
Khashei, Mehdi; Hajirahimi, Zahra

Article

Performance evaluation of series and parallel strategies
for financial time series forecasting

Financial Innovation

Provided in Cooperation with:
Springer Nature

Suggested Citation: Khashei, Mehdi; Hajirahimi, Zahra (2017) : Performance evaluation of series
and parallel strategies for financial time series forecasting, Financial Innovation, ISSN 2199-4730,
Springer, Heidelberg, Vol. 3, Iss. 24, pp. 1-24,
https://doi.org/10.1186/s40854-017-0074-9

This Version is available at:
https://hdl.handle.net/10419/176464

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  http://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1186/s40854-017-0074-9%0A
https://hdl.handle.net/10419/176464
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


RESEARCH Open Access

Performance evaluation of series and
parallel strategies for financial time
series forecasting
Mehdi Khashei and Zahra Hajirahimi*

* Correspondence:
Z.hajirahimi@in.iut.ac.ir
Department of industrial and system
engineering, Isfahan University of
Technology, Isfahan, Iran

Abstract

Background: Improving financial time series forecasting is one of the most challenging
and vital issues facing numerous financial analysts and decision makers. Given its direct
impact on related decisions, various attempts have been made to achieve more accurate
and reliable forecasting results, of which the combining of individual models remains a
widely applied approach. In general, individual models are combined under two main
strategies: series and parallel. While it has been proven that these strategies can improve
overall forecasting accuracy, the literature on time series forecasting remains vague on
the choice of an appropriate strategy to generate a more accurate hybrid model.

Methods: Therefore, this study’s key aim is to evaluate the performance of series and
parallel strategies to determine a more accurate one.

Results: Accordingly, the predictive capabilities of five hybrid models are constructed on
the basis of series and parallel strategies compared with each other and with their base
models to forecast stock price. To do so, autoregressive integrated moving average
(ARIMA) and multilayer perceptrons (MLPs) are used to construct two series hybrid
models, ARIMA-MLP and MLP-ARIMA, and three parallel hybrid models, simple average,
linear regression, and genetic algorithm models.

Conclusion: The empirical forecasting results for two benchmark datasets, that is, the
closing of the Shenzhen Integrated Index (SZII) and that of Standard and Poor’s 500
(S&P 500), indicate that although all hybrid models perform better than at least one of
their individual components, the series combination strategy produces more accurate
hybrid models for financial time series forecasting.

Keywords: Series and parallel combination strategies, Multilayer perceptrons,
Autoregressive integrated moving average, Financial time series forecasting,
Stock markets

Background
Real time series forecasting with a high degree of accuracy is gaining increasing

importance in many domains, particularly the financial markets, and thus, various

attempts have been made to develop more accurate techniques. The objective of

financial time series forecasting is to provide financial analysts and investors with

reliable guidance on asset management. Thus, improving forecasting accuracy and

introducing reliable forecasting methods can facilitate more profitable financial market

investments by lead investors and financiers. To this effect, choosing a method that
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performs well in financial time series forecasting is imperative. To provide more accur-

ate results, studies on time series forecasting and modeling widely use a combination

of different models and metaheuristic optimization approaches. Considerable research

has adopted optimization methods such as genetic algorithm (GA; Aghay Kaboli et al.

2016a, 2016b, Kaboli et al. 2016), particle swarm optimization (PSO; Aghay Kaboli et

al. 2016a, 2016b), and gene expression programming (GEP; Aghay Kaboli et al. 2017a,

2017b; Aghay Kaboli et al. 2016a, 2016b). Kaboli et al. (2016) proposed the artificial co-

operative search (ACS) algorithm to forecast long-term electricity energy consumption

and numerically confirmed the effectiveness of the algorithm using other metaheuristic

algorithms including the GA, PSO, and cuckoo search. Modiri-Delshad et al. (2016)

presented a backtracking search algorithm (BSA) and verified the reliability of the

method in solving and modeling the economic dispatch (ED) problem. Aghay Kaboli et

al. (2016a, 2016b) estimated electricity demand using GEP, a genetic-based method, as

an expression-driven approach and showed that GEP outperforms the multilayer per-

ceptron neural (MLP) network and multiple linear regression models. Recent studies

on time series forecasting largely focus on combination methods given the

distinguishing features of hybrid models (e.g., unique modeling capability of each

model), drawbacks in using single models, and the resultant improvements in

forecasting accuracy. The key concept of combination theory is employing the unique

merits of individual models to extract different data patterns. Importantly, the literature

confirms that no individual model can universally determine data-generation processes.

In other words, all characteristics of underlying data cannot be fully modeled by one

model and therefore, combining different models or using hybrid ones helps analyze

complex patterns in data more accurately and completely. Further, combining various

models simplifies the selection of a model that is appropriate to process different forms

of relationships in the data and reduces the risk of choosing an inefficient one.

Several approaches have been proposed to combine linear and nonlinear models.

