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The Performance of Core-Selecting Auctions: An Experiment∗

Alexander Heczko, Thomas Kittsteiner, and Marion Ott†

RWTH Aachen University

April, 2018

Abstract

Combinatorial auctions, in particular core-selecting auctions, have increasingly at-
tracted the attention of academics and practitioners. We experimentally analyze core-
selecting auctions under incomplete information and find that they perform better than
the Vickrey auction. The proportions of efficient allocations are similar in both types of
auctions, but the proportions of stable (core) allocations and the revenue are higher in
the core-selecting auctions. This is in particular true for an independent private values
setting in which theory does not predict this better performance of the core-selecting auc-
tion. We trace the causes of the performance differences back to patterns in bids. The
core-selecting auctions provide incentives for overbidding the own valuation and – under
certain conditions – also for bid-shading, which can hamper performance. In the experi-
ment, bidders react in the predicted direction to these incentives, though less pronouncedly
than predicted.

JEL classification: D44, C72, D82, C92
Keywords: Combinatorial auction, VCG mechanism, core-selecting auction, experiment

1 Introduction

Combinatorial auctions are widely applied for the procurement or sale of multiple heteroge-

neous services or goods like bus services, school meals, and the sale of telecommunications

spectrum licenses (e.g. Ausubel and Baranov, 2014; Cantillon and Pesendorfer, 2006; Lunan-

der and Lundberg, 2012; Olivares et al., 2012). As a distinguishing feature they allow bidders

to express complex preferences through bids on subsets of items. Allowing for such a compre-

hensive bidding space provides new challenges for auction design.

∗Financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
grants KI 1915/1-1 and OT 487/2-1 is gratefully acknowledged. We thank participants of the 2017 ESA World
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INFORMS Annual Meeting, and of the research seminar in economics at the University of Bayreuth for helpful
comments.
†Email: alexander.heczko@rwth-aachen.de, thomas.kittsteiner@rwth-aachen.de, marion.ott@rwth-aachen.de.
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A prevalent objective of auction designs is to achieve an efficient allocation at competi-

tive prices, which is typically subsumed by the aim of achieving a stable allocation, i.e., an

allocation that is in the core of the associated cooperative game (e.g. Ausubel and Milgrom,

2005).1 This requirement has led theorists to suggest a new class of combinatorial auctions

– the bidder-optimal core-selecting auctions – which are being increasingly adopted by prac-

titioners.2 Core-selecting auctions select an allocation that is in the core based on reported

values, i.e., bids. Reporting the valuations truthfully is, however, usually not in the interest

of bidders and as a result the equilibrium allocation may not be in the core.3 Under complete

information, misreporting in equilibrium may still result in an allocation in the core (Day

and Milgrom, 2008). However, this is typically not the case under incomplete information

(Beck and Ott, 2013; Goeree and Lien, 2016). Motivated by these theoretical findings, we ad-

dress the following empirical research question: How do core-selecting auctions perform under

incomplete information?

In a laboratory experiment, we investigate efficiency, (allocative) stability, and revenue

properties of a core-selecting auction under incomplete information and, as a benchmark, of

the Vickrey auction.4 For two different informational settings, we test specific hypotheses on

the performance of these auctions based on the respective unique Bayesian Nash equilibrium in

undominated strategies. We furthermore relate observed differences from predicted outcomes

to systematic deviations in bidding behavior from equilibrium behavior.

We concentrate on a specific bidder-optimal core-selecting auction. This constitutes the

only core-selecting auction for which Bayesian Nash equilibria in undominated strategies have

been characterized for an independent private values setting with bids allowed on all subsets

of items (by Beck and Ott, 2013) and which exhibits some additional advantageous features

for an experimental investigation (for details, see Section 2.1). In addition, we choose the

Vickrey auction as a natural benchmark because its presumed deficiencies have motivated

scholars to develop core-selecting auctions as an alternative (Ausubel and Milgrom, 2002).5 It

1An allocation is in the core if there is no group of bidders and the seller in which everybody could be made
better off by reallocating objects and payments within this group. We therefore term core allocations stable.

2Core-selecting payment rules have been used since 2005 worldwide in combinatorial clock auctions for
telecommunications spectrum, e.g., in Australia, Austria, Canada, the Netherlands, and the UK (Ausubel and
Baranov, 2014; Cramton, 2013). The payment rule is applied in the final (proxy bidding) round of this auction.

3Whereas the core-selecting auction cannot guarantee stable allocations, it nevertheless assures that based on
reported valuations (i.e. bids), allocations are in the core. This does not prevent incentives for renegotiations,
but it might increase non-successful bidders’ acceptance of auction outcomes because the opponents’ joint
payments are never below their reported values.

4The Vickrey auction is a Vickrey-Clarke-Groves mechanism.
5A central concern is the ability of the Vickrey auction to generate stable allocations. Instability of the

Vickrey auction arises because it may generate low revenue in relation to the truthfully reported valuations,
i.e., non-competitive prices. Even zero revenue may occur, and did occur for example in the recent Incentive
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also provides a weakly dominant strategy to bid the valuation (and thus bidding is robust to

changes in the informational environment).

Both core-selecting and Vickrey auctions assign items to bidders by maximizing the sum of

(package) bids. In the Vickrey auction, each bidder pays his externality on the other bidders

and the seller. In a core-selecting auction, each group of bidders pays in sum at least its

externality on the remaining bidders and the seller, and no one pays more than his reported

valuation. In a bidder-optimal core-selecting auction, in addition, the price vector is not

Pareto-dominated by any other price vector that fulfills these requirements.6

To keep the experimental design simple, we focus on auctions of two items with one global

and two local bidders. One local bidder is only interested in buying the first item, the other

local bidder is only interested in the second item,7 and the global bidder is only interested in

the bundle of both items.8 Valuations (for desired items) are independently drawn. A bidder

may submit a multi-dimensional bid that involves reported values for individual items and for

the bundle.

The local bidders’ prevalent problem in a core-selecting auction is the threshold problem

and, in particular, the free-rider aspect that it involves. In order to each win an item, the sum

of their bids (on their respective desired item) must exceed the bid (the threshold) of the global

bidder for the bundle. However, if their bids for the items are successful, they jointly have

to pay the global bidder’s bid and they each want to free ride on the other’s high payment.

A peculiarity of the core-selecting auction is that a local bidder can reduce her payment by

increasing the other local bidder’s payment (Beck and Ott, 2013). She can increase the other’s

payment by increasing his externality, which tightens the constraint on his payment. She can

increase his externality by shading her bid for her desired item below her valuation and by a

bid spread, i.e., by a positive difference between her bid for the bundle and her bid for the

desired item. Bid shading decreases her reported value for the realized trade. The bid spread

may increase the reported most valuable trade between her, the global bidder, and the seller.

The information held by local bidders affects their exposure to the threshold problem and

therefore the equilibrium predictions for the core-selecting auction.9 In our first informational

setting, a standard independent private values setting, bid shading involves the risk of not

Auction for reallocating spectrum in the US (Ausubel et al., 2017, Section 8.2).
6When there are only two items, these bidder-optimal price vectors minimize revenue in the reported core.
7Our local bidders may complement each other to outbid the global bidder. If no bidders are complementary,

truthful bidding is an equilibrium in both the bidder-optimal core-selecting auctions and the Vickrey auction.
8This setting captures for example local and global geographic interests of mobile communication providers.
9Bidders may know more than their private valuation, e.g., because local bidders might have identical

business models, or because, depending on the rules on eligible bids in the previous rounds, bidders in the
final auction round of a combinatorial clock auction may have learned about their opponents’ interests and the
possible final assignments (e.g., Ausubel and Cramton, 2011).
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receiving the item (by missing the threshold). Furthermore, the optimal bid spread even

amounts to overbidding (the own valuation) on the bundle and comprises the risk of receiving

the bundle instead of the item at a higher price. In the second informational setting, which

we call the semi-private values setting, local bidders also learn each other’s valuations, which

allows them to correctly infer the other local bidder’s equilibrium bid. This additional infor-

mation allows them to circumvent the risks that arise with independent private values. As

a consequence, an ex-post equilibrium exists and a local bidder’s equilibrium bid does not

involve bid shading. She bids her valuation for her desired item and fully free-rides on the

other local bidder by bidding with a large bid spread that depends on the other local bidder’s

(known) bid.

Due to the misreporting of valuations, the core-selecting auction is predicted to perform

worse than the Vickrey auction in terms of efficiency and stability in the independent private

values setting. Bid shading and bid spread cause inefficient assignments of items. Inefficiency

or low payments of the global bidder (as a result of a local bidder’s bid shading) prevent

core allocations. With semi-private values, truthful bids for the desired item render the core-

selecting auction efficient (like the Vickrey auction) and the large bid spread assures that

payments are sufficiently high to generate core allocations and a higher revenue than the

Vickrey auction.

The main experimental findings are as follows:

1. The core-selecting auction achieves higher revenue and higher proportions of stable allo-

cations than the Vickrey auction in either informational setting. As another favorable

property, it avoids zero-revenue outcomes, which are prevalent in the Vickrey auction.

2. In the independent private values setting, the core-selecting auction performs better than

predicted with respect to stability and revenue. With semi-private values, it performs simi-

larly to the first setting but fails to achieve the predicted level of revenue and full stability.

3. Bid spread and bid shading are more prevalent in the core-selecting auction than in the

Vickrey auction. However, as compared to predictions, bid spreads are less frequent and

their size is smaller in either informational setting. Furthermore, bid shading is not pre-

dicted but is common with semi-private values, and with independent private values it is

common but its size is smaller than predicted.

