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Abstract 
 
When Bayesian risk-averse investors are uncertain about their assets’ cash flows’ exposure to 
systematic risk, stock prices react more to news in downturns than in upturns, implying higher 
volatility in downturns and negatively skewed returns. The reason is that, in good times, less 
desirable assets with low average cash flows and high loading on market risk perform similar to 
more desirable assets with high average cash flows and low market risk, rendering them difficult 
to distinguish. However, their relative fundamental performance diverges in downturns, 
enabling better inference. Consistent with these predictions, stocks’ reaction to earnings news is 
up to 70% stronger in downturns than in upturns. 
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“You only find out who is swimming naked when the tide goes out” (Buffett, 2001)

1 Introduction

Asymmetries between upturns and downturns arise in many domains. For example, ev-

idence indicates that actively managed mutual funds tend to “underperform” in good times

but tend to perform abnormally well when the economy is doing poorly (Moskowitz, 2000;

Kosowski, 2006; Sun, Wang, and Zheng, 2009; Glode, 2011). Jenter and Kanaan (2015) show

that boards fire CEOs more frequently after negative market shocks. Equity returns are neg-

atively skewed, implying that stocks are slow to rise in expansions but quick to fall in market

downturns (see e.g. Bollerslev, Engle, and Wooldridge, 1988; Campbell and Hentschel, 1992;

Chen, Hong, and Stein, 2001). Perhaps one common theme across these domains is that de-

cision makers (such as investors or company boards) are better at discerning good from bad

projects (i.e., investments/managers/stocks) in downturns than in upturns.

This paper proposes a model that provides a simple rationale to explain why rational

Bayesian investors are better at distinguishing between the relative quality of different invest-

ment projects in downturns than in upturns. The key insight is that uncertainty about indi-

vidual projects’ fundamental risk loadings, combined with positive risk premia, are sufficient

to understand such asymmetries. No behavioral distortions, time-varying earnings manipu-

lation, asymmetric information, or other frictions are necessary. In particular, we show that

when risk premia are positive, project-specific fundamental news in downturns carries more

relevant information about the utility investors derive from investing in the project than news

pertaining to performance in upturns.

Although the insight applies also to corporate finance and other fields, we focus our pre-

dictions on an asset-pricing application. We show that even when all parameter distributions

are both symmetric and stable across states, prices can nevertheless react more sensitively

to news in some states than in others. Specifically, on average, stocks react more to earnings

news in downturns, which implies negative skew in the return distribution. More precisely,

the sensitivity of the stock price to news is a function that is non-monotonic with respect to
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the underlying macro-economic state. The precise shape depends on the history of aggregate

shocks, but its peak is guaranteed to tend to be at below-average market returns.

We offer a variety of empirical approaches to test these predictions. In particular, we

first use non-parametric techniques to discern the shape of earnings response coefficients as a

function of the market return in the quarter of the announcement. We then offer various OLS

regressions to formally show that earnings response coefficients are statistically significantly

different in various measures of downturns and upturns, even after controlling for potential

confounding variables.

The model’s key features are as follows. A firm’s cash-flow realizations depend on an

uncertain, firm-specific time-fixed parameter capturing idiosyncratic performance (“cash-flow

alpha” – henceforth, a), as well as the realization of a market-wide factor. The correlation of

the firm’s cash flows with that risk factor is uncertain and firm-specific as well, and referred to

as “cash-flow beta” (henceforth, b). Risk-averse investors like good idiosyncratic performance,

but dislike correlation with the market, so the stock price increases in a and decreases in b.

Investors do not know the exact values of the two parameters for a given firm, but they know

the distributions from which the parameters are drawn.1 They attempt to learn the parameters

by observing updates to firms’ fundamental performance, and conditioning that news on the

state of the world in which the news was observed.

The inference investors make is quite intuitive. Unexpectedly high cash flows in good times

are a signal for both high a and high b. Higher-than-expected a means the stock price should

rise; higher-than-expected b means the stock price should fall. In sum, a mixed signal obtains.

Intuitively, although generally content with higher-than-expected earnings, investors also sense

that over-performance in upturns may have been achieved with the aid of exceptionally high

market risk exposure. Good news in good times is therefore a somewhat ambiguous signal

about firm value, and is thus weighted less heavily.

The low information content associated with upturn observations is symmetric with respect

to the sign of the news surprise: unexpectedly low cash flows in good times can be either due to
1It is well known since Merton (1980) that second moments can be learned arbitrarily quickly when a

stochastic process is quasi-continuously observed. This assumption is satisfied for stock returns but not for
firms’ cash flows, which are reported only at a quarterly frequency.
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low idiosyncratic performance (low a), which is bad news, or due to low market exposure (low

b), which is good news. Because of the ambiguity of the signal, investors do not attach high

confidence to either good or bad news in good times. As a result, prices do not react strongly

to any piece of firm-specific news in good times.

By contrast, unexpectedly high earnings in bad times can be due to either unexpectedly

high cash-flow alpha (high a) or unexpectedly low cash-flow beta (low b). Both interpretations

imply good news for firm value. Similarly, bad performance in bad times is clearly a bad signal

about firm value: it can be due to either bad idiosyncratic performance (low a) or due to high

market correlation (high b), both of which are undesirable attributes. In sum, cash-flow news

in downturns provides less ambiguous signals about firm value, irrespective of the sign of the

earnings surprise. Therefore, Bayesian investors place more weight on news pertaining to firm

performance in downturns than to performance in upturns, regardless of whether the news is

good or bad. As a result, prices react more strongly to fundamental news in downturns than

in upturns.

A direct result of a stronger reaction in downturns to both good news (as realized by

some firms) and bad news (as realized by other firms), the cross-sectional dispersion of returns

increases in bad times. As a result, volatility is endogenously countercyclical. Further, a direct

consequence of higher dispersion combined with lower average returns in downturns is that

the unconditional return distribution is negatively skewed. This prediction of our model is

consistent with a well-known set of empirical observations. What was not known previously is

that these patterns can be generated by a Bayesian model with parameter uncertainty as the

only friction.

Empirically, we measure the price response to unexpected earnings news with earnings-

response coefficients (ERC). Using non-parametric techniques we first generate figures of the

ERC-market state relationship. Consistent with the model’s predictions, we find that ERCs

depend on the state of the economy. ERCs are highest when market return is about -25% or

when GDP growth is about -5%. These downturn-ERCs are up to 70% higher than ERCs in

upturns of similar magnitude. The fact that ERCs peak at a negative market return (rather
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than decrease monotonically with market returns) helps distinguish our explanation from

potential alternative theories that could also generate variation of ERCs across market states.

Ordinary-least-squares (OLS) estimations formally confirm that ERCs tend to be higher in

downturns and reject the null hypothesis of no differences in ERCs across market states. This

result is robust to various alternative ways of measuring market states and to controlling for

various potential confounders.

The insights from this paper contribute to the literature by establishing that imperfect

knowledge of cash-flow risk loadings combined with a positive risk premium implies asymmetric

price reactions to news, as well as negatively skewed returns. As such, we simplify the intuition

for several empirically observed asymmetries over the market cycle.

2 Related Literature

This paper belongs to a literature on learning in financial markets; see Pastor and Veronesi

(2009) for a review. The models of Banerjee and Green (2013) and Veronesi (1999) predict

asymmetric reactions across good and bad news, whereas our model generates an asymmetry

across upturns and downturns but not across good and bad news.2 Veronesi and Ribeiro

(2002) predict higher co-movement of stock returns in recessions, whereas we explain higher

cross-sectional dispersion in recessions, which leads to negatively skewed returns.3

Several existing papers explain asymmetries across market states in asset pricing and the

intermediation sector with a combination of (a subset of) Bayesian learning, limited channel

capacity of the decision maker, costly effort, asymmetric information, and exogenous varia-

tion of risk aversion or other parameters over the business cycle; examples include Veldkamp

(2005); Van Nieuwerburgh and Veldkamp (2006); Kacperczyk, van Nieuwerburgh, and Veld-
2Also, the agents in our model are all identical. As a result, there is no asymmetric information, prices

contain no more information than fundamentals, and hence agents cannot learn from prices. Also, there are
no regime switches in our model. The online appendix provides detail on the distinction of our “revealing
downturns” effect and the “bad news effect” in the literature.

3The difference in assumptions is that in Veronesi and Ribeiro (2002), the state of the world is uncertain, but
firm parameters are known. In our case, the state of the world is known, but firm parameters are uncertain.
There is no contradiction between the established finding that correlations increase in downturns and our
prediction that cross-sectional dispersion increases, as we show in the online appendix. Volatility, dispersion,
and return correlations all increase in bad times.

4



kamp (2014, 2016). Whereas these papers address distinct phenomena from ours, another

difference is that our model has only two key assumptions: a positive risk premium and pa-

rameter uncertainty.

Our model is based on a joint dissertation chapter (Schmalz, 2012; Zhuk, 2012), in which

we explain asymmetries in involuntary CEO turnover over the business cycle. Franzoni and

Schmalz (2017) use a special case of the multidimensional filtering problem developed there

to help explain how mutual funds’ flow-performance sensitivity depends on the state of the

economy. Our contribution also complements Acharya, DeMarzo, and Kremer (2011), who

study the endogenously clustered release of news over the market cycle; by contrast, we take

the release of information as given but study how the strength of the reaction to a given piece

of news varies over the market cycle.

The above discussion refers to our theoretical contribution. The empirical contribution is

to the literature on stock price responses to information releases. In that realm, our paper is

most closely related to Johnson (1999), who shows that the state of the business cycle explains

time variation in ERCs of Value Line firms over the period January 1970–September 1987.4

By contrast, we use 1984-2012 IBES data, and we do not normalize ERCs with market equity

to avoid the potential concern of a mechanical relationship between ERCs and the state of

the market cycle. We also contribute the first non-parametric estimates of the relationship

between ERCs and market states.

