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Abstract

We use a standard sticky-price model to provide evidence on three mechanisms that can reconcile

somewhat frequent price changes with large and persistent real effects of monetary shocks. To that

end, we estimate a semi-structural model for the U.S. economy that allows for varying degrees of

real rigidities, and cross-sectional heterogeneity in price stickiness. The model can extract some

information about these two features of the economy from aggregate data, and discriminate between

different distributions of price stickiness. Hence it can also speak to the debate about the role of

sales and other temporary price changes in shaping the effects of monetary policy. Employing a

Bayesian approach, we combine macroeconomic time-series data with information about empirical

distributions of price stickiness derived from micro price data for the U.S. economy. Our estimates

point to the presence of both large real rigidities and an important degree of heterogeneity in price

stickiness. Moreover, cross-sectional distributions of price stickiness that factor out sales improve

the empirical fit of the model. Our results suggest that bridging the gap between micro and macro

evidence on nominal price rigidity may require the combination of several mechanisms.
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1 Introduction

Our understanding of the real effects of monetary policy hinges, to a large extent, on the existence

of some degree of nominal price rigidity. In the decade since the publication of the seminal Bils and

Klenow (2004) paper, the availability of large amounts of micro price data has rekindled interest in this

area, and allowed us to make progress. Yet, estimates of the extent of nominal price stickiness based

on microeconomic data versus those based on aggregate data usually produce a conflicting picture.

According to Klenow and Malin’s (2011) survey of the empirical literature based on micro data,

prices change, on average, at least once a year —somewhat more often than we thought was the case

prior to Bils and Klenow (2004). In contrast, making sense of estimates of the response of the aggregate

price level to monetary shocks (from dynamic stochastic general equilibrium —DSGE —models, or vector

autoregressions) requires much less frequent price adjustments.1

If nominal price rigidities are to continue to be the leading explanation for why monetary policy

has large and persistent real effects, it is important that we deepen our understanding of mechanisms

that can narrow the gap between the evidence of somewhat flexible individual prices and relatively

sluggish aggregate prices — i.e., mechanisms that can produce a large “contract multiplier”. If prices

change frequently and each and every price change contributes to fully offset nominal disturbances, then

nominal price rigidity cannot be the source of large and persistent monetary non-neutralities. Hence, a

large contract multiplier requires that price adjustments, somehow, fail to perfectly neutralize monetary

innovations.

In this paper, our goal is to contribute to bridge the gap between micro and macro evidence on the

extent of nominal price rigidity. To that end, we estimate a standard macroeconomic model of price

setting, and use it to speak to three mechanisms that can boost the contract multiplier. The first such

mechanism are so-called “real rigidities”, in the sense of Ball and Romer (1990). Large real rigidities

reduce the sensitivity of individual prices to aggregate demand conditions, and thus serve as a source of

endogenous persistence: for any given degree of price stickiness, partial adjustment of individual prices

makes for a sluggish response of the aggregate price level to monetary shocks.

The other two mechanisms are motivated by the empirical evidence uncovered since Bils and Klenow

(2004), and subsequent theoretical literature. Cross-sectional heterogeneity in price rigidity, to the

extent documented in the micro data, can lead to much larger monetary non-neutralities than the

average frequency of price changes would imply (Carvalho 2006, Nakamura and Steinsson 2010). The

reason is that, while recurrent price changes by firms in more flexible sectors do not contribute as much

1See, for example, the survey by Maćkowiak and Smets (2008).
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to offset monetary shocks, they do count for the frequency of price adjustment.2 Heterogeneity can

become an even more powerful mechanism when coupled with strategic complementarities in pricing

decisions. In those circumstances, firms in the more sticky sectors become disproportionately important

in shaping aggregate dynamics (relative to their sectoral weight), through their influence on pricing

decisions of firms that change prices more frequently (Carvalho 2006).3

The third mechanism is the presence of sales and other temporary price changes. Guimaraes and

Sheedy (2011) and Kehoe and Midrigan (2014) show that such price changes may help reconcile frequent

micro adjustments with a sluggish aggregate price response to nominal disturbances.4 A basic intuition

for their results is that temporary price changes fail to offset monetary shocks well, since these shocks

tend to induce permanent changes in the level of prices.5

We estimate a macroeconomic model that, while relatively standard, can provide some information

about the three aforementioned mechanisms based on aggregate data. The price-setting block of the

model is a multi-sector sticky-price economy that allows for heterogeneity in price stickiness, and can

feature strategic complementarity or substitutability in pricing decisions. The remaining equations

specify exogenous stochastic processes that drive firms’ frictionless optimal prices. They provide the

model with some flexibility to perform in empirical terms, and thus allow us to focus on the objects of

interest in the price-setting block of the economy. Hence, we refer to our model as “semi-structural”.6

We show that, at least in theory, the model is able to separately identify real and nominal rigidities,

and tell apart economies with homogenous from those with heterogeneous price stickiness —based on

aggregate data only. The model can also discriminate between different (non-degenerate) distributions

of price rigidity, providing information on which one helps explain aggregate dynamics better. Hence,

at least in theory, our analysis can also speak to the debate about how to treat temporary sales in micro

price data.

2Carvalho and Schwartzman (2014) show how this intuition can be formalized in terms of a “selection effect”relative
to the timing of price changes, which arises in the class of time-dependent pricing models.

3Nakamura and Steinsson (2010) conclude that this interaction is not important in their calibrated menu-cost model.
4Coibion et al. (2014) provide evidence that sales are essentially acyclical —which is consistent with the models in

Guimaraes and Sheedy (2011) and Kehoe and Midrigan (2014). Kryvtsov and Vincent (2014), on the other hand, argue
that sales do not help reconcile micro and macro evidence on price rigidity. They document a large degree of cyclicality
of sales in the U.K. micro data, and develop a model that can explain their findings. In bad times, consumers intensify
search for bargain prices and firms increase the frequency of sales. This “complementarity” between search effort and
sales frequency breaks down the strategic substitutability of sales that would otherwise arise (as in Guimaraes and Sheedy
2011), and leads to cyclical sales.

5 Information frictions can also lead to large contract multipliers. Not surprisingly, that literature picked up steam after
the empirical literature based on micro price data flourished. Classic contributions include Caballero (1989), Reis (2006),
and Maćkowiak and Wiederholt (2009), who obtain large monetary non-neutralities in models with information frictions
in which prices change continuously. More recently, Bonomo, Carvalho, Garcia, and Malta (2014) obtain a large contract
multiplier in an estimated model with menu costs and partially costly information.

6Several earlier papers in the literature combine structural equations with empirical specifications for other parts of
the model (e.g., Sbordone 2002, Guerrieri 2006, and Coenen et al. 2007).
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Identification of those features of price setting based on aggregate data is possible in our model

because sectors that differ in price stickiness have different implications for the response of the macro-

economy to shocks at different frequencies. In particular, sectors where prices are more sticky are

relatively more important in determining the low-frequency response to shocks; and vice-versa for more

flexible sectors. These differences provide information about the cross-sectional distribution of price

stickiness. Finally, separate identification of real and nominal rigidities comes from the way in which

the aggregate price level depends on its own lags vis-a-vis lags of exogenous drivers of firms’frictionless

optimal prices.

While our approach requires that we learn something about the mechanisms of interest from aggre-

gate data, we argue that a more promising direction is to combine those data with information about

the empirical cross-sectional distribution of price stickiness derived from micro price data.

In their favor, the micro data have the millions of observations used to compute measures of price

rigidity. They also allow us to estimate separate distributions of price rigidity, with and without sales.

Hence, on these grounds, one could imagine imposing alternative empirical distributions of price rigidity

derived from micro data (e.g., with and without sales), estimating the other parameters of the model —

in particular, the parameter associated with real rigidities —and comparing the performance of different

estimated models in terms of fit and other dimensions of interest.

However, treating the estimates derived from micro data as the true “population moments” that

matter for aggregate dynamics is not appropriate, in our view. First, it is possible that some price

adjustments do not convey as much information about changes in macroeconomic conditions as others

do. While this possibility is at the core of the debate about whether or not to exclude sales from price

setting statistics for macro purposes, the argument applies more generally —for example, it also applies

to the literature on price setting under information frictions. In that case, macro-based estimates should

convey useful information about the price changes that do matter for aggregate dynamics. Second, and

not less importantly, Eichenbaum et al. (2014) show that the BLS micro data underlying the CPI are

plagued with measurement problems when it comes to computing statistics based on individual price

changes. While Eichenbaum et al. (2014) focus on pitfalls involved in estimating the distribution of

the size of price changes, the problems they document certainly add measurement error to available

estimates of the cross-sectional distribution of price stickiness that use that data (e.g., Bils and Klenow

2004, Nakamura and Steinsson 2008, Klenow and Kryvtsov 2008).

Hence, we find it valuable to “let the aggregate data speak”about the cross-sectional distribution

of price rigidity —something that our model can accomplish. At the same time, while we do not want

to treat the statistics derived from micro data as error-free, we certainly do not want to ignore all the
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information that they contain.

To strike a balance between extracting information from aggregate data and exploring what we

know based on the micro data, we employ a full-information Bayesian approach. We use aggregate

(time-series) data on nominal and real Gross Domestic Product (GDP) as observables, and incorporate

the microeconomic information about the cross-sectional distribution of price stickiness through our

prior on the model parameters that govern that distribution. Specifically, we parameterize that prior in

a way that easily allows us to relate its moments to the analogous moments of empirical distributions of

price stickiness. We focus on two empirical distributions: one that takes into account all price changes,

including sales (derived from Bils and Klenow 2004); and another, based on “regular” price changes,

that excludes sales and product substitutions (derived from Nakamura and Steinsson 2008).

We summarize our findings as follows. The estimated models can discriminate quite sharply between

economies with heterogeneity in price stickiness and their homogeneous-firms counterparts. They also

point to the existence of large real rigidities, which induce strong strategic complementarities in price

setting.

Turning to the cross-sectional distribution of price rigidity, the information extracted from aggre-

gate data accords quite well with the micro data. Specifically, the distribution estimated under an

uninformative (“flat”) prior has a correlation of 0.43 with the distribution that leaves sales in (Bils and

Klenow 2004), and a correlation of 0.63 with the distribution that excludes sales and product substitu-

tions (Nakamura and Steinsson 2008). Moreover, a formal statistical comparison between models with

informative priors based on those two cross-sectional distributions provides some additional evidence in

favor of the distribution based on regular prices.

Altogether, our results suggest that all three mechanisms that can boost the contract multiplier

might have a role to play in our understanding of the effects of monetary policy.

1.1 Brief literature review

Our work is related to the literature that emphasizes the importance of heterogeneity in price rigidity for

aggregate dynamics. However, our focus differs from that of existing papers. Most of the latter focus on

the role of heterogeneity in boosting the contract multiplier in calibrated models (e.g., Carvalho 2006,

Carvalho and Schwartzman 2008, Nakamura and Steinsson 2010, Carvalho and Nechio 2010, Dixon and

Kara 2011). These papers do not address the question of whether such heterogeneity does in fact help

sticky-price models fit the data better according to formal statistical criteria.

In terms of empirical work on the importance of heterogeneity in price stickiness, Imbs et al. (2011)

study the aggregation of sectoral Phillips curves, and the statistical biases that can arise from using
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estimation methods that do not account for heterogeneity. They rely on sectoral data for France,

and find that the results based on estimators that allow for heterogeneity are more in line with the

available microeconomic evidence on price rigidity. Lee (2009) and Bouakez et al. (2009) estimate

multi-sector DSGE models with heterogeneity in price rigidity using aggregate and sectoral data. They

also find results that are more in line with the microeconomic evidence than the versions of their models

that impose the same degree of price rigidity for all sectors.7 Taylor (1993) provides estimates of the

distribution of the duration of wage contracts in various countries inferred solely from aggregate data,

while Guerrieri (2006) provides estimates of the distribution of the duration of price spells in the U.S.

based on aggregate data. Both models feature ex-post rather than ex-ante heterogeneity in nominal

rigidities, as is the case in our model.8 Coenen et al. (2007) estimate a model with (limited) ex-ante

heterogeneity in price contracts using only aggregate data. They focus on the estimate of the Ball-Romer

index of real rigidities and on the average duration of contracts implied by their estimates, which they

emphasize is in line with the results in Bils and Klenow (2004).9

Jadresic (1999) is a precursor to some of the ideas in this paper. He estimates a model with ex-

ante heterogeneous price spells using only aggregate data for the U.S. economy to study the joint

dynamics of output and inflation. Similarly to our findings, his statistical results reject the assumption

of identical firms. Moreover, he discusses the intuition behind the source of identification of the cross-

sectional distribution of price rigidity from aggregate data in his model, which is the same as in our

model. Despite these similarities, our paper differs from Jadresic’s in several important dimensions. We

use a different estimation method, and show the possibility of extracting information about the cross-

sectional distribution of price rigidity from aggregate data in a more general context - in particular in the

presence of pricing complementarities. Most importantly, the focus of our paper goes beyond assessing

the empirical support for heterogeneity in price rigidity from aggregate data. We also investigate the

similarities between our macro-based estimates and the available microeconomic evidence, and propose

an approach to integrate the two sources of information on the distribution of price rigidity.