In the Vickrey auction, average revenue and proportions of efficient allocations are largely in

line with theoretical predictions but stable allocations are less frequent than predicted in both

informational settings. Bidders often deviate from truthful bidding, as is commonly observed in
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experiments,10 but they bid their valuation more frequently than in the core-selecting auction.

In sum, the observation that with independent private values bids deviate less from the

valuations than predicted can explain the good performance of the core-selecting auction.

If bids equal valuations, these auctions achieve their desirable (and eponymous) properties.

Bidding closer to valuations than predicted results in a better than predicted performance in

the independent private values setting, and engaging in bid shading instead of focusing on

the bid spread results in a similar (but worse than predicted) performance in the semi-private

values setting.

Literature Review

Much of the existing experimental research on combinatorial auctions is motivated by spectrum

auctions. These studies typically perform “wind tunnel” tests and compare outcomes of differ-

ent auction formats, e.g., mechanisms considered by the Federal Communications Commission

of the USA for spectrum auctions, in settings chosen to closely resemble real-life settings.

They investigate the impact of the chosen auction format on efficiency, revenue, and bidding

behavior (without adhering to any equilibrium analyses). Among the mechanisms studied

without hypotheses based on equilibrium predictions are mechanisms with and without pack-

age bids or restrictions on possible packages as well as dynamic and static auctions (Banks

et al., 2003; Brunner et al., 2010; Bichler et al., 2013; Goeree and Holt, 2010; Kazumori, 2010;

Kagel et al., 2010, 2014; Kwasnica et al., 2005; Ledyard et al., 1997; Porter, 1999; Porter et al.,

2003; Scheffel et al., 2012). Some of these apply core-selecting rules in the final proxy-bidding

phase of the combinatorial clock auction (Kazumori, 2010; Bichler et al., 2013). Experiments

that are based on an equilibrium analysis investigate combinatorial sealed-bid Vickrey auc-

tions (Chen and Takeuchi, 2010; Isaac and James, 2000) as well as combinatorial sealed-bid

pay-as-you-bid and Dutch auctions (Chernomaz and Levin, 2012; Kokott et al., 2017). The

experiment on core-selecting auctions closest to ours is by Marszalec (2014). An important

difference is that he disallows multi-dimensional bids, which we consider an essential element

of combinatorial auctions. With this restriction, equilibrium predictions exist for the payment

rules that he implements, the so-called Vickrey-nearest and reference payment rules (Ausubel

and Baranov, 2010; Goeree and Lien, 2016). He compares several sealed-bid auctions: the

Vickrey auction, the pay-as-bid auction, and two bidder-optimal core-selecting auctions in an

independent private values setting with two local bidders and one global bidder. His subjects

10In combinatorial Vickrey auctions, bidders tend to bid below their valuations in the study by Chen and
Takeuchi (2010), who classify 7% of their bidders as truthful bidders, 73% as underbidders, and 20% as over-
bidders. Isaac and James (2000) do not find evidence of a mean deviation of the bid from the valuation. For
an overview for single-unit Vickrey auctions, see Kagel and Levin (2016).
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submit a one-dimensional bid for their desired item or bundle, which disallows the use of bid

spreads.11 If bidders were restricted to such bids in our core-selecting auction with indepen-

dent private values, the predicted revenue, total surplus, and payoff of our subjects would be

lower and the proportion of stable allocations would be higher than without this restriction

(see Beck and Ott, 2013). In the setup of Marszalec (2014), the Vickrey auction is predicted

to perform better than the core-selecting auctions with respect to revenue and efficiency but

the data provide no evidence of differences between these auctions (whereas the pay-as-bid

auction outperforms them). He finds indications of tacit collusion in his recurring Vickrey

auctions by local bidders who submit high bids that decrease each other’s payments.

2 Theoretical Considerations and Hypotheses

This section briefly summarizes the theoretical findings that underlie our experimental setup.

For a more comprehensive presentation, including proofs, see Beck and Ott (2013). We restrict

our attention to Bayesian Nash equilibrium in undominated strategies. Our hypotheses follow

directly from the theoretical predictions.

2.1 Setup and Theory

A seller offers two heterogeneous items, A and B, to three bidders. Bidder 1 (a local bidder)

is only interested in item A and assigns zero marginal value to item B, (local) Bidder 2 is only

interested in item B and assigns zero marginal value to item A, and (global) Bidder 3 is only

interested in the bundle AB of both items and single items have zero value to him. We denote

bidders’ valuations and bids for the possible packages of items according to Table 1 and refer

to Bidder 2 as female and to Bidders 1 and 3 as male, to facilitate comprehension.

We consider two informational settings. In all settings the distribution of valuations and the

valuation structure (i.e., the bidders’ zero valuations for certain items) is common knowledge.

We assume that v1 ∼ U [0, 100], v2 ∼ U [0, 100], and v3 ∼ U [0, 200]. Before submitting bids, in

the independent private values setting, each Bidder i learns only his or her valuation vi. In

the semi-private values setting, local Bidders 1 and 2 both learn v1 and v2 (but not v3), and

the global Bidder 3 learns only v3.

11Further differences to our setting are: we implement two informational settings whereas he focuses on
independent private values; we do not severely restrict bids in the Vickrey auction whereas he restricts subjects
either to bid at most their valuation or gives an explicit hint of potential losses in the case of overbidding; his
core-selecting auctions use different payment rules; our subjects bid for thirty rounds in one auction format
and do not interact with other human bidders (which excludes repeated-game effects) whereas his subjects bid
in each of the four auction types for ten rounds with randomly assigned role as local or global bidder in each
round, and they interact repeatedly with random rematching within the room after each round.
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Table 1: Valuations of the three bidders and notation for their bids

Package ∅ A B AB

Valuation of Bidder 1 0 v1 0 v1
Valuation of Bidder 2 0 0 v2 v2
Valuation of Bidder 3 0 0 0 v3

Package A B AB

Bid b1 of Bidder 1 bA1 bB1 bAB
1

Bid b2 of Bidder 2 bA2 bB2 bAB
2

Bid b3 of Bidder 3 bA3 bB3 bAB
3

In all auctions, bidders submit non-negative bids bi = (bAi , b
B
i , b

AB
i ). These are exclusive

(XOR) bids, that is, at most one bid of a bidder is successful. Successful bids are determined

by maximizing the sum of bids over feasible assignments of items to bidders, i.e., by:

arg max{bA1 + bB2 , b
A
1 + bB3 , b

A
2 + bB1 , b

A
2 + bB3 , b

A
3 + bB1 , b

A
3 + bB2 , b

AB
1 , bAB

2 , bAB
3 }.

In the case of a tie, awarding individual items is prioritized over awarding the bundle, and

remaining ties are broken randomly.

The payoff πi of Bidder i who receives a package of items at a price pi equals his valuation for

the awarded package minus the payment pi. A bidder who receives no item has a payoff of zero

(unsuccessful bidders incur zero payments). The seller obtains the revenue π0 = p1 + p2 + p3.

Each bidder maximizes his or her expected payoff. Denote the successful bid of Bidder i by

b̂i, with b̂i ∈ {0, bAi , bBi , bAB
i } and b̂i = 0 if i is not awarded any item.

Vickrey auction Each Bidder i pays his or her reported externality on the other bidders:

pi = pVi = max{bAj + bBk , b
A
k + bBj , b

AB
j , bAB

k } − b̂j − b̂k for i, j, k ∈ {1, 2, 3}, i 6= j 6= k.

Both with independent and with semi-private values, the equilibria in undominated strategies

are given by b1 = (v1, 0, b
AB
1 ), b2 = (0, v2, b

AB
2 ), and b3 = (0, 0, v3), with bAB

1 ≤ v1 and

bAB
2 ≤ v2. All these equilibria are outcome equivalent and in the salient equilibrium, bids

equal valuations.

Core-selecting auction In a bidder-optimal core-selecting auction, payments have to fulfill

min p1 + p2 + p3

s.t. p1 + p2 + p3 ≥ 0

pi + pj ≥ max{bAk , bBk , bAB
k } − b̂k for i, j, k ∈ {1, 2, 3}, i 6= j 6= k

pi ≥ pVi for i ∈ {1, 2, 3}.
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Thus, each bidder and each pair of bidders have to pay at least their reported externality on

the remaining bidders. The conditions ensure that bidders that are not awarded any item pay

nothing, a bidder does not pay more than his valuation for the item or bundle he receives, and

a bidder who wins both items pays pi = pVi .

If two bids are successful, the above constraints do not uniquely pin down the feasible

payments. There are infinitely many bidder-optimal core-selecting auctions that differ in the

payment rule. Our selection of the payment rule is based on the following criteria. First, an

equilibrium for an unrestricted bidding space has been identified for the incomplete information

settings. Second, two out of three bidders have simple undominated or weakly dominant strate-

gies. They can therefore easily be computerized, and the strategies can easily be explained to

the subjects in the experiment. Third, subjects’ equilibrium bids comprise interesting features

like bid shading and bid spread (see below). Fourth, the subjects’ strategies differ from those

of the computerized bidders and, therefore, it is not optimal to imitate their bidding behavior.

Already each of the first two criteria leaves us with a so-called favored-bidder rule (Beck and

Ott, 2013). We apply the favored-bidder payment rule such that Bidder 1 pays p1 = pV1 .12

With any payment rule, the threshold problem exists and at least one bidder can reduce the

payment by bid shading or a bid spread. In the semi-private values case it holds that in any

equilibrium with any payment rule bid spreads occur and the equilibrium strategies with our

payment rule remain mutual best responses. Therefore, we are confident that our experimental

analysis provides insights that hold beyond a specific choice of the payment rule.

