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Abstract

I investigate the optimal auditing scheme for a revenue-maximizing tax-collection

agency that observes not only reported profits, but also the level of employment at

each firm. Each firm is owned by a single entrepreneur whose managerial ability is

random. The optimal auditing scheme is discontinuous and non-monotone in ability.

In intermediate audit costs, less-productive entrepreneurs face auditing probabilities

that increase in ability, whereas the ablest ones are not audited. I argue that if the

optimal auditing scheme were adopted in practice, net revenue collected from nonfarm

sole proprietors would increase by at least 59 percent.
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1 Introduction

The literature on optimal income tax enforcement has focused mainly on taxpayers whose

income is exogenous or salaried workers.1 However, in the U.S., taxes on wages and salaries

are subject to employer withholding and, thus, almost perfectly enforced. Indeed, Slemrod

[2007] reports that only one percent of wages and salaries are underreported to the tax-

collection agency (henceforth the IRS). In contrast, 43 percent of individual business income

is underreported.2 This evidence suggests that, in order to enforce income taxes, the IRS

should concentrate on developing a better strategy to monitor business proprietors.

This paper asks the following: Given that reported income and a single factor of

production are observable, how should a revenue-maximizing IRS monitor heterogeneous

entrepreneurs? The source of heterogeneity is a random managerial ability, which is private

information. Once the monitoring strategy is conditioned on a single input, the IRS can

indirectly distort production in order to provide incentives, which enriches its set of tools to

enforce self-employment income taxes.

I interpret this single factor of production as labor input. Since wage taxes are almost

perfectly enforced, the number of workers at each firm seems to be easily observable by

the IRS. Using data on entrepreneurship and employment from the U.S., I argue that if

distortions and audits were optimally combined, net revenue collected from nonfarm sole

proprietors would increase by at least 59 percent.

In Section 2, I adapt the two-stage game developed in Bigio and Zilberman [2011] to

study optimal self-employment income tax enforcement. A self-employed individual is a

1The seminal paper is Reinganum and Wilde [1985], inspired by the costly state verification model of
Townsend [1979]. Notable contributions are Border and Sobel [1987], Melumad and Mookherjee [1989],
Mookherjee and Png [1989], Cremer et al. [1990], Sánchez and Sobel [1993], Cremer and Gahvari [1996],
Macho-Stadler and Pérez-Castrillo [1997], Chander and Wilde [1998], and Bassetto and Phelan [2008]. The
first theoretical work on tax noncompliance is Allingham and Sandmo [1972], which builds on Becker [1968]’s
work on the economics of crime. Recent surveys are Andreoni et al. [1998], Slemrod and Yitzhaki [2002],
and Sandmo [2005].

2These figures account for ten billion and 109 billion dollars, respectively. Kleven et al. [2011], for
instance, define tax-evasion rate as the share of reported income that is underreported and calculate it for
Denmark. The tax-evasion rate is 14.9 percent for self-employment income, 1.1 percent for personal income,
41.6 percent for self-reported income, and 0.3 percent for third-party-reported income.
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risk-neutral entrepreneur who owns and manages a single firm. An entrepreneur experiences

a random managerial ability – her privately observed type – that enhances productivity in a

plant exhibiting decreasing returns to scale. Production is carried out by a team of workers.

Entrepreneurs can underreport income – that is, the profits generated by their own firms –

in order to evade taxes. If a firm is audited, true income is uncovered, and the entrepreneur

must pay a penalty.

In the first stage, given the distribution of managerial ability, the IRS commits to a

costly monitoring strategy, dependent on both reported income and labor input, in order to

maximize net revenue. In the second stage, entrepreneurs take into account this monitoring

strategy and maximize expected profits by choosing labor input and reported income. Hence,

labor is not only a factor of production, but also a signal of true income. At a production

cost, labor can be strategically distorted to signal a lower income to the IRS.

To solve this model, I adopt a mechanism design approach, in which the choice of labor

and reported income are delegated to the IRS, which is the principal. Due to the revelation

principle, it is enough to focus within the class of direct mechanisms that respect incentive

compatibility and individual rationality. That is, an agent reports her type (i.e., her man-

agerial ability) and is then assigned a labor input to employ, an amount to report as profits,

and a probability with which she will be audited. The mechanism is designed such that

agents truthfully report their types and derive at least their reservation values.

The main finding is that the optimal auditing scheme may be non-monotone in ability.

In intermediate audit costs, less-productive entrepreneurs face auditing probabilities that

increase in managerial ability, whereas the ablest ones are not audited. At some threshold

level of ability, the optimal auditing scheme discontinuously drops.