3 Model

This section describes a model of Bayesian learning about the value of several assets by

a mass of identical risk-averse agents. The assets’ cash flows experience idiosyncratic shocks;

in addition, they are subject to economy-wide shocks. The key ingredient of the model is

that exposure to the economy-wide shock differs across assets and is not perfectly known by

investors.
4Relatedly, Collins and Kothari (1989) and Mian and Sankaraguruswamy (2012) find that ERCs are nega-

tively related to risk-free interest rates and investor sentiment, respectively.
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More specifically, each asset’s cash flow is affected by two time-fixed but uncertain idiosyn-

cratic parameters that can be thought of as cash-flow alpha and cash-flow beta. The former

is the asset’s average payoff. The latter stands for the exposure of the asset to a market-wide

risk factor.5 Risk-averse agents dislike such exposure and need to be compensated for it in

equilibrium. Under these assumptions, how much the agent learns from a piece of fundamen-

tal information about her utility from holding a particular asset depends on the state of the

economy. As a result, the price reaction to news also depends on the state of the economy. In

particular, news pertaining to firm performance in a downturn contains more relevant infor-

mation than news pertaining to firm performance in an upturn. Asset prices therefore react

more strongly to cash-flow news in downturns than in upturns. The striking feature of the

model is that although all parameter distributions are symmetric and stable across states of

the economy and shocks are iid, an asymmetry exists across states of the economy in the price

response to fundamental news.

3.1 Economy

A large number of stocks i = 1, 2, . . . , N exists in the economy. A risk-free asset is available

in unlimited supply and generates return R every period. Assets are priced by an overlapping-

generations mass of identical agents with von Neumann-Morgenstern utility index u.6 Each

stock i pays dividends Y i
t at time t = 1, 2, . . . . These dividend realizations can be projected

on realizations of an aggregate shock, ξt, that is identical for all assets. Then the reduced-form

cash-flow process can we written as

Y i
t = ai + biξt + εit. (3.1)

In this equation, ai and bi represent firm-specific parameters capturing average cash flows and

the cash flows’ sensitivity to the aggregate shock, respectively. We refer to them as cash-flow

alpha and cash-flow beta. Investors are uncertain about the precise value of both of them. Next,
5We focus on market risk for simplicity. A similar argument also applies to other risk factors.
6We use the overlapping-generations structure and the normality of distributions for tractability of our main

results. We generalize the model later to show robustness of the main predictions.
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although the exact distribution of ξt including its mean is irrelevant for our main predictions,

for concreteness, we assume the market shocks ξt are iid and have mean zero E[ξt] = 0. The

idiosyncratic shocks εit ∼ N(0, σ2
ε) are normally distributed with known variance σ2

ε and are

independent across firms and over time.7

Initially, the true cash-flow parameters ai and bi are independently drawn from a known

distribution. For analytical tractability, we assume the distribution is mutually normal,

 ai

bi

 ∼ N

 ā

b̄

 ,

 σ̄2
a σ̄ab

σ̄ab σ̄2
b


 . (3.2)

We assume ā, b̄ > 0. No other restrictions are necessary; the precise values of the means are

immaterial for our results.

3.2 Beliefs

The investors do not know the exact values of ai and bi for a given firm i, but they do

know the distribution from which the parameters were drawn (3.2). We require that the agents’

initial prior beliefs correspond to that true distribution. We denote Ωi
0 = N

(
µi0,Σ0

)
for initial

prior beliefs, with

µi0 =

 ā

b̄

 Σ0 =

 σ̄2
a σ̄ab

σ̄ab σ̄2
b

 . (3.3)

Every period, investors observe new dividend realizations and use that news to update their

prior beliefs about the parameters of each asset.

Formally, denote by It = {{Y i
1}, ξ1, {Y i

2}, ξ2 . . . , {Y i
t }, ξt} the information set that becomes

available at time t. Note specifically that the realization of ξt is known at the time the infer-
7We fix σ2

ε to be a constant to emphasize that the stock price response to news varies with the aggregate
shock even when no asymmetry in parameter distributions is exogenously assumed. Empirically, we offer
specifications that control for variance of earnings surprises to capture the possibility that variation in the
parameter distributions over time drives the empirical findings. Similarly, the assumption that risk factor
realizations, ξt, are iid, is a deliberate choice: our theoretical results might be viewed as less surprising if the
fundamental distributions were asymmetric and shocks were allowed to be correlated in the time-series. For
this reason, Banerjee and Green (2013) also view iid shocks as a desirable property of their model. Note that
the non-monotonic predictions of the model cannot be generated by simply assuming that volatility is higher
in bad times (i.e., σ2

ε is a decreasing function of ξt). In fact, the opposite prediction (i.e., a lower price reaction
to news in downturns) would obtain.
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ence is made; as a result, the conditional distribution of beliefs remains normal despite the

multiplicative form of the cash-flow process.8 We use the following notation for conditional

posterior beliefs Ωt about parameters ψi =

 ai

bi

 at the end of time t,

ψi|It = Ωi
t ∼ N (µit,Σt), (3.4)

where

µit =

 ait

bit

 Σt =

 σ2
a,t σab,t

σab,t σ2
b,t

 . (3.5)

The conditional variance remains the same across firms, so we omit the i superscript for

variances.

We are interested in the speed at which investors update these parameters and hence their

estimation of the value of the asset, at a given t, as a function of a given realization of the

aggregate state ξt. To that end, the next subsection derives the equilibrium price of the asset.

After that, we model the belief dynamics. The combination yields the final result.

3.3 Valuation

In our baseline model, we assume identical, risk-averse investors that live for two periods.

In such an overlapping-generations (OLG) economy, a stochastic discount factor (sdf), mt,

prices the uncertain dividend stream {Y i}t, as follows:

pit = Et
[
mt+1(pit+1 + Y i

t+1)
]

Et [mt+1] =
1

R
. (3.6)

8If ξt were not directly observable, it could be easily inferred from the aggregate dividend Yt =
∑
Y it =

N(ā + b̄ · ξt) and knowledge about ā and b̄. The fact that investors condition the signal they see on the state
of the market is a point of distinction from several existing approaches, as discussed in the literature review.
In our model, a positive cash-flow surprise means cash flows are higher than expected, given the current state
of the economy. Merely below-average cash flows are not necessarily bad news for a firm’s value, and vice
versa. The following numerical example clarifies why. Suppose current beliefs about an asset’s parameters are
at = 0, bt = 1, and the market shock ξt is ξt = 4 (recall ξt has mean zero.) A cash flow of Y it = 3 is higher than
the average cash flow the stock generates (which is 0), but the investor is nevertheless negatively surprised,
because the expected cash flow in the current state of the economy is E[Y it ] = ai + bi · ξt = 0 + 1 · 4 = 4. As a
result, the investor downward-adjusts her beliefs about both ai and bi, perhaps to −0.1 and +0.75, respectively.
By contrast, when the cash-flow realization is higher than expected given current beliefs and given the state
of the market, for example, Y it = 5, the investor will adjust upward her beliefs about both ai and bi.
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The OLG setup affords the convenient feature that the sdf depends only on the realization of

the current aggregate dividend, and not on individual stock returns or current beliefs about

the stocks’ parameters.9,10

Lemma 1. The stochastic discount factor, mt, is a function of the aggregate dividend Yt =∑N
i=1 Y

i
t .

Because N is large, no learning about the aggregate dividend occurs. Thus, both the aggre-

gate dividend and the stochastic discount factor are iid. As a result, we can solve recursively

for the price of asset i:

pit = Et
[
mt+1(pit+1 + Y i

t+1)
]

=
∞∑
k=1

Et
[
(mt+1 · · · · ·mt+k) · Y i

t+k

]

=

∞∑
k=1

Et (mt+1) · · · · · Et (mt+k−1) · Et
[
mt+k · Y i

t+k

]

=

∞∑
k=1

1

Rk−1
Et
[
mt+k · Y i

t+k

]
=
∞∑
k=1

1

Rk−1
Et
[
mt+1 · Y i

t+1

]

=
R

R− 1
Et
[
mt+1 · Y i

t+1

]
, (3.7)

where Et [mt+1] = 1
R is used for the third equality. Using the functional form (3.1) for the

reduced-form cash-flow process, the price takes a simple form:

pit =
R

R− 1
Et
[
mt+1 · Y i

t+1

]
=

R

R− 1
Et
[
mt+1

(
ai + bi · ξt+1 + εit+1

)]
9Relatedly, investors cannot learn betas from (higher-frequency) returns, because stock prices contain no

more information than fundamentals, and investors are identical. For prices to contain additional information,
some other unmodeled agents would have to do the work of pricing in additional information.

10We discuss a generalization and contrast the model with the existing literature at the end of this section.
In short, our baseline model microfounds a stochastic discount factor that depends on intra-period earnings
Y it , but not on past earnings Y it−1. This feature affords a constant price of risk (called φ below) in the economy,
which simplifies the algebra and intuition. However, we show later that this assumption, which is purely for
analytical convenience, is not necessary to generate the key results. The only necessary assumption is that risk
prices are positive.
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=
R

R− 1

(
Et
[
ai
]
· Et [mt+1] + Et

[
bi
]
· Et [mt+1ξt+1]

)
. (3.8)

Note the stochastic discount factor is always positive, but covaries negatively with the aggre-

gate state because of investors’ risk aversion. The following lemma immediately follows.

Lemma 2. The price of stock i increases in beliefs about ai and decreases in beliefs about bi.

Specifically,

pit =
1

R− 1
Et
[
ai − φbi

]
, (3.9)

where φ = −R · Et [mt+1ξt+1] > 0.

The lemma reflects that a risk-averse investor’s willingness to pay for the asset increases

in the asset’s cash-flow alpha and decreases in its cash-flow beta. The next lemma shows that,

for CARA utility, we can explicitly solve for the utility cost of bearing economy-wide risk,

φ. Specifically, it can be thought of as the product of the price of risk (γ) multiplied by the

quantity of macro-economic risk (Nb̄ · σ2
ξ ). We give this result to help with the intuition of

why φ is positive; however, CARA utility is not assumed for any other result in the paper.

Lemma 3. If investors have CARA utility, u (Y ) = −exp (−γY ) with risk-aversion parameter

γ, then φ = γNb̄ · σ2
ξ .