In our auction, Bidder 1’s undominated strategies are b1(v1) = (v1, 0, b
AB
1 ) with bAB

1 ≤ v1,
which are all outcome equivalent (for any b2 and b3). Bidder 3 has a weakly dominant strategy

to bid his valuation, i.e., b3(v3) = (0, 0, v3). Bidder 2 never wants to win item A, and we

concentrate w.l.o.g. on equilibria with bA2 (v2) = 0 (all other equilibria are outcome equivalent).

Given b1(v1) = (v1, 0, v1), b3(v3) = (0, 0, v3), and bA2 (v2) = 0, Bidder 2’s payment is:

p2 =


0 if b̂2 = 0

max{v1, v3} if b̂2 = bAB
2

max{v3 − pV1 , pV2 } = max{min{v3, v3 − bAB
2 + bB2 , b

B
2 }, 0} if b̂2 = bB2 .

For the independent private values setting, in equilibrium, Bidder 2’s strategy involves

bB2 (v2) and bAB
2 (v2) as depicted in Figure 1. With semi-private values, Bidder 2 can condition

her bid on v1 and v2. Bidding according to b1(v1, v2) = (v1, 0, v1), b2(v1, v2) = (0, v2, v1 + v2),

12Bidder 1 is called “favored” because he pays the lowest possible payment that fulfills the core constraints.
Note that with this favored-bidder payment rule, the (computerized) equilibrium strategies of Bidders 1 and 3
with independent private values are the same as with semi-private values.
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Figure 1: Equilibrium bidding functions bB2 (v2) and bAB
2 (v2) in the core-selecting auction with

independent private values (LHS) and semi-private values (RHS) (Beck and Ott, 2013).

and b3(v3) = (0, 0, v3) is an equilibrium (and all other equilibria are outcome equivalent).13

Equilibrium allocations An allocation is efficient if the items are awarded to maximize

the sum of values. An allocation is in the core (or stable) if and only if it is efficient and

payments satisfy

pi + pj ≥ max{vAk , vBk , vAB
k } − v̂k for i, j, k ∈ {1, 2, 3}, i 6= j 6= k

v̂i ≥ pi ≥ max{vAj + vBk , v
A
k + vBj , v

AB
j , vAB

k } − v̂j − v̂k for i, j, k ∈ {1, 2, 3}, i 6= j 6= k,

where v̂i is Bidder i’s valuation for his or her awarded package, ∅, A, B, or AB, in the efficient

allocation.

Table 2 shows the probability of an efficient allocation (π0, π1, π2, π3), the probability of an

allocation in the core (a stable allocation), and the expected revenue π0. The abbreviations

C-IP, V-IP, C-SP, and V-SP refer to the core-selecting auction (C) or Vickrey auction (V) and

the informational setting independent private values (IP) or semi-private values (SP).

Efficiency: The core-selecting auction by design generates allocations in the core, and, thus,

efficient allocations, if bidders bid their valuations. However, with independent private values,

Bidder 2 does not bid her valuation and the auction might inefficiently assign the bundle AB

to Bidder 3 or Bidder 2. As a result, theory predicts that an efficient allocation occurs only

with probability 0.84. Equilibrium allocations in C-SP, V-IP, and V-SP are efficient.

Stability: In equilibrium with independent private values, the core-selecting auction selects

13Note that our equilibrium with semi-private values is also an ex-post equilibrium.
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Table 2: Equilibrium predictions for v1 ∼ U [0, 100], v2 ∼ U [0, 100], and v3 ∼ U [0, 200]

Auction and Informational Setting C-IP C-SP V-IP & V-SP

Probability of an Efficient Allocation 0.84 1 1
Probability of a Stable Allocation 0.31 1 0.5
Revenue E[π0] 59.6 79.2 58.3

a core allocation with probability 0.31. In 98.5% of these core allocations, Bidders 1 and 2

are efficiently awarded items A and B and pay at least their externality on Bidder 3. With

semi-private values, the equilibrium allocation is always in the core. Allocations are efficient

and payments are high enough to satisfy the core constraints because the bids on desired

items are truthful. Notably, the core-selecting auction achieves an allocation in the core either

always (for semi-private values) or predominantly in cases where Bidders 1 and 2 win (for

independent private values), while the allocation from the Vickrey auction is in the core if and

only if Bidder 3 wins AB,14 which happens with probability 0.5.

Revenue: The predicted expected revenue in the Vickrey auction is 58.3, which is slightly

below the level in C-IP (59.6) and clearly below the level in C-SP (79.2). Notably, for every

realization of v1, v2 and v3, the predicted revenue in C-SP is higher than in V-SP.

Note that in the Vickrey auction it is possible that bidders receive an item at a price of

zero. The probability of zero revenue in equilibrium is 0.17. In the core-selecting auction,

zero revenue cannot occur given non-zero bids of Bidders 1 and 3. The maximum revenue in

equilibrium of the Vickrey auction is 200, which exceeds that of C-IP and equals that of C-SP.

2.2 Hypotheses

An auctioneer can usually choose the auction format, but not the informational setting. Thus,

we focus on comparing C-IP with V-IP as well as C-SP with V-SP. All hypotheses are based

on the unique equilibrium allocations and the equilibrium bidding strategies given in Table 2

and Section 2.1.

Auction performance We compare three key performance indicators of auctions: the pro-

portion of efficient allocations, the proportion of stable (core) allocations, and the revenue.

Hypothesis 1 (Efficiency). In the independent private values setting, the core-selecting auction

generates a lower proportion of efficient allocations than the Vickrey auction.

14There is one exception: If v1 + v2 = v3, then the allocation is in the core although Bidders 1 and 2 win.
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Hypothesis 2 (Stability). In the independent private values setting, the core-selecting auction

generates a lower proportion of core allocations than the Vickrey auction.

Hypothesis 3 (Stability). In the semi-private values setting, the core-selecting auction generates

a higher proportion of core allocations than the Vickrey auction.

Hypothesis 4 (Revenue). In the semi-private values setting, the core-selecting auction generates

a higher revenue than the Vickrey auction.

Bidding behavior In both informational settings, the core-selecting auction provides in-

centives to submit a higher bid for the bundle than for the single item, i.e., for a bid spread,

bAB
2 − bB2 > 0, for all valuations v2.

15 With independent private values, the equilibrium bids

comprise bid shading, bB2 < v2, for all v2. In the Vickrey auction, in contrast, bid spread and

bid shading do not occur in equilibrium.

Hypothesis 5 (Bid spread and bid shading). The proportion of bids with a bid spread is higher

in the core-selecting auction than in the Vickrey auction in both settings. With independent

private values, the proportion of bids with bid shading is higher in the core-selecting auction

than in the Vickrey auction.

3 Experimental Design

We implement five treatment conditions: two different auction rules (Vickrey auction, core-

selecting auction) in two informational settings (independent private values, semi-private val-

ues) plus one dynamic variant of an auction rule in one informational setting (core-selecting

auction with two stages and semi-private values). Each subject experiences one treatment

(between-subjects design). The first two auctions are described in Section 2.1 whereas the

auction with two stages is described below. We are mainly interested in the performance of

the core-selecting auction. We implement the Vickrey auction as our point of comparison for

the performance of the core-selecting auction in the two informational settings.

In each of 30 identical rounds, the subject had the role of Bidder 2 and bid against two

automated Bidders 1 and 3 that bid according to their respective weakly dominant strategy.

The valuation of Bidder 2 and the bids of Bidders 1 and 3 were drawn randomly at the begin-

ning of each round. The subject knew the distribution of bids of the other bidders, and in the

15Note, a bid spread can lead to Bidder 2 winning the bundle AB. For given bids of the opponents, her
payment if she wins AB in the core-selecting auction is weakly higher than if she wins B (max{v1, v3} ≥
max{min{v3, v3 − bAB

2 + bB2 , b
B
2 }, 0}). The incentive for the bid spread arises due to its reducing influence on

the payment in the case of winning the item B.
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Table 3: Bidder 2’s information in the informational settings

Informational setting Information of Bidder 2

Independent private values Realization of v2 ∼ U{1, 2, . . . , 100}
Distribution of bA1 = bAB

1 ∼ U{1, 2, . . . , 100}, bB1 = 0
Distribution of bAB

3 ∼ U{1, 2, . . . , 200}, bA3 = bB3 = 0

Semi-private values Realization of v2 ∼ U{1, 2, . . . , 100}
Realization of bA1 = bAB

1 ∼ U{1, 2, . . . , 100}, bB1 = 0
Distribution of bAB

3 ∼ U{1, 2, . . . , 200}, bA3 = bB3 = 0

semi-private values setting also the bid of Bidder 1 (see Table 3).16 The automation of Bidders

1 and 3 allowed us to keep as much control as possible of the subjects’ bidding environment,

to eliminate their strategic uncertainty, and to exclude repeated game and behavioral effects

of human interaction. This enables subjects to remain focused on the auction rules and allows

instructions to be kept as short and clear as possible while retaining the inherent complexity

of the auction rules. Bidder 2 had to decide on bB2 and bAB
2 , while bA2 was set to zero.17 For

bids bB2 and bAB
2 either no number (empty entry box) or any integer between 0 and 999 could

be chosen. At the end of each round, subjects learned their awarded item(s), their payment,

and their payoff. We provide translated instructions in Appendix D.