Finally, our results speak to the ongoing debate on the role of sales in macroeconomic models. That

literature started out as a discussion about whether or not to exclude sales when computing price-

setting statistics for macro purposes (Bils and Klenow 2004, Nakamura and Steinsson 2008, Klenow

and Kryvtsov 2008). This initial debate was followed by a theoretical literature that provided macro-

7Bouakez et al. (2014) find similar results in an extension of their earlier paper to a larger number of sectors.
8Their frameworks are thus closer to the generalized time-dependent model of Dotsey et al. (1997) than to our model

with ex-ante heterogeneity.
9Their estimated model features indexation to an average of past inflation and a (non-zero) constant inflation objective.

Thus, strictly speaking their finding is that the average time between “contract reoptimizations” is comparable to the
average duration of price spells documented by Bils and Klenow (2004).
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economic models with sales and other temporary price changes (Guimaraes and Sheedy 2011, Kehoe

and Midrigan 2014). More recently, the literature has focused on the cyclicality of sales and consumer

behavior, both in theory and in the micro data (e.g., Coibion et al. 2014, Kryvtsov and Vincent 2014).

We provide statistical evidence on the relative performance of macroeconomic models with different

distributions of price rigidity that do and do not exclude sales (and product substitutions).

In Section 2 we present the semi-structural model and study the extent to which aggregate data

contain information about the cross-sectional distribution of price stickiness and the parameter that

controls the extent of real rigidities in the model. Section 3 describes our empirical methodology and

data. In Section 4 we present our main results. We start with macro-based estimates obtained under

an uninformative prior, assess the estimates against the empirical distributions from Bils and Klenow

(2004) and Nakamura and Steinsson (2008), and perform model comparison with specifications that

impose the same degree of price rigidity for all firms. We then provide our estimates that incorporate

information from the micro data, and perform model comparison with different prior distributions.

Section 6 reports our robustness analysis, and discusses the performance of the estimated model in light

of additional micro price facts. The last section concludes.

2 The semi-structural model

There is a continuum of monopolistically competitive firms divided into K sectors that differ in the

frequency of price changes. Firms are indexed by their sector, k ∈ {1, ...,K}, and by j ∈ [0, 1]. The

distribution of firms across sectors is summarized by a vector (ω1, ..., ωK) with ωk > 0,
∑K

k=1 ωk = 1,

where ωk gives the mass of firms in sector k. Each firm produces a unique variety of a consumption

good, and faces a demand that depends negatively on its relative price.

In any given period, profits of firm j from sector k (henceforth referred to as “firm kj”) are given

by:

Πt (k, j) = Pt (k, j)Yt (k, j)− C (Yt (k, j) , Yt, ξt) ,

where Pt (k, j) is the price charged by the firm, Yt (k, j) is the quantity that it sells at the posted price

(determined by demand), and C (Yt (k, j) , Yt, ξt) is the total cost of producing such quantity, which may

also depend on aggregate output Yt, and is subject to shocks (ξt). We assume that the demand faced

by the firm depends on its relative price Pt(k,j)
Pt

, where Pt is the aggregate price level in the economy,

and on aggregate output. Thus, we write firm kj’s profit as:

Πt (k, j) = Π (Pt (k, j) , Pt, Yt, ξt) ,
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and make the usual assumption that Π is homogeneous of degree one in the first two arguments, and

single-peaked at a strictly positive level of Pt (k, j) for any level of the other arguments.10

The aggregate price index combines sectoral price indices, Pt (k)’s, according to the sectoral weights,

ωk’s:

Pt = Γ
(
{Pt (k) , ωk}k=1,...,K

)
,

where Γ is an aggregator that is homogeneous of degree one in the Pt (k)’s. In turn, the sectoral

price indices are obtained by applying a symmetric, homogeneous-of-degree-one aggregator Λ to prices

charged by all firms in each sector:

Pt (k) = Λ
(
{Pt (k, j)}j∈[0,1]

)
.

We assume the specification of staggered price setting inspired by Taylor (1979, 1980). Firms set

prices that remain in place for a fixed number of periods. The latter is sector-specific, and we save

on notation by assuming that firms in sector k set prices for k periods. Thus, ω = (ω1, ..., ωK) fully

characterizes the cross-sectional distribution of price stickiness that we are interested in. Finally, across

all sectors, adjustments are staggered uniformly over time.

Before we continue, a brief digression about the Taylor pricing model is in order. As will become

clear, this model allows us to tell apart real rigidities from nominal rigidities, and to infer the cross-

sectional distribution of price stickiness implied by aggregate data. Hence, it serves our purposes well.

However, strictly speaking, that model is at odds with the microeconomic evidence on the duration of

price spells. Klenow and Kryvtsov (2008), for example, provide evidence that the duration of individual

price spells varies at the quote line level. However, this evidence does not invalidate the use of the Taylor

model for our purposes. In particular, in Section 5 we provide an alternative model in which the duration

of price spells varies at the firm level, and yet the aggregate behavior of the model is identical to the one

presented here. The alternative model can match additional micro facts documented in the literature.

Hence, it provides a cautionary note on attempts to test specific models of price setting by confronting

them with descriptive micro price statistics. For ease of exposition, we proceed with the standard Taylor

pricing specification. But the reader should keep in mind that the aggregate implications that we are

interested survive in models that can match the microeconomic evidence in many dimensions.

10This is analogous to Assumption 3.1 in Woodford (2003).
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When setting its price Xt (k, j) at time t, given that it sets prices for k periods, firm kj solves:

maxEt

k−1∑
i=0

Qt,t+iΠ
(
Xt (k, j) , Pt+i, Yt+i, ξt+i

)
,

where Qt,t+i is a (possibly stochastic) nominal discount factor. The first-order condition for the firm’s

problem can be written as:

Et

k−1∑
i=0

Qt,t+i
∂Π
(
Xt (k, j) , Pt+i, Yt+i, ξt+i

)
∂Xt (k, j)

= 0. (1)

Note that all firms from sector k that adjust prices at the same time choose a common price, which we

denote Xt (k).11 Thus, for a firm kj that adjusts at time t and sets Xt (k), the prices charged from t to

t+ k − 1 satisfy:

Pt+k−1 (k, j) = Pt+k−2 (k, j) = ... = Pt (k, j) = Xt (k) .

Given the assumptions on price setting, and uniform staggering of price adjustments, with an abuse

of notation sectoral prices can be expressed as:

Pt (k) = Λ
(
{Xt−i (k)}i=0,...,k−1

)
.

Instead of postulating a fully specified model to obtain the remaining equations to be used in the

estimation, we assume exogenous stochastic processes for nominal output (Mt ≡ PtYt) and for the

unobservable ξt process; hence, we refer to our model as semi-structural. Given our focus on estimation

of parameters that characterize price-setting behavior in the economy in the presence of heterogeneity,

our goal in specifying such exogenous time-series processes is to close the model with a set of equations

that can provide it with flexibility relative to a fully-structural model. Such flexibility is useful because

it allows us to draw conclusions about price setting that do not depend on details of structural models

that are not the focus of our analysis.12

2.1 A loglinear approximation

We assume that the economy has a deterministic zero-inflation steady state characterized by Mt =

M, ξt = ξ, Yt = Y ,Qt,t+i = βi, and for all (k, j) , Xt (k, j) = Pt = P , and loglinearize (1) around it to

11 In Section 5.2 we discuss how the model can be enriched with idiosyncratic shocks that can help it match some micro
facts about the size of price changes without affecting any of its aggregate implications.

12Needless to say, the results are conditional on the particular model of price setting that we adopt. In Section 5 we
discuss the extent to which our conclusions may generalize to alternative price-setting specifications.
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obtain:13

xt (k) =
1− β
1− βk

Et

k−1∑
i=0

βi
(
pt+i + ζ

(
yt+i − ynt+i

))
, (2)

where lowercase variables denote log-deviations of the respective uppercase variables from the steady

state. The parameter ζ > 0 is the Ball and Romer (1990) index of real rigidities. The new variable Y n
t

is defined implicitly as a function of ξt by:

∂Π (Xt (k, j) , Pt, Y
n
t , ξt)

∂Xt (k, j)

∣∣∣∣
Xt(k,j)=Pt

= 0.

In the loglinear approximation, ynt moves proportionately to log
(
ξt/ξ

)
. Strictly speaking, it is the

level of output that would prevail in a flexible-price economy. In a fully specified model this would

tie it down to preference and productivity shocks. Here we do not pursue a structural interpretation

of the exogenous processes driving the economy.14 Nevertheless, for ease of presentation we follow the

literature and label ynt the “natural level of output.”

The definition of nominal output yields:

mt = pt + yt. (3)

Finally, we postulate that the aggregators that define the overall level of prices Pt and the sectoral price

indices give rise to the following loglinear approximations:15

pt =
K∑
k=1

ωkpt (k) , (4)

pt (k) =

∫ 1

0
pt (k, j) dj =

1

k

k−1∑
j=0

xt−j (k) . (5)

Large real rigidities (small ζ in equation (2)) reduce the sensitivity of prices to aggregate demand

conditions, and thus magnify the non-neutralities generated by nominal price rigidity. In fully specified

models, the extent of real rigidities depends on primitive parameters such as the intertemporal elasticity

of substitution, the elasticity of substitution between varieties of the consumption good, the labor supply

elasticity. It also depends on whether the economy features economy-wide or segmented factor markets,

13We write all such approximations as equalities, ignoring higher-order terms.
14We think such an interpretation is unreasonable because we take nominal output to be exogenous. In that context,

an interpretation of ynt as being driven by preference and technology shocks would imply that these shocks have no effect
on nominal output (i.e., that they have exactly offsetting effects on aggregate output and prices).

15This is what comes out of a fully-specified multi-sector model with the usual assumption of Dixit-Stiglitz preferences.
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whether there is an explicit input-output structure etc.16

In the context of our model, ζ is itself a primitive parameter.17 Following standard practice in the

literature, we refer to economies with ζ < 1 as displaying strategic complementarities in price setting.

To clarify the meaning of this expression, replace (3) in (2) to obtain:

xt (k) =
1− β
1− βk

Et

k−1∑
i=0

βi
(
ζ
(
mt+i − ynt+i

)
+ (1− ζ) pt+i

)
. (6)

That is, new prices are set as a discounted weighted average of current and expected future driving

variables
(
mt+i − ynt+i

)
and prices pt+i. ζ < 1 implies that firms choose to set higher prices if the overall

level of current and expected future prices is higher, all else equal. On the other hand, ζ > 1 means that

prices are strategic substitutes, in that under those same circumstances adjusting firms choose relatively

lower prices.

2.2 Nominal (mt) and natural (ynt ) output

We postulate an AR(p1) process for nominal output, mt:

mt = ρ0 + ρ1mt−1 + ...+ ρp1mt−p1 + εmt , (7)

and an AR(p2) process for the natural output level, ynt :

ynt = δ0 + δ1y
n
t−1 + ...+ δp2y

n
t−p2 + εnt , (8)

where εt = (εmt , ε
n
t ) is i.i.d. N

(
01×2,Ω

2
)
, with Ω2 =

 σ2
m 0

0 σ2
n

 .
2.3 State-space representation and likelihood function

We solve the semi-structural model (3)-(8) with Gensys (Sims, 2002), to obtain:

Zt = C (θ) +G1 (θ)Zt−1 +B (θ) εt. (9)

16For a detailed discussion of sources of real rigidities see Woodford (2003, chapter 3).
17The model features the same degree of real rigidity in all sectors. This is the case in essentially all of the literature on

multi-sector sticky-price models (Nakajima et al. (2010) is, to our knowledge, the only paper to analyze a New Keynesian
model with cross-sectional heterogeneity in real rigidities). This homogeneity follows from the fact that sectors are assumed
to differ only in the degree of price stickiness. Other sources of sectoral heterogeneity might imply differences in the extent
of real rigidities across sectors, with potentially interesting implications for aggregate dynamics. Inasmuch as our analysis
is concerned, heterogeneity along this dimension might generate the need for additional observables —such as sectoral price
data —in order to identify the underlying cross-sectional distribution. We leave this potentially interesting endeavour for
future research.
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where Zt is a vector collecting all variables and additional “dummy”variables created to account for

leads and lags and εt is as defined before. The vector θ collects the primitive parameters of the model:

θ =
(
K, p1, p2, β, ζ, σm, σn, ω1, · · · , ωK , ρ0, · · · , ρp1 , δ0, · · · , δp2

)
.

