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Abstract

The recent rapid expansion of renewable energy capacities in Germany has been dominated by

decentralised wind, photovoltaic (PV) and bioenergy plants. The spatially disperse and partly

unpredictable nature of these resources necessitates an increasing exploitation of integration

measures such as curtailment, supply and demand side flexibilities, network strengthening and

storage capacities. Indeed, one solution to the large-scale integration of renewable energies could

be decentralised autonomous municipal energy systems. The achievement of grid parity for some

renewable energy technologies has strengthened the desire of some communities to become

independent from central markets. Whilst many communities in Germany already strive for so-

called energy autonomy, the vast majority do so only on an annual basis. Several studies have

already analysed the technical and economic implications of the mainly decentralised future energy

system, but most are restricted in their insights by limited temporal and spatial resolution.

The large number (11,131) of German municipalities means that a national analysis at this

resolution is not feasible. Hence, this study employs a cluster analysis to develop a municipality

typology in order to analyse the techno-economic suitability of these municipalities for autonomous

energy systems. A total of 34 socio-technical indicators are employed at the municipal level, with a

particular focus on the sectors of Private Households and Transport, and the potentials for

decentralised renewable energies. The first step is to scale the indicator values and reduce their

number by using a factor analysis. Several alternative methods are weighed against each other,

and the most suitable methods for the factor analysis are chosen. Secondly, selected quantitative

cluster validation methods are employed alongside qualitative criteria to determine the optimal

number of clusters. This results in a total of ten clusters, which show a large variation as well as

some overlap with respect to specific indicators. For example, one cluster contains all major

German cities and has a low potential for renewable energies. Another cluster, on the other hand,

contains the municipalities with a higher potential for renewable energies due to their high

hydrothermal potential for geothermal power.

An analysis of the municipalities from three German renewable energy projects “Energy

Municipalities”, ”Bioenergy Villages” and “100% Renewable Energy Regions” shows that in eight of

the ten clusters municipalities are aiming for energy autonomy (in varying degrees). It is

challenging to differentiate between the clusters regarding readiness for energy autonomy projects,

however, especially if the degree of social acceptance and engagement for such projects is to be

considered. To answer the more techno-economical part of this question, future work will employ

the developed clusters in the context of an energy system optimisation. Insights gained at the

municipal level will then be qualitatively transferred to the national context to assess the

implications for the whole energy system.
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Abstract: 

The recent rapid expansion of renewable energy capacities in Germany has been dominated by 

decentralised wind, photovoltaic (PV) and bioenergy plants. The spatially disperse and partly 

unpredictable nature of these resources necessitates an increasing exploitation of integration measures 

such as curtailment, supply and demand side flexibilities, network strengthening and storage capacities. 

Indeed, one solution to the large-scale integration of renewable energies could be decentralised 

autonomous municipal energy systems. The achievement of grid parity for some renewable energy 

technologies has strengthened the desire of some communities to become independent from central 

markets. Whilst many communities in Germany already strive for so-called energy autonomy, the vast 

majority do so only on an annual basis. Several studies have already analysed the technical and 

economic implications of the mainly decentralised future energy system, but most are restricted in their 

insights by limited temporal and spatial resolution.  

The large number (11,131) of German municipalities means that a national analysis at this resolution is 

not feasible. Hence, this study employs a cluster analysis to develop a municipality typology in order to 

analyse the techno-economic suitability of these municipalities for autonomous energy systems. A total 

of 34 socio-technical indicators are employed at the municipal level, with a particular focus on the sectors 

of Private Households and Transport, and the potentials for decentralised renewable energies. The first 

step is to scale the indicator values and reduce their number by using a factor analysis. Several 

alternative methods are weighed against each other, and the most suitable methods for the factor 

analysis are chosen. Secondly, selected quantitative cluster validation methods are employed alongside 

qualitative criteria to determine the optimal number of clusters. This results in a total of ten clusters, 

which show a large variation as well as some overlap with respect to specific indicators. For example, 

one cluster contains all major German cities and has a low potential for renewable energies. Another 

cluster, on the other hand, contains the municipalities with a higher potential for renewable energies due 

to their high hydrothermal potential for geothermal power.  

An analysis of the municipalities from three German renewable energy projects “Energy Municipalities”, 

”Bioenergy Villages” and “100% Renewable Energy Regions” shows that in eight of the ten clusters 

municipalities are aiming for energy autonomy (in varying degrees). It is challenging to differentiate 

between the clusters regarding readiness for energy autonomy projects, however, especially if the 

degree of social acceptance and engagement for such projects is to be considered. To answer the more 

techno-economical part of this question, future work will employ the developed clusters in the context of 

an energy system optimisation. Insights gained at the municipal level will then be qualitatively transferred 

to the national context to assess the implications for the whole energy system. 
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1. Introduction 

Ambitious national targets in energy policy are leading to a radical change in the energy 

industry, which is particularly marked by the expansion of renewable energies. Germany 

already generates 30% of electricity with renewable energy technologies in 2016 (Statistisches 

Bundesamt 2017a), including around 50 GW of wind (on- and offshore), about 7 GW of 

bioenergy and 40 GW photovoltaic (PV) plants (BMWi 2016a), of which around 98% are 

connected to the low voltage distribution networks (Wirth 2016). Regions are often referred to 

as the driving force behind the energy transition since renewable energies alongside energy 

efficiency are exploited on a decentralised basis due to their characteristics. Hence the 

characteristics of the energy system are changing towards a more decentralised structure, 

which also applies to the owners and operators of energy plants. In Germany, private 

individuals are increasingly investing in renewable energy systems or forming so-called citizen-

energy cooperatives for this purpose. In fact, the majority of renewable plants in Germany are 

owned and operated by private individuals, farmers and communities (Klaus Novy Institut e.V. 

& trend:research 2011). This development is based on various socio-economic motives: 

among other things, citizens have the desire to play an active role in energy supply and to be 

more independent of central markets and structures (e.g. Boon & Dieperink 2014; Volz 2012).  

In this context, the concept of municipal energy autonomy (Deutschle et al. 2015; Rae & 

Bradley 2012; McKenna et al. 2014b, 2015, 2017b) has become established, which is 

employed here to also include energy autarky (Müller et al. 2011), self-sufficiency (Deutschle 

et al. 2015; Balcombe et al. 2015) and integrated community energy systems (Koirala et al. 

2016). Alone the number of terms for this concept illustrates the diversity within the literature, 

which also extends to its definition. Three rough distinctions can be made between complete 

energy autonomy (i.e. off-grid), net or balanced energy autonomy, whereby local generation 

equals or exceeds demand on an annual basis, and a tendency towards higher energy 

autonomy through decentralised renewables (McKenna et al. 2015). The extensive survey of 

Engelken et al. (2016) shows that the overwhelming number of municipalities with energy 

autonomy aspirations strive for the state of balanced energy autonomy and that the focus is 

usually on electrical energy.  

The feasibility of municipal energy autonomy has been investigated in several case studies. In 

Scheffer (2008), a rural model region with 10,000 inhabitants and agriculture as well as trade 

and commerce, but without large-scale industry, is considered. The suitability of a rural 

settlement structure for energy autonomy is also investigated in Peter (2013), who shows that 

renewable energies could cover the electricity requirements of the “example village” with 3,850 

inhabitants, but with immense storage costs. Jenssen et al. (2014) conclude that the complete 

energy autonomy in an “average” German municipality is technically attainable through the 
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“bioenergy village” approach, albeit at high costs. Schmidt et al. (2012) examine the 

advantages and disadvantages of energy autonomy compared to conventional energy supply 

in Sauwald, Austria. Woyke & Forero (2014) evaluate complete energy autonomy in Pellworm, 

a municipality with 1,100 inhabitants, which has already been a model location for the 

construction of renewable energies. Although the supply of energy exceeds the demand, a 

complete energy autonomy is not possible with the current energy system in Pellworm due to 

grid constraints. Finally, the study by Burgess et al. (2012) examines the Marston Vale region 

in the UK, which would have to import heat energy and fuel in particular, while a large 

proportion of the demand for electricity could be met by energy supplied by the region itself. 

Despite some general conclusions from these studies, such as a tendency to focus on 

balanced energy autonomy and electricity in more rural municipalities, there is until now no 

general framework within which to assess the feasibility of energy autonomy for a specific 

municipality. In addition, the high spatial and temporal resolutions required to satisfactorily 

model decentralized energy systems with large fractions of renewable energies makes 

approaches to information reduction indispensable. This paper goes some way towards filling 

these gaps by developing a typology of Germany’s 11,131 municipalities to support the 

selection of municipalities for future decentralised energy autonomy projects. With the help of 

a cluster analysis, these municipalities are divided into homogeneous clusters by socio-

energetic indicators. The objective is to identify municipalities where energy autonomy 

aspirations could make technical and economic sense, and thereby to support the transferal 

of successful projects to other municipalities within the same cluster. In addition, a foundation 

for energy system models is developed which enables large-scale modelling of decentralized 

energy systems without the requirement for high spatial resolutions, which is often a central 

limitation in such models at the national scale and above (Keles et al. 2017). Finally, 

representatives of municipalities can be encouraged to initiate energy autonomy projects 

themselves if they have already been successfully implemented in a similar municipality.  

The paper is structured as follows. Section 2 presents a literature review and more clearly 

locates this paper in context. Section 3 then presents the methodology, before section 4 

presents and section 5 discusses the results. The paper closes with a summary and 

conclusions in section 6.  

2. Literature review 

Several areas of energy research are relevant to this contribution, including those relating to 

the analysis of decentralised and centralised energy systems, the field of urban morphology, 

and the application of cluster analysis to energy systems in order to reduce information quantity 

whilst retaining quality.  
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Characterising and contrasting centralised and decentralised energy systems is a relevant 

area of research for this paper because it strongly relates to the suitability of decentralised 

energy systems to become energy autonomous. Examples of contributions in this area include 

Funcke & Bauknecht (2016), who develop typologies for both of these types of energy 

infrastructure, by focussing on infrastructure location and operation. Further, Schmid et al. 