3.4 Intuition of the Main Result

This subsection gives the intuition behind our main result that prices respond more strongly

to news in downturns than in upturns. Formal proofs are developed in the following subsection.

First, instead of thinking about learning about ai and bi, let us think more generally about

learning the properties of the cash-flow process Y i
t . Because risk-averse agents derive greater

value from cash flows in downturns than from cash flows in upturns, in order to value the asset

it is more important to them to know how the asset performs in downturns. As a consequence,

they put more weight on observations pertaining to asset performance in downturns compared

to observations pertaining to performance in upturns. To make this intuition more formal,
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note that in an iid environment, we can approximate the conditional expectation in equation

(3.7) with a weighted sum of past observations:

pit =
R

R− 1
Et
[
mt+1 · Y i

t+1

]
≈ R

R− 1

1

t

t∑
τ=1

mτY
i
τ . (3.10)

In this estimator, the price corresponds to the weighted sum of observed cash flows, where the

weights are the stochastic discount factors in the states in which the cash flows were generated.

To gain further intuition, let us decompose the weighted sum in the above expression analogous

to the decomposition Et
[
mt+1 · Y i

t+1

]
= Et [mt+1]Et

[
Y i
t+1

]
+ Cov

(
mt+1, Y

i
t+1

)
:

pit ≈
R

R− 1

[
1

t

t∑
τ=1

mτ ·
1

t

t∑
τ=1

Y i
τ +

1

t

t∑
τ=1

(
mτ −

1

t

t∑
s=1

ms

)(
Y i
τ −

1

t

t∑
s=1

Y i
s

)]
. (3.11)

This expression conveys: a higher observation of Y i
τ always increases the first component of

the price (the “average” term – notice that m is equal to 1
R on average). However, when a

higher-than-average observation of Y i
τ occurs when mτ has a below-average realization (i.e.,

in good times), it decreases the second component of the price (the “covariance” term) at the

same time, thus dampening the positive value implication of the observation. By contrast,

when an above-average observation of Y i
τ occurs amid an above-average realization of mτ (i.e.,

in bad times), the covariance term also increases, strengthening the value implication of the

good news. Symmetrically, bad cash flow news in bad times has a negative effect on both the

first and the second term, thus leading to a strong price reaction, whereas bad news in good

times has a negative effect on the “average” term but increases the “covariance” term, thus

leading to a dampened reaction. In sum, irrespective of whether the news is good or bad, the

magnitude of the value implication of the news covaries with the stochastic discount factor.

The following alternative way to illustrate our main result adds nuance to the above intu-

ition. In particular, we now clarify why the relationship between reaction to news and the state

of the economy is not monotonic (as the above intuition may suggest). The nuance obtains

from comparing in which state of the economy, ξt, the alignment between what the investor

cares about and what she observes is greatest. From lemma 2, the quantity about which the
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investor is interested in learning is ai − φbi. The information used as a learning input is the

reduced-form cash flow process (3.1): Y i
t = ai + bi · ξt + εit. The asset value conditional on

observed cash flows is thus

pit =
1

R− 1
E
[
ai − φbi | ai + bi · ξt + εit

]
. (3.12)

Subtracting and adding φbi, the conditioning information can be rewritten as

pit =
1

R− 1
E
[
ai − φbi | ai − φbi + bi(ξt + φ) + εit

]
. (3.13)

This expression conveys that the investor is interested in ai−φbi, but observes ai−φbi+bi(ξt+

φ) + εit. The first two terms agree; the remainder of what the investor observes is noise that

obfuscates the inference about what she cares about. This noise is minimized – and the object

of interest and the conditioning information are thus most aligned – when ξt + φ is close to

zero, i.e. when ξt is close to −φ. Of course, −φ is smaller than 0 because φ > 0, because of risk

aversion. Thus, the signal-to-noise ratio is maximized when ξt is a somewhat negative number.

But when the market-wide shock is extremely negative, for example, ξt ≈ −2 ·φ, more “noise”

is present in the observation than when ξt ≈ −φ. Thus, we have a non-monotonic relation

between the price reaction to earnings news and the aggregate state, whereas the peak price

reaction obtains for negative realizations of the aggregate factor. The following subsection

proves these ideas formally.

3.5 Formal Results

3.5.1 Updating Beliefs

Each period, investors observe new realizations of dividends of each asset and use these

observations to form posterior beliefs according to (3.4). For simplicity of exposition, we focus

on the special case of uninformed priors (Σ−1
0 = 0) here; we consider the general case with

informed priors in the online appendix and find that the results are qualitatively similar. (Given

that an informed prior can be represented with additional initial observations, the similarity
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in results is not surprising.) In the case of uninformed priors, one can express the posterior

beliefs about means recursively in terms of observables as

µit =

(
t∑

k=1

xkx
′
k

)−1

·
t∑

k=1

xtY
i
t = µit−1 +

(
t∑

k=1

xkx
′
k

)−1

xt
(
Y i
t − x′tµit−1

)
, (3.14)

where xt = (1 ξt)
′. The posterior covariance, again in terms of observables, is

Σt = σ2
ε

(
t∑

k=1

xkx
′
k

)−1

=
σ2
ε/t

ξ2
t − (ξt)2

 ξ2
t −ξt

−ξt 1

 , (3.15)

where ξt = 1
t

∑t
k=1 ξk, and ξ

2
t = 1

t

∑t
k=1 ξ

2
k are summary statistics of the history of aggregate

shocks.

Some of the mechanics of the results become apparent when one assumes for simplicity

that Σt/σ
2
ε is diagonal; this is approximately true for large t. The term

xt
(
Y i
t − x′tµit−1

)
=

 Y i
t − x′tµit−1

ξt
(
Y i
t − x′tµit−1

)
 (3.16)

in equation (3.14) then reflects the intuition that good news in good times or bad news in bad

times both yield a positive update about the asset’s risk loading bi.11 Moreover, it is easy to

see in these expressions that when parameters are constant, the updating magnitudes tend to

decline as t→∞. Equation (3.15) also makes clear why some uncertainty in earnings quality

(σ2
ε > 0) is needed to make the problem we study non-trivial: with σε = 0, two observations

of data would be sufficient to drive the posterior variance to zero.

3.5.2 The Price Response to News Depends on Aggregate States

We are now ready to present our main theoretical result.

11To be precise, the intuition holds if ξt − ξt has the same sign as ξt, because bit − bit−1 =
σ2
ε/t

ξ2t−(ξt)2
· (ξt − ξt) ·(

Y it − x′tµ
i
t−1

)
. Assuming a normally distributed ξt, the probability of this event occurring is 75% for t = 2;

92.8% for t = 20; and 96.8% when t = 100.
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Lemma 4. The price change of asset i from time t− 1 to time t, when the realization of the

market-wide shock is ξt, is

pit − pit−1 = λ (ξt) ·
1

R− 1
·
Y i
t − Et−1,ξt

[
Y i
t

]√
V art−1,ξt

[
Y i
t

] , (3.17)

where

λ (ξt) = σε
ξ2 + φξ −

(
φ+ ξ

)
ξt√

(t− 1)
(
ξ2 − (ξ)2

)√(
ξ − ξt

)2
+ t
(
ξ2 − (ξ)2

) , (3.18)

with ξ := ξt−1 = 1
t−1

∑t−1
k=1 ξk, and ξ2 := ξ2

t−1 = 1
t−1

∑t−1
k=1 ξ

2
k.

The key insight of the lemma is that, as a result of uncertainty about exposure of cash flows

to aggregate risk, the strength of the price response to a given earnings surprise depends on

the state of the market: λ = λ (ξt). We investigate the precise nature of this relationship below.

Note moreover that λ depends on the averages of past realizations ξ and squared realizations

ξ2 of the state of the economy. Lastly, note that given our choice to normalize the earnings

surprise Y i
t − Et−1,ξt

[
Y i
t

]
by its standard deviation,

√
V art−1,ξt

[
Y i
t

]
, the variance of price

changes of asset i from time t− 1 to time t is entirely determined by the ERC λ (ξt):

V art−1,ξt

[
pit − pit−1

]
=

λ (ξt)
2

(R− 1) 2
. (3.19)

We thus focus on the ERC λ as a measure of how strongly prices react to one additional

cash-flow observation, for a given macro state ξt.12

3.5.3 Which Conditions Maximize the Price Response to News?

The expression for lambda in equation (3.18) is not point-symmetric. To see this most

clearly, consider the case when ξ = 0. (This case corresponds to the average earnings an-
12The definition we use is slightly different from ERCs used in the literature, which don’t normalize by its

variance. We ensure robustness of both our theoretical and empirical results to the more standard definition
in the online appendix.
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nouncement: since {ξk} has 0 mean, ξ also has a 0 mean.) Then,

λ(ξt) =
ξ2 − φξt√

(t− 1)ξ2
(
ξ2
t + tξ2

) . (3.20)

The denominator of (3.20) is symmetric around 0, and the numerator is a decreasing

function of ξt. Thus, on average across histories, λ(ξt) tends to be higher in market downturns.

The following proposition formalizes the intuition for the general case of ξ 6= 0.

Proposition 1. The strongest price response to news occurs at

ξt,λmax = −t · φ− (t− 1) · ξ. (3.21)

The first insight is that a positive risk premium φ shifts the peak response point to the

left. This effect is stronger when investors already know the firm’s parameters quite precisely.

In that situation, an earnings announcement will only reveal significant additional information

if it gives information on firm performance in downturns.

The second insight from the proposition is that the recent history of aggregate shocks

matters for the sign and precise location of ξt,λmax . Specifically, the more positive the sum

of the t − 1 aggregate shocks,
∑t−1

k=1 ξk := (t− 1) · ξ, the more negative the ξt for which the

earnings response is maximized. In other words, the “Revealing Downturns” effect is magnified

after a prolonged market upturn; vice versa, when the recent history of macro realizations

has been sufficiently bleak, the effect is attenuated. If ξ < t
t−1 · φ, the effect may even be

reversed. This happens because after many downturn observations, agents already know very

well how the asset behaves in market downturns, and they would learn relatively more from

an upturn-observation.

