

tization,” Technical Report, Working Paper, December 2013.

Cochrane, John H, “The risk and return of venture capital,” Journal of Financial Eco-

nomics, 2005, 75 (1), 3–52.

Cooper, Arnold C, Carolyn Y Woo, and William C Dunkelberg, “Entrepreneurs’

perceived chances for success,” Journal of Business Venturing, 1988, 3 (2), 97–108.

Cornelli, Francesca and Oved Yosha, “Stage financing and the role of convertible secu-

rities,” The Review of Economic Studies, 2003, 70 (1), 1–32.

Coval, Joshua D and Anjan V Thakor, “Financial intermediation as a beliefs-bridge

between optimists and pessimists,” Journal of Financial Economics, 2005, 75 (3), 535–569.

DeMarzo, Peter and Darrell Duffie, “A liquidity-based model of security design,” Econo-

metrica, 1999, 67 (1), 65–99.

41



DeMarzo, Peter M, “The pooling and tranching of securities: A model of informed inter-

mediation,” Review of Financial Studies, 2005, 18 (1), 1–35.

Dicks, David and Paolo Fulghieri, “Ambiguity, disagreement, and corporate control,”

Technical Report, Working Paper, University of Northern Carolina, Chapel Hill 2015.

Dittmar, Amy and Anjan Thakor, “Why do firms issue equity?,” The Journal of Fi-

nance, 2007, 62 (1), 1–54.

Economist, The, “Entrepreneurs anonymous,” http://www.economist.com/news/business/21618816-

instead-romanticising-entrepreneurs-people-should-understand-how-hard-their-lives-can,

2014.

Erel, Isil, Brandon Julio, Woojin Kim, and Michael S Weisbach, “Macroeconomic

conditions and capital raising,” Review of Financial Studies, 2011, pp. 341–376.

Fama, Eugene F and Kenneth R French, “Financing decisions: who issues stock?,”

Journal of Financial Economics, 2005, 76 (3), 549–582.

Farre-Mensa, Joan, “The Benefits of Selective Disclosure: Evidence from Private Firms,”

Working Paper, 2015.

Frank, Murray Z and Vidhan K Goyal, “Testing the pecking order theory of capital

structure,” Journal of Financial Economics, 2003, 67 (2), 217–248.

Fulghieri, Paolo, Diego Garcia, and Dirk Hackbarth, “Asymmetric information and

the pecking (dis)order,” Technical Report, University of North Carolina at Chapel Hill

2013.

Fuster, Andreas and James Vickery, “Securitization and the fixed-rate mortgage,” Re-

view of Financial Studies, 2014, p. hhu060.

42



Garmaise, Mark, “Rational Beliefs and Security Design,” Review of Financial Studies,

2001, 14 (4), 1183–1213.

Gennaioli, Nicola, Andrei Shleifer, and Robert W Vishny, “A model of shadow

banking,” The Journal of Finance, 2013, 68 (4), 1331–1363.

Gompers, Paul and Josh Lerner, “The venture capital revolution,” Journal of Economic

Perspectives, 2001, pp. 145–168.

Gorton, Gary and George Pennacchi, “Financial intermediaries and liquidity creation,”

The Journal of Finance, 1990, 45 (1), 49–71.

Green, Richard C., “Investment incentives, debt, and warrants,” Journal of Financial

Economics, 1984, 13 (1), 115 – 136.

Hackbarth, Dirk, “Managerial traits and capital structure decisions,” Journal of Financial

and Quantitative Analysis, 2008, 43 (04), 843–881.

Heaton, James B., “Managerial optimist and corporate finance,” Financial Management,

2002, (33-45).
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