(2016) analyse the actor types, motives and conceivable roles within today’s centralised and 

tomorrow’s decentralised energy systems from the perspectives of technology, actors and 

institutions. Others raise the question of the optimal “degree of centralisation” 

(Zentralisierungsgrad), first coined by Jensch (1989), i. e. the level at which decentralised 

energy systems should be aggregated and balanced (Bauknecht et al. 2015). Currently, most 

energy autonomous regions rely on the overarching centralised energy system for their 

flexibility and controllability (Funcke & Bauknecht 2016). For example, Wimmer et al. (2014) 

compare centralised with decentralised wind expansion scenarios, concluding that the overall 

flexibility requirements are similar in both cases. Reiner Lemoine Institut (2013) finds that a 

decentralised renewables expansion would be economically favourable, largely due to higher 

required network expansion costs in the centralised case. Others reach the opposite 

conclusion, however, that centralised and hybrid energy systems are more economically 

efficient than purely decentralised ones (acatech 2016). Although it is clear that a completely 

renewable energy supply based on decentralised, autonomous regions does not seem 

economical due to very large storage requirements (Peter 2013), there is no clear consensus 

about the optimal degree of centralisation. Especially the related question of the technical 

feasibility of decentralised energy autonomy is addressed in this paper whilst the micro- and 

macroeconomic assessment is left to future work. 

Urban morphology is the second relevant research area. It focusses on the form of the urban 

environment, including building types, ages and forms, and (amongst other things) its 

implications for the energy system. The field is well established, as demonstrated by the earlier 

contribution of Steemers (2003), who analysed the relationship between urban morphology 

and energy use in buildings and transport, the two main sectors (other than industry) that are 

relevant for urban planning. Also Ratti et al. (2005) explored the effects of urban textures on 

building energy consumption with digital elevation models, with case studies in three European 

cities. Similar methods were also more recently employed in the LSECities project (Rode et al. 

2014a, 2014b), which analysed the effects of different types of urban forms on heat energy 

demand and derived generalised insights into these relationships in larger European cities. In 

the context of her PhD thesis, Miller (2013) approaches the connection between urban form 

and building energy use with a multi-scale approach and using the Metro Vancouver region in 

Canada as an example. All of these studies demonstrate the diversity amongst the urban 

building stock, leading to a substantial variation in heat demand. Others within this field have 
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examined the relationship between solar energy potential and urban morphology in London, 

concluding that by optimising combinations of eight variables of urban form the solar irradiation 

of roofs and facades could be increased by around 9% and 45% (Sarralde et al. 2015). More 

recently, Urquizo et al. (2017) explored different urban morphology metrics and their impact 

on energy consumption in four districts of Newcastle, UK. In a more detailed analysis, 

Hargreaves et al. (2017) investigate the most cost-effective decarbonisation options for regions 

with different urban forms in a UK context, showing for example how low-density urban areas 

are more suited to exploit ground-source heat pumps. Summarizing, then, the field of urban 

morphology offers insights into the connection between energy demand and urban structures, 

but does not provide a transferable typology for the whole decentralised energy system. 

The third and most relevant research field for this paper is that of cluster analysis. Despite 

being a common method in energy studies more widely, it has not yet been often employed in 

the analysis of decentralised energy systems. One example is Chévez et al. (2017), who 

examine the single region “Great La Plata” in Argentina at the administrative level. The region 

is clustered into eight census area types with a k-means cluster analysis according to the 

consumption of electrical energy and other socioeconomic variables. The most important result 

is that electricity consumption increases strongly with the household sizes, which could, for 

example, support the construction of distribution networks. In addition, Unternährer et al. 

(2017) cluster 6224 buildings not yet connected to the local heating network at the 

administrative level. Depending on indicators such as the demand for space heating and 

domestic hot water, as well as georeferenced drilling costs for deep geothermal energy, the 

cluster analysis results in 16 clusters. Clusters and typologies have often been applied at the 

district scale, in identifying the most cost-effective low carbon energy solution for different types 

of districts (Hargreaves et al. 2017; McKenna et al. 2016, 2017a; Su et al. 2017), as well as at 

the building scale, for example in the context of residential heat demand studies (McKenna et 

al. 2016, 2017a). In addition, Marquant et al. (2017) present a holistic approach for optimisation 

of multi-scale distributed energy systems, by employing clusters of similar buildings at the 

district level.  

There are some examples of applications of cluster analysis at higher levels of spatial 

aggregation. For example, Kaundinya et al. (2013) employ a k-medoid clustering method to 

divide a region in India into clusters of villages for supply with decentralised biomass power 

plants, and the value of k is chosen to minimise the total system costs. For Austria, Bramreiter 

et al. (2016) divide all of the 82 Austrian “Climate and Energy Model Regions (CEMs)”, which 

aim for energy autonomy, into three clusters by ten indicators (e. g. population density, 

employment figures, energy consumption). In a subsequent step, all other Austrian 

municipalities are examined by cluster analysis, with the aim of identifying municipalities with 

characteristics similar to those of the CEMs. It is shown that large parts of Austria could also 
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become CEMs and thus have the potential to become energy self-sufficient, at least on an 

annual basis. In the study of Requia et al. (2017), all 5570 municipalities in Brazil are divided 

into five clusters. However, the analysis does not focus on socio-energetic indicators, but on 

six types of pollutant emissions in the Transport sector such as 𝐶𝑂2 and 𝑁𝑂𝑥. To transfer the 

results to energy systems of municipalities, indicators for the other consumption sectors 

Private Households, Industry and Commercial would have to be included in the cluster 

analysis. The investigations are not always limited to one country. For example, Noiva et al. 

(2016) investigate 142 cities, spread across all continents. Indicators for the analysis of the 

cities divided into six clusters are the parameters of supply and demand for water.  

Another relevant example in the present case is the PhD dissertation of Wall (2016), who 

conducted a cluster analysis with the German county-free cities as objects and based on 41 

socio-energetic indicators. The cluster analysis in Wall (2016) differs from this study not only 

in the choice of indicators but also in the choice of the research objects. The survey objects 

are not the municipalities, but only the 107 county-free cities in Germany. Other studies have 

employed cluster analysis to German regions, but most of these neither have a high spatial 

resolution nor focus on energy aspects. For example, in Kronthaler (2003) Germany was 

divided into 97 regions, which were then assigned to ten clusters in a cluster analysis. The 

study looked at 13 socioeconomic indicators, including employment figures and investment in 

industry. The research showed that the economic power of the regions in eastern Germany is 

still significantly lower than that of the western German regions. Heinritz (2000) also came to 

a similar conclusion, by evaluating the economic strength of the 441 counties in Germany, and 

dividing the counties into five clusters by socio-economic indicators such as gross domestic 

product per inhabitant. In three other studies, German municipalities are investigated, but none 

of the studies considers all 11,131 municipalities. Geyler et al. (2008) only analyse 240 

municipalities in the core region of Central Germany. The delimitation into six clusters is based 

on local development trends. These include 16 indicators such as the development of the 

settlement and traffic area or business tax revenue per inhabitant. In Schultz & Brandt (2016) 

2,916 of the 11,131 German municipalities are divided into nine clusters by demographic 

indicators (among other things, the “share of single-person households” or “share of under-

18s”). Finally, the 1102 municipalities in the federal state of Baden-Württemberg are 

investigated in Statistisches Landesamt Baden-Württemberg (2009). The goal was not to place 

the municipalities in clusters but to identify the two municipalities that are closest to each other. 

Indicators such as population density or cars per 1,000 inhabitants were used. Hence, although 

several German regions have been analysed with cluster analysis, a classification with energy 

indicators has not yet been carried out at the municipal level. This is the research gap 

addressed in this paper, as outlined in the following section. 
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3. Methodology 

This section describes the data collection and standardisation (cf. section 3.1) as well as the 

execution of the factor analysis (cf. section 3.2) and cluster analysis (cf. section 3.3). The vast 

majority of cluster analyses evaluated in section 2 perform a hierarchically agglomerative 

cluster analysis with the Ward algorithm. 17 of the 23 analyses evaluated in Wall (2016) also 

apply hierarchically agglomerative cluster analysis. Hierarchical cluster analysis generates 

high-quality clusters therefore this is also used in this paper. To support the traceability of the 

cluster analysis, the most important information according to Bacher et al. (2010) is listed in 

Table 1. 

Table 1: Overview of the most important aspects of traceability of a cluster analysis. 

Objects 11,131 German municipalities 

Variables/Indicators 59 Indicators (see section 3.1) 

Algorithm Ward 

Cluster analysis method Hierarchical-agglomerative, k-means 

Criteria used to determine the number of 
clusters 

26 different methods and elbow criteria (see 
section 3.3.2) 

Software used R 

 

3.1. Data collection and standardisation 

Many of the indicators used in the studies mentioned in section 2 are also used in the cluster 

analysis presented in this paper, as well as newly selected indicators. This study uses the 

indicators in a comprehensive analysis and for the first time clusters all 11,131 municipalities 

in Germany. The 59 indicators used in the cluster analysis include data on the energy 

consumption sectors “Private Households”, ”Transport”, ”Industry” and “Commercial” as well 

as data to estimate the potential for renewable energies (see Table 2). The indicators whose 

data is only available at the county level are shown in italics in Table 2. In the following, the 

“X” values in brackets are used as abbreviations for the indicators. For the last three groups of 

indicators in the Private Household sector, the specific allocations of the “X” values will be 

described later in the text. Only the indicators used in the final analysis are assigned to “X” 

values. The question of why not all indicators are used is answered in section 3.1. A complete 

list of all indicators and their references is given in Table 8 in the Appendix. 
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Table 2: Overview of the indicators used in the cluster analysis. Italics means that the data of the indicators were 

only available at the county level. 

