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Abstract

Background: This study develops a new model called J-am for pricing American options
and for determining the related early exercise boundary (EEB). This model is based on a
closed-form solution J-formula for pricing European options, defined in the study by Jerbi
(Quantitative Finance, 15:2041–2052, 2015). The J-am pricing formula is a solution of the
Black & Scholes (BS) PDE with an additional function called f as a second member and
with limit conditions adapted to the American option context. The aforesaid function f
represents the cash flows resulting from an early exercise of the option.

Methods: This study develops the theoretical formulas of the early exercise premium
value related to three American option pricing models called J-am, BS-am, and Heston-am
models. These three models are based on the J-formula by Jerbi (Quantitative Finance, 15:
2041–2052, 2015), BS model, and Heston (Rev Financ Stud, 6:327–343, 1993) model,
respectively. This study performs a general algorithm leading to the EEB and to the
American option price for the three models.

Results: After implementing the algorithms, we compare the three aforesaid models in
terms of pricing and the EEB curve. In particular, we examine the equivalence between
J-am and Heston-am as an extension of the equivalence studied by Jerbi (Quantitative
Finance, 15:2041–2052, 2015). This equivalence is interesting since it can reduce a
bi-dimensional model to an equivalent uni-dimensional model.

Conclusions: We deduce that our model J-am exactly fits the Heston-am one for certain
parameters values to be optimized and that all the theoretical results conform with the
empirical studies. The required CPU time to compute the solution is significantly less in
the case of the J-am model compared with to the Heston-am model.

Keywords: American option pricing, Stochastic volatility model, Early exercise boundary,
Early exercise premium, J-law, J-process, J-formula, Heston model

Background
The valuation of American options, while a challenge, is of interest to both academics

and traders. American options are more common than their European counterparts;

they allow more flexibility since they can be exercised at any time between the current

time and maturity. They are presented as a compound option that includes a European

option and an early exercise premium (EEP). Hence, their prices are higher than those

of European options, and they are more complicated to be modeled. These prices are

also significantly affected by the volatility level. The studies by Ju (1998) and Detemple

and Rindisbacher (2005) regarding the American option pricing models are based on

the Black and Scholes (1973) model and then cannot explain the reality of the financial
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markets, particularly the smile of volatility. Since the dynamics of volatility are funda-

mental in elaborating trading strategies for hedging and arbitrage, the pricing of the op-

tion under stochastic volatility model is important. The introduction of an additional

stochastic volatility factor enormously complicates the pricing of the American options.

Currently, this can be done only through numerical schemes, which involve solving inte-

gral equations as in the studies by Kim (1990), Huang et al. (1996), Sullivan (2000),

Detemple and Tian (2002); performing Monte Carlo simulations as in the studies by

Broadie and Glasserman (1997), Longstaff and Schwartz (2001), Rogers (2002), Haugh

and Kogan (2004); or discretizing the partial differential equation as in the works of

Brennan and Schwartz (1977), Clarke and Parrott (1999), and Ikonen and Toivanen

(2007). The majority of the studies performed in this area are based on a numerical reso-

lution of the problem using either parametric or nonparametric models. Currently, both

academicians and practitioners need a general closed-form solution as a theoretical refer-

ence for pricing American option models, considering volatility as stochastic. Such a

model is useful for interpreting the results of other models. Moreover, it enables the un-

derstanding of the logic behind the option pricing process. The pricing of an American

call or put has no explicit closed-form solution. This is because the optimal boundary

above which the American call will be exercised is unknown and is a part of the option

price solution. Therefore, efforts have been focused on developing a numerical approxi-

mation scheme, allowing for a pricing of the American option that is more accurate as

well as a faster one than the lattice- or simulation- based methods that are time consum-

ing and computationally more demanding. These schemes are based on integral represen-

tations of the American option evaluation formula and exploit the PDE satisfied by the

option price. Until now, several studies on European option pricing using stochastic vola-

tility models that lead to a closed-form solution have been conducted. These include stud-

ies by Hull and White (1987), Wiggins (1987), Stein and Stein (1991), Heston (1993), and

Carr and Wu (2004). The most important study is that by Heston (1993), who considered

volatility as stochastic to introduce the skewness and kurtosis effects and ensured that the

model fits the reality of the financial market (“smile curve”). He considered two state vari-

ables: the underlying asset price and volatility. Jerbi (2015) developed a closed form solu-

tion J-formula based on the J-process considering the skewness and kurtosis effects as

well as the smile effect. He showed that for the given parameter values related to the Hes-

ton volatility process, there exists a (λ*, θ*) that ensures the equivalence of the two models

by minimizing the gap between the generated prices. He then matched the Heston results

with a mono-dimensional model than with a bi-dimensional one. This study extends this

equivalence to American options. The price of an American option is the sum of the re-

lated European option and the EEP called ε. If the European option value is a solution of a

PDE, then the American option value is a solution of the same PDE with a second mem-

ber equal to a function f instead of zero (PDE-f). This function depends on the EEB (to be

determined). It is the difference between the cash flows generated by the early exercise of

the American option. In short, we can say that the European option price Ve is the solu-

tion for the homogeneous PDE and that the EEP ε is a particular solution for the PDE-f.

Hence, the American option price Va = Ve + ε constitutes the general solution of the

PDE-f. In Heston’s (1993) model, the aforesaid PDE is the Garman PDE (1976). In the

case of the J-model, the PDE is the BS PDE, based on a dynamics of the underlying asset

price under the J-process (please refer to Jerbi (2015)). The function f is the same for the
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two models. The EEP value ε is the sum of the cash flows expectancies between the current

time and maturity discounted at the current time. Those cash -flows are generated due to

the early exercise of the option, and their calculation is based on the function f. In both

cases, the solution of the PDE-f is based on the optimal EEB as an optimal limit for exercis-

ing the American option. The pricing of the option relies on the determination of such a

boundary. The J-process is an extension of the Wiener process, by considering the skewness

and kurtosis effects. The use of the J-model instead of the Heston’s (1993), as an equiva-

lent American option pricing model, makes the solution simpler and easier to interpret.

Besides, it significantly improves the time consumed (CPU time) for a given accuracy.

This study first presents the expression of the J-formula elaborated by Jerbi (2015). We

then elaborate (in detailed calculus) the expression of the EEP ε, related to J-am model.

Second, we deduce the one related to the BS model by setting parameter λ equal to zero.

Third, we deduce the expression of the EEP related to the Heston-am model, with a rate

of dividend distribution equal to Q. Then, we detail the general methodology to deter-

mine, step by step, both the price of the American option and the limit values of the

underlying asset belonging to the EEB. The determination of some points of the EEB is

time consuming. In fact, these points are sufficient to determine the EEB, with good ac-

curacy, in the form of a polynomial. This considerably reduces the time for calculating the

price of an American option. This methodology can be applied to both the J-am and

Heston-am models. In empirical studies, we compare the results of the two models in

terms of accuracy and CPU time. This comparison helps examine the equivalence of the

two models such as we can reduce the bi-dimensional model of Heston-am to a uni-

dimensional model fitting the reality of the financial market, by including the skewness

and kurtosis effects. This equivalence reduces the CPU time under an equivalent accuracy.