These combination methods are generally divided into two primary classes: series and

parallel. In a series combination method, a time series is decomposed into linear and

nonlinear parts. Accordingly, in the first stage, the model is used to process one time

series component and then, the obtained values are used as inputs for the second

model to analyze another component. On the other hand, in the parallel combination

method, the original data are simultaneously considered to be inputs for different

models and then, the linear combination of the forecasted results facilitates final

hybrid forecasting.

The literature on series linear or nonlinear combination models has dramatically

expanded since the early work of Zhang (2003). For instance, Pai and Lin (2005)

proposed a series hybrid methodology to exploit the unique strength of autoregressive

integrated moving average (ARIMA) and support vector machines (SVMs) to forecast

stock price and indicated that a hybrid model outperforms its components. Chen and

Wang (2007) constructed a series combination model that incorporates seasonal auto-

regressive integrated moving average (SARIMA) and SVMs for seasonal time series

forecasting and achieved more accurate results than both components. Zeng et al.

(2008) presented a series combination of the ARIMA and MLP models to predict

short-term traffic flow. Their experimental results for the real datasets indicated that

the proposed hybrid model can be an effective in improving forecasting accuracy
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achieved by either component. Zhou and Hu (2008) conducted experiments using a hy-

brid modeling and forecasting approach, which was based on the Grey and Box–Jenkins

ARMA models, and showed that their proposed model had higher forecasting precision

than its single components. Pao (2009) proposed a hybrid series model incorporating

artificial neural network (ANN) and different types of generalized autoregressive

conditional heteroscedasticity (GARCH) models to forecast energy consumption. Table 1

lists other recent studies on series linear and nonlinear hybrid models.

Bates and Granger (1969) introduced the concept of a parallel combination, which

was subsequently used by many researchers such as Makridakis et al. (1982), Granger

and Ramanathan (1984), Bunn (1989), and De Menezes and Bunn (1993). Wedding and

Cios (1996) proposed a parallel combination model using radial basis function

networks and the Box–Jenkins ARIMA model. More recently, several parallel hybrid

forecasting models have been proposed to combine linear and nonlinear models. For

instance, Wang et al. (2012) presented a parallel hybrid model using GA and by

employing ARIMA, exponential smoothing (ES), and back propagation neural network

(BPNN) models. Their numerical results showed that the proposed model outperforms

all traditional models, including the ESM, ARIMA, BPNN, equal weight hybrid (EWH)

model, and random walk (RWM) model. Forecasting stock returns, Rather et al. (2015)

proposed a novel hybrid model that merges predictions by three individual models: ES,

recurrent neural network (RNN), and ARIMA; the optimum weights of each model are

identified using GA. Yang et al. (2016) presented a combined forecasting model using

BPNN, adaptive network-based fuzzy inference system (ANFIS), and SARIMA models,

and thus, used a differential evolution metaheuristic algorithm to optimize the weights

of a hybrid model. Their experimental case study showed that their proposed method

performed better than the three individual methods and had higher accuracy.

In sum, several general conclusions can be drawn from the literature using hybrid

models to explore time series forecasting. First, in recent years, there has a growing

number of studies investigating the impact of using combination theory on forecasting

accuracy; their objective is to enhance forecasting accuracy by combining different

Table 1 Literature on series linear or nonlinear models for time series forecasting

Author(s) Linear model Nonlinear model Year Field

Ghasemi et al. (2016) ARIMA SVM 2016 Electricity price and load
forecasting

Barrow (2016) SMA MLP 2016 Intraday call arrivals
forecasting

Katris and Daskalaki (2015) FARIMA MLP 2015 Internet traffic forecasting

Chaâbane (2014) FARIMA MLP 2014 Electricity price forecasting

Adhikari and Agrawal (2013) RWM MLP 2013 Financial time series
forecasting energy

Wang and Meng (2012) ARIMA MLP 2012 Consumption forecasting

Khashei et al. (2012) ARIMA PNNs 2012 Time series forecasting

Nourani et al. (2011) SARIMAX MLP 2011 Rainfall–runoff process
modeling

Wu and Chan (2011) ARIMA Time delay neural
network (TDNN)

2011 Hourly solar radiation
forecasting

Aladag et al. (2009) ARIMA Elman’s recurrent
neural networks

2009 Time series forecasting
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models. The numerical results of the reviewed papers evidence that the predictive cap-

ability and accuracy of hybrid models are better than those of single models. Moreover,

hybrid models have recently become a dominated tool for time series forecasting. Sec-

ond, scholars have introduced series and parallel combination methodologies to con-

nect the components of hybrid models. However, the question of how to combine

single models, that is, which combination yields more accurate results, remains un-

answered. In other words, the literature has neglected to compare the two types of

hybrid methods to introduce a more accurate one and focused on improving forecas-

ting accuracy by employing hybrid models rather than their constituents. Third, the lit-

erature review revealed that among the linear and nonlinear models, ARIMA and

MLPs have attracted overwhelming attention and perform well when part of hybrid

models given their unique features. ARIMA models are one of the most important

forecasting models that have been successfully applied in modeling and forecasting.