Consumption sector 
Private Households 
(29) 

Consumption sector 
Transport (11) 

Consumption sector 
Industry and 
Commercial (12) 

Potential for 
renewable energies 
(7) 

Population development 
between 2010 and 2015 
(X1) [%] 

Number of motor vehicles 
per 1,000 inhabitants 
(X27) 

Share of employment in 
the industrial sector [%] 

Achievable hydrothermal 
temperature (X32) [°C] 

Living space per person 
(X2) [m²] 

Number of cars per 1,000 
inhabitants (X28) 

Share of employment in 
the commercial sector [%] 

Necessary hydrothermal 
drilling depth (X33) [m] 

Share of single-person 
households (X3) [%] 

Share of diesel vehicles 
[%] 

Energy productivity of 
manufacturing industry 
[€/GJ] 

Technical PV potential 
per inhabitant (X34) 
[kWh/y] 

Average household size 
(X4) [Persons] 

Share of petrol vehicles 
[%] 

Energy intensity of 
manufacturing industry 

[MJ/€] 

Technical PV potential 
per km² (X35) [MWh/y] 

Household density (X5) 
[Housholds per km²] 

Share of gas vehicles [%] Productivity level of 
manufacturing industry 
[€/GJ] 

Technical wind potential 
per inhabitant (X36) 
[MWh/y] 

Share of owner-occupied 
apartments (X6) [%] 

Share of hybrid vehicles 
[%] 

Specific energy 
consumption of 
manufacturing industry 

[MJ/€] 

Technical wind potential 
per km² (X37) [MWh/y] 

Income per household 
(X7) [k€] 

Share of electric vehicles 
[%] 

Share of industrial sales 
tax [%] 

Share of forest and 
agricultural land (X38) 
[%] 

Share of over 65-year-olds 
(X8) [%] 

Share of other vehicle 
types [%] 

Share of commercial 
sales tax [%] 

Unemployment rate (X9) 
[%] 

Population density (X29) 
[Inhabitants per km²] 

Development of 
employment share in the 
industrial sector [%] 

Share of settlement and 
traffic area (X10) [%] 

Share of 18-64-year-olds 
(X30) [%] 

Development of 
employment share in the 
commercial sector [%] 

Heating days Share of commuters in 
the workforce [%] 

Development of energy 
intensity in the 
manufacturing sector [%] 

Heating degree days Number of manufacturing 
enterprises per 1,000 
households (X31) 

Degree day number 

Share of heating types (3 
indicators) (X11-X13) [%] 

Share of building age 
class (9 indicators) (X14-
X22) [%] 

Share of building type (4 
indicators) (X23-X26) [%] 

 

27 of the 59 indicators also used Wall (2016) in his analysis of county-free cities. In the 

following, the reasons for selecting the additional indicators are explained.  

3.1.1.  Indicators of the consumption sector Private Households 

Private households account for 26% of Germany's final energy consumption and should not 

be neglected in the energetic classification of municipalities. The majority of the final energy 

(69%) is used in households for space heating (Umweltbundesamt & BMWi 2017). 
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Share of heating types 

For the shares of heating types, the available data have been grouped into three groups: 

1) Share of buildings with heating systems based on district heating (X11) 

2) Share of buildings with heating systems not based on district heating (X12) 

3) Share of buildings without heating system (X13) 

This segmentation allows conclusions to be drawn as to whether and to what extent there is a 

district heating network, a gas network or both in the municipalities. The existing infrastructures 

influence the selection decision of technologies which are suitable in the municipalities. As an 

example, power-to-heat plants and power-to-gas plants offer great opportunities for future 

flexibility in power generation. However, to store the energy from these plants, various 

networks are required, such as a district heating network for power-to-heat plants or a gas 

network for power-to-gas plants (Böttger et al. 2014). Furthermore, district heating systems 

are suitable for the integration of heat from renewable energies such as geothermal power 

plants (Durst 2015). 

Shares of building age classes 

The insulation condition of the building envelope has a significant influence on the space 

heating requirement in buildings (Braun 2010). The building age class influences the insulation 

condition of the building envelope and is, therefore, an essential indicator for estimating the 

heat demand (Schuler et al. 2000). In the cluster analysis applied here, the building ages were 

divided into nine groups (see Table 8 in the Appendix). 

Shares of building types 

The type of building also has a significant influence on the demand for space heating in private 

households (Wei et al. 2014). Shipworth et al. (2010), for example, showed that the operating 

hours of the heating system in English homes are statistically dependent on the type of 

building. The biggest difference was found between detached houses, in which the heating is 

much longer, and terraced houses. This study distinguishes between detached houses (X23), 

semi-detached houses (X24), terraced houses (X25) and “other types of buildings” (X26). 

3.1.2. Indicators of the consumption sector Transport 

For the indicators representing the Transport sector, the shares of hybrid, gas and other 

vehicles in the vehicle stock have been added (compared to Wall 2016). Hybrid vehicles also 

include an internal combustion engine in addition to the electric motor. The combustion engine 

can compensate for the disadvantage of the limited range of electric vehicles (Høyer 2008). 

The number of gas vehicles in Germany is around 100,000, and they can contribute to a 

significant reduction in pollutants and, in some cases, 𝐶𝑂2 emissions. If biomethane or 
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synthetic methane is added to the fuel, gas vehicles can be as climate-friendly as electric 

vehicles (BMWi 2016a). 

3.1.3. Indicators of the consumption sector Industry and Commercial 

The Industry consumption sector accounts for almost 50% of the electricity supplied in 

Germany (Javied et al. 2016). Most of the data from the Industry consumption sector are only 

available for the manufacturing sector. These data are suitable for estimating the energy 

consumption of industry, as manufacturing accounts for the largest share of energy 

consumption (27.4% of Germany's total primary energy demand) (Umweltbundesamt 2016). 

Number of manufacturing enterprises per 1,000 households 

The number of manufacturing enterprises is the only indicator of this sector provided at the 

municipal level. The indicator is based on 1,000 households to compare the values for the 

different municipalities.  

3.1.4. Indicators of the potential for renewable energies 

In most practical examples of municipal energy autonomy, renewable energies are used to 

establish a sustainable energy system (Schmidt et al. 2012). Therefore, the potentials of 

renewable energies in a region are important indicators. The potentials of renewable energies 

applied in the cluster analysis are explained below. 

Achievable hydrothermal temperature 

In Germany, an increase in deep geothermal power stations is expected by 2030 (installed 

capacity in 2030: 850 𝑀𝑊𝑒𝑙) (Hechler & Bredel-Schürmann 2011). From 2003 to 2013, the 

annual supply of thermal energy by deep geothermal energy plants has increased from 60 

𝐺𝑊ℎ𝑡ℎ to 530 𝐺𝑊ℎ𝑡ℎ, the supply of electrical energy has increased from 0 𝐺𝑊ℎ𝑒𝑙 to 36 𝐺𝑊ℎ𝑒𝑙 

(Agemar et al. 2014). In this study, the focus is on hydrothermal systems, because 

petrothermal systems are not yet used in Germany (Hechler & Bredel-Schürmann 2011). 

Electricity from geothermal energy currently receives a subsidy of 25.2 €-cents/kWh 

(Deutscher Bundestag 2017). 

Hydrothermal power plants have two main advantages: on the one hand, unlike many other 

renewable energy plants, they are capable of providing energy as base load. On the other 

hand, they show the lowest emissions of pollutants after hydroelectric power plants during the 

life cycle of the plant (Purkus & Barth 2011). At the municipal level, several geothermal power 

plants are already being used to supply local and district heating (Hechler & Bredel-Schürmann 

2011). Therefore, the use of this technology should also be considered in future energy 

autonomy efforts. 
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An important indicator for estimating the economic potential of a geothermal plant is the 

achievable hydrothermal temperature. Hydrothermal temperatures above 110 °C are required 

for the economical operation of a geothermal plant to generate electricity (Agemar et al. 2014). 

Figure 1 shows that the achievable hydrothermal temperatures strongly depend on the region. 

This means that municipalities have different hydrothermal potentials. Therefore, the indicators 

for hydrothermal energy are included in the cluster analysis. 

 

Figure 1: Achievable average hydrothermal temperature (°C) at a depth of up to 5000 meters in German 

municipalities according to Agemar (2017). 

Necessary hydrothermal drilling depth 

The depth of drilling to the water reservoirs mainly determines the amount of investment for a 

geothermal plant. The depth of the well depends on the local temperature gradient. In 

Germany, the average temperature gradient is 32 K/km, in some regions (Upper Rhine valley) 

up to 100 K/km are reached (Agemar et al. 2014). 

Technical photovoltaic (PV) potential per inhabitant/per km² 

The data from Mainzer et al. (2014) were used to estimate the PV potential in municipalities. 

However, this data must be made comparable for the cluster analysis. The indicator is 

therefore determined by dividing the PV potential in kWh by the number of inhabitants. This 

means that the technical PV potential per inhabitant can now be used for each municipality. 

However, this does not yet complete the estimation of the PV potential, as this indicator does 

not allow a statement to be made about the potential of the PV systems in the relation to the 

area. For this purpose, the energy density of the PV systems is determined by dividing the PV 

potential in MWh by the area in km². 

°C
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Technical wind potential per inhabitant/per km² 

The indicators for the technical wind potential in MWh were determined in analogy to the 

technical PV potential per inhabitant and per km². The data from McKenna et al. (2014a) was 

used for this. This data is available at postcode level and could be assigned to the 

municipalities using the geoinformation system QGIS.  

Share of forest and agricultural land in total area 

Land areas are required for the construction and operation of many technologies based on 

renewable energies such as wind power plants, ground-mounted photovoltaics and biogas 

plants (Marx Gómez et al. 2014). While wind power plants may only be built in certain areas 

such as forests or agricultural land, biogas plants require entire areas for the cultivation of 

energy crops (mainly maize) (Lüker-Jans et al. 2017; McKenna et al. 2014a). The proportion 

of woodland and agricultural land in the total area of the municipalities can, therefore, be used 

as an indicator to estimate the potential for these renewable energies.  

3.1.5. Data in the investigation 

In the final study, only 38 of the 59 indicators were used. The indicators used are marked in 

Table 2 with a compounded X-value. The first cluster analysis with all indicators showed that 

there was too much dependence on the indicators based on county data for them to accurately 

represent values for municipalities. For this reason, the indicators shown in italics in Table 2 

were excluded from further analysis. In addition, the indicator “Share of commuters in 

employment” could not be included in the study, as the data only exist for 2014 and are 

incomplete. 

Furthermore, one indicator for each of the proportions of heating types, building age classes 

and building types were eliminated for a reason described below. Many calculation steps of a 

factor and cluster analysis require a positive semi-definite data matrix (Lorenzo-Seva & 

Ferrando 2006). A symmetrical matrix is positive semi-definite if all eigenvalues are 

nonnegative (Zhang 2011). In this study, the matrices were not positive semi-definite. This 

problem was solved by eliminating linear dependent variables. Since the proportions of the 

indicator groups heating types, building age classes and building types can be added up to 

100% in each case, an indicator value can always be calculated with the other indicator values. 

Therefore, X13, X22 and X26 are deleted from the dataset. More information about positive 

semi-definite matrices can be found in Zhang (2011). 