After studying this equivalence, we focus on the J-am model to examine the effects of its

inputs and parameters on the related option price.

Methods
Snell envelop and early exercise of option

For an American option, the EEB is defined by the curve S*(τ), representing the early exer-

cise option limit value of the underlying asset at each time to maturity τ (please refer to

Kwok (1998)). From this limit value, the early exercise of the option becomes interesting.

Let us denote the value of the American call by C, its strike price by K, and its early

exercise limit value belonging to the EEB by S�c τð Þ; this call will be exercised if we have S

τð Þ ¼ S�c τð Þ: Then, C S�c τð Þ; τ� � ¼ S�c τð Þ−K and ∂C
∂S

� �
S¼S�c τð Þ ¼ 1: If we have S τð Þ < S�c τð Þ;

the call will not be exercised.

However, if S τð Þ≥S�c τð Þ; the call will be exercised. We buy the underlying asset whose value

is S (which generates a dividend with a rate Q) and disburse the amount K (which generates

interest with a rate r). Hence, the early exercise of the call induces a cash flow QS− rK.

Let us denote the value of the American put by P and its Snell envelop by S�p τð Þ; this
put will be exercised if we have S τð Þ ¼ S�p τð Þ: In this case, P S�p τð Þ; τ

� �
¼ K−S�p τð Þ and

∂P
∂S

� �
S¼S�p τð Þ ¼ −1.

If S τð Þ≤S�p τð Þ; the put will be exercised. Therefore, we sell the underlying asset and cash

an amount K. Hence, the early exercise of the put induces a cash flow equal to rK −QS; if

S τð Þ > S�p τð Þ; the put will not be exercised. This is summarized in Table 1.
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The EEB, as plotted in Fig. 1, is the set S�c τð Þ for the call and S�p τð Þ for the put, when the

time to maturity τ varies. Regarding the symmetry, in considering the exchange between the

underlying asset and liquidity with their respective return rates Q and r, the prices of an

American call C and an American put P, with an underlying price S, with a strike price K,

with time to maturity τ, and with volatility σ, are such that C(S, τ,K, r,Q, σ) = P(K, τ, S,Q, r, σ).

The related EEB is such that S�C τ; r;Qð Þ � S�P τ;Q; rð Þ ¼ K 2 (see Kwok (1998)).

American option pricing model based on the J-formula as a uni-dimensional approach

Our proposed American option pricing model, named J-am, is based on the J-formula de-

veloped in Jerbi (2015). For the European pricing model, we consider the same hypothesis

used in BS with the only difference that the underlying asset price is supposed to follow

the J-process defined as follows: dSt
St

¼ μdt þ σdzt ; where μ and σ are constants and

dzt ¼ Ut

ffiffiffiffiffi
dt

p
; where Ut ¼ Wt−EW½ �

σW

with Wt follows the J-Law: (Wt→ J(λ, θ)) defined in

the study by Jerbi (2011) by its probability density function g w; λ; θð Þ ¼ e−
1
2w

2
N λwþθð Þ

Jer λ;θð Þ ffiffiffiffi
2π

p with

Jer λ; θð Þ ¼
Z þ∞

−∞

e−
1
2w

2
N λwþ θð Þffiffiffiffiffiffi

2π
p dw: The expected value of Wt and its standard deviation are

EW = E(Wt) and σW ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V Wtð Þp

; respectively. As indicated by Jerbi (2015), we show that

the Ito’s Lemma and the BS PDE remain valid when the Wiener process is extended to

the J-process as a model for the underlying asset dynamics. Hence, if we call V the option

price and Q the rate of dividends of the underlying asset, then the BS related PDE oper-

ator, named L(V), is as follows:

L Vð Þ ¼ ∂V
∂t

þ 1
2
σ2S2t

∂2V
∂S2

þ r−Qð ÞSt ∂V∂S −rV :

Fig. 1 EEB for a call Sc*(τ)/K and for a put Sp*(τ)/K, K = stike price

Table 1 The function f of the generated cash-flow in case of the option early exercise or not

CALL PUT

S≤ S* f(S, τ) = 0 f(S, τ) = rK − QS

S > S* f(S, τ) = QS − rK f(S, τ) = 0
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Hence, the European option price given by the J-formula is a solution of the PDE (1):

L Vð Þ ¼ 0 ð1Þ

The American option price VJ − am, generated by the J-am model under the J-process,

is a solution of the PDE (2) (see Jerbi (2015) and Kwok (1998)):

L Vð Þ ¼ f St ; τð Þ; ð2Þ

where f(St, τ) denotes the cash flow function defined in Table 1.

The American option is considered to be a compound option that includes a Euro-

pean option and an EEP. Then, the price VJ − am is the sum of two option prices: VJ − eur

and εJ. VJ − am = VJ − eur + εJ, where VJ − eur denotes the solution of the PDE (1), and εJ is a

particular solution of the PDE (2). We denote the time to maturity by τ = T − t and the

probability density of the underlying asset price at time t by ψ(St, t). From the Duhamel

principle in the PDE theory (Zauderer 1989, page 2001), the general solution of the

PDE (2) can be written as follows (please refer to the study by Kwok (1998)):

V J‐am ¼ V J‐eur þ εJ

V J‐eur ¼ e−rτ
Z þ∞

0
V ST ;Tð Þψ ST ; 0ð ÞdST

εJ ¼
Z τ

0
e−rω

Z þ∞

0
f Sω; τ−ωð Þψ Sω;ωð ÞdSωdω:

8>>>>>><
>>>>>>:

ð3Þ

When the American option is an American put, named PJ-am, the related boundary

conditions are

C1: The option value at maturity t = T is : PJ − am(ST, T) =Max(K − ST; 0),

C2: S�t is the early exercise limit value at time t belonging to the boundary OEB, such

as : PJ−am S�t ; t
� � ¼ Max K−S�t ; 0

� �
;

C3: For St = 0, we have PJ − am(0, t) = K, and

C4:. ∂PJ−am

∂S

h i
S¼∞

¼ 0

As the option is a put, in replacing the payoff and the function f by their own expres-

sions, the system (3) becomes

PJ‐am ¼ PJ‐eur þ εJ

PJ‐eur ¼ e−rτ
Z
0þ∞

K−STð Þ
þ
ψ ST ;Tð ÞdST

εJ ¼
Z τ

0
e−rω

Z S τ−ωð Þ

0
rK−QSωð Þψ Sω;ωð ÞdSωdω:

8>>>>>>><
>>>>>>>:

Under the J-process, the price PJ − eur is computed using the J-formula found by Jerbi

(2015), and the formula of εJ is detailed, in the Appendix.