In all estimations that follow we make use of the likelihood function L (θ|Z∗), where Z∗ is the vector

of observed time series (i.e., a subset of Z). Given that our state vector Zt includes many unobserved

variables, such as the natural output level and sectoral prices, the likelihood function is constructed

through application of the Kalman filter to the solved loglinear model (9). Letting H denote the matrix

that singles out the observed subspace Z∗t of the state vector Zt (i.e., Z
∗
t = HZt), our distributional

assumptions can be summarized as:

Zt|Zt−1 ∼ N
(
C (θ) +G1 (θ)Zt−1, B (θ) ΩB (θ)′

)
,

Z∗t | {Z∗τ }
t−1
τ=1 ∼ N

(
Mt|t−1 (θ) , Vt|t−1 (θ)

)
,

where Mt|t−1 (θ) ≡ HC (θ) + HG1 (θ) Ẑt|t−1, Vt|t−1 (θ) ≡ HB (θ) Σ̂t|t−1B (θ)′H ′, Ẑt|t−1 denotes the

expected value of Zt given {Z∗τ }
t−1
τ=1, and Σ̂t|t−1 is the associated forecast-error covariance matrix.

2.4 Identification of the cross-sectional distribution from aggregate data

In estimating our multi-sector model we use only time-series data on aggregate nominal and real output

as observables. It is thus natural to ask whether the structure of the model is such that these aggregate

data reveal information about the cross-sectional distribution of price stickiness ω = (ω1, ..., ωK). As

in Jadresic (1999), we start by looking at a simple case where it is easy to show that ω can be inferred

from observations of those two aggregate time series. This helps develop the intuition for a more general

case for which we also show identification. We then assess the small-sample properties of estimates of

ω inferred from aggregate data through a Monte Carlo exercise. As in our estimation, we assume

throughout that the discount factor, β, is known.

The key simplifying assumption to show identification in the first case is absence of pricing interac-

tions: ζ = 1. In that case, from (6) new prices xt (k) are set on the basis of current and expected future

values of the two exogenous processes mt and ynt . For simplicity and without loss of generality, assume

12



further that the latter follow the AR(1) processes:

mt = ρ1mt−1 + εmt , and (10)

ynt = δ1y
n
t−1 + εnt . (11)

Then, new prices are set according to:

xt (k) = F (β, ρ1, k)mt − F (β, δ1, k) ynt ,

where

F (β, a, k) ≡
(

1 +
1− β
1− βk

βa− (βa)k

1− βa

)
.

Replacing this expression for newly set prices in the sectoral price equation (5) and aggregating according

to (4) produces the following expression for the aggregate price level:

pt =
K−1∑
j=0

K∑
k=j+1

F (β, ρ1, k)
ωk
k
mt−j −

K−1∑
j=0

K∑
k=j+1

F (β, δ1, k)
ωk
k
ynt−j . (12)

If we observemt and yt - and thus pt, estimates of the coeffi cients onmt−j in (12) allow us to infer the

sectoral weights ω. The reason is that F (β, ρ1, k) is “known”, since ρ1 can be estimated directly from

(10). Thus, knowledge of the coeffi cient on the longest lag of mt−j (attained when j = K − 1) allows

us to uncover ωK . The coeffi cient on the next longest lag (mt−(K−2)) depends on ωK−1 and ωK , which

reveals ωK−1. We can thus recursively infer the sectoral weights from the coeffi cients F (β, ρ1, k) ωkk .

Moreover, identification obtains with any estimation method that produces consistent estimates of these

coeffi cients.18

Checking for identification of ω in the presence of pricing interactions (ζ 6= 1) is slightly more

involved. To gain intuition on why this is so, fix the case of pricing complementarities (ζ < 1). Then,

because of the delayed response of sticky-price firms to shocks, firms with flexible prices will only react

partially to innovations to mt and ynt on impact. They will eventually react fully to the shocks, but also

with a delay.

It turns out that the “recursive identification”that applies when ζ = 1 also works in this case. The

reason is that, in equilibrium, pricing interactions manifest themselves through a dependence of the

aggregate price level on its own lags. This is how they serve as a propagation mechanism. Specifically,

18Jadresic (1999) discusses identification in a similar context. The main differences are that he considers a regression
based on a first-differenced version of the analogous equation in his model, and assumes ρ1 = 1 and that the term

corresponding to
∑K−1

j=0

∑K

k=j+1
F (β, δ1, k) ωk

k
∆ynt−j is an i.i.d. disturbance.
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the expression for the equilibrium price level becomes:

pt =
K−1∑
j=1

ajpt−j +
K−1∑
j=0

bjmt−j −
K−1∑
j=0

bjy
n
t−j , (13)

where a1, ..., aK−1, b0, ..., bK−1 are functions of the model parameters. Knowledge of the coeffi cients

on the lags of the aggregate price level and on lagged nominal output again allows us to solve for the

sectoral weights —and for ζ.19

The intuition behind the identification result in the absence of pricing interactions is clear: the

impact of older developments of the exogenous processes on the current price level depends on prices

that are sticky enough to have been set when the shocks hit. This provides information on the share of

the sector with that given duration of price spells (and sectors with longer durations). More generally,

in the presence of pricing interactions, fully forward-looking pricing decisions may also reflect past

developments of the exogenous processes. This dependence manifests itself through lags of the aggregate

price level. The intuition behind the mechanism that allows for identification extends in a natural way:

sectors where prices are more sticky are relatively more important in determining the impact of older

shocks to the exogenous processes on the current price level, and vice-versa for sectors where prices are

more flexible. Moreover, the relative sizes of the coeffi cients on past prices and past nominal output in

(13) pin down the index of real rigidities ζ.

These results on identification are of little practical use to us if the mechanism highlighted above does

not work well in finite samples. To analyze this issue we rely on a Monte Carlo exercise. We generate

artificial data on aggregate nominal and real output using parameter values that roughly resemble what

we find when we estimate the model with actual data. Then, we estimate the parameters of the model

by maximum likelihood. We conduct both a large- and a small-sample exercise. Details and results are

reported in the Appendix.

The bottom line is that, for large samples, the estimates are quite close to the true parameter values,

and fall within a relatively narrow range. For samples of the same size as our actual sample, we also

find the aggregate data to be informative of the distribution of sectoral weights. However, in this case

the estimates are less precise and somewhat biased. This finding underscores our case for incorporating

prior information from the microeconomic evidence on price-setting, as we do in Section 4.3.

19 In the Appendix we illustrate how the process works in a two-sector model.
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3 Empirical methodology and data

With the challenges involved in bridging the gap between price-setting statistics based on micro data

and time series of aggregate nominal and real output, the choice of empirical methodology is critical.

We employ a Bayesian approach, as this allows us to integrate those two sources of information.

With some abuse of notation, the Bayesian principle can be shortly stated as:

f (θ|Z∗) = f (Z∗|θ) f (θ) /f (Z∗) ∝ L (θ|Z∗) f (θ) ,

where f denotes density functions, Z∗ is the vector of observed time series, θ is the vector of primitive

parameters, and L (θ|Z∗) is the likelihood function.

As observables, we use time series of aggregate nominal and real output. For constructing our prior

distribution over the vector of sectoral weights, f (ω1, ..., ωK), we derive empirical distributions from Bils

and Klenow (2004) and Nakamura and Steinsson (2008), as discussed in detail in Subsection 3.1 below.

In the next subsections we detail our prior distributions, sources of data, and estimation approach.

3.1 Prior over ω

We specify priors over the set of sectoral weights ω = (ω1, ..., ωK), which are then combined with the

priors on the remaining parameters to produce the joint prior distribution for the set of all parameters

of interest. We impose the combined restrictions of non-negativity and summation to unity of the

ω’s through a Dirichlet distribution, which is a multivariate generalization of the beta distribution.

Notationally, ω ∼ D (α1, ..., αK) with density function:

fω (ω|α1, ..., αK) ∝
K∏
k=1

ωαk−1
k , ∀αk > 0, ∀ωk ≥ 0,

K∑
k=1

ωk = 1.

The Dirichlet distribution is well known in Bayesian econometrics as the conjugate prior for the multino-

mial distribution, and the hyperparameters α1, ..., αK are most easily understood in this context, where

they can be interpreted as the “number of occurrences” for each of the K possible outcomes that the

econometrician assigns to the prior information.20 Thus, for given α1, ..., αK , the parameter α0 ≡
∑

k αk

captures, in some sense, the overall level of information in the prior distribution. The information about

the cross-sectional distribution of price stickiness comes from the relative sizes of the αk’s. The latter

also determine the marginal distributions for the ωk’s. For example, the expected value of ωk is simply

20Gelman et al. (2003) offers a good introduction to the use of Dirichlet distribution as a prior distribution for the
multinomial model.
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αk/α0, whereas its mode equals (α0 −K)−1 (αk − 1) (provided that αi > 1 for all i).

Whenever we want to estimate a cross-sectional distribution of price rigidity based solely on aggregate

data, we can impose an uninformative (“flat”) prior, in which all ω vectors in the K-dimensional unit

simplex are assigned equal prior density. This corresponds to αk = 1 for all k —and thus α0 = K.

This allows us to extract the information that the aggregate data contain about the cross-sectional

distribution of price stickiness.

To incorporate microeconomic information in the estimation, we relate the relative sizes of the

hyperparameters (α1, ..., αK) to the empirical sectoral weights derived from the micro data, and choose

the value α0 > K to determine the tightness of the prior distribution around the empirical distribution.

Specifically, let ω̂ denote the set of sectoral weights from a given empirical distribution. We specify

the relative sizes of the hyperparameters (α1, ..., αK) so that the mode of the prior distribution for ω

coincides with the empirical sectoral weights ω̂. This requires setting αk = 1 + ω̂k (α0 −K). The case

of flat priors analyzed previously obtains when α0 = K. Henceforth, we refer to α0/K as the degree of

“prior informativeness”.

3.2 Priors on remaining parameters

The remaining parameters of the model fall into three categories that we deal with in turn. Our goal

in specifying their prior distributions is to avoid imposing any meaningful penalties on most parameter

values — except for those that really seem extreme on an a priori basis. The first set comprises the

ρ’s and δ’s, parameterizing the exogenous AR processes for nominal and natural output, respectively.

These are assigned loose Gaussian priors with mean zero. We choose to fix the lag length at two for

both processes, i.e. p1 = p2 = 2.21 The second set of parameters consists of the standard deviations

of the shocks to nominal (σm) and natural output (σn). These are strictly positive parameters to

which we assign loose Gamma priors. The last parameter is the Ball-Romer index of real rigidity, ζ,

which should also be non-negative. This is captured with a very loose Gamma prior distribution, with

mode at unity and a 5-95 percentile interval equal to (0.47, 16.9). Hence, any meaningful degree of

pricing complementarity or substitutability should be a result of the estimation rather than of our prior

assumptions. These priors are summarized in Table 1.22

21 In principle we could specify priors over p1, p2 and estimate their posterior distributions as well. However, the
computational cost of estimating all the models in the paper is already quite high, and we restrict ourselves to this
specification with fixed number of lags. Our conclusions are robust to alternative assumptions about the number of lags
(see Section 5).

22We do not include β in the estimation, and set β = 0.99.
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Table 1: Prior distributions for remaining parameters
Parameter Distribution Mode Mean Std.dev.

ζ Gamma (1.2, 0.2) 1.00 6.00 5.48
ρj , δj N

(
0, 52

)
0.00 0.00 5.00

σn, σm Gamma (1.5, 20) 0.025 0.075 0.06

Note: The hyper-parameters for the Gamma distribution specify
shape and inverse scale, respectively, as in Gelman et al. (2003).

3.3 Macroeconomic time series

We estimate the model using quarterly data on nominal and real output for the U.S. economy. These are

measured as seasonally-adjusted GDP at, respectively, current and constant prices, from the Bureau of

Economic Analysis. We take natural logarithms and remove a linear trend from the data. Whereas the

assumptions underlying the model include one of an unchanged economic environment, the U.S. economy

has undergone profound changes in the recent decades, including the so-called “Great Moderation”and

the Volcker Disinflation. As a consequence, we choose not to confront the model with the full sample of

post-war data. We use the period from 1979 to 1982 as a pre-sample, and evaluate the model according

to its ability to match business cycle developments in nominal and real output in the period 1983-2007.23

3.4 Empirical distributions of price stickiness

We work with the statistics on the frequency of price changes for the 350 categories of goods and services

(“entry level items”) reported by Bils and Klenow (2004, henceforth BK), and with the 272 entry level

items covered by Nakamura and Steinsson (2008, henceforth NS). In the latter case we use the statistics

for regular prices (those excluding sales and product substitutions). We refer to the corresponding

empirical distributions of price rigidity as distributions with (BK) and without (NS) sales.

Our goal is to map those statistics into an empirical distribution of sectoral weights over spells of

price rigidity with different durations. We work at a quarterly frequency, and for computational reasons

consider economies with at most 8 quarters of price stickiness. Sectors correspond to price spells which

are multiples of one quarter. We denote an empirical cross-sectional distribution of price rigidity by

{ω̂k}8k=1, where ω̂1 denotes the fraction of firms that change prices every quarter, ω̂2 the fraction with an

expected duration of price spells between one (exclusive) and two quarters (inclusive), and so on. The

sectoral weights are aggregated accordingly by adding up the corresponding CPI expenditure weights.