The popularity of the ARIMA model can be attributed to its statistical properties and

the well-known Box–Jenkins (Box and Jenkins 1976) methodology in the model-

building process. The model assumes a linear correlation between the values of a time

series and thus, performs well in linear modeling. MLP is the most well-known artificial

neural network that processes nonlinear patterns in data without any assumption and

does not require the determination of a model’s form. MLPs are flexible computing

frameworks and universal approximators with a high degree of accuracy and can be

applied to a wide range of forecasting problems. The key advantage of the neural

networks is their flexible nonlinear modeling.

Given that the literature on time series forecasting remains ambiguous on the choice of

combination strategy, the core objective of this study is to introduce an effective com-

bination methodology and elucidate how individual models can be combined to improve

financial time series forecasting. Accordingly, this study presents a comprehensive discus-

sion on series and parallel combination methods and then, constructs a model using both

techniques to combine MLP as a nonlinear model and ARIMA as a linear model. Then,

using two combination strategies, ARIMA-MLP and MLP-ARIMA, the series and parallel

hybrid models, comprising simple average (SA), linear regression (LR) and genetic

algorithm (GA), are compared with their individual components. To evaluate the effec-

tiveness of the hybrid models and introduce a more accurate and reliable hybrid method,

two benchmark datasets, the closing of Shenzhen Integrated Index (SZII) and that of

Standard and Poor’s 500 (S&P 500), are selected for the forecasting and modeling.

The remainder of this paper is organized as follows. Section Methods presents the basic

concepts and modeling procedures of the ARIMA and MLP modes for time series

forecasting. Section Series combination method of ARIMA and MLP models and Parallel

combination of ARIMA and MLP describe the series and parallel combination techniques

and the hybrid models constructed using these methods. Section Results and discussion

reports the empirical results of the hybrid series and parallel models for a forecasting

benchmark dataset. Section Comparison of forecasting results compares the performance

of the models for the forecasting benchmark dataset. Section Conclusions concludes.

Methods
This section introduces the basic concepts and modeling procedures of the ARIMA

and MLP models and series and the parallel hybrid methods for time series forecasting.
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ARIMA model

ARIMA is one of the most widely used approaches to predict the future value of time

series by extracting and modeling linear patterns in data. Therefore, the classic model

is suitable for linear patterns. In ARIMA models, the future value of a variable is

assumed to be a linear function of the past values and error terms.

yt ¼ ut þ φ1yt−1 þ……þ φpyt−p−εt−θ1εt−1−……−θqεt−q ð1Þ

where (yt) is actual value in time t and εt is white noise, which is assumed to be

independently and identically distributed with a mean of zero and constant variance of

σ2. p and q are the integer numbers of autoregressive and moving average terms in the

ARIMA model and φi(i = 1,2,...., p) and θi(j = 1,2,....,q) are the model parameters to be

estimated. The modeling procedure for the ARIMA models, which is based on the

Box–Jenkins methodology, comprises three iterative steps: model identification, param-

eter estimation, and diagnostic checking. In the identification step, data transformation

is often required to render the time series stationary, which is a necessary condition

when building an ARIMA model for forecasting. A stationary time series is character-

ized by a constant mean and autocorrelation structure over time. When the observed

time series presents a trend and heteroscedasticity, differencing and power transform-

ation are applied to the data to remove the trend and stabilize the variance before the

ARIMA model can be fitted. Once a tentative model is identified, the estimation of the

model parameters is straightforward. The parameters are estimated such that an overall

measure of errors is minimized, which can be accomplished using a nonlinear

optimization procedure. The final step is the diagnostic checking of model adequacy,

which determines if the model assumptions about errors at are satisfied.

Several diagnostic statistics and residual plots can be used to examine the

goodness of fit of a tentatively adopted model to the historical data. If the model

is deemed inadequate, a new tentative model is identified, which is also subjected

to parameter estimation and model verification. Diagnostic information can help

determine alternative model(s). This three-step model-building process is typically

repeated several times until a satisfactory model is identified. The final model is

then used for the prediction.

MLP model

Computational intelligence systems, more specifically, ANNs, which in fact, are a free

dynamics model, are being widely used for the approximation of functions and

forecasting. In the case of real-world problems, neural networks are an effective tool to

recognize nonlinear patterns. ANNs are universal approximators that approximate a

large class of functions with a high degree of accuracy, which is a crucial advantage

over other classes of nonlinear models (Zhang et al. 1998). Their power is derived from

the parallel processing of information from the data and no prior assumption is re-

quired in the model-building process. Instead, the network model is largely determined

by the data characteristics. MLPs or single hidden layer feed-forward neural networks

are key and commonly used model forms of ANNs for time series modeling and

forecasting. The model is characterized by a network of three layers of simple process-

ing units connected by acyclic links (Fig. 1). The relationship between the output (yt)
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and (yt − 1,…, yt − p) inputs has the following mathematical representation (Khashei and

Bijari 2010):

yt ¼ w0 þ
Xq
j¼1

wj⋅g w0;j þ
Xp
i¼1

wi;j⋅yt−i

 !
þ εt; ð2Þ

where wi, j (i = 0,1,2,..., p, j = 1,2,...,q) and w j (j = 0,1,2,...,q) are model parameters often

termed connection weights, p is the number of input nodes, and q is the number of

hidden nodes. The activation functions take several forms.