The J-formula as a solution for European option pricing under J-process

As defined by Jerbi (2015), the closed form solution of PDE (1), i.e., the J-formula for a

European call with underlying asset distributing dividends at a rate Q, is given by the
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following formula: Ct = Ste
−Qτ +Φ[1 − F(X − b, λ, θ + λb)] − Ke− rτ[1 − F(X, λ, θ)], where F

is the cumulative function of the statistical law, named J-law.

d2 ¼
Ln

St
K

	 

þ r−Qþ σ2

2

	 

τ

σ
ffiffiffi
τ

p
X ¼ −d2σW þ EW

b ¼ σ

σW

ffiffiffi
τ

p

Φ ¼ b2−σ2τ
2

−bEW

8>>>>>>>>><
>>>>>>>>>:

M λ; θð Þ ¼ e
−

θ2

2 1þ λ2
� �

Jer λ;θð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π 1þλ2ð Þp

EW ¼ λM λ; θð Þ
σ2W ¼ 1−

λ2θ

1þ λ2
� �M λ; θð Þ−λ2M2 λ; θð Þ

8>>>>>>><
>>>>>>>:

:

Applying the put- call parity formula, we deduce the formula of a put PJ − eur:

PJ−eur ¼ Ke−rτF X; λ; θð Þ−Ste−QτþΦF X−b; λ; θ þ λbð Þ:

When the parameter λ equals zero, the J-formula is exactly the BS one.

The EEP value based on the J-formula

For an American put, the value of the EEP equals to the sum of the actualized expected

values of future cash flows between the date of the exercise and maturity. In the Ap-

pendix, we show that the value of the American EEP, under the J-process, equals

εJ ¼
Z τ

0
G ωð Þdω

with G ωð Þ ¼ rKe−rωF X�
τ−ωð Þ; λ; θ

� �
−QSte−QωþΦF X�

τ−ωð Þ−b; λ; λbþ θ
� �n o

; where :

X τ−ωð Þ� ¼ −σWd2;ω þ EW and b ¼ σ

σW

ffiffiffiffi
ω

p
;

d2;ω ¼
Ln

St
S τ−ωð Þ

	 

þ r−Q−

σ2

2

	 

ω

σ
ffiffiffiffi
ω

p and d1;ω ¼ d2;ω þ σ
ffiffiffiffi
ω

p
::

Hence, when setting the parameter λ = 0, we have the EEP, based on the BS model:

εBS ¼
Z τ

0
rKe−rωN −d2;ω

� �
−QSte−QωN −d1;ω

� �� �
dω:

American option pricing model based on the Heston model as a

bi-dimensional approach

Heston (1993) considered the variance vt instead of the volatility σ t ¼ ffiffiffiffi
vt

p
as a sec-

ond state variable. For the pricing of the European option, Heston (1993) adopted

the Cox-Ingersoll-Ross (CIR) process as dynamics of the variance, with parameters

κ, θ, η indicating the mean-reverting speed, long-term mean, and volatility’s volatil-

ity factor, respectively. The processes dzS,t, dzv,t are Brownian motions associated

with the state variable movements S and v, respectively, with a constant correlation

factor equal to ρ. The dynamics of the underlying asset in a risk-neutral world is

given by the following system:
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dSt
St

¼ rdt þ ffiffiffiffi
vt

p
dzS;t

dvt ¼ κ θ−vtð Þdt þ η
ffiffiffiffi
vt

p
dzv;t

ρ dSt ; dvtð Þ ¼ ρ

:

8>>><
>>>:

Considering a market risk price α, the closed form solution he found is a solution of

the Garman PDE (homogeneous PDE). When the underlying asset distributes divi-

dends, we replace St by Ste
−Q(T − t), and the Heston closed form solution, for an Euro-

pean call, can be written as follows:

Ct ¼ Ste
−Q T−tð Þϕ1 Ste

−Q T−tð Þ; vt ;K ; τ; κ; r; θ; η; ρ; α
� �

−Ke−rτϕ2 Ste
−Q T−tð Þ; vt ;K ; τ; κ; r; θ; η; ρ; α

� �
:

The value of a European put can be deduced by the call- put parity. For the American

option, the EEP price is a particular solution of the Garman (1976) PDE, with the function

f(St, t) as a second member instead of zero, as mentioned in Table 1. Drawing an analogy

with the solution found for the J-model and BS model, the premium can be deduced by

replacing τ =T − t by ω and K by S*(τ −ω). Hence, for pricing an American call with

underlying asset distributing dividends at a rate Q, we obtain the following formula:

ε cð Þ
t ¼

Z τ

0
QSte

−Qωϕ cð Þ
1; τ−ωð Þ−rKe−rωϕ cð Þ

2; τ−ωð Þ
n o

dω;

Where :
ϕ cð Þ
1; τ−ωð Þ ¼ ϕ1 Ste−Qω; vt ; S�τ−ωð Þ;ω; κ; θ; η; ρ; α

� �
ϕ cð Þ
2; τ−ωð Þ ¼ ϕ2 Ste−Qω; vt ; S�τ−ωð Þ;ω; κ; θ; η; ρ; α

� �
:

8><
>:

For an American put, the EEP formula based on the Heston model as follows:

ε pð Þ
Heston

¼
Z τ

0
rKe−rωϕ pð Þ

2; τ−ωð Þ−QSte
−Qωϕ pð Þ

1; τ−ωð Þ
n o

dωwith
ϕ pð Þ
1; τ−ωð Þ ¼ 1−ϕ cð Þ

1; τ−ωð Þ
ϕ pð Þ
2; τ−ωð Þ ¼ 1−ϕ cð Þ

2; τ−ωð Þ:

8<
:

Heston’s (1993) formula used in this study considers the dividends rate distribution Q.

Empirical studies

General methodology to determine the EEB and American option value

To determine the American option price, we need the Snell envelop. This can be done

step by step. We subdivide the time into intervals of length Δω. At each time, ω, between

the current time t and maturity T, can be written as follows: ω = iΔω with 0 ≤ i ≤N (Fig. 2).

The first point of the EEB corresponds to ω = 0, i.e., i = 0 corresponding to maturity T.

Fig. 2 Time to maturity for an American option
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At this time, the EEP ε equals zero. Thus, the value of the American option equals

that of the European option, which equals the intrinsic value of the option. Since ε

equals zero, we have S� i ¼ 0ð Þ ¼ Max K ; rQ K
� �

for a call. For various values of i, the

points of the EEB S�τ−ωð Þ are the solutions of the equation:

S τ−ωð Þ
�−K ¼ Ceur; τ−ωð Þ þ ε S�τ−ωð Þ;ω

� �
withω ¼ iΔω:

We use an iterative calculus to determine all the points S�τ−ωð Þ;ω ¼ iΔω; 0≤i≤N
n o

of

the EEB. For a put, we have: S� i ¼ 0ð Þ ¼ min K ; rQ K
� �

; and the EEB can be determined

by iteratively solving the equations:

K−S�τ−ωð Þ ¼ Peur; τ−ωð Þ þ ε S�τ−ωð Þ;ω
� �

:

Regardless of the model chosen, J-am, BS-am, or Heston-am, to determine all the put

EEB points S*(i), we propose the algorithm presented in Table 2.