There are two driving forces behind this non-monotonicity result. The first is the reser-

vation value, which is type-dependent. Since an entrepreneur can declare her true profits

and pay the right amount of taxes, her reservation value is the post-tax truthfully declared

profits, which is increasing in managerial ability. Hence, entrepreneurs face countervailing
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incentives. On the one hand, an entrepreneur is willing to understate her type in order to

pay less in taxes. On the other hand, she is willing to overstate her type in order to be

assigned a higher reservation value by the principal. Moreover, the incentives to understate

(overstate) are relatively stronger for high-ability (low-ability) types. In this environment, a

non-monotone monitoring strategy may be optimal as long as incentive compatibility is not

violated.

The second driving force is the joint condition of the monitoring strategy on both reported

income and labor input. If it depends only on reported income, this model collapses to a

variant of Sánchez and Sobel [1993], in which the optimal monitoring strategy must be non-

increasing in order to not violate incentive compatibility. Every entrepreneur below a certain

threshold type is audited with constant probability, whereas those above it are not monitored

at all. In contrast, if the monitoring strategy depends only on labor input, as in Bigio and

Zilberman [2011], the optimal monitoring strategy is non-decreasing. Those types below a

certain threshold are not monitored at all, whereas those above it are audited with constant

probability. In Sections 3 and 4, I discuss the role of each driving force in detail.

The role of costly audits as a tool to maximize government revenue is twofold: First,

it enforces taxes from those that are audited; second, it provides incentives by preventing

misreport from other types, which allows the IRS to require higher income declarations from

them. Similarly, labor distortions can be used to provide incentives, but only at a production

cost that diminishes revenue collection. The optimal mechanism balances the use of these two

tools in a way that preserves incentive compatibility and maximizes net revenue collection.

The optimal mechanism has the following properties: (1) As in a standard mechanism-

design problem, the top-type is not distorted; (2) in the top range of the type distribution,

audits are never used, and labor is distorted downwards to provide incentives; (3) below some

threshold type, stronger incentives for entrepreneurs to overstate their types and, thus, to be

assigned a higher reservation value limit the further use of distortions to provide incentives;

(4) if the audit cost is too high, only labor distortions are used to provide incentives; (5) if
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the audit cost is not too high, audits and labor distortions are optimally combined to enforce

taxes; in the bottom range of the type distribution, both the optimal monitoring strategy

and labor schedule are increasing in ability; at the threshold type, they drop discontinuously;

(6) every entrepreneur evades taxes; and (7) the effective tax rate is higher in the middle

of the type distribution; thus, the overall regressive (or progressive) bias that arises from

evasion is unknown.

In Section 4, I present an example that summarizes the intuition behind these results,

which are analytically derived in Section 5. In Section 6, I discuss some generalizations to

the model.

In Section 7, I quantitatively explore the implications of this model. In particular, I estab-

lish a lower bound to the net revenue increase if the mechanism developed in this paper were

counterfactually adopted. Under the assumption that the U.S. is a “relatively distortion-

free” competitive economy,3 I use data on employment and entrepreneurship from the Survey

of Consumer Finance to impose some discipline on the managerial-ability distribution.

Results suggest that, once adopted, the optimal mechanism can substantially increase

revenue and reduce evasion in the U.S. Among nonfarm sole proprietors, for a conservative

choice of parameters, revenue collection increases by at least 59 percent, and the fraction

of reported income is at least 86 percent, as opposed to 43 percent documented in Slemrod

[2007]. Section 8 concludes.

2 Model

I consider a two-stage game in which entrepreneurs remit taxes to the IRS. Taxes may

potentially be evaded. In the first stage, the IRS commits to a monitoring strategy that

depends both on labor input and reported income. In the second stage, entrepreneurs take

into account the monitoring strategy and choose labor input and reported income.

3By relatively distortion-free, I mean an economy in which policies do not target the firm size. By
competitive, I mean an economy in which entrepreneurs take prices as given and maximize expected profits.
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There is a continuum of firms of measure one. Each firm is owned and managed by a

single entrepreneur, who experiences a random managerial ability z, which is her privately

observed type. I assume that z is independently and identically distributed according to G

twice continuously differentiable, with density g = G′ uniformly bounded away from zero,

and compact support [z, z] with z ≥ 0.

There is a single good produced with a variable factor, labor n which is observable, and

a fixed factor, managerial ability z. Hence, production displays decreasing returns to scale,

which are important to generate positive profits in a competitive environment. Moreover, as

Lucas [1978] points out, heterogeneity in managerial ability generates a firm-size distribution,

which allows the IRS to screen over n.

The production technology is znα, with α ∈ (0, 1) common to all firms. This functional

form is chosen for tractability. I discuss the consequences of adopting a more general pro-

duction function in Section 6.1. In particular, I show that the production technology can

be generalized to znα0
∏I

i=1 k
αi
i , with

∑I
i=0 αi ∈ (0, 1) and αi ≥ 0 for i = 0, .., I, as long

as other inputs {ki}Ii=1 are not observable.4 This generalization extends the scope of the

model’s application. In some contexts, labor might not be readily observable. However, n

can be interpreted as any other observable factor of production.5

Let wages be the numeraire, and p be the price of the good; thus, pre-tax profits are

π(n, z) = pznα − n. Notice that the efficient level of employment is n∗(z) = (αpz)
1

1−α .