3.1.6. Standardisation 

Once the data is complete, it must be standardised for factor analysis. Standardisation serves 

to make the indicators comparable in their range of values (Milligan & Cooper 1988). This 
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prevents indicators with larger values from being weighted more strongly. Many studies use 

the Z-transformation to standardise the data. The standardised values Z are calculated using 

the original indicator value 𝑋, the arithmetic mean �̅� and the standard deviation 𝑠 (Heyde 

1990): 

𝑍 = (𝑋 − �̅�)/𝑠                (1) 

However, Milligan & Cooper (1988) showed that this traditional Z-value method leads to poorer 

results in cluster analyses than other standardisation methods. In most cases, the Z-value 

method works well only with normally distributed data (Office for National Statistics 2015). The 

following calculation has proved to be the best method, which is also used in the present study 

(Milligan & Cooper 1988): 

𝑍 =
𝑋−min(𝑋)

max(𝑋)−min(𝑋)
               (2) 

3.2. Exploratory Factor Analysis 

An exploratory factor analysis serves to examine the data and reduce the number of (required) 

indicators. The j-th factor 𝐹𝑗 can be determined using the k indicators 𝑋1, 𝑋2,..., 𝑋𝑘 and the 

weights or factor loadings 𝑊𝑗𝑖: 

𝐹𝑗 = 𝑊𝑗1𝑋1 + 𝑊𝑗2𝑋2 + ⋯ + 𝑊𝑗𝑘𝑋𝑘              (3) 

The larger the factor load 𝑊𝑗𝑖, the stronger the value of the factor 𝐹𝑗 is determined by the 

indicator 𝑋𝑖 (Aljandali 2017). The R-function “fa” from the package “psych” is used here for 

factor analysis (Revelle 2017). Factor analysis was conducted following the steps proposed in 

Osborne (2014), which are explained below. 

3.2.1. Selection of the extraction method 

An extraction method is used to investigate the correlation between all indicators with the aim 

of extracting the latent variables. A latent variable, here a factor, is a variable that cannot be 

measured directly but is the basis of the observed variables. If the data is predominantly 

normally distributed, then the maximum likelihood method is best suited as an extraction 

method, if it is not normally distributed, the principal axis factor method should be used 

(Osborne 2014). Figure 7 in the Appendix shows the distributions of the standardised 

indicators. The data were checked for normal distribution with the Kolmogorov-Smirnov test 

since the Shapiro-Wilk test is only suitable for data records with up to 5000 datasets (Shapiro 

& Wilk 1965; Lopes 2011). The p-values were smaller than 2.2 ∗ 10−16, so all data series are 

not normally distributed. Therefore, the principal axis factor method seems to be suitable as 

an extraction method. 
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However, in the factor analysis using the principal axis factor method, so-called Heywood 

cases occurred. A Heywood case occurs when variances are negative, or correlations (in this 

case some factor loadings) are greater than one. Due to the Heywood cases, the solution of 

the factor analysis is inadmissible. In addition, the causes of Heywood cases are difficult to 

distinguish (Dillon et al. 1987). With the recommended extraction method in Revelle (2017), 

the “minimum residual” method, almost the same result was obtained as with the principal axis 

factor method, since only one indicator was assigned to a different factor. However, Heywood 

cases also occurred when using this extraction method. The Heywood cases were not 

discussed in Osborne (2014), so no other method was recommended for this case. In Revelle 

(2017), it is pointed out that in contrast to other methods, the “Minimum Rank Factor Analysis” 

(MRFA) does not include Heywood cases. Therefore, the MRFA method is selected below as 

the extraction method. The MRFA method is described in Lorenzo-Seva & Ferrando (2006) as 

the only method that calculates the part of the variance explained by each factor. This is also 

the only difference between this extraction method and the “minimum residual” method 

(Shapiro & Berge 2002). 

3.2.2. Selection of the number of factors 

In his study, Osborne (2014) points out that no criterion for selecting the number of factors is 

better than another, the suitability of the criteria varies depending on the case. Therefore, 

several methods should be used. In this paper, the Kaiser criterion from Kaiser (1960) 

combined with a “Scree-Plot” and the “Parallel Analysis” from Horn (1965) are applied. Ten 

factors are recommended with the Kaiser method, and nine with the Parallel Analysis (cf. 

Figure 8 in the Appendix). In the following, ten factors are assumed according to the Kaiser 

criterion (cf. curve “Eigenvalues > 0” in Figure 8 in the Appendix). 

3.2.3. Selection of the rotation method 

The rotation was invented shortly after the factor analysis to facilitate the interpretation of the 

results of the factor analysis (Osborne 2014). The goal is a simple structure in which each 

indicator describes as few factors as possible (or “loads onto them”). In addition, rotation 

creates groups of factors containing related indicators (Yong & Pearce 2013). This analysis 

uses the “Varimax” method, which is widely used in practice, to maximise the variance of factor 

loadings and minimise the number of factors (Eckstein 2016). 

3.2.4. Results of the Factor Analysis 

Table 3 shows the allocation of the indicators to the factors resulting from the factor analysis 

with the extraction method MRFA. The indicator X31 is the only one of the indicators not 

described by the factors, as its factor loading is very low for each factor. This means that X31 

is no longer included in the further analysis. Figure 9 in the Appendix shows the size of the 
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factor loadings of all remaining indicators for each factor. The results can be assessed as 

plausible since each factor describes a specific issue (see column “Factor name” in Table 3). 

Figure 10 in the Appendix also shows a correlation diagram of the indicator values. As an 

example, a high correlation between X29, X5 and X10 is shown there. These indicators are 

therefore all assigned to Factor 1 (see Table 3). 

Table 3: Assignment of the indicators with their factor loadings to the ten factors and naming of the factors. 

Factor Indicators Abbre
-
vation
s 

Factor 
loadin
g 

Factor name 

1 1) Household density  
2) Share of settlement and transport area  
3) Population density  
4) Technical PV potential per km²  
5) Share of forest and agricultural area  

X5 
X10 
X29 
X35 
X38 

0.917 
0.918 
0.934 
0.921 

-0.768 

Area factor (all 
indicators refer 
to the area of 
the municipality) 

2 1) Income per household  
2) Unemployment rate 
3) Share of buildings built before 1919 
4) Share of buildings built between 1919 and 1949 
5) Share of buildings built between 1960 and 1969 
6) Share of buildings built between 1970 and 1979 
7) Share of buildings built between 1980 and 1989 

X7 
X9 
X14 
X15 
X17 
X18 
X19 

0.464 
-0.503 
-0.629 
-0.791 
0.587 
0.791 
0.560 

East/West 
Factor (this 
factor reflects 
the inequalities 
between West 
and East 
Germany) 

3 1) Achievable hydrothermal temperature  
2) Necessary hydrothermal drilling depth  

X32 
X33 

0.949 
0.937 

Hydrothermal 
factor 

4 1) Number of motor vehicles per 1,000 inhabitants 
2) Number of cars per 1,000 inhabitants 

X27 
X28 

0.857 
0.882 

Traffic factor 

5 1) Share of over 65-year-olds 
2) Share of buildings built between 1990 and 1999 
3) Share of buildings built between 2000 and 2005 
4) Share of 18-64-year-olds 

X8 
X20 
X21 
X30 

-0.726 
0.737 
0.529 
0.626 

Age factor 

6 1) Share of buildings with heating systems based 
on district heating 

2) Share of buildings with heating systems not 
based on district heating 

X11 
 

X12 

-0.939 
 

0.934 

Heating system 
factor 

7 1) Population development between 2010 and 
2015 

2) Living space per person 
3) Average household size 
4) Technical PV potential per person 

X1 
X2 
X4 
X34 

0.459 
-0.660 
0.811 

-0.555 

Population 
Factor (all 
indicators 
depend on 
population size) 

8 1) Share of buildings built between 1950 and 1959 X16 0.891 - 

9 1) Share of single-person households 
2) Share of owner-occupied apartments 
3) Share of detached houses 
4) Share of semi-detached houses 
5) Share of terraced houses 

X3 
X6 
X23 
X24 
X25 

0.436 
-0.550 
-0.863 
0.663 
0.719 

Building factor 

10 1) Technical wind potential per inhabitant 
2) Technical wind potential per km² 

X36 
X37 

0.823 
0.754 

Wind factor 

 

3.3. Cluster analysis 

As already described above, high quality clusters are generated with hierarchical 

agglomerative cluster analysis. However, this method requires high computing times 

(Bouguettaya et al. 2015). In the cluster analysis carried out here, the high computing times 
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were mainly due to the complex determination of the number of clusters. Similar to Wall (2016), 

the results of the factor analysis were used as input for the cluster analysis. 

3.3.1. Ward algorithm 

The clusters can be classified using distance metrics. To determine the distance matrix, the 

distance or similarity between all objects is determined (Johnson 1967). The Ward algorithm 

is the only method among the agglomerative cluster methods that is based on the classical 

sum of squares and determines groups, minimising dispersion within the groups at each step. 

The sum of the squares is determined with the help of the distance matrix (Murtagh & Legendre 

2014). In this study, the distance matrix is calculated using the Euclidean distance, since it 

should be the basis for the Ward method (Miyamoto et al. 2015). 

To use the Ward algorithm, the R function “hclust” has been executed (Müllner 2016). Within 

this function, two different algorithms Ward1 or Ward2 can be selected. Murtagh & Legendre 

(2014) showed that only the algorithm Ward2 minimises the Ward criterion and should, 

therefore, be used. For more information about the mathematical differences of Ward1 and 

Ward2, the authors refer to Murtagh & Legendre (2014). The difference d² of two clusters R 

and Q is calculated with the help of the cluster foci �̅� using the following formula (Gentle et al. 

1991): 

𝑑2(𝑅, 𝑄) =
2|𝑅| |𝑄|

|𝑅|+|𝑄|
‖�̅�(𝑅) − �̅�(𝑄)‖2

             (4) 

3.3.2. Determining the number of clusters 

In hierarchical agglomerative cluster analysis, the number of clusters is not known in advance 

but must be determined using suitable methods (Salvador & Chan 2004). The more clusters 

selected, the more similar the objects within the clusters are. At the same time, the clusters 

are more difficult to distinguish between each other as the number of clusters increases. 

In some studies such as Wall (2016) or Yang et al. (2017), the number of clusters is estimated 

using the common but often inaccurate “elbow” method. Alternatively, the R-function “NbClust” 

from Charrad et al. (2014) offers 30 methods for determining the optimal number of clusters. 