We proceed in this fashion until the sector with 7-quarter price spells. Finally, we aggregate all the

23We make use of the pre-sample 1979-1982 by initializing the Kalman filter in the estimation stage with the estimate of
Zt and corresponding covariance matrix obtained from running a Kalman filter in the pre-sample. We use the parameter
values in each draw. For the initial condition for the pre-sample, we use the unconditional mean and a large variance-
covariance matrix.
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remaining categories, which have mean durations of price rigidity of 8 quarters and beyond, into a sector

with 2-year price spells. This gives rise to the empirical cross-sectional distributions of price stickiness

that we use in our estimation, which are summarized in Table 2. We denote the sectoral weight for

sector k obtained from this procedure by ω̂k. For each of the BK and NS distributions, we also compute

the average duration of price spells, k̂ =
∑8

k=1 ω̂kk, and the cross-sectional standard deviation of the

underlying distribution, σ̂k=

√∑8
k=1 ω̂k

(
k − k̂

)2
.

Table 2: Empirical cross-sectional distributions of price stickiness

Parameter With sales (BK) Without sales (NS)
ω̂1 0.395 0.273
ω̂2 0.240 0.071
ω̂3 0.116 0.098
ω̂4 0.118 0.110
ω̂5 0.037 0.060
ω̂6 0.033 0.129
ω̂7 0.030 0.061
ω̂8 0.032 0.198

k̂
(∗)

2.54 4.23

σ̂
(∗)
k 1.86 2.66

(*) In quarters.
∑
ω̂k might differ from unity due to rounding.

3.5 Simulating the posterior distribution

The joint posterior distribution of the model parameters is obtained through application of a Markov-

chain Monte Carlo (MCMC) Metropolis algorithm. The algorithm produces a simulation sample of the

parameters that converges to the joint posterior distribution under certain conditions.24 We provide

details of our specific estimation process in the Appendix. The outcome is a sample of one million

draws from the joint posterior distribution of the parameters of interest, based on which we draw the

conclusions that we start to report in the next section.

Having obtained a sample of the posterior distribution of parameters from any given model, we can

estimate the marginal posterior density (henceforth mpd) of the data given the model as:

mpdj = f (Z∗|Mj) =

∫
L (θ|Z∗,Mj) f (θ|Mj) dθ, (14)

and use it for model-comparison purposes. In (14), Mj refers to a specific configuration of the model

and prior distribution, and f (θ|Mj) denotes the corresponding joint prior distribution. Specifically,

24These conditions are discussed in Gelman et al. (2003, part III).
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we approximate log(mpdj) for each model using Geweke’s (1999) modified harmonic mean. We use

these estimates to evaluate the empirical fit of the models relative to one another. The mpd ratio of

two model configurations constitutes the Bayes factor, and —when neither configuration is a priori

considered more likely —the posterior odds. It indicates how likely the two models are relative to one

another given the observed data Z∗.

4 Results

4.1 Macro-based estimates

Table 3 and Figure 1 report the results for the case of uninformative priors, in terms of marginal distri-

butions for the parameters.25 The empirical distributions of price rigidity from Table 2 are reproduced

in the last columns, for ease of comparison. In what follows, we use the posterior means as the point

estimates for the sectoral weights, reported in the third column of the table.26

The cross-sectional distributions that we infer from aggregate data conform quite well with the

empirical ones. The macro-based estimates imply that approximately 28% of firms change prices every

quarter; 43% change prices at least once a year; 13% change prices once every two years. The average

duration of price spells is 13 months, and the standard deviation of the duration of price spells is

approximately 8 months. These numbers are quite close to the empirical distribution without sales and

product substitutions (last column of the table). The correlation between our macro-based estimates

and those empirical weights is 0.63. The correlation of the estimates with the empirical distribution

with sales and product substitutions is somewhat lower, at 0.43. This is a first, informal indication that

the distribution that excludes sales and product substitutions helps the model fit aggregate dynamics

better. Below we investigate this possibility by performing formal model comparisons using a standard

measure of fit.

The index of real rigidities implies strong pricing complementarities. The posterior mean of ζ is

0.05 and the 95th percentile equals 0.11, which falls within the 0.10-0.15 range that Woodford (2003)

argues can be made consistent with fully specified models. As highlighted by Carvalho (2006), such

complementarities interact with heterogeneity in price stickiness to amplify the aggregate effects of

nominal rigidities in this type of sticky-price model.

25We use a Gaussian kernel density estimator to graph the marginal posterior density for each parameter. The priors
on k̄ and σk are based on 100,000 draws from the prior Dirichlet distribution.

26The results are almost insensitive to using alternative point estimates, such as the values at the joint posterior mode,
or taking medians or modes from the marginal ditributions and renormalizing so that the weights sum to unity.
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Table 3: Parameter estimates under a flat prior
αk = 1 for all k (α0 = 8) Empirical distributions

With sales W/o sales
ζ 4.440

(0.466;16.863)
0.042

(0.015;0.111)
0.050 − −

ω1 0.094
(0.007;0.348)

0.264
(0.099;0.493)

0.276 0.395 0.273

ω2 0.094
(0.007;0.348)

0.072
(0.007;0.212)

0.086 0.240 0.071

ω3 0.094
(0.007;0.348)

0.020
(0.002;0.078)

0.027 0.116 0.098

ω4 0.094
(0.007;0.348)

0.027
(0.002;0.107)

0.037 0.118 0.110

ω5 0.094
(0.007;0.348)

0.144
(0.017;0.337)

0.156 0.037 0.059

ω6 0.094
(0.007;0.348)

0.123
(0.011;0.345)

0.144 0.033 0.129

ω7 0.094
(0.007;0.348)

0.120
(0.010;0.353)

0.143 0.030 0.061

ω8 0.094
(0.007;0.348)

0.112
(0.010;0.323)

0.132 0.032 0.198

k̄ 4.501
(3.245;5.760)

4.394
(3.214;5.462)

4.37 2.54 4.25

σk 2.139
(1.584;2.678)

2.523
(2.112;2.893)

2.62 1.86 2.66

ρ0 0.000
(−8.224;8.224)

0.000
(−0.001;0.001)

0.000 − −

ρ1 0.000
(−8.224;8.224)

1.426
(1.273;1.576)

1.426 − −

ρ2 0.000
(−8.224;8.224)

−0.446
(−0.593;−0.296)

−0.446 − −

σm 0.059
(0.009;0.195)

0.005
(0.005;0.006)

0.005 − −

δ0 0.000
(−8.224;8.224)

0.002
(−0.002;0.007)

0.003 − −

δ1 0.000
(−8.224;8.224)

0.541
(0.270;0.763)

0.532 − −

δ2 0.000
(−8.224;8.224)

0.146
(−0.027;0.331)

0.149 − −

σn 0.059
(0.009;0.195)

0.069
(0.030;0.172)

0.081 − −

Note: The first two columns report the medians of, respectively, the marginal prior
and posterior distributions; the third column gives the mean of the marginal posterior
distribution; numbers in parentheses correspond to the 5th and 95th percentiles; the
last columns reproduce the empirical distributions from Table 2.
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4.2 Comparison with homogeneous-firms models

In this subsection we ask how sharply the data allow us to discriminate between multi-sector models

with heterogeneity in price stickiness and one-sector models with homogeneous firms. To that end, we

estimate one-sector models with price spells ranging from two to eight quarters. We keep the same

prior distributions for all parameters besides the sectoral weights. A one-sector model with price spells

of length k, say, can be seen as a restriction of the multi-sector model, with a degenerate distribution

of sectoral weights (ωk = 1, ωk′ = 0 for all k′ 6= k).

We pick the best-fitting one-sector model according to the marginal density of the data given the

models. The results are reported in Table 4 and Figure 2. The best-fitting model is the one in which

all price spells last for 7 quarters. This seems unreasonable in light of the microeconomic evidence.

Given the extent of nominal rigidity, not surprisingly the degree of pricing complementarity is smaller.

The posterior distributions for the parameters of the nominal output process are quite similar to the

ones obtained in the multi-sector models. Perhaps this should be expected given that this variable

is one of the observables used in the estimation. In contrast, the distributions of the parameters of

the unobserved driving process are different under the restriction of homogeneous firms. We defer a

discussion of what might drive this result to the end of this subsection.

Table 4: Best-fitting homogeneous economy
Prior K = 7, ω7 = 1

ζ 4.440
(0.466;16.863)

0.362
(0.193;0.830)

0.419

ρ0 0.000
(−8.224;8.224)

0.000
(−0.001;0.001)

0.000

ρ1 0.000
(−8.224;8.224)

1.430
(1.284;1.568)

1.428

ρ2 0.000
(−8.224;8.224)

−0.454
(−0.590;−0.310)

−0.452

σm 0.059
(0.009;0.195)

0.005
(0.005;0.006)

0.005

δ0 0.000
(−8.224;8.224)

0.003
(−0.003;0.011)

0.004

δ1 0.000
(−8.224;8.224)

0.064
(−0.154;0.319)

0.071

δ2 0.000
(−8.224;8.224)

0.135
(−0.027;0.327)

0.141

σn 0.059
(0.009;0.195)

0.216
(0.087;0.421)

0.230

Note: The first two columns report the medians of,
respectively, the marginal prior and posterior distri-
butions; the third column gives the mean of the mar-
ginal posterior distribution; numbers in parentheses
correspond to the 5th and 95th percentiles.

The multi-sector model with K = 8 nests the best-fitting homogeneous-firms model. Thus, under

measures of fit that do not “correct” for the number of parameters, the former model will necessarily

perform at least as well as the latter model. To circumvent that problem we base our comparison on

the marginal posterior density of the data given the models, which already accounts for the fact that
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the multi-sector model has more parameters than the homogeneous-firms model.27

Table 5 reports the results for the multi-sector model with the flat prior for ω, and the best-fitting

one-sector model. The fit of the multi-sector model is much better than that of the best-fitting one-sector

model: the posterior odds in favor of the former model is of the order of 1011 : 1.

Table 5: Model comparison - heterogeneous versus homogeneous economy
Multi-sector
model

Best-fitting
1-sector model

log mpd 808.03 781.33

Note: The logarithm of the marginal posterior den-
sity of the data given the models (log mpd) is ap-
proximated with Geweke’s (1999) modified harmonic
mean.

Our model-comparison criterion has the disadvantage that it does not provide any information on

what drives the improved empirical fit of the multi-sector model. To shed some light on this question

we compare model-implied dynamics for inflation and output to those of a restricted bivariate VAR

including nominal and real output. In estimating the VAR we impose the same assumption used in

the models, that nominal output is exogenous and follows an AR(2) process. We allow real output

to depend on four lags of both itself and nominal output, and to be contemporaneously affected by

innovations to nominal output. Estimation is by ordinary least squares. The multi-sector model is

the one estimated under flat priors for ω, while the one-sector model is the one with the best fit. The

parameter values are fixed at their posterior means. Since the impulse response functions are conditional

on specific parameter values, the comparison does not correct for the larger number of parameters in

the multi-sector model. Thus, it is only meant to provide some indication of the sources of the large

differences in the posterior odds of the models.

The panel in Figure 3 shows the impulse response functions of output (yt, left column) and inflation

(πt, right column) to positive innovations εmt (top row) and ε
n
t (bottom row) of one standard deviation

in size.28 Relative to the one-sector model, the estimated multi-sector model does a better job at

approximating the impulse response functions produced by the VAR at both short and medium horizons,

in response to both shocks. Thus the overwhelming statistical support for heterogeneity does not seem

to depend on any single feature of the dynamic response of macroeconomic variables to the shocks.

Finally, these results suggest one explanation for why the estimated parameters associated with the

unobserved driving process are different in the one-sector economy. While the multi-sector model can

rely on the distribution of sectoral weights to balance the response of the economy to shocks at different
27The reason is that the vector of parameters is “integrated out” in (14).
28Following the notation of the semi-structural model, in the VAR εmt denotes innovations to nominal output, and εnt

denotes the other (orthogonal) innovations.
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horizons, the one-sector model lacks this mechanism. Given the facts that nominal output is observed

and that its parameter estimates imply quite persistent dynamics in both economies, perhaps the one-

sector economy needs to rely on the unobserved process as a more transient and volatile component

that can help it do a better job at matching higher-frequency features of the data.