The payment rule of the core-selecting auction is complex and therefore we add a fifth

treatment, with semi-private values, designed to facilitate a subject’s problem of finding an

optimal strategy. In the fifth treatment, we allow Bidder 2 to revise her bids upwards after

she has learned which item(s) she has been assigned with her (preliminary) bids. We expect

that this two-stage version of the core-selecting auction (denoted C-SP-2) helps Bidder 2 by

allowing her to think separately about how to reduce payments in a second step.18. More

specifically, in the two-stage version of the core-selecting auction in the first stage, Bidders 1

and 3 submit final bids and Bidder 2 submits preliminary bids bB2 and bAB
2 . Then she learns

which item or bundle she would be awarded (none, B, or AB) based on the preliminary bids.

In the second stage, Bidder 2 has the opportunity to increase her bids. The final outcome is

16The instructions do not mention valuations of Bidders 1 and 3, only bids. This may reduce potential
(symmetric) imitation of Bidder 1 by Bidder 2. Note, however, that our asymmetric design of the core-selecting
auctions prevents that imitating Bidder 1 (assuming that he bids his valuation) is a best response for Bidder 2
to the bids of Bidders 1 and 3.

17Bidder 2 will never want her bid bA2 to be successful because vA2 = 0. Allowing her to decide on her bid bA2
would have complicated the instructions and therefore we decided to set bA2 = 0.

18Further motivation for this two-stage treatment is provided by the fact that most implementations of
core-selecting auctions have multiple bidding stages and at least partially allow bidders to deduce information
concerning the feasible assignments in the final sealed-bid stage (Ausubel and Baranov, 2014)
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Table 4: Auctions, information, and numbers of subjects in the two sessions of each treatment

Treat. Auction Informational Setting # Subjects

C-IP Core-selecting Independent private values 34 (18+16)
V-IP Vickrey Independent private values 32 (16+16)

C-SP Core-selecting Semi-private values 35 (17+18)
C-SP-2 Core-selecting, two stages Semi-private values, award information 31 (18+13)
V-SP Vickrey Semi-private values 31 (17+14)

determined based on the second stage bids. All equilibria in C-SP-2 are outcome equivalent to

that of the sealed-bid auction in C-SP. In equilibrium, Bidders 1 and 3 bid as in the sealed-bid

auction. Bidder 2’s best response must lead to the same payoff as in the sealed-bid (single-

stage) version, because this is the maximum that she can achieve (and she could achieve this

payoff in the two-stage auction by bidding b2(v1, v2) = (0, v2, v1 + v2) in stage one). However,

she has alternate best responses in which she bids less than (0, v2, v1 + v2) in stage one and, if

she is not awarded B, bids b2(v1, v2) = (0, v2, v1 + v2) in stage two, whereas if she is awarded

B in stage one, she bids b2(v1, v2) = (0, bB′
2 , v1 + bB′

2 ) with bB′
2 ∈ [bB2 , v2], where bB2 is her first-

stage bid on B. We therefore predict that the two-stage core-selecting auction outperforms the

Vickrey auction with respect to stability and revenue (as the one-stage version does).

Hypothesis 3′. With semi-private values, the two-stage version of the core-selecting auction

generates a higher proportion of core allocations than the Vickrey auction.

Hypothesis 4′. With semi-private values, the two-stage version of the core-selecting auction

generates a higher revenue than the Vickrey auction.

While not affecting equilibrium outcomes, introducing a second bidding stage might influ-

ence human bidding behavior. We predict that the two-stage version guides Bidder 2 towards

her best response strategy and hence that, if there is a difference to the one-stage version, then

the experimental outcome will be closer to the equilibrium predictions of all allocations being

in the core and the high equilibrium revenue that is due to Bidder 2’s aggressive bid. Based

on this behavioral argument, we expect the two-stage version of the core-selecting auction to

outperform the sealed-bid auction with respect to all three variables.

Hypothesis 6. With semi-private values, the two-stage version of the core-selecting auction

generates more efficient allocations, core allocations, and revenue than the sealed-bid version.

For each of the five treatments, we conducted two experimental sessions in the AiXperi-

ment laboratory in Aachen using z-Tree (Fischbacher, 2007). For details on the sessions, see

Table 4. The 163 participants were recruited from a pool of students with a technical back-
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ground using ORSEE (Greiner, 2015). In each session, 18 subjects were invited and all of

those that showed up participated in the experiment. Subjects received written instructions

that were then read out aloud. Then, for 10 minutes, subjects could enter bids in a split screen

(such that they could enter two sets of bids in parallel and directly compare the outcomes,

see the screen shot in Appendix D.2) of a practice program, which then calculated the corre-

sponding outcome and repeated the explanations from the instructions on how winners and

payments were determined. Next, subjects had to answer 22 or 23 questions (depending on

the treatment) about the rules, followed by another period with the practice program (of at

least five minutes and up to 10 rounds of entering two sets of bids). After that, the part of

the experiment with 30 rounds of auctions began.

At the end of the sessions, subjects were asked to fill out a questionnaire (comments, age,

gender, degree program). Sessions lasted for 1.5 to 2.5 hours. Subjects were paid according to

their cumulated earnings plus a lump-sum in currency units (CU) plus a guaranteed show-up

fee of five euros. In C-IP, C-SP/C-SP-2, and V-IP/V-SP the lump sum payments were 100,

125, and 160 CU, and the conversion rates were 0.05, 0.04, and 0.03125 euro/CU. The mean,

minimum, and maximum total earnings were 26.4 euros, 5 euros, and 42.8 euros.

4 Results

Findings on efficiency, stability, and revenue precede an analysis of bidding behavior, including

an investigation of the driving forces behind our findings.

4.1 Aggregate Results on Efficiency, Stability, and Revenue

We present the results for independent private values (Hypotheses 1 and 2) and for semi-private

values (Hypotheses 3, 3′, 4, 4′, and 6) separately. For the data analysis in this subsection, we

aggregate the 30 observations of each individual bidder and consider the mean observation of

each subject. These are independent, because each subject interacts only with two automated

bidders and not with other subjects. Sample sizes are given in Table 4. The descriptive

statistics in Tables 5 and 7 provide overviews of the experimental outcomes in the treatments

with independent private values and semi-private values, respectively. Histograms showing the

distributions of proportions of efficient allocations, of proportions of stable allocations, and of

revenues are given in Appendix A.1.

Tables 6 and 8 display the results of Wilcoxon-Mann-Whitney (WMW) tests (with conti-

nuity correction) on between-treatment comparisons.19 The equilibrium predictions based on

19The WMW test requires equal distributions of the parameter in the populations. If this assumption is
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Table 5: Summary statistics for the IP treatments: Proportions of efficient allocations and
stable (core) allocations and mean revenue (with one observation per subject). Equilibrium
predictions are based on realized valuations.

Variable Treatment Equilibrium Mean Median Std. Dev. Min. Max.

Efficiency C-IP 0.79 0.88 0.90 0.10 0.63 1
V-IP 1 0.89 0.93 0.11 0.53 1

Stability C-IP 0.30 0.50 0.47 0.13 0.20 0.80
V-IP 0.50 0.33 0.33 0.18 0 0.60

Revenue C-IP 61.1 69.0 67.5 8.1 52.6 87.9
V-IP 61.4 63.6 63.5 10.1 43.9 89.5

Table 6: Wilcoxon-Mann-Whitney tests for IP treatments.

Variable Hyp. H0 H1 U p-value

Efficiency 1 EffC-IP = EffV-IP EffC-IP < EffV-IP 445 0.1005
Stability StabC-IP = StabV-IP StabC-IP 6= StabV-IP 272.5 0.0000
Revenue RevC-IP = RevV-IP RevC-IP 6= RevV-IP 372 0.0277

the realized valuations, given in Tables 5 and 7, serve as further points of comparison. The

results of sign-tests on within-treatment comparisons of predicted and observed performances

are given in Table 11 in Appendix B. For all tests, we apply a significance level of 5%.

4.1.1 Independent Private Values

The core-selecting auction performs better than the Vickrey auction. We cannot find sufficient

evidence that the core-selecting auction is less likely to result in an efficient outcome than the

Vickrey auction. Thus, our data do not support Hypothesis 1. Moreover, in contrast to

Hypothesis 2, the core-selecting auction generates significantly more stable allocations than

the Vickrey auction. The number of core allocations in C-IP is 51% higher than in V-IP.

Comparing revenues, we find that the mean revenue in C-IP is 8% higher than in V-IP, whereas

predicted revenues are of similar size. One reason for the lower revenue in the Vickrey auction

is the high number (15%) of rounds with zero revenue, which is in line with the theoretical

violated, rejecting the null hypothesis does not allow to conclude on a location shift (i.e., a difference in mean or
median). We therefore also conduct one-tailed tests of stochastic equality with H0: P (X1 > X2) = P (X1 < X2)
suggested by Schlag (2008) that do not require any assumption on distributions. In each case (i.e., for our tests
of Hypotheses 1 to 6), the conclusions based on these tests are identical to those based on WMW tests. The
conclusions on Hypotheses 1 to 6 also hold if we only consider the last 20 auction rounds (based on the WMW
test and the test by Schlag (2008), where the latter test supports Hypothesis 4 not at the 5% but at the 10%
significance level).
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Table 7: Summary statistics for the SP treatments: Proportions of efficient allocations and
stable (core) allocations and mean revenue (with one observation per subject). Equilibrium
predictions are based on realized valuations.