In the next proposition, we directly compare downturns and upturns of the same size and

we show that for a majority of realizations of ξ, the response to news in downturns is stronger

than in upturns.

Proposition 2. For any positive number x and realization of ξ2, there exists ξ∗ < 0 such that
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|λ (ξt = −x)| > |λ (ξt = +x)| for ξ > ξ∗,

|λ (ξt = −x)| < |λ (ξt = +x)| for ξ < ξ∗.

The proposition says that unless ξ̄ is lower than some negative cutoff ξ∗ (which would be

the case if investors have already observed many downturn-observations), prices react more

strongly to news that pertains to performance in market downturns.

Figure 1 illustrates how the predicted earnings response nonlinearly depends on the aggre-

gate shock ξt, and how this relationship depends on the history of aggregate shocks, ξ. Most

lines are downward-sloping over the domain ξt ∈ [−1, 1], indicating that the earnings response

is weaker when the factor realization is high. Importantly, this is true not only for all positive

values of ξ̄, but also for a “neutral” history with ξ = 0. Earnings responses are stronger for

larger values of ξt only for strongly negative values of ξ. In sum, the figure reiterates the mes-

sage that price responses to news are asymmetric with respect to zero. Moreover, on average,

the responses in downturns appear to be higher than in upturns on average across histories,

summarized by ξ. We establish that result formally now.

3.5.4 Results about Average Price Responses

So far we have documented the asymmetry in the reaction to news only for specific re-

alizations of past shocks. However, in the empirical tests, we can only measure asymmetries

between upturns and downturns that arise on average (because arbitrary choices would have

to be made to decide how long a history to condition on, at which frequency to collect the

macro shocks, etc.). Therefore, we now make formal claims about the average reaction to news

by deriving propositions for “average beliefs” resulting from learning in previous periods.

For any period t, the average price response to news over all possible realizations of beliefs

that could arise from market shocks previous to t is

λ (ξt) = E(ξ1,...,ξt−1) [λ (ξt)] . (3.22)

The above expectation is over all possible realizations of past shocks, ξ1, ξ2, . . . ξt−1. These

shocks affect beliefs in period t− 1, and therefore our quantity of interest, λ (ξt).
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Proposition 3. Suppose the distribution of ξt is symmetric. Then for any positive number x,

λ (ξt = +x) < λ (ξt = −x) . (3.23)

3.5.5 ERC in terms of beliefs

Above, we derived ERCs in terms of observables, which will help guide our empirical anal-

ysis. However, from a theoretical perspective, one may wonder whether the above results are

robust to investors receiving information about parameters also from sources other than specific

earnings announcements. Therefore, in this subsection, we present similar results expressed in

terms of current beliefs, irrespective of how these beliefs were formed.

Lemma 5. The ERC and variance of earnings surprise in terms of beliefs are, respectively,

λ (ξt) =
σ2
at − φσab −

(
φσ2

b − σab
)
ξt√

σ2
a + 2σabξt + σ2

b ξ
2
t + σ2

ε

, (3.24)

and

V art−1,ξt

[
Y i
t

]
= σ2

a + 2σabξt + σ2
b ξ

2
t + σ2

ε , (3.25)

where σ2
a, σ

2
b and σab refer to the elements of the matrix introduced in equation (3.5)

 σ2
a σab

σab σ2
b

 =

 σ2
a,t−1 σab,t−1

σab,t−1 σ2
b,t−1

 = Σt−1.

It is clear once more that the strength of the price reaction to news depends on the macro

state ξt if and only if risk loadings are uncertain, σ2
b > 0. The next proposition shows that the

ERC is more likely to be higher in market downturns.

Proposition 4. The strongest stock price reaction to fundamental news occurs at

ξλmax = −φ
(

1 +
σ2
εσ

2
b

σ2
aσ

2
b − σ2

ab

)
+

σ2
ε

σ2
aσ

2
b − σ2

ab

σab. (3.26)

The proposition shows that two terms affect the location of the maximum. The first reflects
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the intuition given previously and is always negative. The second term can be positive or

negative depending on the sign of σab, which in turn is determined by the sign of the average

of the past observations ξ (equation (3.15)). σab > 0 corresponds to a case in which most

observations in the decision maker’s sample occurred in downturns. Investors then already

know quite well how the asset behaves in downturns
(
ai − bi|ξt|

)
, but know less about how the

asset performs in upturns
(
ai + bi|ξt|

)
. As a result, prices may respond more strongly to news

received in market upturns. By contrast, σab < 0 means investors already know quite precisely

the asset payoff in market upturns
(
ai + bi|ξt|

)
, whereas great uncertainty exists about the

payoff in a downturn
(
ai − bi|ξt|

)
. In that case, the price response in downturns is stronger

than in upturns – even more so than if σab = 0. Because the distribution of σab is centered

around zero, on average, σab = 0 and the price response in downturns is stronger than in

upturns.

Note that the results in this subsection also hold if the variance of idiosyncratic noise, σ2
ε

changes over time. The above discussion (but not the mathematic results) assumed implicitly

that this variance is constant, and does not depend on the business cycle. If, however, volatility

changes with the business cycle, our empirical results could be affected. Specifically, as we

can see from equation (3.24), increased volatility in downturns would predict a lower ERC

in downturns than in upturns (a prediction opposite to the one emphasized in the present

paper). To alleviate that concern in the empirical results, we control for V art−1,ξt

[
Y i
t

]
, which

is increasing in σ2
ε and is ex-ante symmetric with respect to ξt. Introducing this control means,

in the context of our model, that we keep the denominator of the ERC expression (3.24) fixed,

whereas the numerator is clearly decreasing in ξt and does not depend on σ2
ε .

3.5.6 Dispersion and Skewness

A direct consequence of the above predictions is that returns are more dispersed in down-

turns than in upturns; that is, volatility is higher in downturns than in upturns. The uncon-

ditional distribution of returns is therefore negatively skewed, even when the distributions

of parameters and shocks are symmetric and shocks are iid.13 To show this result formally,
13We thank Valerio Poti for suggesting we investigate this direction.
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consider the return between periods t− 1 and t:

Rit =
pit + Y i

t − pit−1

pit−1

. (3.27)

The following proposition shows that, for the majority of prior beliefs, returns are negatively

skewed even if the underlying fundamental distribution is symmetric.

Proposition 5. Suppose the distribution of ξt is symmetric. For any realization of ξ2 , a

ξs < 0 exists such that

Et−1

[(
Rit − Et−1

[
Rit
])3]

< 0 (3.28)

for any ξ > ξs.

This proposition shows that the only ingredients needed to generate unconditionally neg-

atively skewed returns are positive risk premia and uncertainty about cash-flow risk loadings.

Hence, in light of our model, negatively skewed returns are not a puzzling feature of asset

prices, but can easily be explained with Bayesian learning about uncertain parameters.14

3.6 Model Limitations and Extensions

This section discusses several modeling choices, the rationale behind them, and how al-

ternative choices would change the model predictions. First, the model uses an overlapping-

generations structure. This modeling choice is only for simplicity and tractability. The mech-

anism works very similarly for a general representative agent that maximizes expected utility

in an infinite-horizon setup, as we show in the online appendix.

Relatedly, we focus only on cross-sectional learning. This focus is distinct from and largely

orthogonal to a substantial part of the learning literature that focuses on learning about

the stochastic discount factor (see Pastor and Veronesi, 2009). Including learning about the

stochastic discount factor would not substantially change our results. The reason is that in our
14The theoretical assumption made here that fundamentals are not skewed is not meant to be a positive

statement. Rather, we mean to convey that when the underlying parameters are already negatively skewed,
the distribution of returns will be even more skewed. That is, uncertainty about fundamental risk loadings can
work as a “skewness accelerator.” The online appendix discusses this feature in detail.
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setup, the parameters ā and b̄ represent beliefs of investors about the overall economy; those

would depend on the realization of past shocks in a more complete model. However, ā and b̄

would only affect the sensitivity of an individual stock’s earnings response through the risk

premium, φ. It is easy to show that φ always remains positive for a risk-averse agent. There-

fore, the asymmetry between price responses in downturns and upturns persists. Because the

intuition remains the same, we present the simpler model without including investor learning

about the stochastic discount factor.

Another limitation is that our parameters ai and bi are time-fixed. As a result, infinitely

lived investors would eventually learn the true values. In the real world, however, the param-

eters change over time in response to fundamental changes, for example changes in corporate

leadership, the competitive landscape, and innovations; as a result, investors never perfectly

learn the true values. To extend our base case to a simple dynamic setting that reflects this

consideration, assume that each period a share δ of firms dies and is replaced by new firms

for which the unknown parameters are drawn from the initial prior distribution. In such a

setup, the above propositions continue to hold; they only need to be applied separately to

each generation of firms.

4 Empirical Results

This section describes the empirical methodology, variable definitions, data sources, and

empirical results. We test the two key predictions of the theoretical model: (1) ERCs peak

in downturns, and (2) ERCs are higher in downturns than in upturns, on average. Whereas

prediction (2) is key for the “revealing downturns” intuition, prediction (1) of a non-monotonic

relationship between ERCs and market state is a more distinct prediction of our model that

is probably harder to obtain with alternative theories. We present our main results as figures

obtained from non-parametric estimations, owing to the non-monotonic nature of the rela-

tionship between ERCs and market state. We also offer OLS regression results to be able to

assess the statistical significance of an upturn/downturn difference in ERCs after controlling

for potentially confounding covariates.