4.3 Combining micro and macro data in the estimation

We now turn to estimations that incorporate information from price-setting statistics derived from

micro data. Table 6 and Figures 4-7 present the results for two sets of informative priors (α0/K = 2,

5) for each empirical distribution. The bottom row of Table 6 reports the log of the posterior marginal

density of the various models. For the less informative set of priors (α0/K = 2) the two empirical

distributions that inform the prior lead to models that perform similarly in terms of fit —and close to

the model estimated under a flat prior. However, for the more informative set of priors (α0/K = 5),

the model with prior based on the empirical distribution of price rigidity without sales fits the data

better according to the posterior marginal density criterion —the difference of 4.4 log-points implies a

posterior odds ratio of roughly 80 : 1 in favor of the model with prior distribution that excludes sales

and product substitutions.

We can use such a comparison of posterior marginal densities of various estimated models for assess-

ing the relative merits of the two sets of priors for the purpose of helping the model explain aggregate

dynamics. To that end, we estimate a series of additional models with informative priors based on

the two empirical distributions of price rigidity (with and without sales), progressively increasing the

degree of prior informativeness (i.e., increasing α0/K). Specifically, we estimate additional models

with α0/K = 10, 20, 100, and 1000. In addition, we estimate models in which the distribution of price

stickiness that forms the prior has equal weights in all sectors (“uniform prior”). We summarize the

results in Figure 8. It shows clearly that the difference between the fit of estimated models increases

as the priors become more informative. While the difference in fit between the models based on the

prior distribution without sales and the uniform prior is not that large (it tends to approximately 3

log-points for very informative priors), the difference between models based on prior distributions with

and without sales is more substantial. As the degree of prior informativeness increases, that difference

approaches 6 log-points —which translates into a posterior odds ratio of roughly 400 : 1 in favor of the

model with prior distribution that excludes sales and product substitutions.29

29Figure 8 also shows that, as we tighten the priors on the sectoral weights, the fit of models estimated under priors
with sales (BK) and priors with a uniform distribution deteriorates. In turn, the fit of models estimated under priors that
exclude sales remains essentially unchanged. This is consistent with our previous finding that sectoral weights estimated
under flat priors are somewhat similar to the empirical distribution without sales.
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Table 6: Parameter estimates with informative priors
Inform. prior, α0/K = 2 Inform. prior, α0/K = 5 Flat prior Empirical distributions
With sales W/o sales With sales W/o sales With sales W/o sales

ζ 0.032
(0.01;0.08)

0.042
(0.02;0.11)

0.018
(0.01;0.05)

0.041
(0.02;0.10)

0.042
(0.02;0.11)

− −

ω1 0.324
(0.17;0.51)

0.277
(0.14;0.45)

0.425
(0.31;0.55)

0.309
(0.21;0.43)

0.264
(0.099;0.49)

0.395 0.273

ω2 0.123
(0.04;0.24)

0.069
(0.01;0.18)

0.190
(0.11;0.29)

0.059
(0.02;0.13)

0.072
(0.01;0.212)

0.240 0.071

ω3 0.035
(0.01;0.09)

0.033
(0.01;0.09)

0.059
(0.02;0.11)

0.051
(0.02;0.10)

0.020
(0.00;0.08)

0.116 0.098

ω4 0.049
(0.01;0.13)

0.047
(0.01;0.12)

0.081
(0.03;0.15)

0.072
(0.03;0.14)

0.027
(0.00;0.11)

0.118 0.110

ω5 0.106
(0.02;0.26)

0.109
(0.02;0.26)

0.056
(0.01;0.15)

0.066
(0.02;0.15)

0.144
(0.01;0.34)

0.037 0.059

ω6 0.100
(0.01;0.27)

0.142
(0.04;0.31)

0.052
(0.01;0.15)

0.144
(0.07;0.25)

0.123
(0.01;0.35)

0.033 0.129

ω7 0.090
(0.01;0.25)

0.086
(0.01;0.24)

0.042
(0.00;0.13)

0.058
(0.02;0.14)

0.120
(0.01;0.35)

0.030 0.061

ω8 0.088
(0.01;0.24)

0.160
(0.05;0.32)

0.044
(0.01;0.13)

0.200
(0.11;0.31)

0.112
(0.01;0.32)

0.032 0.198

k̄ 3.776
(2.91;4.69)

4.367
(3.45;5.25)

2.811
(2.31;3.40)

4.262
(3.60;4.91)

4.394
(3.21;5.46)

2.54 4.25

σk 2.515
(2.17;2.85)

2.612
(2.28;2.91)

2.184
(1.81;2.56)

2.725
(2.50;2.93)

2.523
(2.11;2.89)

1.86 2.66

ρ0 0.000
(−0.00;0.00)

0.000
(−0.00;0.00)

0.000
(−0.00;0.00)

0.000
(−0.00;0.00)

0.000
(−0.00;0.00)

− −

ρ1 1.425
(1.27;1.57)

1.427
(1.27;1.58)

1.424
(1.27;1.57)

1.429
(1.28;1.58)

1.426
(1.27;1.58)

− −

ρ2 −0.445
(−0.59;−0.30)

−0.447
(−0.59;−0.30)

−0.444
(−0.59;−0.29)

−0.449
(−0.60;−0.30)

−0.446
(−0.59;−0.30)

− −

σm 0.005
(0.00;0.01)

0.005
(0.00;0.01)

0.005
(0.00;0.01)

0.005
(0.00;0.01)

0.005
(0.00;0.01)

− −

δ0 0.002
(−0.00;0.01)

0.002
(−0.00;0.01)

0.002
(−0.00;0.01)

0.002
(−0.00;0.01)

0.002
(−0.00;0.01)

− −

δ1 0.514
(0.30;0.72)

0.545
(0.32;0.75)

0.465
(0.28;0.65)

0.563
(0.38;0.75)

0.541
(0.27;0.76)

− −

δ2 0.176
(0.01;0.34)

0.151
(−0.01;0.32)

0.201
(0.06;0.34)

0.146
(−0.01;0.30)

0.146
(−0.03;0.33)

− −

σn 0.068
(0.03;0.16)

0.066
(0.03;0.16)

0.072
(0.03;0.17)

0.062
(0.03;0.15)

0.069
(0.03;0.17)

− −

log mpd 807.56 808.27 803.768 808.16 808.03

Note: The first four columns report the posterior medians under informative priors, and the fifth column
reproduces the posterior medians under a flat prior from Table 3; numbers in parentheses correspond to
the 5th and 95th percentiles; the last two columns reproduce the empirical distributions from Table 2.
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5 Robustness

Our findings are robust to different prior assumptions for the parameters ρi, δi, σm, σn and ζ, as well as

different de-trending procedures and specifications for the exogenous time-series processes. In particular,

they are robust to using a Baxter and King (1999) filter or first-differences instead of removing linear

trends from the data, and to assuming AR(3) exogenous processes (i.e., p1 = p2 = 3). Also, unreported

results with models with K < 8 suggest that one needs to allow for “enough”heterogeneity in order

to avoid compromising the empirical performance of the model. In particular, the fit of models with

K = 4 (as in Coenen et al. 2007) is much worse than models with K = 6 or 8. While the differences in

empirical performance between models with K = 6 and K = 8 are not that large, the evidence against

the specifications with K = 4 is quite strong: posterior odds ratios favor the models with K = 6, 8 by

an order of 105 : 1.

In the sections below we discuss the robustness of our findings to alternative models of price setting.

In particular, we consider the Calvo (1983) model, and discuss a new model of price setting that produces

the exact same results as our model, and yet can speak to a much larger set of empirical facts about

price setting derived from micro data.

5.1 Results under the Calvo (1983) model

We also considered versions of the model with Calvo (1983) pricing. Mimicking our baseline analysis,

the first step is to show that the model allows for identification of the cross-sectional distribution of

price rigidity from aggregate data, and, given that result, that it also allows for separate identification of

nominal and real rigidities. Indeed, all identification results go through, and the intuition is very similar

to the one in the Taylor model. In the Appendix we provide a thorough proof of identification, including

the case with strategic interactions in price-setting decisions (i.e., index of real rigidities ζ 6= 1).

However, under Calvo pricing, not all of our conclusions are equally robust when it comes to relatively

small samples. The reason is that, in the context of our semi-structural framework, identification of

heterogeneity in price stickiness under Calvo pricing is “more diffi cult” than under Taylor pricing.

Building on Monte Carlo analysis and analytical insights from simple versions of these two pricing

models, we found that clear-cut identification of the distribution of price stickiness depends on whether

the observable driving process has high variance relative to the unobservable process.

While this “restriction” applies to both price-setting specifications, the identification problem is

more acute under Calvo pricing. Based on Monte Carlo analysis, we found that with our sample size

and the relative variances for the two exogenous processes implied by our point estimates, the likelihood

25



criterion fails to provide a sharp discrimination between alternative (non-degenerate) distributions of

price stickiness under Calvo pricing. This mirrors what we find in the data: under Calvo pricing, they

do not allow too sharp a discrimination between different models with heterogeneity in price stickiness.

In contrast, given the same sample size and relative variances for those two processes, the version of

the model with Taylor pricing provides more information about the underlying distribution of price

stickiness —as seen in previous sections.

However, despite that diffi culty, our main findings do hold under the Calvo pricing model — at

least qualitatively. First, on the comparison between models with heterogeneity in price stickiness and

models with homogeneous firms, the estimated models provide clear evidence in favor of the former.

Specifically, we find that a likelihood-ratio test of the homogeneous Calvo model against multi-sector

versions of the model leads to rejection of the former at significance levels of less than 1%.30 Second,

all estimated models feature ζ < 1, implying strategic complementarities in price setting. Finally,

estimations under informative priors derived from the empirical distributions of price stickiness (as

described in Section 3) also provide (qualitative) evidence in favor of the distribution that excludes

sales and product substitutions.31

5.2 An alternative model

As we mentioned in Section 2, the Taylor model is, strictly speaking, at odds with the microeconomic

evidence on the duration of price spells (e.g., Klenow and Kryvtsov 2008). This inconsistency may be

viewed as a weakness of the Taylor model relative to alternatives —in particular the Calvo model, which

naturally produces a non-degenerate distribution of the duration of price spells at the firm level.

However, this evidence does not invalidate the use of that model for our purposes. To show that

this is the case, here we provide an alternative model in which the duration of price spells varies at

the firm level. The model can match the empirical distribution of the duration of price spells. Yet,

the aggregate behavior of the model is identical to the one presented in Section 2. Furthermore, this

alternative model can match additional micro facts documented in the literature —in a similar fashion

as the Calvo (1983) model.

There is a continuum of monopolistically competitive firms divided into N “economic”sectors (i.e.,

30Real and nominal rigidities are not separately identified in our Calvo model with homogeneous price stickiness. As
a result, comparisons based on the log posterior marginal density are sensitive to the prior on the index of real rigidities
(even though we use a very uninformative prior). Hence, in this case we find it more appropriate to use a criterion based
only on the likelihood.

31That is, the log posterior density of the data given the model is always higher under informative priors based on the
distribution that excludes sales. However, the difference is smaller than in the model with Taylor pricing —about 1.5 log
points —and does not decay as noticeably when we increase the degree of prior informativeness within the same range as
we did for the Taylor model.
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not necessarily identified by price stickiness). Sectors are indexed by n ∈ {1, ..., N}. The distribution of

firms across sectors is summarized by a vector (ϕ1, ..., ϕN ) with ϕn > 0,
∑N

n=1 ϕn = 1, where ϕn gives

the mass of firms in sector n. Each sector has a (sector-specific) stationary cross-sectional distribution

of price stickiness. Before setting its price, a firm j in economic sector n makes a draw for the duration

of its next price spell, and then sets its price optimally. Notice that the price will be chosen according

to the same policy as in the Taylor model (i.e., the optimal price for a spell that will last for a known

duration). This implies that, at a given time, firms within a given sector can be further divided into

different “groups”depending on the duration of price spells that they draw.

The (also stationary) cross-sectional distribution of price stickiness for the entire economy can

be constructed by aggregating across sectors. It is summarized by a vector (ω1, ..., ωK) with ωk ≡∑N
n=1 ϕnωn,k ∈ (0, 1). It is easy to show that

∑K
k=1 ωk = 1:

∑K

k=1

∑N

n=1
ϕnωn,k =

∑N

n=1

∑K

k=1
ϕnωn,k =

∑N

n=1
ϕn
∑K

k=1
ωn,k = 1.

The exact details of how each firm draws the duration for the new price spell —that is, how firms

move around different “stickiness groups”within a sector —is inconsequential for the aggregate dynamics

implied by this model. What matters is our assumption that the cross-sectional distribution of price

stickiness of each sector is stationary (i.e. ωn,k is time-invariant), which guarantees the stationarity

of the economy-wide distribution of price stickiness. In the Appendix we provide an example with a

flexible scheme for drawing durations within each sector, which allows for persistence in the duration

of price spells at the firm level.