The type of activation function is indicated by the condition of the neuron within the

network. In a majority of cases, input layer neurons do not have an activation function

because their role is to transfer inputs to the hidden layer. The most widely used

activation function for the output layer is the linear function because a non-linear one

may distort the predicated output. The logistic function is often used as a hidden layer

transfer function, as shown in Eq. (3). Other activation functions can also be used such

as linear and quadratic functions, each with a variety of modeling applications.

Sig xð Þ ¼ 1
1þ exp −xð Þ : ð3Þ

Fig. 1 MLP neural network architecture
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Thus, the ANN model in Eq. (2) performs a nonlinear functional mapping from the

past observations to the future value y, that is,

yt ¼ f ðyt−1;…; yt−p;wÞ þ εt ; ð4Þ

where w is a vector of all parameters and f(.) is a function determined by the net-

work structure and connection weights. Thus, the MLP is equivalent to a nonlinear

autoregressive model. The simple network in Eq. (2) is unexpectedly powerful, that

is, it can approximate the arbitrary function as a number of hidden nodes when q

is sufficiently large. In practice, a simple network structure with a small number of

hidden nodes often works well in out-of-sample forecasting, possibly because of

the over-fitting effect typically found in the MLP modeling process. An over-fitted

model has a good fit to the sample used for model building but poor

generalizability to out-of-sample data.

The choice of q is data dependent and there is no systematic rule in deciding

this parameter. In addition to choosing an appropriate number of hidden nodes,

selecting the number of lagged observations, p, and dimensions of the input

vector is an important task in the ANN modeling of a time series. This is,

perhaps, the most important parameter to be estimated in an ANN model

because it plays a major role in determining the (nonlinear) autocorrelation

structure of the time series.

Series combination method of ARIMA and MLP models
In the series linear or nonlinear combination models, a time series is divided into a

linear and nonlinear part, as follows:

yt ¼
Xn
t¼1

Lt þ
Xn
t¼1

Nt ð5Þ

where Lt and Nt denote the linear and nonlinear parts estimated from the data.

Then, these two components are sequentially processed by ARIMA and MLP

models. Thus, in the first stage of this method, the ARIMA or MLP model is

selected to identify linear or nonlinear patterns in the original data. Then, to

discover the remaining patterns that are not captured by the first model, the

output obtained in the first stage is used as an input for the second model. The

basic concept is that one model is insufficient to capture all relationships in the

data. Moreover, fully identifying and modeling the data characteristics in the real

time series is difficult and sometimes, even impossible. Thus, using an individual

model such as the ARIMA (MLP) model, undoubtedly, reveals nonlinear (linear)

patterns that are not completely recognized. Consequently, the MLP (ARIMA)

model is employed in the second stage to capture the remaining nonlinear

(linear) patterns. A summation of the outputs obtained from the two stages is

considered the final combined forecast. On the basis of the sequence of model

selection, two hybrid models (ARIMA-MLP and MLP-ARIMA) are presented in

the next section.
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ARIMA-MLP model

In line with the series modeling procedure, in the first stage of the ARIMA-MLP

model, the ARIMA is applied to model the linear component. Let et denote the residual

of the ARIMA model at time t:

et ¼ yt−L̂t ð6Þ

where L̂t is the forecasting value for time t from the ARIMA model based on original

data. In the second stage, the residuals of the first stage are used as input data for the

MLP model, allowing for the identification of nonlinear relationships. With n input

nodes, the MLP model for the residuals will be.

et ¼ f ðet−1;et−2;…; et−nÞ þ εt ⇒ cN ′t ¼ êt ¼ f ðet−1; et−2;…; et−nÞ ð7Þ

where f is a nonlinear function determined by the MLP, N ′
t is the forecasting value for

time t in the MLP model based on residual data, and et is the random error. The frame-

work for the ARIMA-MLP model is displayed in Fig. 2a.

Note that if model f is inappropriate, the error term is not necessarily random;

therefore, the correct identification is critical. In this way, the combined forecast will

be as follows:

ŷt ¼ L̂tþcN ′
t ð8Þ

MLP-ARIMA model

Similar to the ARIMA-MLP model, the MLP-ARIMA model has two main stages. In

the first stage, the MLP model is used to model the nonlinear part of the time series.

Let e′t denote the residual of the MLP model at time t. Then,

(a)

(b)

Fig. 2 Framework of (a) ARIMA-MLP and (b) MLP-ARIMA model
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e′t ¼ yt−N̂ t ð9Þ

where N̂ t is the forecasting value for time t in the MLP model based on the original

data. Then, the residuals of MLP are stored as input of the ARIMA model. Accordingly,

the ARIMA model with m lags for the residuals will be

e′t ¼ f e′t−1; e
′
t−2;…; e′t−m

� �þ εt ⇒ bL′t ¼ be′t ¼ f e′t−1; e
′
t−2;…; e′t−m

� � ð10Þ

where f is a linear function determined by the ARIMA, bL′t is the forecasting value for

time t in the ARIMA model on the residual data, and εt is the random error. The

framework for the MLP-ARIMA model is displayed in Fig. 2b. Accordingly, the com-

bined forecast is.