20



4.1 Empirical Methodology, Variable Definitions, and Data Sources

4.1.1 Empirical Methodology

Our goal is to measure how the strength of the stock price reaction to a given “earnings

surprise” depends on the state of the economy. ERCs are a standard solution in the accounting

literature to measure the strength of the reaction to a given piece of news while filtering out

noise (see Ertimur, Livnat, and Martikainen (2003); Jegadeesh and Livnat (2006)). They have

been used to similar ends in the finance literature (see, e.g., Pástor, Taylor, and Veronesi

(2009)). The basic idea of an ERC is illustrated by the following regression:

CARi,t = α+ λ · ESi,t + εi,t. (4.1)

In this regression, CARi,t is the cumulative abnormal return of stock i around an announce-

ment at time t, ESi,t is the earnings surprise, and λ is the ERC.15 The statistical “null”

hypothesis is that ERCs do not depend on the state of the economy. Note that equation (4.1)

is the empirical analogue of equation (3.17) in the theory. The theoretical predictions derived

in propositions 1 and 3 therefore translate into the following two alternative hypotheses:

1. The highest ERCs occur in downturns.

2. ERCs are higher in downturns than in upturns on average.

To test these alternative hypotheses against the null, our non-parametric analyses estimate

a version of equation (4.1) that allows ERCs to vary with the state of the economy ξt:

CARi,t = λ (ξt)ESi,t + εi,t. (4.2)

We use local polynomial regressions of order zero with an Epanechnikov kernel. We thus

calculate the best fit of λ(ξ) without assuming a specific functional form.16 The null hypothesis
15We follow Pástor, Taylor, and Veronesi (2009) (PTV) generally in the ERC estimation. However, one

difference is that in our OLS analysis, we always estimate ERCs in a regression (rather than dividing returns
by earnings surprises).

16The finance literature has used similar methods at least since Stanton (1997). To perform the estimation,
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here is that the ERC, λ (ξt), is positive but flat and does not depend on the state of the

economy, λ (ξt) = λ = const. > 0, whereas the model predicts a positive ERC with a non-

monotonic shape with the strongest reactions on average when negative aggregate states occur,

ξt < 0.

We also offer OLS tests to examine the second key prediction, which is that ERCs on

average are larger in downturns. We do so in two ways. First, we estimate the following

regression across all firm-quarter observations:

CARi,t = α+ β1ESi,t ×DTi,t + β2ESi,t + β3DTi,t + εi,t, (4.3)

where DTi,t is a downturn dummy that takes unity if the earnings period is a downturn, and

zero otherwise. β2 of the above regression equation is the ERC in upturns; β1 +β2 is the ERC

in downturns. The null hypothesis is that no difference in ERCs exists between upturns and

downturns (β1 = 0), whereas our model predicts the difference, namely, β1, to be positive, in

addition to a positive β2. Graphically, this specification can be imagined as fitting one constant

each for ERCs in downturns and upturns, respectively, and testing if that constant is different

for the two states.

To account for time-changing volatility, including the empirically relevant case in which

volatility is higher in downturn periods, we cluster the standard errors by the month of the

announcement. We furthermore provide specifications that add various controls, namely the

variance of earnings surprises, V ar [ES], and the variance of earnings surprises interacted with

the earnings surprise, V ar [ES]×ES. The latter inclusion allows ERCs to vary with V ar [ES].

These specifications mitigate the concern that variation in earnings quality (measured, e.g., as

the variance of idiosyncratic noise in earnings, as discussed in section 3.5.5) over states of the

we use smooth coefficient models (Hastie and Tibshirani, 1993; Li and Racine, 2007). Thus, λ (ξ) is calculated
according to,

λ (ξ) =

∑
i,t CARi,t · ESi,tK

(
ξt−ξ
h

)∑
i,tES

2
i,t ·K

(
ξt−ξ
h

) .

The expression is similar to how a coefficient is estimated in a linear regression, the only difference being each
observation is weighted with an Epanechnikov kernel K

(
ξt−ξ
h

)
, which is decreasing in the distance between ξ

and ξt (the realization of the aggregate shock corresponding to the observation). The bandwidths we choose,
0.1 and 1.5 for the market and GDP specifications, respectively, correspond to the average of the respective
optimal bandwidths across the traditional and modified ERC measures defined below.
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economy drives the variation in ERCs across these states, as observed in the non-parametric

analysis. In addition, we want to assure robustness to potential model misspecification due to

the fact that ERCs in general depend on the history of shocks. To do so, for the specifications

in which downturns are defined based on market return or GDP growth, we complement

regression (4.3) with averages of past aggregate shocks and squared past shocks, ξ and ξ2

as well as ξ × ES and ξ2 × ES as additional controls. To calculate these averages, for each

earnings announcement we use the previous five years of quarterly observations.

As a second specification, we run

CARi,t = α+ β1ESi,t × ξi,t + β2ES + β3ξi,t + εi,t (4.4)

with similar variations in terms of controls as the first OLS specification. This second specifi-

cation is best imagined as forcing a linear relationship between ERC and the aggregate state

onto λ (ξt) in equation (4.2). The null hypothesis is that ERCs do not depend on the aggregate

state, and thus β1 = 0. Alternative hypothesis 2 is that β1 < 0.

4.1.2 Variable Definitions and Data Sources

We calculate cumulative abnormal announcement returns by computing raw cumulative

earnings announcement returns net of Fama-French 49-industry returns. We measure these

CARi,ts over a three-day window using CRSP daily returns from the close on the day before

the announcement to the close on the day after the announcement. The definition of earnings

surprises is

ESi,t =
EPSi,t − E [EPSi,t]

st.dev. [EPSi,t]
, (4.5)

where EPSi,t is stock i’s actual earnings per share reported at an announcement at time t;

E [EPSi,t] is the expected earnings per share, and st.dev. [EPSi,t] is the standard deviation of

expected earnings per share averaged across all analysts from the last pre-announcement set

of forecasts for the given firm and fiscal quarter. We obtain these forecasts as well as the date

of the earnings announcement from the IBES unadjusted detail files. We show in the online
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appendix that the empirical results are robust to alternative definitions as well.

The reference period pertaining to an earnings announcement at date t is the quarter during

which the firm earned the earnings it reports at that date-t-announcement. The announcement

date is typically a few weeks after the end of the reference period, and is available from

IBES. Corresponding to the model’s timeline, we measure the state of the economy, ξt, for the

nonlinear tests and assign downturn dummies for the linear tests according to the state of the

economy in the reference period, not the state during the announcement date.

For the non-linear tests, we measure the state of the economy, ξt, with market returns

from CRSP in one specification and with GDP growth from the Bureau of Economic Analysis

(BEA) in a second specification. Downturn dummies for the OLS regressions are constructed in

three alternative ways to ensure robustness of the results. They are based on NBER recessions,

market return, and GDP growth, respectively. We say that an earnings announcement falls in

an NBER downturn if at least 1.5 months of the quarter coincide with an NBER recession.

We say that an earnings announcement falls in a market-return downturn if the cumulative

value-weighted market return net of the risk-free rate over the three months of the reference

period is lower than its sample average. Lastly, we say an earnings announcement falls in a

GDP downturn if the 2009-chained quarterly real seasonally adjusted GDP growth rate (again

from BEA) in the quarter with the largest intersection with the reference period is lower than

the average real GDP growth rate in the period 1984-2012. Upturns are all periods that are

not defined as downturns.

We start with all earnings announcements available from IBES, which cover January 1984

to December 2012. We drop an observation if less than three analysts cover a stock. We

truncate the observations at 1% levels to remove outliers. After these filters, we end up with

195,924 observations.

4.1.3 Summary Statistics

Table 1 presents summary statistics. We report the mean standard deviation and several

percentiles of both CAR and ES separately for the different downturn and upturn definitions.
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Whereas the “market” and “GDP” definitions roughly split the sample in half, only about

15% of the earnings observations fall in an NBER downturn period. The table shows that

cumulative abnormal announcement returns are slightly positive on average, both uncondi-

tionally and in the different market states. The mean earnings surprises are mildly positive

across subsamples. An important observation is that earnings surprises in downturns are not

consistently lower than earnings surprises in upturns; according to the GDP definition of a

downturn, earnings surprises are actually higher in downturns than in upturns. We interpret

this evidence as consistent with the notion that analysts adjust their earnings expectations to

the state of the economy. An implication for the interpretation of our results is that a stronger

response to bad news than to good news is unlikely to drive a larger earnings response in

downturns. We show direct evidence on the earnings response to good and bad news in the

online appendix.

The summary statistics also reveal an accumulation of the same value of earnings surprises

at particular values. The reason is the discreteness of the variable standard deviation of analyst

forecasts, as reported by IBES: both means and standard deviations of the analyst forecasts are

rounded to the nearest hundredth. Observations with values of 0.01 for the standard deviation

primarily drive that effect. To investigate the effect of this feature of the data, we analyze

histograms of the sample, reported in the online appendix. Discarding observations with small

standard deviations of earnings surprises can reduce such “discretization noise.” We do so in

a robustness check, reported in the online appendix. The empirical results tabulated there

are qualitatively similar and consistent across the full and the restricted sample. If anything,

slightly more significant results obtain with the restricted sample. This difference in results is

consistent with less attenuation bias due to measurement noise in the restricted sample. For

transparency, the results we report in the main paper are based on the full sample.
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4.2 Empirical Results

4.2.1 Non-parametric Estimation Results

Figures 2 and 3 give non-parametric estimates of the ERC as a function of the economic

state, where the market return and GDP growth are used as proxies for the state of the

economy, respectively. The two figures are the empirical analogue to the simulations presented

in Figure 1.

The ERCs are significantly positive throughout their domain. The point estimate of the

ERC at -25% market return is about 0.0087, with a 95% confidence band of about 0.0005 in

either direction, whereas the point estimate of ERCs at +20% market return is 0.0071, with

95% confidence bands tighter than 0.0003 in either direction. Similarly, ERCs at -5% GDP

growth are 0.012, and 0.007 at 5% GDP growth, respectively. Thus, ERCs are about 25%-70%

higher at their peak in downturns than at their low in upturns, depending on which measure

of macroeconomic state we use.

More generally, the figures show, consistent with the model predictions, that the relation-

ship between ERCs and state of the economy is not flat, not linear, and not monotonic, thus

rejecting the null hypotheses. ERCs tend to be much higher in downturns than in upturns on

average, and they have a distinct peak left of zero market returns or GDP growth. Specifically,

ERCs peak at about -25% market return and -5% GDP growth.