None of the criteria studied so far can predict the optimal number of clusters in any case 

(Albatineh & Niewiadomska-Bugaj 2011). Therefore, all 30 methods were implemented. More 

information about the mathematical description of the methods can be found in Charrad et al. 

(2014). The results of the procedures in the context of this study are shown in Table 9 in the 

Appendix. Only 26 of the 30 methods are listed in the table since the computationally intensive 

methods such as "gamma" had to be aborted after almost two months of computing time. As 

can be seen in Table 9 in the Appendix, the 26 methods yielded quite different values for the 

number of clusters. It is therefore necessary to examine more closely whether the methods 
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should be used at all in this particular case. 22 of the 30 procedures are already explained and 

evaluated in Milligan & Cooper (1985). For Example, the “ch” procedure of Calinski & Harabasz 

(1974) was rated as the best procedure. However, Islam et al. (2016), showed that “ch” is poor 

with a high number of clusters and usually prefers - as in this study - a 2 cluster solution. Almost 

all 26 methods have poor functionality with a high number of clusters (cf. Table 9 in the 

Appendix). The only algorithm for which a good functionality with high cluster numbers could 

be found in the relevant literature is “duda”, which suggests ten clusters in this study. However, 

it should be further examined whether the ten clusters represent the optimal number of clusters 

in this study. 

Therefore, several cluster solutions with different numbers of clusters are compared to 

determine an appropriate number of clusters. Table 4 shows how the structure of the clusters 

changes from five clusters up to 15. For example, Cluster 1 from the 5 cluster solution divides 

into two further clusters at 14 cluster solution. 

Table 4: Development of cluster composition for solutions with 5 to 15 clusters.  

Number Cluster 
5 339 727 2898 5722 1445 

6 1370 75 

7 1671 1227 

8 5262 460 

9 1638 33 

10 839 388 

11 3927 1335 

12 1899 2028 

13 181 546 

14 11 328 

15 726 609 

 

Figure 2 shows the course of the within-cluster sum of squares as a function of the number of 

clusters. The within-cluster sum of squares describes the squared distance of an object to the 

cluster centre, i. e. how similar the object is to the other objects of the group (Anderson 2001). 

The smaller the within-cluster sum of squares is, the more similar the objects in the clusters 

are. 
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Figure 2: Sum of squares within clusters as a function of the number of clusters. 

The aforementioned elbow method is based on the within-cluster sum of the squares, as shown 

in Figure 2, where the elbow represents the point of decreasing marginal returns. This means 

that right behind the elbow, with an increase in the number of clusters, the increase in 

information is very small. However, the region of the elbow is often not as clearly visible, as in 

Figure 2 (Kodinariya & Makwana 2013), so this method alone could not be used. The elbow 

method is after all only a heuristic one (Tibshirani et al. 2001). The elbow could be between 

five and 20 clusters in the area delimited by black dotted lines. The 10 cluster solution proposed 

by the “duda” method (see Table 9 in the Appendix), is also in this area (red dotted lines).  

Therefore, the clusters need to be analysed further. It turned out that the new clusters formed 

in the 11 cluster solution differed significantly less from each other than the clusters formed in 

the previous steps. The upper diagram of Figure 3 illustrates the deviation in the mean values 

of all indicators for the two new clusters in the 11 cluster solution. The values have been scaled 

to values between 0 and 1 to improve the comparability. The two new clusters are clusters 5 

with 3,927 municipalities and 8 with 1,335 municipalities, as the cluster numbers change in 

each step (cf. Table 4). The diagram shows that the mean values for each indicator are 

approximately the same. 
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Figure 3: The mean values of the two newly formed clusters in the 11 cluster solution (upper figure) and the 10 
cluster solution (bottom figure) over the 34 indicators. 

This means that a further separation of the clusters from ten clusters onwards creates only a 

low added value. As a comparison, the curves of the mean values of the two newly created 

clusters in the 10 cluster solution are shown in the bottom diagram of Figure 3. In this case, 

the mean values vary significantly, so the number of clusters should be increased from nine to 

ten. In the following, ten clusters will be selected as the appropriate number of clusters, since 

this number can be justified by the “duda” method, the elbow method and further analysis. 

4. Results of the cluster analysis 

Figure 4 shows all German municipalities with a colour assignment to the clusters of the 10 

cluster solution. The broader outlines separate the 16 federal states in Germany. Especially in 

Rhineland-Palatinate and Schleswig-Holstein, some municipalities seem to be dark to black. 

This is due to the small size of the municipalities; in Rhineland-Palatinate, the municipalities 

have by far the smallest size. Due to the poor visibility of these municipalities, the map is 

magnified in Figure 11 to Figure 13 in the Appendix. 
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Cluster 8 0,5 0,2 0,3 0,1 0 0,6 0,1 0,3 0,2 0,1 0,1 0,9 0,2 0,1 0 0 0,1 0,1 0,3 0,3 0,7 0,2 0,1 0,2 0,3 0 0,6 0,4 0,4 0,1 0 0 0,1 0,8
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Figure 4: Illustration of all German municipalities with their allocation in the 10 cluster solution. The numbers of 

municipalities in the clusters are in parentheses. 

The mean values of all 34 indicators were determined for all clusters and every single cluster 

(see Table 5). The different colours are chosen to distinguish between the sectors Private 

Households (blue/red) and Transport (yellow) as well as potential for renewable energies 

(green). 

[339]
[727]
[1638]

[839]
[5262]
[1370]
[460]
[388]

[75]
[33]
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Table 5: Mean values of the indicators X1-X38 for the ten Clusters and all Clusters. 

 

 

 

The following description of the clusters is based on the mean values in Table 5. To help 

classify the clusters, the proportions of municipalities per cluster are assigned to the seven 

municipality types of the BBSR typology in Figure 5 (BBSR 2015). The criteria for classifying 

the municipalities are the population and the central function of the municipality. The evaluation 

of the central function is based on the central place theory of Christaller (1980). A municipality 

is defined as a rural municipality if either the population is less than 5,000 inhabitants or if the 

municipality has no basic central function. The cities in the BBSR typology are classified 

according to population size with the lower limits of 5,000, 10,000, 20,000, 50,000, 100,000 

and 500,000 inhabitants. 

Indicator X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Mean value -1,0 51,2 27,1 2,4 81,1 63,0 34,2 20,1 3,7 13,0 2,7 96,3

Cluster 1 -1,3 47,6 31,2 2,3 118,9 51,4 30,3 21,4 5,6 16,6 20,0 78,9

Cluster 2 1,1 46,7 34,1 2,3 417,5 49,9 37,8 21,1 4,4 34,9 3,8 95,8

Cluster 3 1,1 50,5 25,8 2,5 71,3 63,3 41,3 18,8 2,9 12,7 2,1 97,2

Cluster 4 -4,3 49,5 27,4 2,2 23,5 61,7 24,9 20,2 6,9 6,7 3,3 95,9

Cluster 5 -0,8 53,3 26,7 2,4 59,9 65,2 35,7 19,7 3,0 12,3 1,5 97,4

Cluster 6 -3,7 47,2 27,2 2,3 54,6 62,4 26,2 22,5 4,7 10,1 2,5 96,5

Cluster 7 -2,1 58,0 24,3 2,4 21,4 69,7 32,8 20,2 3,3 7,7 1,9 96,9

Cluster 8 -0,9 48,6 23,4 2,4 40,7 65,9 33,9 17,3 3,7 11,4 4,9 94,6

Cluster 9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 3,9 2,0 90,7

Cluster 10 33,5 21,3 28,3 6,2 37,7 62,5 57,6 20,9 4,6 9,5 2,9 96,5

Indicator X14 X15 X16 X17 X18 X19 X20 X21 X23 X24 X25

Mean value 18,9 11,4 8,5 11,3 13,4 11,1 14,6 7,5 77,2 10,2 7,8

Cluster 1 17,5 14,0 9,0 10,9 12,3 10,0 14,6 8,1 68,0 12,3 15,1

Cluster 2 10,0 10,9 12,1 16,4 16,3 11,8 12,0 6,8 58,3 17,5 20,8

Cluster 3 14,3 7,6 7,6 12,4 16,8 12,6 15,9 8,6 76,7 11,5 6,2

Cluster 4 28,1 20,5 11,8 5,4 5,1 7,0 13,4 6,6 72,6 15,7 7,6

Cluster 5 15,2 8,9 9,0 13,5 15,7 12,4 14,4 7,5 80,9 8,5 6,2

Cluster 6 35,2 19,9 5,4 4,7 6,5 8,5 12,6 5,0 75,8 9,1 9,7

Cluster 7 28,5 9,4 6,4 11,4 12,8 8,8 12,2 7,6 85,2 4,7 2,9

Cluster 8 18,6 10,9 4,0 4,3 6,4 8,2 29,2 13,6 78,6 10,5 6,7

Cluster 9 15,4 8,3 8,5 13,2 14,8 11,0 12,8 6,5 74,0 9,4 6,0

Cluster 10 26,0 16,6 8,2 10,4 10,3 8,8 12,0 5,4 79,5 11,4 5,1

Indicator X27 X28 X29 X30 X32 X33 X34 X35 X36 X37 X38

Mean value 832,7 634,5 183,3 62,8 29,6 842,8 2482,7 398,4 41,4 2000,9 83,6

Cluster 1 785,7 598,5 273,0 62,4 44,5 1342,1 2173,0 501,4 44,9 2062,8 77,2

Cluster 2 697,2 588,3 928,8 62,0 21,6 552,4 1987,0 1703,7 1,1 605,7 60,9

Cluster 3 855,0 649,7 171,0 62,4 90,8 2438,4 2390,4 389,8 33,0 2327,2 83,7

Cluster 4 819,9 618,2 33,5 65,2 88,1 2740,0 2755,9 88,0 120,4 2759,8 88,2

Cluster 5 860,6 652,5 141,4 62,5 5,6 156,9 2570,9 342,4 24,0 1737,4 84,8

Cluster 6 800,5 615,0 114,7 63,6 3,4 106,9 2477,5 260,0 34,1 1704,4 86,7

Cluster 7 957,1 661,5 41,7 61,3 25,3 789,4 2818,0 113,7 222,6 5863,6 89,9

Cluster 8 819,9 645,4 104,5 66,7 69,8 2086,4 2486,1 247,2 32,0 1897,8 83,8

Cluster 9 0,0 0,0 0,0 0,0 19,4 592,5 0,0 7,0 0,0 320,1 90,0

Cluster 10 711,9 560,1 86,3 63,4 41,5 1297,3 1285,5 211,1 46,8 2123,2 84,1
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Cluster 1 contains an above-average number of larger towns (see Figure 5). This cluster is 

characterised by the highest share of district heating systems by far. This is obvious since 

district heating networks are particularly suitable in towns and conurbations with high heat 

demand densities (Connolly et al. 2014). The high proportion of over 65-year-olds is also 

typical of German cities (Lauf et al. 2016). The population density is above average, while 

vehicles per 1,000 inhabitants are the second lowest. The potential for renewable energies is 

below average except for the mediocre wind power potential. 