ŷt ¼cL′t þ N̂ t ð11Þ

Parallel combination of ARIMA and MLP
In this method, the linear combination of the value forecasted by individual models is

considered the output of a hybrid model and the desired weight of each component is

calculated using different weighting approaches. In contrast to the series model, the

original data are assigned to all individual models, after which the final forecast is

obtained by multiplying each forecasted value with the desired weights. Suppose we

select m individual models to generate hybrid forecasting. The linear combination of

these models is as follows:

ŷt ¼
Xm
i¼1

wif̂ it t ¼ 1;…; nð Þ ð12Þ

where ŷt t ¼ 1;…; nð Þ is the combined forecasting of actual data yt(i = 1,…, n) at time t,

f̂ it i ¼ 1;…;mð Þ is the forecasting result obtained from the ith individual model at time

t, m is the number of forecasting methods used to construct a hybrid model, and wi is

the weight of ith forecasting technique. The forecasting error of the hybrid model is

calculated as follows:

et ¼ yt−ŷt ¼
Xm
i¼1

wiyt−
Xm
i¼1

wif̂ it ¼
Xm
i¼1

wi yt−f̂ it
� �

¼
Xm
i¼1

wieit ð13Þ

According to Eq. (9), the parallel combination of ARIMA and MLP is produced by

Eq. (14):

ŷt ¼ w1L̂t þ w2N̂ t ð14Þ

where, ŷt , L̂t and N̂ t are the forecasting values which are obtained by hybrid, MLP and

ARIMA models at time t respectively and wi(i = 1, 2) is the weights allocated to each

individual model. Thus the process modelling of this method is summarized in

three steps:

I. Modeling linear and nonlinear parts of time series using ARIMA and MLP models.

II. Calculating weights of obtained values from the previous stage.

III.Multiplying two desired weights coefficients to obtain forecasts from stage I and

then summing them up.
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Assigning the weights of each forecasting model is key to obtaining accurate forecasts

using parallel methods because the weights indicate the importance and effectiveness

of each individual component in a combined model. In addition, the forecasting results

of a combined model with inappropriate weights may be less reliable than those of

single models. The next section applies three well-known weighting approaches, SA,

LR and GA, to develop three possible hybrid models.

Simple average-based hybrid model

Simple averaging is the easiest method in which equal weights are assigned to ARIMA

and MLP, as shown in Eq. (15). However, in most cases, this method does not generate

accurate forecasting results because it assumes that all forecasting models have a

similar share in generating combined results or deals with forecasts as though they are

exchangeable.

W 1 ¼ W 2 ¼ 1
2

ð15Þ

Genetic algorithm-based hybrid model

A genetic algorithm is generally applied to solve optimization problems on the basis of

a natural selection process that mimics biological evolution. The algorithm repeatedly

modifies a population of individual solutions. At each step, the GA randomly selects in-

dividuals from the current population and uses them as parents to produce children

for the next generation over successive generations; the population evolves toward an

optimal solution. Given their ability to solve optimization problems, GAs are frequently

used to determine optimum weights when using hybrid models.

Linear regression-based hybrid model

A regression method is commonly used to estimate parameters in different models

such as weights in hybrid models. Eq. (16) is a linear regression that describes a

dependent variable yt (t = 1, .…, n) using explanatory variables xt(t = 1, .…, n), where k is

the number of explanatory variables, β1,…, βk and β0are the coefficients and intercept

that must be estimated, and εt is the error term.

yt ¼ β0 þ β1xt1 þ ::…þ βkxtk þ εt ð16Þ

Using the ARIMA and MLP model as parts of a parallel hybrid model, two weights

are estimated following the LR model:

yt ¼ β0 þ w1L̂t þ w2N̂ t þ εt ð17Þ

w1 and w2 are estimated using the ordinary least squares (OLS) approach, which

minimizes the sum of the squared error between the actual value and final forecasting:

Min
Xn
t¼1

yt−ŷtð Þ2 ð18Þ

Then, β, w1, and w2 are determined using the following equations:

β̂0 ¼ yt−ŵ1L̂t−ŵ2N̂ t ð19Þ
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ŵ1 ¼
Pn
t¼1

N̂
2
t

Pn
t¼1

L̂tyt−
Pn
t¼1

L̂tN̂
Pn
t¼1

N̂ yt

Pn
t¼1

L̂t
2Pn
t¼1

N̂
2
t −

Pn
t¼1

L̂tN̂ t

� �2 ð20Þ

ŵ2 ¼
Pn
t¼1

L̂t
2Pn
t¼1

N̂ tyt−
Pn
t¼1

L̂tN̂ t
Pn
t¼1

L̂tyt

Pn
t¼1

L̂t
2Pn
t¼1

N̂
2
t −

Pn
t¼1

L̂tN̂ t

� �2 ð21Þ

The key objective of this method is to capture the advantages of combining the

ARIMA and MLP models in a linear and nonlinear pattern modeling for a time series

forecast. The framework of the parallel hybrid models is illustrated in Fig. 3.