After determining the EEB, we can determine the American option price at the current

time t in accordance with the formulas related to each of the three aforesaid models: BS-

am, J-am, and Heston-am, where BS-am constitutes a particular case of J-am when λ

equals to 0. For further work, we will consider both r and Q to equal 5%.

Results and discussion
Notations

Let PBS − eur (PBS − am) denote the price of a European put using the BS model (the price

of the related American put using the BS-am model). Then, the related EEP represents

Table 2 Algorithm to determine the OEB for the BS-am, the J-am or the Heston-am model
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the difference: εBS = PBS − am − PBS − eur. We denote by PJ − eur (PJ − am) the price of a Euro-

pean put using the J-formula (the price of the related American put using the J-am

model). Moreover, we denote by PHeston − eur (PHeston − am) the price of an European put

using the Heston model (the price of the related American put using the American

Heston-based model). Hence, either for the J-model or the Heston model, we can com-

pute the following quantities with reference to the BS model (Table 3).

These aforementioned notations are used in the following empirical study.

Comparison between the J-am model (with λ = 0) and the BS-am one

In Figs. 3 and 4, we plot the EEB curves of the BS-am and J-am (λ = 0) models

and their differences. We notice that the EEB curves conform with the theoretical

ones plotted in Fig. 1 for an American put. In Fig. 3, we notice that the EEB

curves for both models, BS-am and J-am (λ = 0), approximately coincide since

their difference is located in an interval [−0.04; 0.05]. Indeed, this error corre-

sponds to the threshold authorized by iterative calculations. With a shorter time

step Δω and with a longer computation time, this error can be reduced to an

even lower level. For the two aforesaid models, we plot, in Fig. 5, both the Ameri-

can and European option values as a function of their moneyness. Moreover, we

plot, in Fig. 6, their EEP value ε as a function of moneyness. The curves in Figs. 5

and 6 are in accordance with the option theory and empirically confirm that the

BS-am and J-am (λ = 0) models are the same. For all these computations, we

Table 3 Notation of functions = price difference between the J-model and the Heston model.
Notation of their minimas and maximas on the moneyness space

J-model vs BS model Heston-model vs BS model

Function Maxima Minima Function Maxima Minima

ΔJ − eur = PJ − eur − PBS − eur MJ − eur mJ − eur ΔHeston − eur = PHeston − eur − PBS − eur MHeston − eur mHeston − eur

ΔJ − am = PJ − am − PBS − am MJ − am mJ − am ΔHeston − am = PHeston − am − PBS − am MHeston − am mHeston − am

εJ = PJ − am − PJ − eur MJ mJ εHeston = PHeston − am − PHeston − eur MHeston mHeston

ΔJ − ε = εJ − εBS MJ − ε mJ − ε ΔHeston − ε = εHeston − εBS MHeston − ε mHeston − ε

Fig. 3 Comparison of the EEB given by the models BS-am and J-am (λ = 0). Parameters values: K = 100,
τ =0.5, σ = 10%, r = 5%, Q = 5%, θ = 0.769 and N = 50
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consider a numerous time steps N equal to 50. The CPU time required by the J-

model to compute the American option value is relatively longer than the one

needed by the J-am model. This is because of the absence of a W-function library,

allowing a quick computation, while we have a library for the standard normal law

cumulative function. We should build such a library to ensure a quasi-

instantaneous calculus of the American option value. In this paper, for further cal-

culations and to perform them in a reasonable time, we take N = 10 instead of 50

or more. Although this choice slightly affects the accuracy of the results, it does

not impact the results, curve profiles, and related conclusions.

American pricing model results based on the J-am model

To examine the effects of the parameters λ and θ on the EEB curve profile and Ameri-

can option price related to J-am model, we plot, in Fig. 7, the EEB curves for various

values of λ: (λ = 1.6 or λ = − 1.6) and θ: (θ = − 3, θ = 0 or θ = 3). We notice that the effect

of λ on the EEB profile is significant while the sensitivity to θ is very weak. The

level of S�τ ; as a limit value to early exercise of the option at a given time, de-

creases with λ. For a given λ, the effect of θ (which ranges from −3 to +3) is not

Fig. 4 Difference between J-am (λ = 0) and BS-am models, in terms of EEB. Parameters values: K = 100,
τ =0.5, σ = 10%, r = 5%, Q = 5%, θ = 0.769 and N = 50

Fig. 5 Comparison between BS-am and J-am (λ = 0) models, in terms of European and American put prices.
Parameters values: K = 100, τ =0.5, σ = 10%, r = 5%, Q = 5%, θ = 0.769 and N = 50
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significant. For θ = 0, S�τ is maximum when λ is negative and minimum when λ is

positive. The EEB curve related to the BS-am model is expected to be the same as

the one related to J-am with λ = 0, as plotted in Figs. 3 and 4. In Fig. 8, we repre-

sent the differences ΔJ − eur, ΔJ − am, and ΔJ − ε related to the parameters values (λ =

− 1.6 and θ = 0). We notice that the curve ΔJ − eur is the same as the one elaborated

by Jerbi (2015). For a put, regardless of the moneyness, the difference ΔJ − ε = εJ
− εBS is positive. With reference to the BS model, for negative values of λ, the J-

model overvalues the out-of-the-money European put and undervalues the in-the-

money ones. With reference to the BS-am model, the J-am model overvalues the

American puts when moneyness is less μ�1 < 1 or greater than μ�2 > 1; whereas it

undervalues the American puts with moneyness located in the interval [μ�1 ; μ�2 ].
The differences: ΔJ − am = PJ − am − PBS − am and ΔJ − ε = εJ − εBS present positive max-

imums for a moneyness μ� < μ�1 < 1 < μ�2: Besides, for positive values of λ, the pro-

file of the curve ΔJ − am is nearly the same as the one of ΔJ − eur. The difference ΔJ − ε

= εJ − εBS is positive for in-the-money puts, whereas it is negative for out-of-the-money

puts. In Figs. 9 and 10, for λ = − 1.6 and λ = 1.6, respectively, we plot ΔJ − eur for

Fig. 6 Comparison between BS-am and J-am (λ = 0) models, in terms of American early exercise put price.
Parameters values: K = 100, τ =0.5, σ = 10%, r = 5%, Q = 5%, θ = 0.769 and N = 50

Fig. 7 EEB related to the BS-am and J-am for various values of the parameters λ and θ. Parameters values:
K = 100, τ =0.5, σ = 10%, r = 5%, Q = 5%
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various values of θ. We do the same for the differences ΔJ − am (Figs. 11 and 12)

and ΔJ − ε (Figs. 13 and 14).