The largest share of cities is in Cluster 2 (see. Figure 5). In this cluster, the rural municipalities 

account for the smallest share compared to the other clusters, and the cities from the larger 

small town to the larger cities take the highest share. Figure 4 shows that the largest cities in 

Germany, such as Berlin, Hamburg, Munich and Cologne, are all part of this cluster. For this 

reason, the indicators household density, population density as well as the shares of terraced 

houses and semi-detached houses are particularly high in this cluster, and the share of 

detached houses is particularly low. Furthermore, buildings built between 1950 and 1979 

dominate the municipalities in this cluster. This is due to the destruction of many cities during 

the Second World War. In the city of Dresden, for example, large areas of prefabricated 

concrete slab buildings were created in the 1970s due to a shortage of houses (Wurm et al. 

2009). The number of vehicles per 1,000 inhabitants is the lowest, as there are more transport 

alternatives in cities and the average distances travelled are shorter because of the high 

population density (Woldeamanuel et al. 2009). Due to the high building density, the technical 

PV potential per km² is the highest here. On the other hand, the technical PV potential per 

inhabitant is the lowest after Cluster 10 due to the high population density. As expected, the 

proportion of forest and agricultural land in this cluster is the smallest, so the technical wind 

power potential is also very low. The geothermal potential is below average. 

In Cluster 3, the hydrothermal potential is very high; an average hydrothermal temperature of 

90°C at a depth of 2,400 metres can be used in the municipalities. Figure 4 also shows that 

the municipalities of this cluster are predominantly located in the three large German 

hydrothermal regions “North German Basin”, ”Upper Rheine Graben” and “South German 

Molasse Basin” (Agemar et al. 2014). The potentials for the other renewable energies are 

average. Furthermore, there are more modern detached houses in the municipalities of the 

cluster, the income per household is high, and the unemployment rate is particularly low. From 

this cluster onwards, the share of rural municipalities in each cluster is more than 45%, and 

larger cities from the small midtown onwards are only very little represented (see. Figure 5). 

In Figure 4, Cluster 4 is represented by dark green coloured municipalities and occupies a 

large, almost continuous area. A closer look reveals that the western border of the area 

corresponds to the border of the former German Democratic Republic (GDR). The 
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municipalities from Cluster 6 and 8 are also predominantly located in the territory of the former 

GDR. Cluster 4 is characterised by a high proportion of old houses, and the proportion of 

buildings built between 1919 and 1949 reaches its maximum here. Buildings built between 

1970 and 1989 are very scarce in these municipalities. Also, the unemployment rate is 

particularly high. In line with this, the population in these municipalities has been declining the 

most in recent years, and income per household is the lowest. The sharp decline in the 

population is due to the growing childlessness in eastern Germany since German reunification 

(Bernardi & Keim 2017). At the same time, population density and average household size are 

the lowest in this cluster. These two latter indicators also determine the high value of 

photovoltaic potential per inhabitant. On the other hand, the photovoltaic potential per km² in 

this cluster is the second lowest after cluster 9, due to the small share of settlement areas in 

the total area. In contrast to this, the wind power potential in this cluster is the second highest. 

In addition, the municipalities of the cluster could exploit the second highest hydrothermal 

potential in Germany, but this would require drilling 300 metres deeper on average than in 

Cluster 3.  

 

Figure 5: Classification of municipalities according to the BBSR municipality typology. 

With 47% of all German municipalities, Cluster 5 contains the largest number of municipalities. 

In contrast to cluster 1, district heating systems are the least widespread in this case, whereas 

the proportion of heating types that are not based on district heating is the highest. The number 

of cars and motor vehicles per 1,000 inhabitants is also very high. The cluster has the second 

lowest hydrothermal potential. In addition, the potential for photovoltaics in this cluster is only 

mediocre, and the potential for wind power is low. Based on the indicators selected in this 

study, Cluster 5 represents the “average” municipalities in Germany. 
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Like Cluster 4, Cluster 6 is also characterised by a high building age because of its location in 

eastern Germany. Due to the increasing childlessness, the population is declining and the 

proportion of people over 65 years of age is steadily increasing. The values of the indicators 

representing the transport sector are rather average. In contrast to the low to average wind 

power and photovoltaic potential, the hydrothermal potential in this cluster is particularly low.  

Cluster 7 contains almost exclusively rural municipalities and small towns (see Figure 5). The 

proportion of apartments occupied by the owner and the living space per person are at their 

maximum, while at the same time the household density is minimal. Due to the low density of 

households and population, the number of cars and motor vehicles per 1,000 inhabitants 

reaches its maximum here. In addition, the detached houses reach the largest share in this 

cluster. Furthermore, this cluster has the highest potential for renewable energies, despite its 

very low geothermal potential. The high living space per person and the low density of 

households mean that the highest photovoltaic and wind power potentials per person are 

achieved. Also, the wind power potential per km² is at its maximum, as most of the 

municipalities in the cluster are located in Northern Germany and thus in areas with high wind 

speeds and have a high proportion of forest and agricultural land.  

The building age in Cluster 8 is unusually low, although these municipalities are mainly located 

in Eastern Germany. This can be explained by an example: in the description of clusters 4 and 

6, the decline in population in eastern Germany has already been discussed. Although this 

development applies to all the new federal states, the decline in Brandenburg between 1990 

and 2008 was significantly lower. This was mainly due to new settlements in the surrounding 

area of Berlin, the so-called “commuter belt” (Jesse et al. 2014). Municipalities from cluster 8 

almost exclusively form this commuter belt (cf. Figure 4). Due to the rising rent in Berlin, more 

and more young families are moving into the commuter belt. This also explains the maximum 

proportion of 18-64-year-olds and the minimum proportion of 65 year-olds in this cluster 

(Bünger 2017). The proportion of cars per 1,000 inhabitants is also above average here, 

presumably because most people have to drive to work in the city. A closer examination of the 

red municipalities shown in Figure 4 reveals that most of the municipalities are located in the 

surrounding area of major cities in clusters 1 and 2. Thus, the conclusions mentioned above 

on the Berlin “commuter belt” can also be transferred to the other municipalities in Cluster 8. 

Also, this cluster has the third highest geothermal potential, while the potential of the other 

renewable energies is below average. 

Cluster 9 contains all areas in which there are no inhabitants. Therefore, all indicators that 

depend on the population have a value of zero. These areas are municipality-free (in German: 

“gemeindefrei”), and therefore 100% of them are rural municipalities (see Figure 5). Settlement 

and traffic area is present in these municipalities, because of roads leading through these 
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areas. However, this indicator has the smallest value here. At the same time, the proportion of 

forest and agricultural land reaches its highest level. It is interesting to note that the technical 

wind power potential per km² is nevertheless at its minimum in this cluster. The reason for this 

could be, among other things, nature reserves in which no wind turbines may be installed. The 

technical photovoltaic potential in this cluster is also approaching zero since only a few 

buildings are located here. Despite the buildings, no residents are assigned to these areas, as 

the buildings in the municipal areas belong to military training areas or similar (Goderbauer 

2016). This cluster has the lowest potential for renewable energies, as the geothermal potential 

is also below average. 

With only 33 municipalities, Cluster 10 represents the smallest cluster in this study. This 

cluster is characterised by the highest population growth between 2010 and 2015. Due to the 

largest average household size by far, the income per household is also reaching its maximum 

value and the technical PV potential per inhabitant its minimum value. In addition, the number 

of vehicles per 1,000 inhabitants in this cluster is below average. The cluster must be evaluated 

as an outlier since many of the characteristics of this cluster are due to the high population 

growth. The population figures from 2015 have been used in the calculation of many indicators 

to establish a uniform reference. However, the most recent household data are available for 

2014 and have only been roughly updated since the last survey in 2011. As a result, the high 

population growth leads to, among other things, high values for the average household size, 

as the number of households is no longer up to date. This cluster, therefore, includes outliers. 

Nevertheless, the heterogeneity and independence of the cluster can be justified by the 

significantly higher population growth as in the other clusters.  

5. Discussion 

5.1. Critical appraisal of the methodology 

Wall (2016) shows that factor analysis is an important step ahead of cluster analysis. However, 

most studies describe cluster analyses without prior factor analysis. For this reason, the cluster 

analysis was repeated again without the factor analysis. The results were worse than those of 

the cluster analysis with the values from the factor analysis. For example, with the factor 

values, the 75 municipality-free areas without population (Cluster 9) were already divided into 

a cluster in the 6 cluster solution (cf. Table 4). In the analysis with the raw data, these 

municipalities were not separated, at least up to the 20 cluster solution. 

Whilst cluster analysis provides a good basis for transferring the results of energy autonomy 

studies to other municipalities, results cannot always be completely transferred and an 

examination of the individual case will be necessary. This is illustrated by the following 

example: Figure 6 shows the violin plot of the indicator “Share of buildings with heating systems 

based on district heating (X11)” for all clusters. In a violin plot, the density trace and the box 
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plot are combined into one diagram (for more information see: Hintze & Nelson 1998). The red 

plus signs indicate the position of the mean value and the green boxes indicate the position of 

the median.  

 

Figure 6: Violin Plot of indicator X11 in % for the ten clusters. 

Cluster 1 is characterised by a high average share of district heating. However, Figure 6 shows 

that this cluster also contains a few municipalities with very low shares of district heating. These 

municipalities are then more similar to the cluster focus in the other indicators.  

The following explains in more detail why it is necessary to carry out a cluster analysis to 

appropriately transfer the results of energy system analyses in municipalities by comparing the 

model or average municipalities from the studies described in Section 1 with the mean values 

of all municipalities in this study (cf. Table 6).  