Results and discussion
This section applies the five hybrid models constructed using series and parallel com-

bination strategies to forecast stock prices. To do so, the benchmark datasets Shenzhen

Integrated Index (SZII) and S&P 500 are selected. Four error indicators, mean absolute

error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and

root mean squared error (RMSE), are used for the evaluation and to rank the

performance of the hybrid models, which are computed using the following equations.

Fig. 3 Framework of parallel hybrid models
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The dataset and modeling process for the hybrid models are presented in the

next subsections.

MAE ¼ 1
N

XN
i¼1

eij j ð22Þ

MSE ¼ 1
N

XN
i¼1

eið Þ2 ð23Þ

MAPE ¼ 1
N

XN
i¼1

ei
yi

� �
ð24Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

eið Þ2
vuut ð25Þ

Shenzhen integrated index (SZII) dataset

The Shenzhen Integrated Index (SZII) dataset has a total of 216 monthly observations, span-

ning from January 1993 to December 2010 (Wang et al. 2012). The plot for the SZII dataset

is presented in Fig. 4. According to previous studies, the first 168 observations (about 75% of

the sample) are used as a training sample and the remaining 48 are applied as the test sample.

ARIMA-MLP hybrid model

Stage I - (Linear modeling): In the first stage of the ARIMA-MLP model, Eviews

software is used, which identifies ARIMA(1, 0, 0)as the best fit. The stationary test

Fig. 4 Monthly SZII stock closing prices, January 1993–December 2010
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(augmented Dickey–Fuller [ADF] Test) is applied to the SZII time series to test

whether a unit root test exists in the ARIMA model. According to the obtained results,

ADF test statistic is −3.676528 and the critical value of −3.432 is significant at the 5%

level, the null hypothesis that a unit root test exists in the SZII time series is rejected.

Stage II -(Nonlinear modelling): To analyze the obtained residuals from the previous

stage and based on the concepts of MLP models, in MATLAB software, the best fitted

model composed of four inputs, four hidden and one output neurons (in abbreviated

form N(4, 4, 1)), is designed.

Stage III - (Combination): In the final stage, the results obtained from stages I and II

are combined. The estimated values of the ARIMA-MLP model against the actual

values for all data are plotted in Fig. 5.

MLP-ARIMA hybrid model

Stage I - (Nonlinear modeling): In the first stage of the MLP-ARIMA model, to

capture the nonlinear patterns of a time series, an MLP with three input, two hidden,

and one output neuron (abbreviated form: (N (3,2,1))), is designed.

Stage II - (Linear modeling): In the second stage of the MLP-ARIMA model, the

residuals obtained from the previous stage are treated as the linear model. Thus,

considering the lags of the MLP residuals as input variables of the ARIMA model, the

best-fitted model is ARIMA(2, 0, 2).

Stage III - (Combination): In the final stage, the results obtained from stages I and II

are combined. The estimated values of the MLP-ARIMA model against the actual

values for all data are plotted in Fig. 6.

Fig. 5 Estimated values of ARIMA-MLP model for SZII
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Parallel hybrid models

Using SA, GA, and LR weighting approaches, the modeling procedure for the parallel

hybrid models can be summarized in the following three steps.

Stage I - (Linear and nonlinear modeling): Given the basic concepts of the ARIMA

and MLP models in forecasting, the best-fit ARIMA and MLP models designed in

Eviews and MATLAB software are ARIMA(1, 0, 0)and a one-layer neural network

comprising three input, two hidden, and one output neuron (abbreviated form:

(N (3,2,1))). Note that different network structures are examined to compare MLP’s

performance, and the structure hat reported the best forecasting accuracy for the test

data is selected.

Stage II - (Initializing weights): In this step, the optimum weights of the predicted

values obtained from the previous stage are determined. Two weights are estimated by

the LR model using the OLS approach in Eviews software, GA in MATLAB, and SA

weighting approaches.

Stage III - (Combination): In this stage, the final combined forecast is calculated by

multiplying two optimal weight coefficients on the forecasts obtained from stage I

and then, summing them up. The estimated values of the SA, GA, and LR-based

hybrid models against the actual values are plotted in Figs. 7, 8, 9, respectively. The

performance of the hybrid models and their components in the train and test

datasets to forecast SZII are reported in Table 2. The table shows that, in both

datasets, the MLP-ARIMA series model achieved higher prediction accuracy than

the parallel and individual base models.

Fig. 6 Estimated values of MLP-ARIMA model for SZII
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Fig. 8 Estimated values of GA-based hybrid model for SZII

Fig. 7 Estimated values of SA-based hybrid model for SZII
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Standard and Poor’s 500 dataset

Standard and Poor’s 500 (S&P 500) dataset includes 2349 daily closing stock prices

from October 1998 to February 2008 (Zhang and Wu 2009). The S&P 500 dataset is

plotted in Fig. 10. According to previous studies, the S&P dataset is divided into

training and test datasets. The first observations (about 80% of the sample) are used as

the training sample to formulate the models and the last 470 observations are applied

as a test sample to evaluate the performance of the constructed models.