Regarding ΔJ − eur, we confirm the results found by Jerbi [1]. Regarding the value

of λ, the maximum and the minimum of the difference ΔJ − eur are related to θ = 0.

These extreme values are close to those related to θ = 3 and θ = − 3. Regarding ΔJ

− am, for positive values of λ, the curve profile function of the moneyness is quite

similar to the one related to ΔJ − eur. For negative values of λ, the curve profile is

almost the same as the corresponding ΔJ − eur, with the only difference that it pre-

sents a positive maximum located in the moneyness interval [0.85; 0.9]. This max-

imum coincides with the maximum of ΔJ − ε, as indicated in Fig. 13. In this figure,

we see that the effect of θ on ΔJ − ε is negligible when λ is negative. However,

when λ is positive, the εJ value is sensitive to changes in the parameter θ. This is

because the εJ value increases with the absolute value of this parameter, with a

maximum value corresponding to the same moneyness.

Equivalence condition between the J-am model and Heston-am one

The comparison between the J-am and Heston-am models is performed with reference

to the BS and BS-am models. Hence, we examine the skewness and kurtosis effects on

Fig. 8 Comparison: ΔJ ‐ eur, ΔJ ‐ am and ΔJ ‐ ε (λ = −1.6 and θ = 0). Parameters values: K = 100, τ =0.5, σ = 10%,
r = 5%, Q = 5%

Fig. 9 Comparison: ΔJ ‐ eur with (λ = −1.6 and θ = −3, θ = 0 or θ = 3). Parameters values: K = 100, τ =0.5,
σ = 10%, r = 5%, Q = 5%
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American option pricing related to the two aforesaid models. As indicated by Jerbi

(2015), we compare the J-model results with those of Heston (1993) with regard to

European option pricing. We find that these two models give the same shapes of

the curves ΔJ − eur(S/E) for various values of the parameter ρ(λ). To empirically

compare the J-model and Heston one, we consider the same volatility parameter

values used by Heston (1993) (v = 0.01; σ = 0.1; κ = 2; φ = 0.01 and ρ = 0.5 and − 0.5)

and we plot the respective curves of option difference value with the one of the

BS model. To determine the values of parameters λ* and θ* regarding the J-model

(see Jerbi (2015)) and those corresponding to the aforesaid Heston parameters, we

use two approaches. In the first approach, equivalence is based on the dynamics of

the underlying asset, in the second approach, the equivalence is based on the

European option price J-formula and Heston’s model. As indicated by Jerbi (2015),

we find that λ* = 0.84 and θ* = 0.769, with an estimation error equal to 6,782 E-07).

In the second approach, to determine λ* and θ* corresponding to the optimal

equivalence, we minimize the gap between the J-model and Heston’s model. For a

given ρ, we estimate the values of λ* * and θ* * by considering the minimum of the

difference between the two model prices:

λ��; θ��ð Þ ¼ Arg min
λ;θ

J eur λ; θð Þ−Hestoneur κ;ϕ; η; ρð Þf g2

Fig. 10 Comparison: ΔJ ‐ eur with (λ = +1.6 and θ = −3, θ = 0 or θ = 3). Parameters values: K = 100, τ =0.5,
σ = 10%, r = 5%, Q = 5%

Fig. 11 Comparison: ΔJ ‐ am with (λ = −1.6 and θ = −3, θ = 0 or θ = 3). Parameters values: K = 100, τ =0.5,
σ = 10%, r = 5%, Q = 5%
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We notice that using the second equivalence approach based on the volatility param-

eters used by Heston (1993) (v; κ; φ; η and ρ), for ρ = 0.5 and ρ = − 0.5, the difference

ΔHeston − eur is almost at its minimum for λ* * = 1.6 and λ* * = −1.6, respectively. Unlike
the bi-dimensional Heston model, which is based on Fourier inversion, the J-model

has the advantage of being a uni-dimensional model using a simple computational

technique. We can say that “the use of only one state variable following the J-

process” is equivalent to the use of two correlated state variables following the

Wiener process. Here, we extend the equivalence to American options. If we con-

sider the previous values of λ = 1.6 and λ = − 1.6 for the J-am model and ρ = 0.5

and ρ = − 0.5 for the Heston-am model, in plotting the respective EEB curves in

Fig. 15, we find that the equivalence encountered in the study by Jerbi (2015), for

the European options, remains true for the American options. These values of λ

are only approximate. Hence, they can be adjusted more accurately to fit the Hes-

ton model. In Fig. 12, we notice that regardless of the model chosen, the profile of

the EEB curves fits the theory. For a given time, during the life of option, the early

exercise is optimal for S*. This level S* decreases with λ for the J-am model and

with ρ for the Heston-am model. Moreover, we notice that the parameter value

equivalence studied by Jerbi (2015) remains valid for the American option, since

we have the correspondence (λ = 1.6 and λ = − 1.6) in the J-am model to (ρ = 0.5

and ρ = − 0.5) that in Heston’s model. The EEB curve related to BS-am is consid-

ered to be the same as the J-am one with λ = 0.

Fig. 12 Comparison: ΔJ ‐ am with (λ = +1.6 and θ = −3, θ = 0 or θ = 3). Parameters values: K = 100, τ =0.5,
σ = 10%, r = 5%, Q = 5%

Fig. 13 Comparison: ΔJ ‐ ε with (λ = −1.6 and θ). Parameters values: K = 100, τ =0.5,σ = 10%, r = 5%
and Q = 5%
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Comparison between J-am model and Heston-am one in terms of the volatility effect

when the equivalence condition is satisfied

Since the option value is sensitive to the volatility change, we must examine the ef-

fect of such a variable on the option price for various values ranging from 10 to

50%, with a rising gap of 10%. We begin by examining the EEB curves of the J-am

model with parameters λ = − 1.6 and θ* = 0.769, plotted in Fig. 16: we compare this

with the Heston model related to the parameters (κ = 2; φ = 0.01 and ρ = − 0.5) with

a variance v = 0.01, plotted in Fig. 17. We notice that although the curve profiles

are quite similar, we find that only for σ = 10% (i.e. v = 0.01), the J-am EEB exactly

coincides with the Heston one. This is quite normal because for ρ = − 0.5, the re-

lated value λ = − 1.6 is based on the dynamics of the CIR used by Heston for a

value of v = 0.01. This means that for each value of v, we must compute the new

related value of λ. Since we consider the same value of λ regardless of the value of

v, the equivalence between the two models, in terms of EEB, is valid only for v =

0.01. The comparison between the J-model and Heston’s model enables us to

examine the skewness and kurtosis effects on the European or American put.