We can write the log-linear approximate model implied by this “Random Taylor” price-setting

scheme as:

xt (k) =
1− β
1− βk

Et

k−1∑
i=0

βi
(
pt+i + ζ

(
yt+i − ynt+i

))
,

pt =

N∑
n=1

ϕnpt (n) ,

pt(n) =

K∑
k=1

ωn,kpt (n, k) ,

pt (n, k) =

∫ 1

0
pt (n, k, j) dj =

1

k

k−1∑
j=0

xt−j (k) .
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Note that pt (n, k) does not depend on n. Thus, we can rewrite the aggregate price index as:

pt =
N∑
n=1

ϕnpt (n) =
N∑
n=1

ϕn

K∑
k=1

ωn,kpt (n, k) =
N∑
n=1

ϕn

K∑
k=1

ωn,k
1

k

k−1∑
j=0

xt−j (k)

=
K∑
k=1

N∑
n=1

ϕnωn,k︸ ︷︷ ︸
=ωk

1

k

k−1∑
j=0

xt−j (k) =
K∑
k=1

ωkp̃t(k),

where

p̃t(k) ≡ pt (n, k) =
1

k

k−1∑
j=0

xt−j (k) .

That is, despite time-variation in the duration of price spells at the firm level, the Random Taylor

model implies the exact same aggregate dynamics as our multi-sector Taylor pricing model. Moreover,

it is easy to augment the model with other features that leave aggregate dynamics intact, and yet allow

it to match additional micro facts.32

Hence, this alternative model provides a cautionary note on attempts to test specific models of price

setting by confronting them with descriptive price-setting statistics (e.g., Klenow and Kryvtsov 2008).

6 Conclusion

If prices change frequently and each and every price change contributes to fully offset nominal dis-

turbances, then nominal price rigidity cannot be the source of large and persistent monetary non-

neutralities. Hence, bridging the micro-macro gap on the extent of price rigidity requires that price

adjustments somehow fail to perfectly neutralize monetary innovations (i.e., require a large contract

multiplier).

In this paper we use a standard sticky-price model to provide some evidence on three mechanisms

that can provide such a boost to the contract multiplier. The model allows for varying degrees of real

rigidities, and cross-sectional heterogeneity in price stickiness. It can extract some information about

these two features of the economy from aggregate data, and discriminate between different distributions

of price stickiness. Hence the model can also speak to the debate about the role of sales and other

temporary price changes in shaping aggregate dynamics in monetary economies. We employ a Bayesian

approach and combine macroeconomic time-series data with information about empirical distributions

of price stickiness (with and without sales) derived from micro price data for the U.S. economy.

32For brevity we do not present details of the argument here, and refer the interested reader to Carvalho and Dam
(2010).
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We find that the estimated models can discriminate quite sharply between economies with hetero-

geneity in price stickiness and their homogeneous-firms counterparts. They also point to the existence of

large real rigidities, which induce strong strategic complementarities in price setting. Finally, in terms

of the cross-sectional distribution of price rigidity, we find that the distribution based on regular prices

helps the model fit the data better. Altogether, our results suggest that all three mechanisms that can

boost the so-called contract multiplier might have a role to play in our understanding of the effects of

monetary policy.

The experience with our semi-structural model suggests that combining microeconomic and macro-

economic data within a Bayesian framework can help us integrate our views on nominal price rigidity

at the micro and macro levels. We find the results suffi ciently compelling to warrant additional re-

search —perhaps in the context of fully specified DSGE models, where one may draw different policy

implications.

Finally, as a by-product, we develop a price-setting model that produces the same aggregate dynam-

ics as our multi-sector model with Taylor pricing and, yet, can match various empirical facts on price

setting —including the evidence of variation in the duration of price spells at the quote-line level. Hence

the model provides a cautionary note on attempts to test specific models of price setting by confronting

them with descriptive price-setting statistics (e.g., Klenow and Kryvtsov 2008).
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Appendix

A Identification

A.1 When ζ 6= 1

When ζ 6= 1 equation (12) becomes:

pt =

K−1∑
j=1

ajpt−j +

K−1∑
j=0

bjmt−j −
K−1∑
j=0

bjy
n
t−j ,

where a1, ..., aK−1, b0, ..., bK−1 are functions of the model parameters. Checking for identification

amounts to solving for these coeffi cients, and showing that ω1, ...,ωK , and ζ can be recovered from

them.

Here we illustrate how the process works in a model with K = 2. Using the method of undetermined

coeffi cients we can show that a1, b0, b1 satisfy:

a1 =

ω2
2

1−β
1−β2 (1− ζ)

1−
((
ω1 + ω2

2
1−β
1−β2 (1 + β)

)
(1− ζ) +

(
ω2
2

1−β
1−β2β

)
(1− ζ)a1

) ,
b0 =

(
ω1 + ω2

2
1−β
1−β2 (1 + β)

)
ζ +

(
ω2
2

1−β
1−β2β

)
(ζρ+ (1− ζ)b1)

1−
((
ω1 + ω2

2
1−β
1−β2 (1 + β)

)
(1− ζ) +

(
ω2
2

1−β
1−β2β

)
(1− ζ)a1

)
−
(
ω2
2

1−β
1−β2β

)
(1− ζ)ρ

,

b1 =

ω2
2

1−β
1−β2 ζ

1−
((
ω1 + ω2

2
1−β
1−β2 (1 + β)

)
(1− ζ) +

(
ω2
2

1−β
1−β2β

)
(1− ζ)a1

) .
The first equation is quadratic in a1 and for each solution the other two equations yield b0 and b1

as a function of the model parameters. The stable solution for the first equation (|a1| ≤ 1) yields:

a1 =
(1+β) (2ζ+ (1− ζ)ω2) +

√
(1 + β)2 ((ζ − 1)ω2 − 2ζ)2 − 4β (ζ − 1)2 ω2

2

2β (1− ζ)ω2
,

b0 =
ζ (ρ− 1) (ρβ − 1)ω2

2 (1 + β) ρζ + (ζ − 1) (ρ− 1) (ρβ − 1)ω2

+
ζ (1 + β) (1 + β (1 + 2ρ (ζ − 1)))

β (ζ − 1) (2 (1 + β) ρζ + (ζ − 1) (ρ− 1) (ρβ − 1)ω2)

−ζ (1 + β)
(1 + β) 2ζ +

√
4 (1 + β)2 ζ2 − 4 (1 + β)2 (ζ − 1) ζω2 + (β − 1)2 (ζ − 1)2 ω2

2

β (ζ − 1)2 ω2 (2 (1 + β) ρζ + (ζ − 1) (ρ− 1) (ρβ − 1)ω2)
,
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b1=ζ
(1 + β) (2ζ + (1− ζ)ω2) +

√
(1 + β)2 ((ζ − 1)ω2 − 2ζ)2 − 4β (ζ − 1)2 ω2

2

2β (1− ζ)2 ω2

,

where we have used the fact that ω1 + ω2 = 1. Finally, we can the combine the expressions for a1 and

b1 to solve for ω2 and ζ:

ω2 =
2 (1 + β) b1

(1− a1) (1− βa1)
,

ζ =
b1

a1 + b1
.

A.2 Monte Carlo exercise

We generate artificial data on aggregate nominal and real output using a model with K = 4, and

parameter values that roughly resemble what we find when we estimate a model of this size on actual

U.S. data. Then, we estimate the parameters of the model by maximum likelihood.33 We conduct both

a large- (1000 observations) and a small-sample exercise (100 observations, as in our actual sample).

Table 7 reports the results.

Table 7: Monte Carlo - maximum likelihood estimation
Large sample Small sample

True Mean 5 th perc. 95 th perc. Ini. guess Mean 5 th perc. 95 th perc. Ini. guess
ζ 0.10 0.106 0.059 0.15 1.00 0.179 0.022 0.415 1.00
ω1 0.40 0.395 0.183 0.621 0.25 0.318 0.033 0.871 0.25
ω2 0.10 0.100 0.000 0.257 0.25 0.096 0.000 0.376 0.25
ω3 0.10 0.091 0.000 0.197 0.25 0.088 0.000 0.304 0.25
ω4 0.40 0.414 0.233 0.570 0.25 0.498 0.064 0.801 0.25
ρ0 0.00 0.000 0.000 0.000 0.000 0.000 −0.002 0.002 0.000
ρ1 1.43 1.432 1.388 1.468 1.429 1.403 1.256 1.547 1.538
ρ2 −0.45 −0.456 −0.499 −0.410 −0.455 −0.446 −0.579 −0.302 −0.577
σm 0.005 0.005 0.0048 0.0051 0.005 0.005 0.0043 0.0056 0.0058
δ0 0.00 0.000 −0.001 0.001 0.000 0.000 −0.004 0.004 0.000
δ1 0.35 0.336 0.091 0.513 1.066 0.231 −0.257 0.616 0.954
δ2 0.15 0.146 0.049 0.258 −0.199 0.133 −0.073 0.326 −0.076
σn 0.05 0.053 0.033 0.083 0.0067 0.105 0.020 0.311 0.0062

The first column shows the true parameter values used to generate the data. The columns under

“Large sample”report statistics across 75 artificial samples of 1000 observations each. The “Small sam-

ple”columns report statistics across 240 artificial samples of 100 observations each.34 The “Ini. guess”

column reports the average value of the initial guesses supplied for the optimization algorithm across

33We apply the same procedure that we use in the initial maximization stage of the Markov Chain Monte Carlo algorithm
that we use to estimate the models with actual data, including the choice of initial values for the optimization algorithm
(see Subsection 3.5).

34 In each replication, the sample contains an additional 16 observations that we use as a pre-sample to initialize the
Kalman filter, as we do in the actual estimation. The value of β is fixed at 0.99. The smaller number of replications for
the large-sample exercise is simply due to its much higher computational cost.
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the corresponding samples. Following the procedure that we use in the actual estimation algorithm,

the initial guesses for ζ and ω1 − ω4 are the same across replications; the guesses for the remaining

parameters in each replication are set equal to the ordinary least squares estimates based on nominal

output (for the ρ’s) and actual output (for the δ’s).

B Details of the estimation algorithm

Our specific estimation strategy is as follows. We run two numerical optimization routines sequentially

in order to maximize the posterior distribution. This determines the starting point of the Markov chain

and provides a first crude estimate of the covariance matrix for our Random-Walk Metropolis Gaussian

jumping distribution. The first optimization routine is csminwel by Chris Sims, while the second is

fminsearch from Matlab’s optimization toolbox. For the starting values, we set ζ = 1 and ωk = 1/K;

the values for the remaining parameters are set equal to the ordinary least squares estimates based on

nominal output (for the ρ’s) and actual output (for the δ’s). Following the first optimization, we run

additional rounds, starting from initial values obtained by perturbing the original initial values, and

then the estimate of the first optimization round.

Before running the Markov chains we transform all parameters to have full support on the real line.

We use the logarithmic transformation for each of (ζ, σm, σn), while ω1, ..., ωK are transformed using

a multivariate logistic function (see next subsection). Then we run a so-called adaptive phase of the

Markov chain, with three sub-phases of 100, 200, and 600 thousand iterations, respectively. At the end

of each sub-phase we discard the first half of the draws, update the estimate of the posterior mode,

and compute a sample covariance matrix to be used in the jumping distribution in the next sub-phase.

Finally, in each sub-phase we rescale the covariance matrix inherited from the previous sub-phase in

order to get a fine-tuned covariance matrix that yields rejection rates as close as possible to 0.77.35

Next we run the so-called fixed phase of the MCMC. We take the estimate of the posterior mode and

sample covariance matrix from the adaptive phase, and run 5 parallel chains of 300,000 iterations each.

Again, before making the draws that will form the sample we rescale such covariance matrix in order

to get rejection rates as close as possible to 0.77. To initialize each chain we draw from a candidate

normal distribution centered on the posterior mode estimate, with covariance matrix given by 9 times

the fine-tuned covariance matrix. We check for convergence for the latter 2/3s of the draws of all 5

chains by calculating the potential scale reduction36 (psr) factors for each parameter and inspecting the

35This is the optimal rejection rate under certain conditions. See Gelman et al. (2003, p. 306).
36For each parameter, the psr factor is the ratio of (square root of) an estimate of the marginal posterior variance to the

average variance within each chain. This factor expresses the potential reduction in the scaling of the estimated marginal
posterior variance relative to the true distribution by increasing the number of iterations in the Markov-chain algorithm.
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histograms of all marginal distributions across the parallel chains. Upon convergence, the latter 2/3s of

the draws of all 5 chains are combined to form a posterior sample of 1 million draws.

B.1 Transformation of the sectoral weights

We transform vectors ω = (ω1, ..., ωK) in the K-dimensional unit simplex into vectors v = (v1, ..., vK) in

RK using the inverse of a restricted multivariate logistic transformation. We want to be able to draw v’s

and then use a transformation that guarantees that ω = h−1 (v) is in the K-dimensional unit simplex.

For that purpose, we start with:

ωk =
evk∑K
k=1 e

vk
, k = 1, ...,K.