ARIMA-MLP series hybrid model

Stage I - (Linear modeling): Similar to the linear modeling phase, ARIMA(1,0,0) is

designed and the residuals of this step are used in the next step.

Table 2 Performance of models for SZII using train and test datasets

Model Train Test

MAE MAE MAPE RMSE MAE MSE MAPE RMSE

ARIMA-MLP 212.39 91,955 7.22% 303.24 1082.88 1,915,716 9.52% 1384.09

MLP-ARIMA 210.91 86,221 7.23% 293.63 1064.91 1,915,422 10.16% 1383.98

SAHM 217.78 95,399 7.12% 308.86 1123.87 1,997,323 9.91% 1388.69

GAHM 215.38 94,577 7.08% 307.53 1102.75 1,969,593 9.79% 1403.42

LRHM 215.54 94,573 7.09% 307.52 1074.87 1,928,479 9.64% 1388.69

ARIMA 224.45 99,255 7.30% 315.04 1166.17 2,221,776 10.26% 1490.56

MLP 215.38 94,577 7.30% 307.53 1102.33 1,974,479 9.80% 1405.16

Fig. 9 Estimated values of LR-based hybrid model for SZII
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Stage II - (Nonlinear modeling): In this stage, the residuals of the previous step are

used as input for the MLP model and a network with three input, five hidden, and one

output neuron is fitted to extract the remaining nonlinear structures.

Stage III - (Combination): Here, the forecasted values of previous two stages are

combined to generate the final combined forecast. The estimated values for the

ARIMA-MLP model against the actual values for all data are plotted in Fig. 11.

MLP-ARIMA series hybrid model

Stage I - (Nonlinear modeling): In the nonlinear modeling phase, a network with three

input, three hidden, and one output neurons is designed to capture the nonlinear

relationships in the time series generated and the generated residuals are used in the

next step.

Stage II: (Linear modeling): In this step, an ARIMA (3, 0, 3) model is fit to process the

linear structures that are not modeled by the MLP model.

Stage III: (Combination): In the final step, the forecasted values from stages I and II

are combined. The estimated values of the MLP-ARIMA model against the actual

values for all data are plotted in Fig. 12.

Parallel hybrid models

Stage I - (Linear and nonlinear modeling): Similar to the previous section, to capture

the linear and nonlinear patterns in the data for the S&P time series, the ARIMA (1, 0, 0)

and MLP models with three input, three hidden, and one output neuron are designed.

Fig. 10 Daily S&P 500 stock closing prices, October 1998–February 2008
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Fig. 12 Estimated values of MLP-ARIMA model for S&P500

Fig. 11 Estimated values of ARIMA-MLP model for S&P 500
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Fig. 13 Estimated values of SA-based hybrid model for S&P 500

Fig. 14 Estimated values of GA-based hybrid model for S&P 500
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Stage II - (Initializing weights): In this state, the optimum weights are derived by

applying the LR, GA, and SA weighting methods. Note that the OLS approach and

GA are designed using Eviwes and MATLAB software.

Stage III - (Combination): According to the modeling procedure for the parallel hybrid

models, the combined forecast is made using the values obtained from the previous two

stages. The estimated values of the hybrid models based on parallel SA, GA, and LR

against the actual values for all data are plotted in Figs. 13, 14, 15, respectively.

Table 3 summarizes the performance of the series and parallel hybrid models in

predicting the S&P 500 stock price using train and test datasets. The table shows that

the series models, ARIMA-MLP and ARIMA-MLP, are not comparable with each other

and reports significantly high prediction performance when the series hybrid

methodology is used instead of the parallel methods and their base models.

Fig. 15 Estimated values of LR-based hybrid model for S&P 500

Table 3 Performance of models for S&P 500 using train and test datasets

Model Train Test

MAE MSE MAPE RMSE MAE MSE MAPE RMSE

ARIMA-MLP 9.94 176.76 0.01% 13.30 9.02 159.33 0.64% 12.62

MLP-ARIMA 9.96 180.17 0.01% 13.42 9.20 157.69 0.65% 12.56

SAHM 9.98 180.69 0.01% 13.44 9.22 164.48 0.65% 12.83

GAHM 9.97 180.31 0.65% 13.42 9.23 159.33 0.85 12.62

LSHM 9.97 180.28 0.01% 13.43 8.98 152.55 0.63% 12.35

ARIMA 10.02 182.21 086% 13.50 9.36 173.85 0.66% 13.19

MLP 9.97 180.31 0.01% 13.43 9.24 159.34 0.65% 12.62
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Comparison of forecasting results
This section compares the predictive capabilities of the hybrid models constructed by

applying the series and parallel combination methods with either of their components,

MLP, and ARIMA, using the two abovementioned datasets. The comparative analysis is

conducted from two viewpoints: comparison of series and parallel hybrid models and

analysis of average percentage improvement in the series and parallel hybrid models in

comparison with their components. Two performance indicators, MAE and MSE,

are employed to compare the forecasting performance of the hybrid models and

their components.