Fig. 14 Comparison: ΔJ ‐ ε with (λ = +1.6 and θ). Parameters values: K = 100, τ =0.5, σ = 10%, r = 5%
and Q = 5%

Fig. 15 Comparison of the EEB related to the BS-am and J-am and Hesston-am models, Parameters values:
K = 100, τ =0.5, σ = 10%, r = 5%, Q = 5%, J-am (λ = 0.84;1.6 and −1.6 with θ = 0.769). Heston-am (v = 0.01;
κ = 2;φ = 0.01 and ρ = 0.5; 0 and 0.5)
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These effects are induced by the stochastic volatility effects in the Heston model

and the J-process effects in the J-model. For λ = − 1.6, we plot ΔJ − am in Fig. 18:

for the equivalent value ρ = − 0.5, we plot ΔHeston − am in Fig. 19. We notice that,

for negative values of λ and ρ, these two differences are negative and decrease

with volatility. The value −1.6 of λ was computed for ρ = − 0.5 and for a variance

ν = 0.01. If we adapt the estimation of the parameter λ to the variance value, the

ΔHeston − am curves should be the same as the ΔJ − am ones plotted in Fig. 18. For

the reason previously evoked, this is only the case for ν = 0.01. When λ and ρ are

positive, ΔJ − am and ΔHeston − am are positive for in-the-money puts and negative

for out-of-the-money puts. Hence, compared with the BS-am model, for negative

values of λ or ρ, (Figs. 18 and 19), the J-am and Heston-am models undervalue

the American in-the-money puts and overvalue the out-of-the-money ones and

vice versa. These curves are approximately the same for (λ = − 1.6 and ρ = − 0.5)

and for (λ = 1.6 and ρ = 0.5), when the volatility equals 10%. Besides, the curves

related to εJ and εHeston are similar, as shown in Figs. 20 and 21. The maximum

of the premium increases with the volatility level and corresponds to a lower

moneyness.

Fig. 16 EEB related to J-am with parameters values: K = 100, τ =0.5, σ = 10%, r = 5%, Q = 5%, J-am (λ = −1.6
with θ = 0.769)

Fig. 17 EEB related to Heston-am models, with parameters values: K = 100, τ =0.5, σ = 10%, r = 5%, Q = 5%,
Heston-am (v = 0.01; κ = 2;φ = 0.01 and ρ = − 0.5)
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Comparison between J-am and Heston-am models in terms of the effect of the time to

maturity

Here, we examine the effect of the time to maturity (ranging from 0.1 to 1 year)

on the American option price. For the European options, the problem is examined

in the study by Jerbi (2015) and extended here to the American options. First, the

EEB does not depend on the time to maturity, which means that for the values

considered, we have the same curve support limited in time by the aforesaid

values. We plot, in Fig. 22, the EEB related to the J-am model for various values

of λ as well as for the ones related to the Heston-am model for various values of

the correlation factor ρ. The volatility is set equal to 10% for all the curves consid-

ered. The EEB (λ = 1.6) coincides with the one related to (ρ = 0.5), while the EEB

(λ = − 1.6) coincides with the one related to (ρ = − 0.5). The EEB corresponding to

the BS-am model is close to the Heston-am related to (ρ = 0). The precision of the

price mainly depends on the accuracy of the determination of the EEB. Here, we

have a tradeoff between the accuracy and the CPU time convergence. For a given

time step, the EEB boundary does not depend on τ (Fig. 23).

Fig. 18 ΔJ ‐ am as a function of moneyness, for various values of the Volatility, with parameters values:
K = 100, τ =0.5, σ = 10%, r = 5%, Q = 5%, (λ = −1.6, θ = 0.769)

Fig. 19 ΔHeston ‐ am as a function of moneyness, for various values of the volatility, with parameters values:
K = 100, τ =0.5, σ = 10%, r = 5%, Q = 5%, (λ = −1.6, θ = 0.769). (v = 0.01; κ = 2; φ = 0.01 and ρ = − 0.5)
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Unlike with the European puts, in the case of in-the-money American puts,

when λ and ρ are negative, there is a small moneyness interval where the

models J-am or Heston-am overvalue the option price compared with the BS-am

model (Figs. 24 and 25). This interval does not exist for positive values of the

parameters λ and ρ (Figs. 26 and 27). In all the other cases, the results for the

American options are the same as those of the European ones encountered in

the study by Jerbi (2015). Either for J-am model or the Heston-am one, the

greater the time to maturity, the greater the difference with BS-am. Thus, we

consider the EEP εJ and εHeston as functions of moneyness for the various values

of the option maturity. Indeed, we examine the skewness and kurtosis effects on

this option price. We notice that the two studied models give the same results

for λ = − 1.6 and ρ = − 0.5 (Figs. 28 and 29), with positive values regardless of

the moneyness. For each time to maturity τ, εJ presents a maximum ε x�τ
� �

for a

moneyness x�τ less than the unity. The value of x�τ decreases with τ, while ε x�τ
� �

Fig. 20 ΔJ ‐ ε as a function of moneyness for various values of volatility, with parameters values: K = 100,
τ =0.5, σ = 10%, r = 5%, Q = 5%, and (λ = −1.6 and θ = 0.769)

Fig. 21 ΔHeston ‐ ε as a function of moneyness for various values of volatility, with parameters values:
K = 100, τ =0.5, r = 5%, Q = 5%, and (v = 0.01, κ = 2, φ = 0.01 and ρ = −0.5)
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increases. In case λ = 1.6 and ρ = 0.5, the J-am and Heston-am models give the

same results. For τ less than almost τ* = 0.6, the skewness and kurtosis induce

positive values in the EEP, while for τ greater than τ*, we find a negative effect

for a moneyness ranging from x�1;τ and a positive effect for a moneyness greater

than x�1;τ (Fig. 30).

Finally, we can say that the comparison between the models is based on the ef-

fect of the stochastic volatility of the American option pricing. We have proved

that the J-am is an extension of the model BS-am, as we did with the J-model and

BS models. Furthermore, we conclude that the J-am model gives the same results

as the Heston-am one in considering equivalent parameters ensuring equivalent ef-

fects of skewness and kurtosis. The equivalence between the two models can be

improved with an accurate estimation of parameters λ and θ for given values of

the volatility dynamics parameters considered in the Heston model.

Fig. 22 Comparison between the EEB related to the BS-am and J-am and Heston- am models, Parameters
values: K = 100, τ =1, σ = 10%, r = 5%, Q = 5%, J-am (λ = 1.6 and −1.6 with θ = 0.769). Heston-am (v = 0.01;
κ = 2; φ = 0.01 and ρ = 0.5; 0 and −0.5)

Fig. 23 ΔJ ‐ am as a function of moneyness, for various values of time to maturity, Parameters values:
K = 100, τ =0.5, σ = 10%, r = 5%, Q = 5%, J-am (λ = −1.6 and θ = 0.769)
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Comparison between the J-am and the Heston-am models in terms of CPU time

For the three models, BS-am, Heston-am, and J-am, the CPU time required for comput-

ing the American put price is indicated in Table 4. The first part of this time CPU1 deter-

mines the EEB through 10 steps of the residual option lifetime. Once the 10 EEB points

are computed, we calculate the American option value related to 21 levels of moneyness.