The transformation above guarantees the non-negativity and summation-to-unity constraints. How-

ever, without additional restrictions the mapping is not one-to-one. The reason is that all vectors v

along the same ray give rise to the same ω. Therefore, we impose the restriction v (K) = 0 and in

effect draw vectors ṽ = (v1, ..., vK−1) in RK−1. Thus, the transformation becomes ω̃ = h̃−1 (ṽ), with

ω̃ = (ω1, ..., ωK−1) and:

ωk =
evk

1 +
∑K−1

k=1 evk
, k = 1, ...,K − 1

ωK =
1

1 +
∑K−1

k=1 evk
.

If the density fω (ω|α) is that of the Dirichlet distribution with (vector) parameter α, the density of

ṽ is given by:

fṽ (ṽ|α) = |J |fω

(
ev1

1 +
∑K−1

k=1 evk
, ...,

1

1 +
∑K−1

k=1 evk
|α
)
,

where |J | is the determinant of the Jacobian matrix
[
∂h̃−1(ṽ)
∂ṽ

]
ij
given by:



∂ω1
∂v1

∂ω1
∂v2

... ∂ω1
∂vK−1

∂ω2
∂v1

∂ω2
∂v2

... ∂ω2
∂vK−1

...
...

. . .
...

∂ωK−1
∂v1

∂ωK−1
∂v2

...
∂ωK−1
∂vK−1

 ,

with:

Hence, as the psr factor approaches unity, it is a sign of convergence of the Markov-chain for the estimated parameter.
See Gelman et al. (2003, p. 294 ff) for more information. For all specifications we require that the factor be below 1.01
for all parameters.
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∂ωk
∂vk

=
evk
(

1 +
∑K−1

k=1 evk
)
− evkevk(

1 +
∑K−1

k=1 evk
)2

=
evk

1 +
∑K−1

k=1 evk
− evkevk(

1 +
∑K−1

k=1 evk
)2 .

So:

J = −


ev1

1+
∑K−1
k=1 evk

...

evK−1

1+
∑K−1
k=1 evk


[

ev1

1 +
∑K−1

k=1 evk
, ...,

evK−1

1 +
∑K−1

k=1 evk

]
+



ev1

1+
∑K−1
k=1 evk

0 ... 0

0
. . . 0

...
... 0

. . . 0

0 ... 0 evK−1

1+
∑K−1
k=1 evk


.

To recover the vk’s from ω simply set:

vk = log (ωk)− log (ωK) .

C Identification in a multi-sector Calvo (1983) model

Under the Calvo (1983) model, the optimal reset price equation becomes:

xt (k) = (1− βλk)Et
∞∑
i=0

(λkβ)i
(
pt+i + ζ

(
yt+i − ynt+i

))
, (15)

and sectoral price equations become:

pt (k) =

∫ 1

0
pt (k, j) dj = (1− βλk)

∞∑
i=0

λikxt−i (k) ,

where 1− λk is the frequency of price changes in sector k. The remaining equations of the model are:

pt =
K∑
k=1

ωkpt (k) ,

and, for simplicity, AR(1) processes for mt and ynt :

pt + yt = mt = ρ1mt−1 + σmε̃
m
t
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ynt = δ1y
n
t−1 + σnε̃

n
t .

The optimal reset price can also be written as:

xt (k) = (1− λkβ)Et

∞∑
i=0

(λkβ)i
(
ζ
(
mt+i − ynt+i

)
+ (1− ζ) pt+i

)
.

The equilibrium price level can be generally expressed as a weighted sum of the current and past

exogenous variables:

pt =
∞∑
j=0

bjmt−j +
∞∑
j=0

cjy
n
t−j ,

where {bj , cj}j=1,...,∞ are functions of the model parameters. If we observe mt and yt —and thus pt

— the coeffi cients on mt−j can be estimated. Thus, checking for identification of the cross-sectional

distribution amounts to asking if knowledge of the coeffi cients on lagged nominal output, {bj}, allows

us to pin down the sectoral weights ω —and ζ.37

We start with the case of strategic neutrality in price setting (ζ = 1). Then, new prices are set

according to:

xt (k) =

(
1− λkβ

1− ρ1λkβ

)
mt −

(
1− λkβ

1− δ1λkβ

)
ynt .

Replacing this expression for newly set prices in the sectoral price equation and aggregating produces

the following expression for the aggregate price level:

pt =
∞∑
j=0

(
K∑
k=1

Fj (β, ρ1, λk)ωk

)
mt−j −

∞∑
j=0

(
K∑
k=1

Fj (β, δ1, λk)ωk

)
ynt−j , (16)

where

Fj (β, γ, λk) ≡
(1− λkβ)2

1− γλkβ
λjk.

From estimates of the coeffi cients on mt−j in (16), we can recover the sectoral weights ω. The reason is

that Fj (β, ρ1, λk) is “known”, since ρ1 can be estimated directly from observation of mt. Notice that

each of the coeffi cients on mt−j is a weighted sum of the sectoral weights. Thus we can infer (ω1, ..., ωK)

by solving a system of linear equations:

bj =
K∑
k=1

Fj (β, ρ1, λk)ωk, j = 0, 1, 2, .., (17)

where Fj (β, ρ1, λk) and bj are known constants for every j.

37 In analogy with the Taylor model, we assume throughout that the discount factor, β, and the Calvo stickiness
parameter for each sector, λk ≡ k−1

k
, are known.
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The intuition behind the identification result is the same as before: sectors where prices are more

sticky are relatively more important in determining the impact of older shocks to the exogenous processes

on the current price level, and vice-versa for sectors where prices are more flexible. This structure of

the model provides a source of identification of sectoral weights. Indeed it is straightforward to show

that:
∂Fj (β, ρ1, λ)

∂j
< 0 and

∂Fj (β, ρ1, λ)

∂j∂λ
> 0.

The first partial derivative indicates that each sector’s influence on the coeffi cient on mt−j diminishes

as j increases because, as time passes, more firms in each sector adjust their prices in response to past

innovations. In addition, the decay process happens faster in sectors with more price flexibility. This

makes the linear system (17) non-degenerate, and allow us to uniquely pin down the sectoral weights

(ω1, ..., ωK) from knowledge of (b0, b1, b2, ...).

The same intuition carries over to the more general case in which pricing interactions are present,

although proving identification of ω in this case is a bit more involved. New prices xt (k) depend not

only on the two exogenous processes mt and ynt , but also on current and expected future values of the

aggregate price level. Consequently, each of the coeffi cients on mt−j is no longer a linear combination

of (ω1, ..., ωK) but a nonlinear function of the the sectoral weights as well as the real rigidity index ζ:38

bj = Gj (ω1, ω2, ..., ωK , ζ) , j = 0, 1, 2, ..,

which is a nonlinear counterpart of (17). Identifying ω and ζ therefore involves solving a system of non-

linear equations. Similarly to the previous case, however, the relative importance of (ω1, ω2, ..., ωK , ζ)

in the coeffi cient on mt−j varies with j, which essentially allows us to pin down those parameters.

For illustration, consider a simple economy divided into two sectors (K = 2), one of which is

characterized by fully flexible prices (λ1 = 0). To make our analysis even simpler, assume further that

mt follows the i.i.d. process (ρ1 = ... = ρp1 = 0) and ignore ynt (y
n
t = 0 ∀t). In this case, the aggregate

price level can be obtained as:

pt =
∞∑
j=0

bjmt−j =
[
ω1 (ω1 + ω̃2)−1 + ω̃2 (ω1 + ω̃2)−2 κf (ω1 + ω̃2)

]
mt

+ω̃2 (ω1 + ω̃2)−2 κ

∞∑
j=1

f (ω1 + ω̃2)j+1mt−j , (18)

38Besides the sectoral weights and real rigidity index, function Gj depends also on the (known) parameters (β, λ1, ..., λK)
and the autoregressive parameter ρ1, which can be estimated directly from observation of mt. This dependence is omitted
to save on notation.
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where κ is a constant that depends on β and λ2, ω̃2 ≡ ω2
ζ is a “scaled ω2”—the mass of firms in sector

2 adjusted by the index of real rigidity —and f is a function that is strictly increasing:

f (ω1 + ω̃2) ≡

(
1 + β + κ (ω1 + ω̃2)−1

)
−
√(

1 + β + κ (ω1 + ω̃2)−1
)2
− 4β

2β
.

Thus, unlike the previous case without pricing interactions, each of the coeffi cients on mt−j is now a

nonlinear function of ω and ζ, as mentioned earlier.

To check for identification, notice that the ratio of the coeffi cient on mt−j to that of mt−j−1 satisfies:

bj+1

bj
= f (ω1 + ω̃2) for j ≥ 1,

which allows us to identify the sum, ω1 + ω̃2, as f−1
(
bj+1
bj

)
. In turn, we can identify ω1 and ω̃2 by

solving two linear equations:

b0 = ω1

[
f−1

(
bj+1

bj

)]−1

+ ω̃2

[
f−1

(
bj+1

bj

)]−2(bj+1

bj

)
κ, j ≥ 1, (19)

bj = ω̃2

[
f−1

(
bj+1

bj

)]−2(bj+1

bj

)j+1

κ, j ≥ 1. (20)

Our analysis — especially the last two equations (19) and (20) — illustrates that the same economic

mechanism works in the presence of pricing interactions. The flexible-price sector (sector 1) is relatively

more important in the response of the price level to more recent shocks (b0 in this example), and vice

versa for the sticky-price sector. Also similarly to the previous case, we can see from (19) and (20) that

while the coeffi cients on ω1 and ω̃2 decrease as j increases, the coeffi cient on the latter decays more

slowly, which allows for identification of ω1 and ω̃2.

Finally, it remains to recover ω2 and ζ from the scaled weight, ω̃2. At first pass, this may seem a

hard task since, intuitively, as the degree of real rigidities increases (i.e. as ζ gets smaller), firms with

flexible prices will react more gradually to innovations to mt and ynt than they would under no pricing

interactions (ζ = 1). Thus, even with a smaller size of sticky-price sector (a lower ω2), the model can

generate similar dynamics of the aggregate price level. In this sense, nominal and real rigidities are

substitutes. However, in the model with heterogeneity they are not perfect substitutes, as they are in

the standard version of the Calvo model with homogeneous price stickiness. To see that, notice that

a change in ω2 affects also the weights of the other sectors (ω1 in the present example), as sectoral

weights must sum to one. Hence, it affects aggregate dynamics differently from an equivalent variation

in ζ that would leave ω̃2 unchanged. In the simple case considered here, we can easily obtain ω2 from
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ω1 +ω2 = 1, and then ζ from ω̃2. More generally, ω and ζ enter the coeffi cients on mt−j asymmetrically,

which allows us to distinguish the role of real rigidities from that of nominal stickiness in the dynamics

of the aggregate price level.

We now provide some more detail on identification, and solve for sectoral weights and real rigidities

in a model with price stickiness in all sectors. To that end, it is useful to derive a Phillips curve relation

for each sector using the price-setting equations under Calvo pricing:

πt(k) = g(λk)ζ (yt − ynt ) + βEt [πt+1(k)]− g(λk) (pt(k)− pt) , for k = 1, 2, ...,K, (21)

where πt(k) ≡ pt(k)− pt−1(k) and g(λk) ≡ (1−λk)(1−λkβ)
λk

.

Here we illustrate how the sectoral weights are identified in a model with K = 2, and real rigidities.

Define the “relative price”as:

pRt ≡ pt(1)− pt(2).

We can rewrite (21) using the relative price as:

πt(1) = g(λ1)ζ (yt − ynt ) + βEt [πt+1(1)]− ω2g(λ1)pRt , (22)

πt(2) = g(λ2)ζ (yt − ynt ) + βEt [πt+1(2)] + ω1g(λ2)pRt . (23)

To help with the exposition, we start by looking again at the special case where one of the sectors

is characterized by fully flexible prices (λ1 = 0), and mt follows an i.i.d. process, while ynt = 0. We

then proceed to consider a general two-sector model where λ1 can be nonzero and mt and ynt can follow

more general stationary processes.

C.1 A special case: λ2 > λ1 = 0.

First, note that the aggregate price level is given by:

pt = ω1pt(1) + ω2pt(2) = ω1 {(1− ζ) pt + ζmt}+ ω2pt(2).

Solving for the price level, we obtain:

pt =
ω1

Σω
mt +

ω̃2

Σω
pt(2) where Σω ≡ ω1 + ω̃2. (24)

Equation (24) indicates the aggregate price level is a weighted average of mt and pt(2) —the average

price of firms in the sticky-price sector. In the absence of pricing interactions (ζ = 1), Σω = 1 and
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pt = ω1mt+ω2pt(2). In general, however, as the degree of strategic complementarities increases (i.e., as

ζ decreases), ω1Σω
decreases while ω̃2

Σω
increases, reflecting the fact that the aggregate price level becomes

more sluggish because flexible-price firms’pricing decisions are disproportionately influenced by prices

set by firms in sector 2 (this is the “strategic interaction effect”in Carvalho 2006).