Variable Treatment Equilibrium Mean Median Std. Dev. Min. Max.

Efficiency C-SP 1 0.89 0.90 0.07 0.77 1
C-SP-2 1 0.92 0.93 0.06 0.77 1
V-SP 1 0.93 0.93 0.08 0.73 1

Stability C-SP 1 0.53 0.50 0.16 0.23 1
C-SP-2 1 0.57 0.53 0.13 0.37 0.90
V-SP 0.46 0.33 0.37 0.17 0.00 0.67

Revenue C-SP 78.5 67.1 66.5 8.8 50.2 84.5
C-SP-2 78.1 69.7 71.1 8.0 49.8 83.4
V-SP 59.6 60.6 62.1 11.0 36.5 81.5

prediction (16%). The distributions of all observed revenues in the two auctions in Appendix

A.2 visualizes the difference between the auctions.

The core-selecting auction performs better than predicted and the Vickrey auction performs

worse than predicted. In particular, the core-selecting auction produces 11% (or 9 percentage

points) more efficient allocations and 67% (or 20 percentage points) more stable allocations

than predicted, and its revenue is 13% (or 8 CU) higher than predicted. In contrast, the

Vickrey auction achieves only 89% of the predicted 100% efficiency and generates 34% (or 17

percentage points) fewer stable allocations than predicted. Its revenue is approximately at its

predicted level.

4.1.2 Semi-Private Values

The core-selecting auctions perform similarly to each other, and both perform better than

the Vickrey auction. The two-stage version of the core-selecting auction produces slightly

more efficient allocations, slightly more core allocations, and a slightly higher revenue for the

seller than its sealed-bid counterpart, but none of these differences is statistically significant

(and therefore Hypothesis 6 cannot be confirmed). Comparing the core-selecting auctions

with the Vickrey auction, we observe similar levels of efficiency (of 89 to 93%). The data

support Hypotheses 3, 3′, 4, and 4′, that is, the core-selecting auctions perform better than

the Vickrey auction with respect to stability and revenue. The proportion of stable allocations

in the core-selecting auctions is by more than 60% (or 20 percentage points) higher than in

the Vickrey auction. Revenues in C-SP and C-SP-2 are by 11% and 15% higher than in the
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Table 8: Wilcoxon-Mann-Whitney tests on Hypotheses 3 to 6 for SP treatments.

Variable Hyp. H0 H1 U p-value

Efficiency 6 EffC-SP-2 = EffC-SP EffC-SP-2 > EffC-SP 416.5 0.0513
Stability 6 StabC-SP-2 = StabC-SP StabC-SP-2 > StabC-SP 429 0.0725

3 StabC-SP = StabV-SP StabC-SP > StabV-SP 207 0.0000
3′ StabC-SP-2 = StabV-SP StabC-SP-2 > StabV-SP 121 0.0000

Revenue 6 RevC-SP-2 = RevC-SP RevC-SP-2 > RevC-SP 444.5 0.1052
4 RevC-SP = RevV-SP RevC-SP > RevV-SP 353 0.0076
4′ RevC-SP-2 = RevV-SP RevC-SP-2 > RevV-SP 240.5 0.0004

Kruskal-Wallis tests reject that StabC-SP, StabC-SP-2, and StabV-SP1S stem from the same population
(p = 0.001) and reject the same for RevC-SP, RevC-SP-2, and RevV-SP (p = 0.002). Adjusting the p-values with
Holm correction, taking into account that we conducted three comparisons on stability and on revenue, does
not make a difference for our conclusions.

Vickrey auction. This lower revenue of the Vickrey auction is caused by 15% of rounds with

zero revenue (as visualized by the distributions of revenues in Appendix A.2), in line with the

predicted 18%.

None of the auctions performs better than predicted. They do not achieve the predicted

100% efficiency but allocate the goods efficiently in 89 to 93% of the cases. Both core-selecting

auctions fail to result in stable allocations in almost half the cases, contrasting theoretical

predictions, and achieve only 85% (C-SP) and 89% (C-SP-2) of the predicted revenue (and

these differences are statistically significant). In the Vickrey auction, the number of stable

allocations is 28% lower than predicted, but revenue is on the predicted level.

4.2 Individual Bidding Behavior

We first examine how (and to what extent) individual bidding behavior deviates from equilib-

rium behavior. We then identify properties of actual bidding that can be linked to the findings

in Section 4.1.

4.2.1 Equilibrium Bids and Observed Bids

Our main observation is that subjects do react to the incentives that the core-selecting auctions

provide. The data provide support in favor of Hypothesis 5. In all three core-selecting treat-

ments, bid spreads are significantly more frequent than in the respective Vickrey treatment

with the same information structure.20

20Kruskal-Wallis test on C-SP, C-SP-2, and V-SP: p = 0.0047. Data points: #(bAB
2 > bB2 ) of a subject.

Three one-tailed WMW tests with continuity correction on H0: #(bAB
2 > bB2 )T1 = #(bAB

2 > bB2 )T2. T1=C-IP
vs. T2=V-IP: U = 187, p = 0.000; T1=C-SP vs. T2=V-SP: U = 323.5, p = 0.002; T1=C-SP-2 vs. T2=V-SP:
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Table 9: Proportions of bids with relevant properties. Equilibrium predictions in parentheses.

Property C-IP V-IP C-SP C-SP-2 V-SP

bB2 < bAB
2 0.58 (1) 0.22 (0) 0.46 (1) 0.37 (1) 0.19 (0)

bB2 < bAB
2 & bB2 < v2 0.51 (1) 0.08 (0) 0.34 (0) 0.32 (0) 0.10 (0)

bB2 < bAB
2 & bB2 = v2 0.004 (0) 0.02 (0) 0.06 (1) 0.02 (1) 0.05 (0)

bB2 ≥ bAB
2 & bB2 = v2 0.11 (0) 0.22 (1) 0.09 (0) 0.09 (0) 0.39 (1)

bB2 < v2 0.75 (1) 0.29 (0) 0.73 (0) 0.75 (0) 0.30 (0)

bB2 = v2 0.12 (0) 0.24 (1) 0.15 (1) 0.12 (1) 0.44 (1)

bB2 > v2 0.13 (0) 0.46 (0) 0.12 (0) 0.13 (0) 0.26 (0)

Subjects in the core-selecting private-values treatments correctly react to the incentive for

bid shading in 75% of all auction rounds. In 51%, they correctly combine bid shading with a

bid spread (see Table 9).21 These bidding patterns are qualitatively in line with predictions,

but not quantitatively. Bids on item B are closer to subjects’ valuations than predicted. The

median (mean) difference between predicted and observed bid shading (conditional on observed

bid shading) is 12 (9) CU.

Subjects in the semi-private values treatments also shade bids, which is in contrast to

predictions. In C-SP and C-SP-2, bid shading occurs in 73% and 75% of all bids and bid

spreads occur in 46% and 37% of all bids (see Table 9). Some subjects follow the equilibrium

strategy,22 and 6% and 2% of all bids combine truthful bidding on B with some bid spread,

bB2 = v2 < bAB
2 . Conditional on applying a bid spread, the observed bid spreads are positively

correlated with the bid bA1 , i.e., with the optimal bid spread. This implies that bidders use the

relevant information bA1 . The average bid spread is smaller than the optimal bid spread bA1 .

(See the regression results in Table 12 in Appendix B.)

The observed (less pronounced than predicted) bid-shading in the independent private

values environment could be explained by risk-aversion. This explanation, though, is incon-

U = 286, p = 0.003. This result still holds when we eliminate observations with a bid spread and suboptimal
overbidding bAB

2 > bB2 > v2 (which occurs in 7%, 6%, and 2% of all rounds in C-IP, C-SP, and C-SP-2, and in
9% of all rounds in V-IP and V-SP (see Table 13, case 5)).

2124% of the observed bids fulfill the assumptions of the theoretical analyses by Ausubel and Baranov (2010)
and Goeree and Lien (2016) for risk-neutral bidders and by Schneider et al. (2015) for risk-averse bidders, as
implemented experimentally by Marszalec (2014) (see Table 13, case 6, bids with bid shading and no bid spread,
which correspond to one-dimensional bids on the preferred item).

22In C-SP, one subject bid b2 = (0, v2, v2 + bA1 ) in 28 of the 30 rounds (and in the two other rounds deviated
by one), one subject did so in five rounds, and one subject in one round. In C-SP-2, one subject bid according
to equilibrium in eight rounds and one in five rounds.
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sistent with the observed bidding behavior in the semi-private values environment for which

equilibrium bids on B equal valuations and in particular do not depend on a bidder’s risk

attitude.

In the Vickrey auction it is optimal to bid according to bB2 = v2 ≥ bAB
2 . Such bids occur in

22% and 39% of all auction rounds in V-IP and V-SP (see Table 9). Deviations from truthful

bidding, although dominated, are commonly observed in experiments with Vickrey auctions.

The mean deviation bB2 − v2 is 12 CU and 1 CU in V-IP and V-SP (and medians are zero).

Bid shading occurs in about 30% of the rounds in each of the two settings and overbidding on

B in 46% and 26% of all rounds with private and semi-private values, respectively. Thus, the

lower proportion of truthful bidding on B in V-IP, as compared to V-SP, comes with a higher

proportion of overbidding.

4.2.2 Relating Auction Performance to Individual Bidding Behavior

The core-selecting auction performs better than predicted with respect to efficiency and sta-

bility in the independent private values setting, whereas its proportion of stable outcomes is

worse than predicted in the semi-private values setting. The Vickrey auction is less stable

than predicted in either setting.