This calculation requires the second part of time CPU2 such that CPU =CPU1 + CPU2.

The BS-am requires a relatively short CPU time, either for determining the EEB or for

computing the American put value. The J-am model requires a long time to perform the

same tasks. This is due to the fact that the basic function W is numerically computed as

an integral, which is time consuming. The Heston model, based on the Fourier inversion,

requires a significantly lower CPU time than the one needed by the J-am model to com-

pute the American put value. To drastically improve the speed of the J-am model conver-

gence, we should build a library of the function W, similar to the one corresponding to

the standard normal cumulative function. Hence, the CPU time required by the J-am

model will be the same as the one required by BS-am model and significantly better than

the one required by Heston-am model. Since the J-am model considers the skewness and

kurtosis effects, which is not the case with the BS-am model, the J-am represents the best

Fig. 24 ΔHeston ‐ am as a function of moneyness, for various values of time to maturity. Parameters values:
K = 100, τ =0.5, r = 5%, Q = 5%, (v = 0.01, κ = 2, φ = 0.01 and ρ = −0.5)

Fig. 25 ΔJ ‐ am as a function of moneyness, for various values of time to maturity, Parameters values:
K = 100, τ =0.5, σ = 10%, r = 5%, Q = 5%, with (λ = 1.6 and θ = 0.769)
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compromise between accuracy that conforms to the financial market reality and CPU

time consumption.

Improvements of the J-am model

The valuation of the American option accuracy highly depends on the accuracy of the de-

termination of the EEB. The errors are cumulated along the residual lifetime of the option.

Hence, approaching the border with a high polynomial degree can preserve the accuracy

of the calculation of this boundary. Hence, we can maintain the accuracy of the American

option value. Simultaneously, we significantly reduce the required CPU time to compute

the American option value. To do this, for the three models and reduce the computation

complexity of the American option price, we model the EEB as a polynomial of a degree

10 (as we used 10 steps to determine the EEB) as follows:

S� τ−ωið Þ ¼
X
k¼0

k¼10

αk τ−ωið Þk

where 0 ≤ ωi ≤ τ and is an integer : 0 ≤ i ≤ 10.
If we denote by ω1 = τ > ω2 > ω3 >.......... > ω9 > ω10 > 0 the values related to ωi (with

0 ≤ i ≤ 10) and by S� τ−ωið Þ for the corresponding 10 limit values, which are computed

Fig. 26 ΔHeston ‐ am as a function of moneyness, for various values of time to maturity. Parameters values:
K = 100, τ =0.5, r = 5%, Q = 5% with (v = 0.01, κ = 2, φ = 0.01 and ρ = 0.5)

Fig. 27 ΔJ ‐ ε as a function of moneyness for various values of time to maturity, Parameters values: K = 100,
τ =0.5, σ = 10%, r = 5%, Q = 5%, J-am (λ = −1.6 and θ = 0.769)
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with the aforesaid algorithm, we can determine the coefficients αk (with 0 ≤ k ≤ 10) of

the polynomials through a Cramer system of degree 10. The coefficients related to

Figs. 16 (J-am model) and 17 (Heston model) are given in Table 5. These coefficients

are computed numerically. Therefore, we can express them as functions of the Ameri-

can option inputs to analytically compute the American option value.

Conclusion
In this study, we have elaborated a new uni-dimensional model J-am for pricing American

options, which is based on the J-model developed by Jerbi (2015). We have shown that

this model is an extension of the American model BS-am based on the BS model. As indi-

cated by Jerbi (2015), we have examined the equivalence between the J-model and Heston

one. Here, we have extended the study of this equivalence to American options. The pa-

rameters of the J-process ensuring this equivalence were determined as the values minim-

izing the squared errors between the J-process and CIR process used in the study by

Heston (1993). We notice that these parameters can also be determined as the values

minimizing the error between the J-am formula and Heston-am one. This study aimed to

Fig. 28 ΔHeston ‐ ε as a function of moneyness, for various values of time to maturity, Parameters values:
K = 100, τ =0.5, r = 5%, Q = 5%, (v = 0.01, κ = 2, φ = 0.01 and ρ = −0.5)

Fig. 29 ΔJ ‐ ε as a function of moneyness for various values of time to maturity, with parameters values:
K = 100, τ =0.5, σ = 10%, r = 5%, Q = 5%, (λ = 1.6 and θ = 0.769)
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compare a confirmed model, the Heston’s, which is bidimensional, with an equiva-

lent unidimensional model J-am. Assuming that we use the equivalent parameters

λ* and θ*, we can say that our results regarding the J-am are totally in accordance

with those of Heston’s in terms of EEB and American option pricing. The EEB and

the American option price profiles generated by all the chosen models fully con-

form with the options theory. We have examined the similarity between the effect

of λ* and ρ and the one between θ* and (κ; φ; η; v). We can say that the skewness

and kurtosis effects induced by the stochastic aspect of the volatility in the bidi-

mensional model of Heston, are equivalent to the ones generated by the extension

of the Wiener process to the J-process. This was our conclusion, as indicated by

Jerbi (2015), and we extended this conclusion to the American options. For a fu-

ture work, we plan to examine the dynamic risk management related to an Ameri-

can option portfolio based on this model. We can also use this model to solve

financial or economic problems based on American options, such as the decision

optimization in an area characterized by innovation and technical progress. The J-am, as a

uni-dimensional model, is expected to fit the reality of the financial market with a

better compromise between accuracy and CPU time than the Heston-am model.

The computation, based on the cumulative function F of the J-law, is easier than

the one based on the Fourier inversion method used by Heston. A library for the

function F must be constructed to ensure the optimality of the J-am model in

terms of accuracy and time consumption. Moreover, the modeling of the EEB

based on the polynomial approach can be carried out to significantly improve the

CPU time needed to compute the American option value for a given accuracy. Fi-

nally, the results generated by the J-am model must be compared with those gen-

erated by simulations based on Malliavin calculus and using the J-process (see

Jerbi and Kharrat (2014)).