Note that these results not only provide strong support for the model predictions; they

also distinguish the theory we propose from other potential explanations. For example, higher

idiosyncratic volatility in downturns would lead to a monotonically increasing relationship

between ERCs and market state, whereas the data show a non-monotonic relationship that

is decreasing over much of its domain. Moreover, if changes in risk aversion across market

states were the reason for higher ERCs in downturns than in upturns, the function should be

monotonic. The fact that ERCs as a function of market state display a non-monotonic shape

lends support to a unique prediction of our model (specifically, Proposition 1).
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4.2.2 OLS Estimation Results

We now provide evidence from OLS regressions to re-examine the second hypothesis,

namely whether the average ERCs in downturns (e.g., in the halves left of zero of Figures

2 and 3) are indeed significantly bigger than those in the halves right of zero, even after

controlling for potential confounders. Note that in doing so, we force the ERC to jump at

the midpoint, rather than using only more extreme upturn or downturn realizations from the

tails of these functions. Thus, our OLS specification makes it more difficult to reject the null

hypothesis that no difference exists in ERCs between upturns and downturns. For the same

reason, the economic significance of the “revealing downturns” mechanism is best judged from

the non-parametric estimation results rather than from the linear tests presented here.

Table 2 reports the results. The dependent variable in all specifications is the cumulative

abnormal announcement return. Columns (1) to (3) report results using the NBER downturns

definition. Columns (4) to (7) report results using the “market” return downturn definition.

Columns (8) to (11) report results using the “GDP” downturn definition. The first specification

of each of the three sets of results only has ES, DT , and their interaction as explanatory

variables. The second specification also includes the variance of earnings surprises and its

interaction with the earnings surprise. The third specification of each set also allows for a linear

time trend, as well as the interaction of earnings surprise with the time trend. Controlling for

a time trend in ERCs ensures that the effect we identify comes from a business cycle of shorter

frequency and not from secular trends in earnings quality, or from other time trends that may

affect ERCs and that might be correlated with macroeconomic states at the same time. The

last specifications for each of the market and GDP downturn definitions, respectively, include

also the averages of past ξ and ξ2 as controls. These specifications test whether the asymmetry

persists even when the history of shocks is controlled for.

In all specifications, we expect a positive ERC, that is, a significantly positive coefficient on

the earnings surprise, ES. This result obtains, as reported in the second row of the table. For

example, the first specification displays a positive and highly statistically significant coefficient

of 0.00220 on the explanatory variable ES. That coefficient is the ERC in the baseline, that
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is, in upturns, when the downturn dummy DT takes the value zero.

The key coefficients are those on the interaction between ES and DT , reported in the first

row. They indicate whether ERCs are significantly higher during downturns. The coefficient on

the interaction term in the first specification is 0.00735. It indicates that ERCs in downturns

are on average 30% higher than in the baseline. That increase in the ERCs in downturns relative

to upturns is statistically significant at the 1% level. The second specification yields an ERC in

upturns of 0.00435. It increases by 0.00174 or 40% in downturns. Again, the difference is highly

statistically significant. A similar increase is reported in the most saturated specification (3).

The specifications using the market return downturn definition, reported in columns (4) to

(7), report similar upturn-ERCs, ranging from 0.00366 to 0.00709, and statistically significant

increases of the ERC in downturns of about 0.001. The specifications using the GDP definition

of downturns in columns (8) to (11) show a similar pattern. Upturn-ERCs range from 0.00387

to 0.00691, and they increase by 0.000566 to 0.00143 points in downturns. The difference

between downturn ERCs and upturn ERCs is quantitatively smaller in specifications (4) to

(11) compared to specifications (1) to (3) because more earnings announcements refer to

performance in downturns according to these definitions, compared to NBER recessions. Recall

from the non-parametric plots in Figures 2 and 3 that the highest ERCs occur in quite strong

downturns. As a result, splitting the sample in such a way that allows states of the economy

to enter the “downturn” definition that also comprises weaker contractions will attenuate the

measurement of differences between peak and trough of the ERC function.

Table 3 presents the results of OLS regressions that include the interaction between earn-

ings surprise and the continuous market state variable, rather than a downturn dummy. Be-

cause only the market and GDP measures of aggregate state are available as a continuous

variable, we cannot include the NBER specifications. Across all specifications, the sign of the

interaction coefficient is negative and highly statistically significant. This finding corroborates

the findings from the non-parametric regressions, which have the ERC-market state relation-

ship declining over most of the domain, and also of the OLS results with downturn dummies,

which indicate a higher ERC for lower realizations of ξt. We conclude that the data support
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the model’s qualitative predictions.

4.3 Test of Quantitative Predictions

In this subsection we provide evidence that the theoretical explanation advanced above can

quantitatively account for the observed variation in ERCs across market states. To make ERC

levels comparable across firms of different sizes, we first calculate a normalized announcement

return as17

Rit =
pit − pit−1

pit−1

=
λ (ξt)

E [ai − φbi]
·
Y i
t − Et−1,ξt

[
Y i
t

]√
V art−1,ξt

[
Y i
t

] . (4.6)

The ERC then becomes

ERC =
λ (ξt)

E [ai − φbi]
= (4.7)

1
E[ai]
σε

(
1− φE[bi]

E[ai]

) · ξ2 + φξ −
(
φ+ ξ

)
ξt√

(t− 1)
(
ξ2 −

(
ξ
)2)√(

ξ − ξt
)2

+ t
(
ξ2 −

(
ξ
)2) . (4.8)

This size-neutral ERC definition no longer depends on the absolute values of the parameters,

but only on their relative values. For a quantitative evaluation, we need estimates of E
[
ai
]
,

E
[
bi
]
and σε. To arrive at these estimates, for every earnings announcement, we regress

earnings per share Y i
t on realizations of the market return ξt during the reference period,

using the previous five years of quarterly observations for each earnings announcement:

Y i
t = ai + biξt + εit. (4.9)

The online appendix provides more details. We use the estimated parameters to calculate E[ai]
σε

,
E[bi]
E[ai]

, ξ, and ξ2 and then calculate the average across all announcements in the sample for each

of these terms. The parameter φ measures how strongly investors need to be compensated

for taking risks. We assume 1.5% as the quarterly market risk premium. Finally, we need

to ensure the correspondence between the empirical measure of the uncertainty of earnings

17A more standard return definition would include the current dividend, Rit =
pit+Y

i
t −E[pit+Y

i
t ]

E[pit+Y it ]
. We omit

dividends here, because doing so yields significantly simpler expressions. We verified empirically that our
return definition is quantitatively similar to the one we use.
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surprises, which is the variance of analyst forecasts, and its theoretical analogue. The model’s

variance of earnings surprises is 1, whereas the standard deviation of earnings surprises is

st.dev [ES] =
√
V ar [ES] ≈ 2.784795. This factor translates the normalized model-predicted

ERCs as per equation 4.8 to yield functions that depict how ERCs depend on ξt.

Figure 4 shows the resulting model-predicted ERC as a function of the market state. The

values are quantitatively similar to the empirically observed values, presented in Figure 2,

and the differences between upturns and downturns are, if anything, larger in the simulation.

These findings indicate that the model can quantitatively account for the empirically observed

variation.

4.4 Robustness Test

We provide an additional test of the model predictions as follows. First, we linearize the

expression (4.8) around zero,

ERC ≈ Q0,t−1 +Q1,t−1 · ξt, (4.10)

where

Q0,t−1 = ERC|ξt=0 and Q1,t−1 =

(
dERC

dξt

)
|ξt=0. (4.11)

(Wo omit stating the full expressions.) The main empirical work presented so far implicitly

assumed that Q0,t−1 and Q1,t−1 are constants, thus testing only the first-order implication of

the model that, on average across histories, ERCs are higher in downturns than in upturns.

However, the model in fact predicts that the ERC’s dependence on market states may depend

on histories, as reflected by history-dependent coefficients Q0,t−1 and Q1,t−1, thus introducing

the potential for model misspecification in our main results. To respond to this concern, we

already included these quantities (which reflect summary statistics of histories of aggregate

shocks) as additional controls in the previously presented results. Here, as an additional ro-

bustness test, we regress cumulative abnormal returns directly on Q0,t−1 and Q1,t−1 · ξt, as

30



follows:

CARi,t = A ·Q0,t−1 · ESi,t +B ·Q1,t−1 · ξt · ESi,t + εi,t. (4.12)

Table 4’s specification (1) presents the results. As predicted by the theory, all coefficients

are significantly positive and highly statistically significant, indicating that our qualitative

results are robust to the particular model misspecification concern. If Q0,t−1 and Q1,t−1 as

well as the aggregate state ξt were precisely measured, both coefficients A and B should be

equal to one in theory. In practice, however, our empirical measure of ξt is indeed only a proxy

for the state of the economy, and Q0,t−1 and Q1,t−1 are measured with error.18 One should

thus expect attenuated coefficients, especially for the estimate of B which measures sensitivity

of announcement returns to a quantity involving the proxy ξt.

To test whether attenuation due to measurement noise is indeed the most likely explana-

tion, we offer a second specification (2) in which we smooth the variables with a bandwidth of 5

months and a third specification (3) with simple averages of Q0,t−1 and Q1,t−1 (corresponding

to extreme smoothing to the time series average). Consistent with attenuation bias driving

down the coefficients in specification (1), especially for the interaction of ES, Q1,t−1, and ξt,

the coefficients increase from specification (1) to (3), especially in row 2. We conclude that the

particular concern about model misspecification related to the history-dependence of ERCs

is unlikely to drive the main results. Instead, quite nuanced model predictions regarding the

history-dependence of ERCs find support in the data.

5 Conclusion

This paper provides a new and simple rationale for asymmetries in investors’ reaction to

news over the market or business cycle. Specifically, a Bayesian learning model predicts that

investors react more strongly to news in downturns than in upturns when they are uncertain
18An important reason why Q0,t−1 and Q1,t−1 are measured with noise is that our empirical measure of ξ is

not the true ξ from the model. For example, a three-month negative market return during a secular up-trend
would turn our empirical measure of ξ negative, although from an SDF perspective the economy is probably
not in a downturn. An additional and maybe even more important reason is that Q0,t−1 and Q1,t−1 depend
on our proxies about investors’ beliefs about a and b, which necessarily depend on arbitrary assumptions such
as how many periods are used for learning.
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about individual assets’ risk loadings. Two sets of empirical results, one non-parametric and

one estimated with linear econometric techniques, both strongly support the theoretical pre-

dictions: stocks react up to 70% more strongly to earnings news when the news pertains to

firm performance in downturns than when the news pertains to performance in upturns. A

direct consequence of this mechanism is that unless cash-flow risk loadings are measured with

perfect accuracy, volatility is countercyclical, and stock returns are negatively skewed, even if

fundamentals are not.