When λ1 = 0, g(λ1) is infinite. By dividing (22) by g(λ1), we can show that:

pRt =
ζ

ω2
yt =

ζ

ω2
(mt − pt) . (25)

To obtain the equilibrium level of pt(2), rewrite (23) using (25):

πt(2) = g(λ2)ζyt + βEt [πt+1(2)] + g(λ2)ζ
ω1

ω2
yt = βEt [πt+1(2)] + g(λ2)

ζ

ω2
(mt − pt) ,

which can be expressed as a second-order linear difference equation of pt(2), employing (24):

βEt [pt+1(2)]−
(
1 + β + g(λ2)Σ−1

ω

)
pt(2) + pt−1(2) = g(λ2)Σ−1

ω mt.

The solution for the linear difference equation above is:

pt(2) = f (Σω) pt−1(2) + g(λ2)Σ−1
ω

∞∑
j=0

f (Σω)j+1Et [mt+j ] , (26)

where

f (Σω) =

(
1 + β + g(λ2)Σ−1

ω

)
−
√(

1 + β + g(λ2)Σ−1
ω

)2 − 4β

2β
.

It is straightforward to show that there is a one-to-one mapping between Σω and f, and moreover that

f is strictly increasing in Σω:

∂f

∂Σω
> 0 with lim

Σω→0
f = 0 and lim

Σω→∞
f = 1.

Since mt is i.i.d., (26) can be simplified to:

pt(2) = f (Σω) pt−1(2) + g(λ2)Σ−1
ω f (Σω)mt

= g(λ2)Σ−1
ω

∞∑
j=0

f (Σω)j+1mt−j .
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Combine this with (24) to get:

pt =
ω1

Σω
mt +

ω̃2

Σ2
ω

g(λ2)
∞∑
j=0

f (Σω)j+1mt−j ,

which is exactly equation (18) presented before. Once again, it is tedious yet straightforward to recover

{ζ, ω1, ω2} from {bj}:

ω2 =
b0 + Σ−2

ω g(λ2) b2b1 (1− Σω)− Σ−1
ω

Σ−2
ω g(λ2) b2b1 − Σ−1

ω

,

ω1 = 1− ω2,

ζ =
ω2

Σω − ω1
,

where Σω = f−1
(
b2
b1

)
.

As a final note, this model nests a one-sector model with price spells of expected length k as a trivial

case. For a known k, ωk = 1 while ωk′ = 0 for all k′ 6= k. In turn, the real rigidity index ζ is trivially

identified as Σ−1
ω = 1

f−1
(
b2
b1

) .
C.2 A more general case: λ2 > λ1 > 0

We can derive a Phillips curve for the aggregate price level by aggregating (22) and (23):

πt = {g(λ1)ω1 + g(λ2)ω2} ζ (yt − ynt ) + βEt [πt+1]− {g(λ1)− g(λ2)}ω1ω2p
R
t . (27)

Notice that the relative price pRt affects aggregate dynamics. To obtain the equilibrium relative price,

we subtract (23) from (22) to get:

πRt = {g(λ1)− g(λ2)} ζ (yt − ynt ) + βEt
[
πRt+1

]
− {g(λ1)ω2 + g(λ2)ω1} pRt , (28)

where πRt = pRt − pRt−1. We then rewrite the system of two equations (27) and (28) as:

βEt [pt+1]− (β + 1 +A) pt + pt−1 = BpRt −Amt +Aynt (29)

βEt
[
pRt+1

]
− (β + 1 +D) pRt + pRt−1 = Cpt − Cmt + Cynt , (30)

43



where A,B,C and D have positive values and are functions of the parameters {ωk} and ζ, as well as

known constants, g(λ1) and g(λ2) (with g(λ1) > g(λ2)):

A = {g(λ1)ω1 + g(λ2)ω2} ζ

B = {g(λ1)− g(λ2)}ω1ω2

C = {g(λ1)− g(λ2)} ζ

D = {g(λ1)ω2 + g(λ2)ω1} .

Equations (29) and (30) jointly determine the dynamics of
{
pt, p

R
t

}
, given exogenous process for

{mt, y
n
t }.

Unlike the two special cases discussed in the main text, it is diffi cult to solve the model analytically.

Our strategy here is to take two potentially different sets of values of {ζ, ω1, ω2}, denoted {ζ∗, ω∗1, ω∗2}

and
{
ζ#, ω#

1 , ω
#
2

}
, and then examine if they can produce the same impulse response function of the

aggregate price level to a one-unit increase in mt.

Let

A∗ = {g(λ1)ω∗1 + g(λ2)ω∗2} ζ∗, A# =
{
g(λ1)ω#

1 + g(λ2)ω#
2

}
ζ#,

B∗ = {g(λ1)− g(λ2)}ω∗1ω∗2, B# = {g(λ1)− g(λ2)}ω#
1 ω

#
2 ,

C∗ = {g(λ1)− g(λ2)} ζ∗, C# = {g(λ1)− g(λ2)} ζ#,

D∗ = {g(λ1)ω∗2 + g(λ2)ω∗1} , D# =
{
g(λ1)ω#

2 + g(λ2)ω#
1

}
.

Introduce some notation for the impulse response functions:

Pj =
∂Et [pt+j ]

∂mt
,

PRj =
∂Et

[
pRt+j

]
∂mt

,

Mj =
∂Et [mt+j ]

∂mt
.

Note that
∂Et[ynt+j]
∂mt

= 0 for all j, and hence can be ignored. We then construct linear difference equations

for Pj and PRj from (29) and (30):

βPj+1 − (β + 1 +A)Pj + Pj−1 = BPRj −AMj , (31)

βPRj+1 − (β + 1 +D)PRj + PRj−1 = CPj − CMj . (32)
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Equation (32) implies:

PRj+1 =
(β + 1 +D)

β
PRj −

1

β
PRj−1 +

C

β
Pj −

C

β
Mj

=
(β + 1 +D)

β

[
(β + 1 +D)

β
PRj−1 −

1

β
PRj−2 +

C

β
Pj−1 −

C

β
Mj−1

]
− 1

β

[
(β + 1 +D)

β
PRj−2 −

1

β
PRj−3 +

C

β
Pj−2 −

C

β
Mj−2

]
+
C

β
Pj −

C

β
Mj

=

[
(β + 1 +D)

β

]2

PRj−1 −
2

β

(β + 1 +D)

β
PRj−2 +

1

β2P
R
j−3

+
C

β
Pj +

(β + 1 +D)

β

C

β
Pj−1 −

1

β

C

β
Pj−2

−C
β
Mj −

(β + 1 +D)

β

C

β
Mj−1 −

1

β

C

β
Mj−2.

We can rewrite the equation above as:

PRj =
C

β
Pj−1 +

(β + 1 +D)

β

C

β
Pj−2 −

C

β
Mj−1 −

(β + 1 +D)

β

C

β
Mj−2 + Ω(Pj−3,Mj−3), (33)

where Ω(Pj−3,Mj−3) is a linear function of {Pj−3,Pj−4, . . . ,Mj−3,Mj−4, . . .}. Plug (33) into (31) to

get:

Pj+1 =
(β + 1 +A)

β
Pj +

(
BC

β2 −
1

β

)
Pj−1 +

(β + 1 +D)BC

β3 Pj−2

−A
β
Mj −

BC

β2 Mj−1 −
(β + 1 +D)BC

β3 Mj−2

+
B

β
Ω(Pj−3,Mj−3).

Notice that P−1 = P−2 = · · · =M−1 =M−2 = · · · = 0.

Consider the impulse responses of the aggregate price level to a one-unit increase in mt under

{ζ∗, ω∗1, ω∗2} and
{
ζ#, ω#

1 , ω
#
2

}
, and assume Pj andMj are equal for all j between the two parameter-

ization. The impulse response of pt+1 is given as:

∂Et [pt+1]

∂mt
= P1 =

(β + 1 +A)

β
P0 −

A

β
M0 =

(β + 1 +A)

β
P0 −

A

β
. ( ∵M0 = 1)

It follows that
(β + 1 +A∗)

β
P0 −

A∗

β
=

(
β + 1 +A#

)
β

P0 −
A#

β
,

which holds if and only if

A∗ = A#. (34)
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Consider the impulse response of pt+2:

∂Et [pt+2]

∂mt
= P2 =

(β + 1 +A)

β
P1 +

(
BC

β2 −
1

β

)
P0 −

A

β
M1 −

BC

β2 .

It then follows that

(
B∗C∗

β2 − 1

β

)
P0 −

B∗C∗

β2 =

(
B#C#

β2 − 1

β

)
P0 −

B#C#

β2 ,

which holds if and only if

B∗C∗ = B#C#. (35)

Finally, consider the impulse response of pt+3:

∂Et [pt+3]

∂mt
= P3 =

(β + 1 +A)

β
P2 +

(
BC

β2 −
1

β

)
P1 +

(β + 1 +D)BC

β3 P0

−A
β
M2 −

BC

β2 M1 −
(β + 1 +D)BC

β3 .

This implies

(β + 1 +D∗)B∗C∗

β3 P0 −
(β + 1 +D∗)B∗C∗

β3 =

(
β + 1 +D#

)
B#C#

β3 P0 −
(
β + 1 +D#

)
B#C#

β3 .

It is easy to verify that this last equality holds if and only if

D∗ = D#. (36)

Finally notice that (34), (35) and (36) hold if and only if ζ∗ = ζ#, ω∗1 = ω#
1 and ω∗2 = ω#

2 . In

other words, the model produces the same dynamics of the aggregate price level if and only if ζ∗ = ζ#,

ω∗1 = ω#
1 and ω∗2 = ω#

2 . Therefore, we conclude that the parameters {ζ, ω1, ω2} are identified from the

impulse response function of the aggregate price level to shocks (and hence they are identified by the

likelihood implied by the model).
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D A Random Taylor model with persistent durations of price spells

We can model the random draws for the duration of price spells in our Random Taylor model using a

Markov chain with sector-specific transition matrices:

Qn =


qn (1, 1) ... qn (1,K)

...
. . .

...

qn (K , 1) ... qn (K ,K)

 ,

where

qn
(
k, k′

)
= Pr

(
duration new spell = k′|duration old spell = k

)
,

with qn
(
k, k′

)
∈ [0, 1] and

K∑
k′=1

qn
(
k, k′

)
= 1.

In other words, qn (k, k′) is the probability that a firm in sector n that has fixed its price for k periods

up to time t− 1 will fix its new price for the next k′ periods starting from time t.

The stationarity assumption will impose some restrictions on the transition matrices Qn. At time t

and in sector n, the mass of price-changing firms that had a price spell of duration k (up to t− 1) and

is about to set a new price is ϕnωn,k
k . To preserve the stationarity, it must be the case that:

(
ωn,1

1 ...
ωn,k
k ...

ωn,K
K

)
Qn =

(
ωn,1

1 ...
ωn,k
k ...

ωn,K
K

)
.

Although this restriction imposes some structure on how firms switch among various stickiness

groups, the condition above is still fairly flexible — there might be multiple transition matrices that

satisfy the condition for a given (ωn,1, ..., ωn,K). Hence, this model will have greater flexibility to match

price duration data, such as estimates of the hazard of price adjustment. Once again, this shows how

little informative about aggregate dynamics the usual price-setting statistics derived from micro price

data can be.
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Figure 1: Marginal prior (dashed line) and posterior (solid line) distributions, flat prior
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49



R
es

po
ns

e 
of

 y
t t

o 
εm

t

-0
.10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

1
4

8
12

16
20

Q
ua

rte
rs

%

V
A

R
M

ul
ti-

se
ct

or
O

ne
-s

ec
to

r

R
es

po
ns

e 
of

 π
t t

o 
εm

t

-0
.0

4

-0
.0

20

0.
02

0.
04

0.
06

0.
080.
1

0.
12

1
4

8
12

16
20

Q
ua

rte
rs

%

V
A

R
M

ul
ti-

se
ct

or
O

ne
-s

ec
to

r

R
es

po
ns

e 
of

 y
t t

o 
εn t

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

1
4

8
12

16
20

Q
ua

rte
rs

%

V
A

R
M

ul
ti-

se
ct

or
O

ne
-s

ec
to

r

R
es

po
ns

e 
of

 π
t t

o 
εn t

-0
.4

-0
.3

-0
.2

-0
.10

0.
1

0.
2

0.
3

0.
4

1
4

8
12

16
20

Q
ua

rte
rs

%

V
A

R
M

ul
ti-

se
ct

or
O

ne
-s

ec
to

r

Figure 3: Impulse response functions of models and bivariate
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Figure 4: Marginal prior (dashed line) and posterior (solid line) distributions, prior with sales, prior
informativeness = 16
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Figure 5: Marginal prior (dashed line) and posterior (solid line) distributions, prior without sales, prior
informativeness = 16
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Figure 6: Marginal prior (dashed line) and posterior (solid line) distributions, prior with sales, prior
informativeness = 40
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Figure 7: Marginal prior (dashed line) and posterior (solid line) distributions, prior without sales, prior
informativeness = 40
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