Table 6 shows that the average municipality differs from the municipalities/regions of the 

studies of Jenssen et al. (2014), Scheffer (2008) and Peter (2013). A comparison of the values 

reveals that none of the surveyed municipalities represents an average municipality in 

Germany. Even though it was not the intention to select an average municipality in Germany 

in some of the studies, the results are difficult to transfer to other municipalities or regions. 

Rather, the choice of municipalities and data appears to be influenced by many other than 

technical factors in some cases. For example, Scheffer (2008) tried to use the indicator values 

to describe a rural municipality. In the classification of German municipalities in BBSR (2015), 

the municipality would be placed in the category “Smaller Small Town”. In addition, only a few 

data on the municipalities are described in the studies. This could give the impression that the 
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results from Jenssen et al. (2014), for example, can be transferred to municipalities with 3,000 

inhabitants, 800 buildings and a household size of 2.2 persons. Instead, a transferability 

depends on how precisely the municipality is represented, i. e. how many indicators are used 

to describe the municipality. Since the cluster analysis carried out here uses considerably more 

indicators to describe the municipalities, the result can be used as a basis for transferring 

appropriate energy systems to other municipalities. 

Table 6: Comparison of the model, example and average municipalities/regions from relevant literature with the 
average municipality from this study. 

Municipality 
from 

Number of 
inhabitants  

Number 
of 
buildings 

Average 
house-
hold size 
[people] 

Share of 
settlements 
and traffic 
areas [%] 

Population 
density 
[Inhabitants
/km²] 

Number of 
vehicles per 
1,000 
inhabitants 

Jenssen et al. 
(2014) 

3,000 800 2.2 Not 
specified 

Not 
specified 

Not 
specified 

Scheffer (2008) 10,000 Not 
specified 

Not 
specified 

Not 
specified 

Not 
specified 

630 

Peter (2013) 3,850 1,224 3.1 
8 

106 Not 
specified 

Burgess et al. 
(2012) 

25,550 Not 
specified 

2.4 8 310 Not 
specified 

Schmidt et al. 
(2012) 

20,619 Not 
specified 

Not 
specified 

< 11 68 Not 
specified 

Woyke & Forero 
(2014) 

1,100 Not 
specified 

Not 
specified 

Not 
specified 

Not 
specified 

Not 
specified 

Average munici-
pality (cf. Table 5) 

7,380 1,670 2.4 13 183 830 

 

5.2. Suitability of municipalities for energy autonomy 

To investigate the suitability of individual municipalities and clusters for energy autonomy, 

precise calculations must be carried out. Nevertheless, in this section an attempt is made to 

determine an initial assessment of this suitability by analysing the clusters in which 

municipalities are already aiming for energy autonomy. For this, 165 municipalities from the 

energy projects “Energy Municipalities”, “Bioenergy Villages” and “100% Renewable Energy 

Regions” are assigned to the ten clusters. These projects aim to achieve the goal of an 

autonomous energy supply in the municipalities. However, the municipalities have defined 

different objectives in the projects about autonomous supply, including “100% heat”, ”100% 

electricity” or “100% renewable energies” (McKenna et al. 2014b). Some of the municipalities 

take part in several of the projects mentioned above. Districts and counties involved in the 

projects were not included in the analysis. The result of the assignment is shown in Table 7. 
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Table 7: Assignment of the municipalities from the energy projects “Energy Municipalities”, “Bioenergy Villages” and 

“100% Renewable Energy Regions” to the ten clusters. 

Cluster 1 2 3 4 5 6 7 8 9 10 

Number 25 21 20 6 76 12 2 3 0 0 

Fraction 
in the 
cluster 

7,4% 2,9% 1,2% 0,7% 1,4% 0,9% 0,4% 0,8% 0% 0% 

Example Jühnde München Furth Barth Brilon Jena Hürup Pleß - - 

 

First of all, it is noticeable that no municipalities from clusters 9 and 10 participate in the energy 

projects. This fact is quickly explained since there is no population in Cluster 9 and Cluster 10 

is very small and is also more of an outlier cluster. The first two clusters, on the other hand, 

have the largest proportion of municipalities that are members of the energy projects. As shown 

above, these clusters contain most of the cities (see Figure 5). One reason for the high 

proportions in these clusters could be the existence of a critical mass of innovators (cf. 

Deutschle et al. 2015), but such aspects could not be included in this analysis. On the other 

hand, however, achieving the goal of energy autonomy is all the more difficult, the more 

inhabitants a municipality has. While in rural municipalities the focus is often on the expansion 

of renewable energies, development in large cities depends to a large extent on development 

outside the city borders. Discussions in major cities are mainly focused on increasing energy 

efficiency, creating smart grids and providing storage capacity. For example, the City of Munich 

aims to halve per capita emissions by 2030 (Gailing et al. 2013). In the other clusters, the 

municipalities' participation in energy projects is not so pronounced. However, in each of the 

clusters 3 to 8, at least two municipalities are involved in energy projects. This is likely to be 

due to the non-technical reasons mentioned above rather than a suitability of the municipalities 

per se. If the potential for renewable energies is used as a basis for the assessment, the 

municipalities from Cluster 3 and Cluster 7 could be particularly suitable for energy autonomy: 

Cluster 3, among other things, due to its high hydrothermal potential and the associated 

potential base-load energy supply; Cluster 7 because of the highest potential for renewable 

energies. 

6. Summary and Conclusion 

In the context of the trend towards decentralised energy systems, both high temporal and 

spatial resolutions are required in order to adequately consider their interactions with the 

centralised system. This is a central challenge in energy modelling, as compromises must 

inevitably be made between model resolution, scope and computational feasibility. This paper 

makes a significant contribution to complexity reduction in this area by clustering the 11,131 

German municipalities using 34 pre-identified socio-energetic indicators, mainly based on 

freely available data relating to the consumption sectors of Private Households and Transport, 
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as well as indicators relating to the potentials for renewable energies. The method involves 

two main steps, namely a factor analysis and a cluster analysis. For the former, different 

methods are weighed against each other, and the most effective methods for allocating the 

indicators to factors are chosen. Selected cluster validation methods are then used to 

determine an appropriate number of 10 clusters to which the 11,131 municipalities are 

distributed. Due to the high number and differentiation of indicators, clusters overlap with each 

other for different indicators, but the results also show significant differences between the 

clusters. For example, Cluster 2 contains all major German cities and most of the other cities 

in Germany and has a low potential for renewable energies. Cluster 9, on the other hand, 

describes all German municipalities in which there are no inhabitants. 

The methodology used in this study could be improved for more accurate results in future work. 

On the one hand, other indicators should be included in the study, including, if possible, 

indicators from the Industry and Commercial sector as well as indicators relating to the local 

climate. However, this is challenging due to the lack of available data at this spatial resolution. 

If available, data should also refer to the same year, as some of the results might be distorted 

because of different reference years, as shown by the average household size in cluster 10. 

Furthermore, weights for the indicators should be determined with the help of expert interviews. 

If it is known which indicators have the most considerable influence on the suitability for energy 

autonomy, these can be weighted more strongly in the cluster analysis and a new set of 

clusters generated based on these weights. In addition, the employed cluster methodology 

should be scrutinised more closely. Although the selection methods can be adequately justified 

in this study, others (e.g. Chicco 2012) have shown that the Ward algorithm is not always the 

best choice for cluster analysis. Further work is also required to analyse the economic effects 

of municipal energy autonomy on the overarching energy system (for a discussion see 

Jägemann et al. 2013, McKenna 2017).  

A comparison of the average municipality from the dataset used here with the average 

municipalities from other energy autonomy studies is difficult due to a lack of data at the level 

of detail employed here. Based on the available data in these studies, a comparison shows 

few similarities, which means the results of the studies relating to their transferability to other 

municipalities should be questioned. Assigning the municipalities from the three German 

energy projects “Energy Municipalities”, ”Bioenergy Villages” and “100% Renewable Energy 

Regions” to the 10 clusters further shows that in eight of the ten clusters municipalities are 

aiming for energy autonomy (in varying degrees). As a result, it is not possible to differentiate 

between the clusters regarding readiness for such energy projects, which is most likely due to 

the influence of non-technical factors on the emergence of these initiatives. However, the 

results of the cluster analysis show that some of the municipalities could be technically more 

suitable for energy autonomy, for example Cluster 7 is characterised by a high potential for 
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renewable energies. A comparison of the ten clusters with the average municipality from the 

data set also demonstrates their benefit, with a large variation across clusters in terms of 

energy demand structure, renewables potentials and overall size. The results therefore reduce 

the effort of subsequent studies, as only a few municipalities from the clusters need to be 

examined regarding their suitability for energy autonomy to be able to make statements for all 

municipalities of the cluster. However, this study also makes it clear that not every result can 

be transferred to all the other municipalities within a cluster, instead an individual examination 

is required for each municipality. Nevertheless, the results help to identify municipalities in 

which already successful measures from other municipalities could be applied, and provide a 

basis for further energy analyses at the national level.  
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A. Appendix 

Table 8: Indicators for cluster analysis and the associated units and references. 