In the first step, the overall performance of the series and parallel hybrid models is

compared. Tables 4 and 5 present the overall performance of the hybrid models and

their components for the SZII and S&P 500 datasets. The comparison reveals that the

average forecasting error for MAE and MSE in the train and test datasets is lower in

the ARIMA-MLP and MLP-ARIMA hybrid models constructed using the series

combination technique than those in the parallel hybrid models. For example, in the

SZII dataset, in MAE and MSE terms, the forecasting results of the series models using

test dataset improved by 2.41% and 2.51% compared to those of the parallel hybrid

models. Tables 4 and 5 compare the performance and accuracy of the series and

parallel hybrid methods. In the second step, the performance of the hybrid models is

compared with those of their base models. In other words, the average percentage

improvement of the series and parallel hybrid models is compared with that of their

base models. The results show that applying all five hybrid models, on average, im-

proves the forecasting accuracy over at least one model for the ARIMA and MLP

neural network models. This confirms the hypothesis that individual models do not

capture all relationships in the data and combining the two models can be effective in

overcoming their limitations and improving forecasting accuracy.

Tables 6 and 7 present the average improvement percentage of the series and parallel

hybrid models for the SZII and S&P 500 datasets compared to the ARIMA and MLP

Table 4 Overall performance of series and parallel models for SZII

Model Train Test

MAE MSE MAE MSE

Series models 211.65 89,088.05 1073.89 1,915,569.00

Parallel models 216.23 94,849.02 1100.49 1,965,131.66

ARIMA 224.45 99,255.51 1166.17 2,221,776.70

MLP 215.38 94,577.00 1102.33 1,974,479.94

Lower forecasting error are in bold

Table 5 Overall performance of series and parallel models for S&P 500

Model Train Test

MAE MSE MAE MSE

Series models 9.95 178.46 9.11 158.51

Parallel models 9.97 180.42 9.14 158.78

ARIMA 10.02 182.21 9.36 173.85

MLP 9.97 180.31 9.24 159.34

Lower forecasting error are in bold
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models. The results suggest that, on average, the series hybrid models have a higher

improving impact on the ARIMA and MLP models than the parallel hybrid models.

For example, when using the S&P 500 dataset, the series hybrid models improve the

MLP models in terms of MSE by 1.02% in the case of train data, while this improve-

ment is −0.21 for the parallel models. According to the analytical results, the accuracies

of the series hybrid models are better than those of the parallel hybrid models in both

overall performance and average improvement percentage over the base models. From

the above comparative analyses, the models can be ranked as follows: (i) series hybrid

models (ii) parallel hybrid models, and (ii) individual models.

Conclusions
Forecasting real-world time series, particularly financial time series, is a critical task

that has recently received overwhelming attention. Given the importance of accurate

forecasting, several related methods have been proposed in the literature. In addition to

single methods, studies have combined different methods to generate more accurate re-

sults and confirmed that combining different models enhances forecasting accuracy

and accounts for the unique features of individual models. Although numerous studies

have used series or parallel methods to construct hybrid models and confirm that com-

bining different models reduces forecasting error and offer more accurate results, they

remain vague on the precise combination that produces a more accurate hybrid model.

Thus, this study proposed a more efficient technique to forecast financial time series

and then, conducted a comprehensive comparison of the predictive capabilities of the

series and parallel combination techniques that were combined with linear and nonlin-

ear models, such as ARIMA and MLP, along with their individual components. First,

the series and parallel hybrid models were compared, followed by a comparison of the

hybrid models’ average percentage improvement with those of their base models. The

empirical results for the two benchmark datasets, SZII and S&P 500, indicated that all

hybrid models constructed using the two combination methods generated superior

results than at least one of their individual components. The results also show that the

series method generate more accurate hybrid models and has a higher improvement

Table 6 Average improvement in series and parallel models over ARIMA and MLP models for SZII

Hybrid model ARIMA MLP

Train (%) Test (%) Train (%) Test (%)

MAE MSE MAE MSE MAE MSE MAE MSE

Series models 5.70 10.24 7.91 13.78 1.72 5.80 2.57 2.98

Parallel models 3.65 4.43 5.64 11.55 −1.11 −0.40 0.27 0.47

Lower forecasting error are in bold

Table 7 Average improvement in series and parallel models over ARIMA and MLP models for
S&P 500

Hybrid model ARIMA MLP

Train (%) Test (%) Train (%) Test (%)

MAE MSE MAE MSE MAE MSE MAE MSE

Series models 0.69 2.05 2.66 8.82 0.3 1.02 1.40 1.25

Parallel models 0.49 0.63 1.45 6.37 0.00 −0.21 1.04 0.52

Lower forecasting error are in bold
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percentage than the parallel method. Therefore, the series combination method can be

considered an efficient alternative to construct more accurate hybrid models in both

analytical approaches to forecasting financial time series.

Future works should consider implementing the series and parallel hybrid

methodologies to develop an approach with three or more individual models and

accordingly, compare and analyze the obtained results. Researchers can also examine

other statistical and intelligent models, such as GARCH and SVM models, to construct

series and parallel hybrid models to forecast financial time series.
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