Fig. 30 ΔHeston ‐ ε as a function of moneyness, for various values of time to maturity, with parameters
values: K = 100, τ =0.5, r = 5%, Q = 5%, Heston-am (v = 0.01, κ = 2,φ = 0.01 and ρ = 0.5)

Table 4 The CPU Time required at each stage for determining the American option

Time CPU (in second) BS-am Heston-am J-am

CPU1: OEB determination (10 points) 1 430 5584

CPU2: American Put value computing 21 points 0 66 918
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Table 5 The OEB approximate polynomial coefficients for the J-am (λ = −1.6, θ = 0.767) and Heston (v = 0.01, κ = 2,φ = 0.01 and ρ = −0.5) models, for various values of the
volatility

OEB S*(σ = 0,1) S*(σ = 0,2) S*(σ = 0,3) S*(σ = 0,4) S*(σ = 0,5)

J-am Heston-am J-am Heston-am J-am Heston-am J-am Heston-am J-am Heston-am

α0 100 100 100 100 100 100 100 100 100 100

α1 −88,7 −182,8 −251,4 −242,6 −357,3 −572,9 −469,3 −396,1 −577,6 −684,3

α2 454,0 3781,6 4223,9 2148,9 5524,5 13660,0 7252,0 −1198,9 8864,3 9248,4

α3 4719,5 −47754,5 −55634,7 −4162,3 −66543,0 −219163,6 −86741,4 119100,6 −104209,1 −86821,5

α4 −113190,0 358207,8 481249,7 −129020,2 526397,3 2134038,5 682209,7 −1781952,0 805895,7 532016,2

α5 957015,7 −1687800,5 −2768878,8 1470870,0 −2764903,7 −13022337,6 −3559002,7 13594552,2 −4135421,6 −2260576,2

α6 −4473462,2 5132416,9 10680702,7 −7709733,4 9728193,1 51049511,1 12413443,5 −61391738,5 14195574,1 7125696,7

α7 12559747,8 −10044517,7 −27258807,6 23187361,5 −22664547,0 −128519111,3 −28605887,8 170587764,1 −32220275,1 −16790157,4

α8 −21096551,5 12180376,5 44059429,4 −40996252,7 33535228,2 200843071,0 41770962,5 −286783820,3 46384859,5 27432124,8

α9 19564855,4 −8286347,9 −40740040,3 39687366,2 −28523653,2 −177308022,0 −34985276,1 267836101,2 −38341325,4 −26780575,1

α10 −7712384,0 2399990,3 16372793,2 −16255502,5 10614375,1 67563228,8 12792706,6 −106721471,3 13851225,0 11487040,7
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Appendix
EEP formula based on the J-model

For an American put, the EEP is: ε ¼
Z
0

T−t

e−rω
Z S τ−ωð Þ

�

0
rK−Qsωð ÞhS sωð Þdsωdω , where

hS(sω) is the probability density function of the underlying asset price Sω at a time t ran-

ging from 0 to the option time to maturity. The underlying asset, distributing dividends

at a rate Q, follows a J-process defined by the following SDE: dSt
St

¼ r−Qð Þdt þ σ
ffiffiffiffiffi
dt

p
Ut ,

where Ut ¼ Wt−EW
σW

with W following the J-Law (see Jerbi (2015), with expected value

EW = E(Wt) and standard deviation σW ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V Wtð Þp

.

Applying the Ito’s lemma and replacing Ut by its expression, and integrating from 0

to ω, we have: Ln Sω
St

� �
¼ r−Q− σ2

2

� �
ω− σ

σW
EW

ffiffiffiffi
ω

p þWω
σ
σW

ffiffiffiffi
ω

p
. If we put:

a ¼ r−Q−
σ2

2

	 

ω−

σ

σW
EW

ffiffiffiffi
ω

p

b ¼ σ

σW

ffiffiffiffi
ω

p

8><
>: we can write

Sω ¼ SteaþbWω

Wω ¼ 1
b

Ln
Sω
St

	 

−a

� �8<
:

As Sω is a strictly monotonous function of Wω, we can write h(sω)dsω = g(wω)dwω. If

we put H ωð Þ ¼
Z S τ−ωð Þ

�

0
rK−Qsωð ÞhS sωð Þdsω, the premium is then ε ¼

Z
0

T−t

e−rωH ωð Þdω.

In replacing sω by its expression as a function of wω, we get: H ωð Þ ¼Z
−∞

w τ−ωð Þ
�

rK−QSteaþbwω
� �

g wωð Þdwω.

H(ω) can be written as the difference : H(ω) =H1(ω) −H2(ω) with :

H1 ωð Þ ¼ rK
Z
−∞

w τ−ωð Þ
�

f wωð Þdwω

H2 ωð Þ ¼ QSt

Z
−∞

w τ−ωð Þ
�

eaþbwω
e
−
1
2
w2

Jer λ; θð Þ ffiffiffiffiffiffi
2π

p N λwω þ θð Þdwω

8>>><
>>>:

If we name F the cumulative function of the J-law, we have:

H1 ωð Þ ¼ rKF w�
τ−ωð Þ; λ; θ

� �

H2 ωð Þ ¼ QSte
aþ

b2

2
Z
−∞

w τ−ωð Þ
� e

−
1
2

wω−bð Þ2

Jer λ; θð Þ ffiffiffiffiffiffi
2π

p N λwω þ θð Þdwω

8>>><
>>>:

We put Zω =Wω − b, Zω follows the J-law such as: Zω→ J(λ, λb + θ). Hence, we have:

H1 ωð Þ ¼ rKF w�
τ−ωð Þ; λ; θ

� �

H2 ωð Þ ¼ QSte
aþ

b2

2 F z�τ−ωð Þ; λ; λbþ θ
� �

8>><
>>: with z�τ−ωð Þ ¼ w�

τ−ωð Þ−b

If we call Φ ¼ − σ2ω
2 1− 1

σ2W

� �
− σ

ffiffiffi
ω

p
σW

EW ; we have aþ b2

2 ¼ rω−QωþΦ. Hence, H(ω) can

be written as follows: H ωð Þ ¼ rKF w�
τ−ωð Þ; λ; θ

� �
−QSterω−QωþΦF z�τ−ωð Þ; λ; λbþ θ

� �
.

We deduce the expression of the EEP: ε ¼
Z
0T−t

G ωð Þdω

with G ωð Þ ¼ rKe−rωF w�
τ−ωð Þ; λ; θ

� �
−QSte−QωþΦF z�τ−ωð Þ; λ; λbþ θ

� �n o
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where w�
τ−ωð Þ ¼

Ln Sw
St

� �
− r−Q−σ2

2

� �
ωþ σ

σW
EW

ffiffiffi
ω

p
σ

σW

ffiffiffi
ω

p and z�τ−ωð Þ ¼ w�
τ−ωð Þ−b.

We notice that:

z τ−ωð Þ� ¼ −σWd1;ω þ EW

w τ−ωð Þ� ¼ −σWd2;ω þ EW

(
with d1;ω ¼ Ln St

Swð Þþ r−Qþσ2
2

� �
ω

σ
ffiffiffi
ω

p et d2;ω ¼ d1;ω−σ
ffiffiffiffi
ω

p

If we set λ = 0, we get the EEP formula for an American put related to BS-am model:

ε ¼
Z τ

0
rKe−rωN −d2;ω

� �
−QSte−QωN −d1;ω

� �� �
dω
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