In equilibrium, allocations are stable in the core-selecting auctions whenever Bidders 1

and 2 each win an item (in particular, equilibrium allocations with semi-private values are

always stable) and in the Vickrey auction whenever Bidder 3 wins.23 This dichotomy suggests

dividing the sample according to the identity of the winner(s). Table 10 shows the proportions

of efficient allocations and stable allocations in the five treatments calculated separately for the

two cases.24 According to this table, differences between predictions and observations mainly

23 Recall that a stable allocation is an efficient allocation with sufficiently high payments (that are still below
the valuation; see Section 2.1). In a core-selecting auction, if Bidders 1 and 2 win, the auction rules assure
sufficiently high payments if there is no overbidding on B. In the core-selecting auction with semi-private values
and in the Vickrey auction, if Bidder 3 wins, truthful bidding by Bidders 1 and 2 on A and B assures that the
payment is sufficiently high. In detail, the conditions for an allocation to be in the core are the following. In all
auctions, if Bidder 2 wins AB or an item is not assigned, the allocation is inefficient and therefore not stable. Bid
shading on B by Bidder 2 threatens stability as it may cause Bidder 3 to inefficiently win, while overbidding on
B may cause Bidders 1 and 2 to inefficiently win. If Bidder 3 efficiently wins AB, bid shading by Bidder 2 for B
causes a violation of stability if Bidder 3’s payment p3 = max{bAB

2 , v1 + bB2 } is below v1 +v2. If Bidders 1 and 2
efficiently win in a core-selecting auction, truthful bidding by Bidders 1 and 3 assures that p2 ≥ max{0, v3−v1}
and p1 + p2 ≥ v3, but the condition p1 ≥ max{0, v3 − v2} can be violated due to overbidding on B because the
auction rules enforce p1 = max{0, v3 − bB2 , b

AB
2 − bB2 }. If Bidders 1 and 2 win in a Vickrey auction, the sum of

their payments will be too low for a stable allocation if p1 + p2 = max{v3 − bB2 , b
AB
2 − bB2 , 0}+ max{v3 − v1, 0}

is less than v3, which holds unless there is a tie or a large bid spread.
24We do not consider the cases in which Bidder 2 is awarded the bundle AB or Bidder 1 is awarded A while B

is not sold, because then the allocation is neither efficient nor stable. In C-IP, C-SP, C-SP-2, V-IP, and V-SP,
Bidders 1 and 2 are awarded A and B in 40%, 44%, 45%, 52%, and 51% of all auctions; Bidder 3 is awarded
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Table 10: Proportions of efficient allocations and stable allocations given the successful bids.
Equilibrium predictions are provided in parentheses.

Successful bids Efficient Stable Efficient Stable Efficient Stable

C-IP C-SP C-SP-2

bA1 and bB2 0.98 (1) 0.91 (1) 0.96 (1) 0.91 (1) 0.97 (1) 0.93 (1)
bAB
3 0.88 (0.80) 0.24 (0.01) 0.90 (1) 0.25 (1) 0.94 (1) 0.30 (1)

V-IP V-SP

bA1 and bB2 0.88 (1) 0.04 (0) 0.96 (1) 0.07 (0)
bAB
3 0.95 (1) 0.67 (1) 0.95 (1) 0.63 (1)

occur if Bidder 3 wins. We therefore focus on this case.

Efficiency (and therefore also stability) is in all auctions impaired by bid shading of Bidder

2 if it leads to an inefficient assignment of the bundle to Bidder 3. Stability can be negatively

affected by bid shading even if efficiency is not. Whereas a small degree of bid shading has

no impact on efficiency if v1 + v2 > v1 + bB2 ≥ v3, stability is destroyed by any degree of bid

shading (if also bAB
2 < v1 + v2) in the core-selecting and the Vickrey auctions. This is because

Bidder 3’s payment v1 + bB2 then drops below the lower bound v1 + v2 required by stability

(see Footnote 23).

Bid shading is prevalent in the core-selecting auctions and indeed Table 10 does show

lower proportions of efficient allocations and of stable allocations in these auctions than in the

Vickrey auction. In the independent private values setting, bid shading in the core-selecting

auction is predicted for all bids. Because bid shading occurs less often and is less pronounced

than predicted, it affects efficiency and stability less than predicted. In the core-selecting

auctions with semi-private values, no bid shading (and no instability) is predicted; however, the

observed proportion of bid shading is similar to that in the independent private values setting

and therefore results in similar proportions of stable allocations.25 In the Vickrey auction, bid

shading occurs for approximately 30% of bids and is less prevalent than in the core-selecting

auctions; it contributes to the observed 33% and 37% instable allocations (instead of the

predicted 0%).26

AB in 55%, 53%, 52%, 46%, and 46% of all auctions; Bidder 2 is awarded AB in 5%, 3%, 3%, 2%, and 3% of
all auctions. Bidder 1 is awarded A when B is not sold in one auction in V-SP.

25Stable allocations when Bidder 3 wins and Bidder 2 uses bid shading (i.e., v3 ≥ bAB
2 ≥ v1 + v2 > v1 + bB2 )

are rare and occur in C-IP in 2%, in C-SP in 0.1%, and in C-SP-2 in 0% of all bids where Bidder 3 wins and
Bidder 2 uses bid shading.

26Truthful bids and bids above the value on B contribute 29/44 and 36/18 percentage points to the 67%/63%
stable allocations in V-IP/V-SP. Truthful bids and bids above the value on B contribute 12/16/15 and 10/8/15
percentage points to the 24%/25%/30% stable allocations in C-IP/C-SP/C-SP-2. Stability hinges on the bid
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To sum up, all core-selecting auctions generate similar proportions of efficient and of stable

allocations, and instable allocations result mainly if Bidder 3 wins. The observed instability

is mainly caused by bid shading, which is predicted in the independent private values setting

but not in the semi-private values setting. There is less than predicted bid shading with

independent private values and more than predicted with semi-private values, resulting in the

overall good performance of C-IP and the bad performance of C-SP and C-SP-2 as compared

to the equilibrium predictions with respect to stability and revenue. In the Vickrey auction,

as predicted, instable allocations are frequent when Bidders 1 and 2 win. In contrast to

predictions, they also occur (to a lower extent) if Bidder 3 wins due to bid shading by Bidder

2. V-IP and V-SP perform similarly with respect to stability, although the higher proportion

of overbidding on B in the independent private values setting (46% vs. 26%, see Table 9)

causes a higher proportion of inefficient allocations.

5 Conclusion

We provide experimental evidence in support of a core-selecting auction when information is

incomplete. First, it performs better than the Vickrey auction if revenue or stability proper-

ties are a concern to the auctioneer. Efficiency is high in all auctions that we analyze, but

proportions of core allocations and revenue are higher in the core-selecting auction. In par-

ticular, the latter does not exhibit zero revenue outcomes, which are prevalent in the Vickrey

auction. Second, in an independent private values environment, the core-selecting auction

generally performs well; at least it performs better than predicted with respect to efficiency,

stability, and revenue. The core-selecting auction performs similarly well in our semi-private

values environment, though worse than predicted in equilibrium. For practical applications, it

is worthwhile stressing that individual bidding behavior is less effected by the informational

setting – independent private values or semi-private values – than predicted by theory. In

particular, bids are closer to valuations than is predicted in the independent private values

setting (for risk-neutral bidders).

Although we derived our hypotheses based on the assumption of risk-neutral bidders who

play Bayesian Nash equilibrium strategies, our hypotheses, to some extent, remain valid under

different assumptions. First, our hypotheses are unaffected by the bidders’ risk attitudes in

the semi-private values setting, in which ex-post equilibria exist and in which therefore the risk

attitude does not affect optimal bidding behavior. Second, due to the experimental setup in

which subjects only encounter computerized opponents, our hypotheses remain valid if subjects

bAB
2 for 0 to 2 of the percentage points.
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have social preferences but are unaffected by payoffs of non-human players. Third, because

the bidding behaviors of the other bidders are known to subjects (who know the distribution

of the bids and not of the valuations of computerized players) our hypotheses do not require

assumptions about subjects’ beliefs of their opponents’ strategies or any other assumptions

about strategic interaction.

In our setting with two items, free riding is easier than in larger settings or in settings in

which complementary bidders have to coordinate on which items they are aiming for. Given

that bidders do not fully use their strategic opportunities in the simple setting, core-selecting

auctions might also perform well compared to Vickrey auctions in such more complex envi-

ronments.
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A Visualization of Data

A.1 Proportions of Efficient and of Stable Allocations and Mean Revenues
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Figure 2: Proportion of efficient allocations per subject and their relative frequency in the
C-IP and the V-IP treatments (31 bins of width 1/30).

25



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

Proportion of stable (core) allocations

F
ra

ct
io

n
C-IP

Mean
Median

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

Proportion of stable (core) allocations

F
ra

ct
io

n

V-IP

Mean
Median

Figure 3: Proportion of stable (core) allocations per subject and their relative frequency in
the C-IP and the V-IP treatments (31 bins of width 1/30).
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Figure 4: Mean revenue per subject and their relative frequencies in the C-IP and the V-IP
treatments (bins of width two).
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Figure 5: Proportion of efficient allocations per subject and their relative frequency in the
C-SP, C-SP-2, and V-SP treatments (31 bins of width 1/30).
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Figure 6: Proportion of stable (core) allocations per subject and their relative frequency in
the C-SP, C-SP-2 and V-SP treatments (31 bins of width 1/30).
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Figure 7: Mean revenue per subject and the revenues’ relative frequencies in the C-SP, C-SP-2
and V-SP treatments (bins of width two).
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A.2 Revenue Distribution
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Figure 8: Distribution of the revenue in the V-IP and C-IP (30 observations per subject, bins
of width two).
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Figure 9: Distribution of the revenue in V-SP, C-SP, and C-SP-2 (30 observations per subject,
bins of width two).
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B Results of Statistical Tests

Table 11: Two-tailed sign-tests for IP treatments and for SP treatments.