These results shed new light on how information gets impounded into stock prices. Specif-

ically, the speed at which the cross-section of stock prices becomes reflective of fundamentals

is faster in downturns than in upturns. Bayesian learning is sufficient to explain this pattern.

We conclude that the cleansing effect of recessions applies not only to real economic activity,

but also to the price vector. Our results also suggest that “revelation risk” builds up during

upturns and gets resolved once investors observe how firms performed “when the tide goes

out.” Implications for the dynamics of the aggregate stock market and macroeconomics are

left for future research.
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Appendix

Proof of Lemma 1. (Stochastic Discount Factor for OLG models)

An agent consuming Ct+1 at t+ 1 is buying x units of an asset that pays Zt+1 at t+ 1 and

cost pz at t. Her expected utility is

U (x) = Et [u (Ct+1 + x (Zt+1 −Rpz))] . (5.1)

In equilibrium, utility should be maximized when x = 0:

0 = U ′ (x) |x=0 = Et
[
u′ (Ct+1) (Zt+1 −Rpz)

]
. (5.2)

Therefore,

pz =
1

R
Et

[
u′ (Ct+1)

Et [u′ (Ct+1)]
Zt+1

]
, (5.3)

and the SDF is equal to

mt+1 =
1

R

u′ (Ct+1)

Et [u′ (Ct+1)]
. (5.4)

If W0 is the initial wealth of the young generation in the OLG model, and p is the the price

of the whole economy (it is a constant, because no learning about the aggregate state occurs),

then the agents’ consumption at t+ 1 is a function of Yt+1

Ct+1 = (W0 − p) ·R+ p+ Yt+1. (5.5)

Proof of Lemma 3. (Valuation for CARA utility)

For normally distributed Z and a constant ρ,

E
[
eρZ
]

= eρE[Z]+ ρ2

2 V ar[Z], (5.6)

E
[
Z · eρZ

]
= (E [Z] + ρV ar [Z]) · eρE[Z]+ ρ2

2 V ar[Z] = (E [Z] + ρV ar [Z]) · E
[
eρZ
]
. (5.7)
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Therefore, for exponential utility (u′ (Yt+1) = γe−γYt+1),

φ = −Et [mt+1ξt+1] = − 1

Et [e−γYt+1 ]
Et
[
e−γYt+1ξt+1

]
. (5.8)

Given that aggregate consumption is Yt+1 = N
(
ā+ b̄ · ξt+1

)
,

Et
[
e−γYt+1ξt+1

]
= Et

[
e−γN(ā+b̄·ξt+1)ξt+1

]
= −γNb̄σ2

ξ · Et
[
e−γYt+1

]
. (5.9)

Thus, φ = γNb̄ · σ2
ξ .

Proof of Lemma 4.

We can rewrite the equation characterizing the value of the asset in vector notation, using

Φ = (1 − φ)′ and notation from (3.5), as follows:

pit =
1

R− 1
Et
[
ai − φbi

]
=

1

R− 1
Φ′ · µit. (5.10)

Price changes are then

pit − pit−1 =
1

R− 1
Φ′
(
µit − µit−1

)
=

1

R− 1

Φ′Σtxt
σ2
ε

·
(
Y i
t − Et−1,ξt

[
Y i
t

])
, (5.11)

whereas the second equality follows from equation (3.14) and replacing
(∑t

k=1 xkx
′
k

)−1
=

Σt
σ2
ε
as per (3.15). We use expression (5.11) together with equation (3.17) to write λ as

λ =
Φ′Σtxt
σ2
ε

·
√
V art−1,ξt

[
Y i
t

]
. (5.12)

Note that

V art−1,ξt

[
Y i
t

]
= V art−1,ξt

x′t
 ai

bi

+ εit

 = x′tΣt−1xt + σ2
ε (5.13)

and
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Σtxt
(
x′tΣt−1xt + σ2

ε

)
= σ2

εΣt−1xt, (5.14)

whereas the last expression obtains by replacing xtx′t = σ2
ε

(
Σ−1
t − Σ−1

t−1

)
, again using equation

(3.15). We can now rewrite the above expression (5.12) for λ as

λ =
Φ′Σt−1xt√
x′tΣt−1xt + σ2

ε

. (5.15)

Finally, to obtain the expression for λ in terms of observables, we substitute Σt−1 from equation

(3.15).

Proof of Proposition 1.

Since, by lemma 4,

V art−1,ξt

[
Φ′
(
µit − µit−1

)]
= V art−1,ξt

λ · Y i
t − Et−1,ξt

[
Y i
t

]√
V art−1,ξt

[
Y i
t

]
 = λ2, (5.16)

we have

λ2 = V art−1,ξt

[
Φ′ (µt − µt−1)

]
= Φ′V art−1,ξt [(µt − µt−1)] Φ =

Φ′ (Σt−1 − Σt) Φ = Φ′Σt−1Φ− Φ′ΣtΦ. (5.17)

Note that Φ′Σt−1Φ does not depend on ξt. Hence, the maximum of λ2 and hence of λ is

attained when Φ′ΣtΦ is minimized. Given that

ΦΣtΦ =
σ2
ε/t

ξ2
t − (ξt)2

(
1 −φ

) ξ2
t −ξt

−ξt 1


 1

−φ

 =

σ2
ε

t
· ξ

2
t + 2 · φ · ξt + φ2

ξ2
t − (ξt)2

=
σ2
ε

t
·

(
1 +

(
ξt + φ

)2
ξ2
t − (ξt)2

)
, (5.18)

the minimum is attained when

ξt = −φ (5.19)
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or, equivalently, when ξt = −t · φ−
∑t−1

k=1 ξk.

Proof of Proposition 2.

As in proposition 1

λ2 = Φ′Σt−1Φ− σ2
ε

t
·

(
1 +

(
ξt + φ

)2
ξ2
t − (ξt)2

)
(5.20)

Consider

H =

(
ξt + φ

)2
ξ2
t − (ξt)2

=
(y + ξt + tφ)2

t2ξ2
t − (y + ξt)

2
=
A+Bξt
C −Dξt

(5.21)

where y = (t− 1)ξ, and

A = (y + tφ)2 + ξ2
t , B = 2 (y + tφ) ,

C = t2ξ2
t − y2 − ξ2

t , D = 2y. (5.22)

Then

λ2
ξt=−x > λ2

ξt=+x ⇔

Hξt=+x > Hξt=−x ⇔ A ·D +B · C > 0. (5.23)

The last equation is equivalent to

f(y) =
[
(y + tφ)2 + x2

]
y + (y + tφ)

(
t2ξ2

t − y2 − x2
)
> 0, (5.24)

whereas f(y) is an increasing function of y. Moreover, f(0) > 0 and f
(
−
√
t2ξ2

t + x2

)
< 0.

Thus, a negative y∗ = (t− 1) · ξ∗ exists such that

• λ2 [ξt = −x] > λ2 [ξt = +x] for ξ > ξ∗ , and

• λ2 [ξt = −x] < λ2 [ξt = +x] for ξ < ξ∗.

36



Proof of Proposition 3.

Since the distributions of ξt and correspondingly of ξ are symmetric, to prove the propo-

sition, it is sufficient to show that

1

2
λ
(
ξt = −x, ξ = +y

)
+

1

2
λ
(
ξt = −x, ξ = −y

)
>

1

2
λ
(
ξt = x, ξ = +y

)
+

1

2
λ
(
ξt = x, ξ = −y

)
, (5.25)

or equivalently,

X =
(
λ
(
ξt = +x, ξ = +y

)
− λ

(
ξt = −x, ξ = −y

))
−

(
λ
(
ξt = −x, ξ = +y

)
− λ

(
ξt = x, ξ = −y

))
< 0. (5.26)

From lemma 4

λ = σε
ξ2 + φξ −

(
φ+ ξ

)
ξt√

(t− 1)V

√(
ξ − ξt

)2
+ tV

, (5.27)

where V = ξ2 −
(
ξ
)2. Thus,

X = 2φσε
y − x√

(t− 1)V
√

(y − x)2 + tV
− 2φσε

y + x√
(t− 1)V

√
(y + x)2 + tV

(5.28)

As a result, X < 0 is equivalent to

y + x√
(y + x)2 + tV

>
y − x√

(y − x)2 + tV
. (5.29)

The last expression holds for positive x and y, which proves the proposition.

Proof of Lemma 5.

In the proof of lemma 4 we derived

vart−1,ξt

[
Y i
t

]
= x′tΣt−1xt + σ2

ε , (5.30)
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λ =
Φ′Σt−1xt√
x′tΣt−1xt + σ2

ε

. (5.31)

Substituting

Σt−1 =

 σ2
a σab

σab σ2
b

 (5.32)

into the above expressions yields the desired result.

Proof of Proposition 4.