Indicator References 

Indicators of the Consumption Sector Private Households 
 
Population development between 2010 and 2015 
[%] 

(Statistisches Bundesamt 2011a, 2017b) and own 
calculation 

Living space per person [m²] (Statistisches Bundesamt 2017b, 2014d) and own 
calculation 

Share of single-person households in total 
number of households [%] 

(Statistisches Bundesamt 2014e) and own calculation 

Average household size [Number of persons] (Statistisches Bundesamt 2014e, 2017b) and own 
calculation 

Household density [Households per km²] (Statistisches Bundesamt 2017b, 2014e) and own 
calculation 

Share of owner-occupied apartments in total 
number of apartments [%] 

(Statistisches Bundesamt 2014d) and own calculation 

Income per household [k€] (Statistisches Bundesamt 2014e, 2011b) and own 
calculation 

Share of over 65-year-olds in total population [%] (Statistisches Bundesamt 2014a) and own calculation 

Unemployment rate [%] (Statistisches Bundesamt 2017b, 2014a, 2016a) and 
own calculation 

Share of settlement and traffic area in total area 
[%] 

(Statistisches Bundesamt 2016b) and own calculation 

Heating days (long-term average) (Institut für Wohnen und Umwelt 2017) 

Heating degree days (long-term average) (Institut für Wohnen und Umwelt 2017) 

Degree day number (long-term average) (Institut für Wohnen und Umwelt 2017) 

Share of buildings with heating systems based on 
district heating [%] 

(Statistisches Bundesamt 2014d) and own calculation 

Share of buildings with heating systems not 
based on district heating [%] 

(Statistisches Bundesamt 2014d) and own calculation 

Share of buildings without heating system [%] (Statistisches Bundesamt 2014d) and own calculation 

Share of buildings built before 1919 in total 
building stock (X14) [%] 

(Statistisches Bundesamt 2014d) and own calculation 

Share of buildings built between 1919 and 1949 
in total building stock (X15) [%] 

(Statistisches Bundesamt 2014d) and own calculation 

Share of buildings built between 1950 and 1959 
in total building stock (X16) [%] 

(Statistisches Bundesamt 2014d) and own calculation 

Share of buildings built between 1960 and 1969 
in total building stock (X17) [%] 

(Statistisches Bundesamt 2014d) and own calculation 

Share of buildings built between 1970 and 1979 
in total building stock (X18) [%] 

(Statistisches Bundesamt 2014d) and own calculation 

Share of buildings built between 1980 and 1989 
in total building stock (X19) [%] 

(Statistisches Bundesamt 2014d) and own calculation 

Share of buildings built between 1990 and 1999 
in total housing stock (X20) [%] 

(Statistisches Bundesamt 2014d) and own calculation 

Share of buildings built between 2000 and 2005 
in total building stock (X21) [%] 

(Statistisches Bundesamt 2014d) and own calculation 

Share of buildings built from 2006 onward in total 
building stock (X22) [%] 

(Statistisches Bundesamt 2014d) and own calculation 

Share of detached houses in total building stock 
(X23) [%] 

(Statistisches Bundesamt 2014d) and own calculation 

Share of semi-detached houses in total building 
stock (X24) [%] 

(Statistisches Bundesamt 2014d) and own calculation 

Share of terraced houses in total building stock 
(X25) [%] 

(Statistisches Bundesamt 2014d) and own calculation 

Share of “other building types” in total building 
stock (X26) [%] 

(Statistisches Bundesamt 2014d) and own calculation 
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Indicators of the Transport consumption sector 
 
Number of motor vehicles per 1,000 inhabitants (Statistisches Bundesamt 2017b; Kraftfahrt-

Bundesamt 2017a) and own calculation 

Number of cars per 1,000 inhabitants (Statistisches Bundesamt 2017b; Kraftfahrt-
Bundesamt 2017a) and own calculation 

Share of diesel vehicles in vehicle fleet [%] (Kraftfahrt-Bundesamt 2017b) and own calculation 

Share of petrol vehicles in vehicle fleet [%] (Kraftfahrt-Bundesamt 2017b) and own calculation 

Share of gas vehicles in vehicle fleet [%] (Kraftfahrt-Bundesamt 2017b) and own calculation 

Share of hybrid vehicles in vehicle fleet [%] (Kraftfahrt-Bundesamt 2017b) and own calculation 

Share of electric vehicles in vehicle fleet [%] (Kraftfahrt-Bundesamt 2017b) and own calculation 

Share of “other vehicle type” in vehicle fleet [%] (Kraftfahrt-Bundesamt 2017b) and own calculation 

Population density [Inhabitants per km²] (Statistisches Bundesamt 2017b) and own calculation 

Share of 18-64-year-olds in the total population 
[%] 

(Statistisches Bundesamt 2014a) and own calculation 

Share of commuters in total workforce [%] (Statistisches Bundesamt 2014f) and own calculation 

Indicators of the Consumption Sector Industry and Commercial 
 
Share of employment in the industrial sector [%] (Statistisches Bundesamt 2015a) and own calculation 

Share of employment in the commercial sector 
[%] 

(Statistisches Bundesamt 2015a) and own calculation 

Energy productivity of manufacturing industry 
[€/GJ] 

(Statistisches Bundesamt 2014b, 2014c) and own 
calculation 

Energy intensity of manufacturing industry [MJ/€] (Statistisches Bundesamt 2014b, 2014c) and own 
calculation 

Productivity level of manufacturing industry 
[€/GJ] 

(Statistisches Bundesamt 2014b, 2014c) and own 
calculation 

Specific energy consumption of manufacturing 
industry [MJ/€] 

(Statistisches Bundesamt 2014b, 2014c) and own 
calculation 

Share of industrial sales tax in total sales tax [%] (Statistisches Bundesamt 2014g) and own calculation 

Share of commercial sales tax in total sales tax 
[%] 

(Statistisches Bundesamt 2014g) and own calculation 

Development of employment share in the 
industrial sector [%] 

(Statistisches Bundesamt 2015a, 2000) and own 
calculation 

Development of employment share in the 
commercial sector [%] 

(Statistisches Bundesamt 2015a, 2000) and own 
calculation 

Development of energy intensity in 
manufacturing industry from 2003 to 2014 [%] 

(Statistisches Bundesamt 2014b, 2014c, 2003a, 
2003b) and own calculation 

Number of manufacturing enterprises per 1,000 
households 

(Statistisches Bundesamt 2015b) and own calculation 

Indicators of the potential for renewable energies 
 
Achievable hydrothermal temperature [°C] (Agemar 2017) and own calculation 

Necessary hydrothermal drilling depth [m] Own calculation 

Technical PV potential per inhabitant [kWh/y] (Mainzer et al. 2014; Statistisches Bundesamt 2017b) 

Technical PV potential per km² [MWh/y] (Mainzer et al. 2014; Statistisches Bundesamt 2017b) 
 

Technical wind potential per inhabitant [MWh/y] (McKenna et al. 2014a; Statistisches Bundesamt 
2017b) and own calculation 

Technical wind potential per km² [MWh/y] (McKenna et al. 2014a; Statistisches Bundesamt 
2017b) and own calculation 

Share of forest and agricultural land in total area 
[%] 

(Statistisches Bundesamt 2016b) and own calculation 
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Table 9: Number of clusters resulting from 26 different procedures and evaluation of the procedures. A high number 

of clusters in the “evaluation of the procedure” column means a number of more than 4 clusters.  

Index Nu-
mber 

Evaluation of the procedure 

“ch” (Calinski & Harabasz 
1974) 

2 Poor with a high number of clusters. Often prefers 2 cluster 
solutions (Islam et al. 2016; Arbelaitz et al. 2013; 
Vendramin et al. 2010). 

“duda” (Duda & Hart 1973) 10 Good with a high number of clusters (Milligan, Cooper 
1985; Islam et al. 2016). Second best procedure in (Milligan 
& Cooper 1985). 

“pseudot2” (Duda & Hart 1973) 10 - 

“cindex” (Hubert & Levin 1976) 6 Determines the optimum number of clusters +/-1 with a 
probability of only 50% (Islam et al. 2016). Poor with a high 
number of clusters (Arbelaitz et al. 2013). 

“beale” (Beale 1969) 2 Poor with a high number of clusters (Arbelaitz et al. 2013). 

“ptbiserial” (Milligan 1980, 
1981) 

10 A high number of clusters is often underestimated (Milligan 
& Cooper 1985). 

“db” (Davies & Bouldin 1979) 10 In (Arbelaitz et al. 2013) the third-best index with a high 
number of clusters, but low success rate with a high 
number of clusters (Milligan & Cooper 1985; Arbelaitz et al. 
2013). 

“frey” (Frey & van Groenewoud 
1972) 

1 Result contradicts the cluster idea because of the number 
of clusters <2. The Number of clusters is rather 
underestimated with a high number of clusters (Milligan & 
Cooper 1985). 

“hartigan” (Hartigan 1975) 5 Works well with a small number of indicators (Tibshirani et 
al. 2001; Albatineh & Niewiadomska-Bugaj 2011). Poor 
with a high number of clusters (Milligan & Cooper 1985). 

“ratkowsky” (Ratkowsky & 
Lance 1978) 

8 Poor with a high number of clusters (Milligan & Cooper 
1985). 

“scott” (Scott & Symons 1971) 3 Poor with a high number of clusters (Milligan & Cooper 
1985). 

“marriot” (Marriott 1971) 7 Poor with a high number of clusters (Milligan & Cooper 
1985). 

“ball” (Ball, Hall 1965) 3 Poor with a high number of clusters (Milligan & Cooper 
1985). 

“trcovw” (Milligan & Cooper 
1985) 

3 Poor with a high number of clusters (Milligan & Cooper 
1985). 

“tracew” (Milligan & Cooper 
1985) 

5 Poor with a high number of clusters (Milligan & Cooper 
1985). 

“friedman” (Friedman & Rubin 
1967) 

3 Poor with a high number of clusters (Milligan & Cooper 
1985). 

“mcclain” (McClain & Rao 
1975) 

2 Poor with a high number of clusters (Milligan & Cooper 
1985). 

“rubin” (Friedman & Rubin 
1967) 

8 Poor with a high number of clusters (Milligan & Cooper 
1985). 

“kl” (Krzanowski & Lai 1988) 3 Identifies only 40-50% of the clusters (Albatineh & 
Niewiadomska-Bugaj 2011; Islam et al. 2016). 

“silhouette” (Rousseeuw 1987) 3 Poor with a high number of clusters (Islam et al. 2016; 
Arbelaitz et al. 2013). 

“gap” (Tibshirani et al. 2001) 2 Poor with a high number of clusters (Islam et al. 2016). 

“dindex” (Lebart et al. 2002) 5 - 

“dunn” (Dunn 1974) 9 Poor with a high number of clusters (Arbelaitz et al. 2013). 

“hubert” (Hubert & Arabie 
1985) 

4 - 

“sdindex” (Halkidi et al. 2000) 2 - 

“sdbw” (Halkidi & Vazirgiannis 
2001) 

7 Poor with a high number of clusters (Arbelaitz et al. 2013). 
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Figure 7: Distributions of indicator values. 
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Figure 8: Results in determining the number of factors. 
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Figure 9: Factor loadings in each of the ten factors.  
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Figure 10: Correlation matrix of the indicator values.  
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Figure 11: Illustration of the northern German municipalities with their allocation in the 10 cluster solution. 
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Figure 12: Illustration of the central German municipalities with their allocation in the 10 cluster solution. 
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Figure 13: Illustration of the southern German municipalities with their allocation in the ten cluster solution 
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