Independent private values treatments
Variable H0 p-value

Efficiency EffC-IP= 0.79 0.0000
Stability StabC-IP= 0.30 0.0000

StabV-IP= 0.50 0.0070
Revenue RevC-IP= 61.1 0.0000

RevV-IP= 61.4 0.1102

Semi-private values treatments
Variable H0 p-value

Stability StabV-SP= 0.46 0.0009
Revenue RevC-SP= 78.5 0.0000

RevC-SP-2= 78.1 0.0000
RevV-SP= 59.6 0.4731

Table 12: Dependency of bid spreads on bA1 in C-SP and in CS-SP-2.
Data: Bids with bAB

2 − bB2 > 0. Regression with clustered standard errors (per subject).

Model:
(
bAB
2 − bB2

)ij
= β0 + β1

(
bA1
)ij

+ εij + δi, i: subject, j: round.

C-SP (N = 482)
Coefficient SE t p 95% confidence interval

bA1 0.260 0.084 3.09 0.004 [0.088, 0.433]
Constant 17.244 3.455 4.99 0.000 [10.177, 24.310]

F (1, 29) = 9.53, p = 0.004, R2 = 0.09

C-SP-2 (N = 348)
Coefficient SE t p 95% confidence interval

bA1 0.450 0.089 5.08 0.000 [0.269, 0.631]
Constant 5.213 2.484 2.10 0.044 [0.141, 10.286]

F (1, 30) = 25.82, p = 0.000, R2 = 0.27
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C Partition of Bids

Table 13: Partition of observed bids. Equilibrium predictions of shares in parentheses. Figure
10 illustrates the partition.

Property C-IP V-IP C-SP C-SP-2 V-SP

1© bAB
2 ≤ bB2 = v2 0.11 (0) 0.22 (1) 0.09 (0) 0.09 (0) 0.39 (1)

2© bAB
2 > bB2 = v2 0.004 (0) 0.02 (0) 0.06 (1) 0.02 (1) 0.05 (0)

3© bAB
2 ≤ v2 < bB2 0.02 (0) 0.23 (0) 0.04 (0) 0.08 (0) 0.07 (0)

4© v2 < bAB
2 ≤ bB2 0.04 (0) 0.14 (0) 0.03 (0) 0.03 (0) 0.09 (0)

5© v2 < bB2 < bAB
2 0.07 (0) 0.09 (0) 0.06 (0) 0.02 (0) 0.09 (0)

6© bAB
2 ≤ bB2 < v2 0.24 (0) 0.21 (0) 0.39 (0) 0.43 (0) 0.20 (0)

7© bB2 < bAB
2 ≤ v2 0.45 (0.65) 0.04 (0) 0.26 (0) 0.25 (0) 0.06 (0)

8© bB2 < v2 < bAB
2 0.06 (0.35) 0.04 (0) 0.08 (0) 0.08 (0) 0.04 (0)
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Figure 10: Complete partition of the strategy space with respect to the value and the bid.
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D Translation of the Experimental Materials

The experimental materials comprise translations of the experimental instructions, a plot of
the translated practice software, and a translation of the quiz questions.

D.1 Instructions

We provide a translation of the instructions to treatment C-IP. The adjustments for the other
treatments are given in brackets.

Welcome!

You participate in an experiment on decision-making. In this experiment, you can earn cash.
You will receive a payment of 5 euros for sure. How much you will earn in addition depends
on your decisions. In the experiment the unit of measurement are so-called currency units
[CU]. The amount of CU that you earn during then experiment will be converted into euro,
added to the guaranteed payment, and paid out to you in cash. 20 CU [25 CU in C-SP and
C-SP-2, 32 CU in V-IP and V-SP] are converted into 1 euro. Your decisions and inputs will
be recorded anonymized. You make your decisions isolated from the others at your computer
terminal. Communication between the participants is not allowed. The instructions will now
be read aloud. Please listen carefully and, if you want, use your printed copy and read along.
If you will have any questions at the end of this introduction please raise your hand. An
experimental assistant will come to your seat and clarify your question. In what follows, “he”
and “his” will be used to simplify the presentation. Please consider this neutral language.

Instructions to the Experiment

You will participate in 30 identical rounds. In each round, two different objects, A and B, will
be sold in an auction.

In the auction, there are three bidders, called Bidder 1, Bidder 2, and Bidder 3. In the
auction, a bidder can receive Object A, Object B, the bundle AB consisting of both objects,
or no object. Note that each object can be awarded only once.

You are Bidder 2. You are only interested in Object B. Object B and the bundle AB have
the same value for you. Receiving only Object A or no object has no value for you. Bidders 1
and 3 are automated bidders. Below you learn how the two will bid.

Description of a round

At the beginning of the round, you are assigned a value W , which is shown to you at your
screen. You value W specifies by how much you value the Object B and the bundle AB. You
value W is randomly chosen from the integers from 1 to 100, such that each of the hundred
integers has the same probability of being chosen.

33



Then, the auction is conducted. In this auction, you can submit bids. Your bids and the
bids of Bidders 1 and 3 determine which object or bundle you receive and which price you
have to pay. [C-SP-2: Then, the auction is conducted. It has two stages. In stage 1, you
can submit bids. Based on your bids and the bids of Bidders 1 and 3 the the objects or the
bundle are assigned to the bidders. Your assignment of stage 1 i shown to you on your screen.
In stage 2 you have the opportunity to adjust your bids upwards once. The bids of Bidders 1
and 3 remain the same. The bids on stage 2 are final bids. Based on these final bids, it will
be determined which object or bundle you receive and which price you have to pay.]

This determines your round payoff. If you do not receive any object, your round payoff
is zero. If you receive an object or the bundle, your round payoff equals your value W minus
your price:

round payoff = (value for the received object or bundle)− (price)

After the auction, your received object or bundle, your price, and your round payoff is shown
to you. Then, a new round begins.

Auction rules

Bids: In the auction, bids for Object A, for Object B, and for the bundle AB can be submitted.
Bids can be equal to or greater than zero.

The table shows the bids that the respective bidder is allowed to submit. Here, e.g., gA1
denotes the bid of Bidder 1 for the Object A.

A B AB

Bidder 1 gA1 gAB
1

Bidder 2 (you) gB2 gAB
2

Bidder 3 gAB
3

• Bidder 1 is automated. He bids the same amount for A and for AB, gA1 = gAB
1 . This bid is

randomly chosen from the integers from 1 to 100, such that each integer is equally likely.
You do not learn this bid. [V-SP, C-SP, and C-SP-2: You learn this bid before you submit
your bid.]

• You as Bidder 2 may submit bids for B and AB. You therefore submit no, one, or two bids
of your choice.

• Bidder 3 is automated. He only submits a bid for the bundle AB. His bid is randomly
chosen from the integers from 1 to 200, such that each integer is equally likely. You do not
learn this bid.
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Assignment: To determine who receives which object or bundle, the three bids for the bundle
AB are compared with the sum of the bid of Bidder 1 for A and the bid of Bidder 2 for B. Thus,
for the assignment gAB

1 , gAB
2 , gAB

3 and gA1 + gB2 are compared. The assignment is determined
as follows:

• If the sum of the bid for A and the bid for B is equal to or greater than the highest of the
bids for AB, then Bidder 1 receives Object A and Bidder 2 receives Object B. Bidder 3
receives no object.

• Otherwise, the bidder with the highest bid for the bundle AB receives both objects and
the other two bidders receive no object. If the highest bid for AB was submitted by two or
three bidders, then one of these is randomly and with equal probability chosen to receive
the bundle.

If you do not bid for an object or bundle then you cannot receive it. If you bid neither for
B nor for AB, then you receive nothing. If you do not bid for B, then only gA1 , gAB

1 , gAB
2 ,

and gAB
3 are compared. If you do not bid for AB, then only bids gAB

1 , gAB
3 and gA1 + gB2 are

compared.

Your price: When according to the assignment rule we have determined who receives which
object or bundle, your price is calculated. If you receive nothing, you pay nothing. If you
receive an object or bundle, your price is calculated as follows.

• If you receive the bundle AB, then your price (p2) equals the bid for AB that would
just be sufficient to match the highest of the bids of Bidders 1 and 3. Thus, it holds that

p2 = maximum {gA1 , gAB
1 , gAB

3 }.