The derivative of log of λ with respect to ξt is

dlog (λ)

dξt
=

−
(
φσ2

b − σab
)

σ2
a − φσab − (φσ2

b − σab)ξt
−

σab + σ2
b ξt

σ2
a + 2σabξt + σ2

b ξ
2
t + σ2

ε

=
−M(

σ2
a − φσab − (φσ2

b − σab)ξt
) (
σ2
a + 2σabξt + σ2

b ξ
2
t + σ2

ε

) , (5.33)

where

M =
(
φσ2

b − σab
)
·
(
σ2
a + 2σabξt + σ2

b ξ
2
t + σ2

ε

)
+
(
σ2
a − φσab −

(
φσ2

b − σab
)
ξt
) (
σab + σ2

b ξt
)

=

= φ
(
σ2
aσ

2
b − σ2

ab

)
+ σ2

ε

(
φσ2

b − σab
)

+ ξt
(
σ2
aσ

2
b − σ2

ab

)
. (5.34)

The maximum is at the value for ξt at which M is equal to 0. Therefore,

ξλmax = −
φ
(
σ2
aσ

2
b − σ2

ab

)
+ σ2

ε

(
φσ2

b − σab
)

σ2
aσ

2
b − σ2

ab

= −φ
(

1 +
σ2
εσ

2
b

σ2
aσ

2
b − σ2

ab

)
+

σ2
ε

σ2
aσ

2
b − σ2

ab

σab. (5.35)

Proof of Proposition 5

Because Et−1

[
Rit
]

=
ait−1

pit−1
, the third moment is

Et−1

[(
Rit − Et−1

[
Rit
])3]

=
1(

pit−1

)3Et−1

[
X3
]
, (5.36)

where

X = β
(
Y i
t − Et−1,ξt

[
Y i
t

])
+ bit−1ξt (5.37)
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β =
1

1−R
λ√

V art−1,ξt

[
Y i
t

] + 1. (5.38)

We can then calculate Et−1

[
X3
]
as

Et−1

[
X3] = Et−1

[
β3
(
Y it − Et−1,ξt

[
Y it

])3]
︸ ︷︷ ︸

=0

+3 · Et−1

[
β2
(
Y it − Et−1,ξt

[
Y it

])2
· bit−1ξt

]
+

+3 · Et−1

[
β
(
Y it − Et−1,ξt

[
Y it

])
· (bit−1ξt)

2
]

︸ ︷︷ ︸
=0

+Et−1

[(
bit−1ξt

)3]
︸ ︷︷ ︸

=0

=

3 · Et−1

[
β2V art−1,ξt

[
Y it

]
· bit−1ξt

]
= 3 · Et−1

[(
λ

1 −R
+
√
V art−1,ξt [Y it ]

)2

· bit−1ξt

]
. (5.39)

If ξ > 0 then both λ and V art−1,ξt

[
Y i
t

]
= σ2

a + 2σabξt + σ2
b ξ

2
t + σ2

ε are larger in a recession

in comparison with a boom of equal magnitude (see proposition 2 and note that σab < 0 for

ξ̄ > 0). Thus, the above expectation is negative, which proves the proposition.
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Figure 1: Illustration of how the market reaction to news depends on prior beliefs.
Simulation plot of the earnings response coefficient, λ (ξt) , over the realization of the market-wide shock, ξt, for different

histories, i.e,. average of past shocks ξ. Unless ξ is strongly negative, the part of the graph left of ξt = 0 tends to be

higher than the part to the right of ξt = 0; that is, the earnings response is higher in downturns than in upturns; in

other words, unless ξ is very low, the variance of price response to an observation is higher in downturns than in upturns.

Simulation results for φ = 0.2, ξ2 = 0.36, t = 10, σε = 0.1.
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Figure 2: Non-parametric estimate of the earnings response coefficient as a function of the
market return.
We estimate the equation CARi,t = λ (ξt)ESi,t + εi,t using local polynomial regressions of order zero with an Epanech-

nikov kernel of 0.1 bandwidth. The cumulative announcement returns (CAR) are calculated using CRSP daily returns

from January 1984 to December 2012 from the close on the day before the announcement to the close on the day after the

announcement. The earnings surprises (ES) are defined as ES =
EPS−E[EPS]
st.dev.[EPS]

, where EPS is a stock’s actual announced

earnings per share; E [EPS] is the expected earnings per share averaged across analysts from the IBES unadjusted detail

files; st.dev. [EPS] is the standard deviation of expected earnings per share across analysts from the IBES unadjusted

detail files. The graph shows how the ERC λ depends on the state of the economy ξt, which is represented by the market

return in the reference period (i.e., the period during which earnings are earned).
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Figure 3: Non-parametric estimate of the earnings response coefficient as a function of GDP
growth.
We estimate the equation CARi,t = λ (ξt)ESi,t + εi,t using local polynomial regressions of order zero with an Epanech-

nikov kernel of 1.5 bandwidth. The cumulative announcement returns (CAR) are calculated using CRSP daily returns

from January 1984 to December 2012 from the close on the day before the announcement to the close on the day after the

announcement. The earnings surprises (ES) are defined as ES =
EPS−E[EPS]
st.dev.[EPS]

, where EPS is a stock’s actual announced

earnings per share; E [EPS] is the expected earnings per share averaged across analysts from the IBES unadjusted detail

files; st.dev. [EPS] is the standard deviation of expected earnings per share across analysts from the IBES unadjusted

detail files. The graph shows how the ERCλ depends on the state of the economy ξt, which is represented by the real

US GDP growth rate in the quarter with the largest intersection with the reference period (i.e., the period during which

earnings are earned).
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Figure 4: Predicted earnings response coefficients for a given aggregate shock.
For each announcement, we estimate the investors’ pre-announcement beliefs

(
E

[
ai
]

E
[
bi
] )

and calculate ξ and ξ2 from

the regression Y it = ai + biξt + εit using the the previous five years of quarterly observations. Then we calculate the

averages of
E[ai]
σε

,
E[bi]
E[ai]

, ξ, and ξ2 over all announcements. From these average values, we predict how ERCs depend on

ξt according to equation (4.8).
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Table 1: Summary statistics.
The table contains summary statistics (means, standard deviations, percentiles) for all earnings announcements in our

sample from January 1984 to December 2012. The cumulative announcement returns (CAR) are calculated using CRSP

daily returns from the close on the day before the announcement to the close on the day after the announcement. The

earnings surprises (ES) are defined as ES =
EPS−E[EPS]
st.dev.[EPS]

, where EPS is a stock’s actual announced earnings per share;

E [EPS] is the expected earnings per share derived as an average of analyst forecasts and st.dev. [EPS] is the standard

deviation of expected earnings per share across all analysts as reported in the IBES unadjusted detail files. The statistics

are presented separately for upturns and downturns, using three different downturn definitions: (i) NBER recessions, (ii)

market return net of risk-free rate less than sample average, (iii) real GDP growth is less than average in 1984-2012.

Full sample
N Mean St.Dev. p25 p50 p75

CAR 195924 0.00077 0.08374 -0.03346 0.00027 0.03514
CAR, NBER, DT = 1 25172 0.00278 0.11042 -0.04607 0.00104 0.05004
CAR, NBER, DT = 0 170752 0.00047 0.07905 -0.03194 0.00020 0.03347
CAR, Market, DT = 1 99142 0.00024 0.09125 -0.03618 0.00029 0.03749
CAR, Market, DT = 0 96782 0.00131 0.07528 -0.03086 0.00025 0.03296
CAR, GDP, DT = 1 97605 0.00074 0.09099 -0.03671 0.00016 0.03822
CAR, GDP, DT = 0 98319 0.00079 0.07586 -0.03055 0.00034 0.03228
ES 195924 0.39900 2.78480 -0.75000 0.33333 1.66667
ES, NBER, DT = 1 25172 0.28031 2.95922 -1.00000 0.26158 1.66667
ES, NBER, DT = 0 170752 0.41650 2.75773 -0.75000 0.33500 1.66667
ES, Market, DT = 1 99142 0.36513 2.81177 -0.80000 0.33333 1.66667
ES, Market, DT = 0 96782 0.43370 2.75647 -0.73684 0.37500 1.67000
ES, GDP, DT = 1 97605 0.43329 2.86385 -0.80000 0.40000 1.83333
ES, GDP, DT = 0 98319 0.36496 2.70362 -0.75000 0.33333 1.50000
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Table 4: Regression of CAR on Q0,t−1 · ESt and Q1,t−1 · ξt · ESt as regressors.
In this table we regress the cumulative abnormal announcement return (CAR) on the product of Q0,t−1 and Q1,t−1 · ξt
with earnings surprises (ES), where Q0,t−1 and Q1,t−1 are the parameters of the linearization of Earning Response

Coefficient (ERC), predicted by the theory: ERC ≈ Q0,t−1 +Q1,t−1 · ξt. In specification (1) the actual values for Q0,t−1

and Q1,t−1 are used. In specification (2) we smooth the variables with a bandwidth of 5 months. In specification (3) we

use simple averages of Q0,t−1 and Q1,t−1 corresponding to extreme smoothing to the time series average.

(1) (2) (3)
Actual Smoothed Average

ES x Q0 0.757∗∗∗ 0.761∗∗∗ 0.772∗∗∗

(46.72) (47.67) (49.51)

ES x Q1 x ξ 0.0711∗∗ 0.104∗∗∗ 0.210∗∗∗

(2.21) (2.94) (3.50)
N 195924 195924 195924
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

50


	Schmalz Common-Ownership.pdf
	Introduction
	Related Literature
	Model and Hypothesis Development
	Setup
	Product Market Competition
	Managers
	Owners

	Analysis

	Data
	Measuring Common Ownership Concentration
	Data Description
	Common Ownership Across Industries and Over Time

	Panel Regressions
	Empirical methodology
	WPS Panel Regression Results
	Discussion

	IV Strategy and Results
	Variation in Common Ownership from a Mutual Fund Scandal
	Summary

	Conclusion
	Common Ownership and Relative Performance Evaluation
	Setup
	Results

	Moral Hazard, Risk Aversion, and Multi-tasking


	Schmalz Revealing Downturns.pdf
	Introduction
	Related Literature
	Model
	Economy
	Beliefs
	Valuation
	Intuition of the Main Result
	Formal Results
	Updating Beliefs
	The Price Response to News Depends on Aggregate States
	Which Conditions Maximize the Price Response to News?
	Results about Average Price Responses 
	ERC in terms of beliefs
	Dispersion and Skewness

	Model Limitations and Extensions

	Empirical Results
	Empirical Methodology, Variable Definitions, and Data Sources
	Empirical Methodology
	Variable Definitions and Data Sources
	Summary Statistics

	Empirical Results
	Non-parametric Estimation Results
	OLS Estimation Results 

	Test of Quantitative Predictions
	Robustness Test

	Conclusion

	6879abstract.pdf
	Abstract