• If you receive only the Object B, then your price is determined in two steps. In step
1, the price of Bidder 1 (p1) and your preliminary price (pv2) are determined. In step 2,
this is used to determine your price (p2).
Step 1: The price of Bidder 1 (p1) equals the bid for A that would just be sufficient to
match together with your bid for B the highest bid of you and Bidder 3. Thus, it holds
that

p1 + gB2 = maximum {gB2 , gAB
2 , gAB

3 },

or, rearranged,

p1 = maximum
{
gB2 , g

AB
2 , gAB

3

}
− gB2 . (∗)

Your preliminary price (pv2) equals the bid for B that would just be sufficient to match
together with the bid of Bidder 1 for A the highest bid of Bidders 1 and 3. Thus, it holds
that

pv2 + gA1 = maximum {gA1 , gAB
1 , gAB

3 },

or, rearranged,
pv2 = maximum {gA1 , gAB

1 , gAB
3 } − gA1 .
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Step 2: We check whether your preliminary price (pv2) together with the price of Bidder 1
(p1), which has been calculated in (∗), exceeds the bid of Bidder 3 for AB (gAB

3 ) and then
determine the price as follows.

a) If it holds that pv2 + p1 ≥ gAB
3 , then your price equals the preliminary price:

p2 = pv2.

b) If it holds that pv2 + p1 < gAB
3 , then your price is adjusted upwards, such that your

price and the price of Bidder 1 (p1) together just match the bid of Bidder 3 for AB
(gAB

3 ):

p2 + p1 = gAB
3 ,

or, rearranged,
p2 = gAB

3 − p1.

[V-IP, V-SP: If you receive only the Object B, then your price (p2) equals the bid for
B that would just be sufficient to match together with the bid of Bidder 1 for A the highest
bid of Bidders 1 and 3. Thus, it holds that

p2 + gA1 = maximum {gA1 , gAB
1 , gAB

3 },

or, rearranged
p2 = {gA1 , gAB

1 , gAB
3 } − gA1 .]

In these calculations, a bid that has not been submitted is treated like a bid equal to zero.
[C-SP-2: Your price is only calculated on stage 2.]

Practice software

To familiarize you with the assignment and price rules, you will be provided with a practice
software before the 30 auction rounds begin. In this software, you can enter bids for Bidder 1,
Bidder 2, and Bidder 3. The practice software then calculates for you according to the auction
rules who receives which object or bundle and what Bidder 2 has to pay. In the software, you
may enter two sets of bids in parallel. Your inputs to the practice software are not relevant
for your payoff.

Payoff

You receive a starting credit of 100 CU [125 CU in C-SP and C-SP-2, 160 CU in V-IP and
V-SP]. Your total payoff in CU is the sum of your starting credit and your 30 round payoffs
in CU. Your total payoff in CU will be converted into euros at the end of the experiment.
Immediately after the experiment, your total payoff and your guaranteed payoff of 5 euros will
be paid out to you. The payout will be individually and anonymously in the room next door.
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Temporal sequence

The reading out of the instructions is followed by 10 minutes, in which you can use your printed
copy of the instructions and the practice software at your screen to become familiar with the
auction rules. Then, a quiz follows, in which you will answer several questions on your screen
about the contents of these instructions. Then, the practice software is again available to you
for up to 10 rounds. This practice phase ends at the lasted five minutes after all participants
have answered all questions correctly. The experimental assistant will then ask you to end
the practice software by pressing the OK-button until the software ends. Then the 30 auction
rounds begin for all participants at the same time. If you have a question, please raise your
hand. Your question will then be answered at your seat.
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D.2 Screen Shot of the Practice Software
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D.3 Quiz Questions

The correct answers to the questions are given in brackets or marked in bold. We indicate the
questions or answers that differ between treatments.

1. How many rounds do you participate in? [ 30 ]

2. How many objects are sold in each auction? [ 2 ]

3. How many bidders participate in each auction? [ 3 ]

4. How many of those three bidders are automated? [ 2 ]

5. Which bidder number do you have? I am bidder [1] [2] [3].

6. How much is object A worth to you?

(a) Nothing.

(b) It has a value W for me, which lies between 1 and 100 and which I learn at the
beginning of the round.

7. How much is object B worth to you?

(a) Nothing.

(b) It has a value W for me, which lies between 1 and 100 and which I learn at the
beginning of the round.

8. How much is the bundle AB worth to you?

(a) Nothing.

(b) It has a value W for me, which lies between 1 and 100 and which I learn at the
beginning of the round.

9. Do the object B and the bundle AB have the same value for you?

(a) Yes.

(b) No, the value of B and the value of AB can differ.

10. How is your value for the object B and the bundle AB determined?

(a) At the beginning of each round, it is drawn randomly from the integers between 1
and 100.

(b) At the beginning of each round, it is drawn randomly from the integers between 1
and 200.

(c) It is known that it lies between 1 and 100, but it is unknown how it is determined.
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11. Do you learn the bid of Bidder 1 for the object A or the bid of Bidder 3 for the bundle
AB?

(a) I learn the bids of Bidder 1 and Bidder 3.

(b) I learn the bid of Bidder 1. I only know the distribution of the bid of Bidder 3.
[in C-SP, C-SP-2, V-SP]

(c) I learn the bid of Bidder 3. I only know the distribution of the bid of Bidder 1.

(d) I do not learn the bids of Bidder 1 and Bidder 3. I only know their distributions. [in
C-IP, V-IP]

12. How is the bid of Bidder 1 determined?

(a) He bids the same on A and AB. He does not bid on B. His bid on A and AB is drawn
randomly from the integers between 1 and 100.

(b) He bids the same on A and AB. He does not bid on B. Nothing is known about how
his bid is determined.

(c) He bids only on AB. He does not bid on A and B. His bid on AB is drawn randomly
from the integers between 1 and 200.

13. How is the bid of Bidder 3 determined?

(a) He bids the same on A and AB. He does not bid on B. His bid on A and AB is drawn
randomly from the integers between 1 and 100.

(b) He bids the same on A and AB. He does not bid on B. Nothing is known about how
his bid is determined.

(c) He bids only on AB. He does not bid on A or B. His bid on AB is drawn randomly
from the integers between 1 and 200.

14. Who is awarded the objects or the bundle? Mark all correct statements.

(a) If the sum of the bids on A and B is greater than or equal to the highest bid on AB,
Bidder 1 is awarded object A and Bidder 2 is awarded object B.

(b) The assignment is always randomly determined.

(c) The bidder with the highest bid always gets an object or bundle.

(d) If the sum of the bids on A and B is smaller than the highest bid on AB, one of the
bidders with the highest bid on the bundle AB gets this bundle.

15. Assume you are awarded the bundle AB. Mark all statements that are true for sure.

(a) My bid on B plus the bid of Bidder 1 on A in sum are smaller than my bid on AB.

(b) I bid on AB as least as much as the other two bidders.

(c) My price p2 is equal to the highest bid of the other two bidders.
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16. [Only in C-IP, C-SP, C-SP-2] Assume you are awarded the object B. Mark all statements
that are true for sure.

(a) My bid on B plus the bid of Bidder 1 on A in sum are greater than or equal to each
bid on AB.

(b) My price p2 is equal to the highest bid of the other two bidders.

(c) To determine my price p2, I first need to determine the price p1 of Bidder 1.

(d) If my preliminary price pv2 plus the price p1 of Bidder 1 does not exceed the bid of
Bidder 3 on AB, I have to pay the difference in addition.

(e) The sum of my price p2 plus the price p1 of Bidder 1 is at least as high as the bid of
Bidder 3 on AB.

16. [Only in V-IP, V-SP] Assume you are awarded the object B. Mark all statements that are
true for sure.

(a) My bid on B plus the bid of Bidder 1 on A in sum are greater than or equal to each
bid on AB.

(b) My price p2 is equal to the highest bid of the other two bidders.

(c) p2 equals the bid on B that would just be enough to meet, in sum with the bid of
Bidder 1 on A, the highest bid of the Bidders 1 and 3.

17. Who is awarded the objects or the bundle in the following example?

Bid on object A Bid on object B Bid on the bundle AB

Bidder 1 3 3

Bidder 2 88 74

Bidder 3 147

(a) Bidder 1 gets A and Bidder 2 gets B.

(b) Bidder 1 gets AB.

(c) Bidder 2 gets AB.

(d) Bidder 3 gets AB.

18. Who is awarded the objects or the bundle in the following example?

Bid on object A Bid on object B Bid on the bundle AB

Bidder 1 41 41

Bidder 2 56 78

Bidder 3 67

(a) Bidder 1 gets A and Bidder 2 gets B.

(b) Bidder 1 gets AB.

(c) Bidder 2 gets AB.
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(d) Bidder 3 gets AB.

19. Calculate the price p2 of Bidder 2 in the following example.
p2 = [ 45 ] in C-IP, C-SP, C-SP-2; p2 = [ 26 ] in V-IP, V-SP

Bid on object A Bid on object B Bid on the bundle AB

Bidder 1 41 41

Bidder 2 56 78

Bidder 3 67

20. Calculate the price p2 of Bidder 2 in the following example.
p2 = [ 34 ] in C-IP, C-SP, C-SP-2; p2 = [ 23 ] in V-IP, V-SP

Bid on object A Bid on object B Bid on the bundle AB

Bidder 1 49 49

Bidder 2 34 12

Bidder 3 72

21. Calculate the price p2 of Bidder 2 in the following example. p2 = [ 25 ]

Bid on object A Bid on object B Bid on the bundle AB

Bidder 1 8 8

Bidder 2 13 36

Bidder 3 25

22. [Only in C-SP-2] Which statements are true for stage 2 of the auction? Mark all correct
statements.

(a) My price p2 is only calculated in stage 2.

(b) The bids of Bidders 1 and 3 from stage 1 do not change in stage 2.

(c) I can arbitrarily change my bids.

(d) I learn the bids of Bidder 1 and Bidder 3.

(e) I learn the assignment based on the bids submitted in stage 1.

23. How is the round payoff computed?

(a) It is equal to the value W .

(b) It is equal to the price p2.

(c) It is equal to the value W minus the price p2, if I am awarded an object or the bundle
and zero, otherwise.
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