A profit tax rate τ is imposed exogenously by the government. After observing her own

type z, the entrepreneur decides how much labor to hire and income to report to the IRS.

Let reported profits be x ≥ 0, so τx is the amount the entrepreneur pays out as taxes, and

τ(π(n, z)− x) is the amount she evades. The IRS (the principal) costlessly observes labor n

and reported income x. However, it is able to observe ability z and, hence, actual income,

4Even if other inputs are observable, it is enough to assume that the IRS does not condition its monitoring
strategy on them.

5In some sectors, for instance, unskilled workers such as illegal immigrants are not readily observable.
However, the IRS might still observe another input, such as electricity bills, skilled labor or an intermediate
good bought from a formal firm.
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only if it audits the firm at a constant cost c > 0. If an entrepreneur is audited, she is

assessed by max{µτ(π(n, z)−x), 0}, where µ > 1 is a linear penalty on the amount evaded.6

Penalties are assumed to be linear for tractability; otherwise, I would not be able to rewrite

the IRS problem in terms of informational rents, a trick that simplifies the solution.

Note that the IRS does not reward overreporting. Hence, without loss of generality,

I restrict the set of reported income to be [0, π(n, z)], and set max{µτ(π(n, z) − x), 0} =

µτ(π(n, z)− x).

In this paper, the IRS is an agency responsible only for auditing and collecting taxes.

Choosing tax rates and penalties is beyond its scope.7 In particular, taxes would be fully

enforced without cost if penalties were arbitrarily large – that is, µ → ∞. However, many

authors argue that an abusive use of penalties is limited by other factors, such as a common

ethical norm8 or, more economically, the need to restrain the power of corruptible self-

interested enforcers.9

The IRS knows the distribution of managerial ability, G. In the first stage, in order to

maximize expected net revenue, the IRS commits to a monitoring strategy, which is an audit

probability function, ϕ(n, x), that depends on both employment and reported income.

As Andreoni et al. [1998] argue, assuming that the IRS objective is to maximize expected

net revenue, instead of a welfare criterion, seems a reasonable positive description of how

many tax agencies behave in practice. However, most tax agencies do not explicitly commit to

a monitoring strategy that depends on available information. Thus, I justify this assumption

on a normative ground. If net revenue collection is the main concern, as in periods of high

6Implicitly, I assume that all penalties are enforced even if µτ(π(n, z)−x) > π(n, z)−τx; that is, penalties
are higher than post-tax profits. If limited liability is a concern, I could assume that µ ∈ (1, 1τ ], which is
enough to guarantee that penalties are payable only with post-tax profits.

7These variables are usually chosen by other government entities such as the Treasury or Congress.
For example, in August 2007, the U.S. Government Accountability Office (U.S. GAO) published a report
(http://www.gao.gov/new.items/d071062.pdf) suggesting that the Congress require the IRS to periodically
adjust penalties for inflation.

8Rosen [2005], for example, argues that “existing penalty systems try to incorporate just retribution.
Contrary to the assumptions of the utilitarian framework, society cares not only about the end result (getting
rid of the cheaters) but also the processes by which the result is achieved.”

9See Polinsky and Shavell [2000] for a survey.
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budget deficits, the best the IRS can do is to commit to a monitoring strategy that depends

on all costlessly observable variables.10

In the second stage, given ϕ, the entrepreneur’s problem is to choose n ≥ 0 and x ∈

[0, π(n, z)] in order to maximize her expected profits:

Π(n, x, ϕ(n, x), z) ≡ π(n, z)− τx− ϕ(n, x)µτ(π(n, z)− x).

Notice that labor is not only a factor of production, but also a signal of the true income.

Hence, at a production cost, labor input can be strategically distorted to signal a lower

income to the IRS.

Before proceeding with the analysis, I solve for the full-information case, in which z

is observable. Let ϕ∗(n, x, z) be the full-information monitoring strategy, which is also a

function of z. In the second stage, an entrepreneur z weakly prefers to declare her true

profits π(n, z) rather than underreport x < π(n, z) whenever ϕ∗(n, x, z) ≥ 1
µ
.11 Similarly,

the IRS weakly prefers that an entrepreneur z declares her true profits π(n, z) rather than

underreport x < π(n, z) whenever it chooses ϕ∗(n, x, z) ≤ 1
µ

in the first stage.12

Consequently, the best the IRS can do is to induce efficient production and truthful

income declarations, without spending auditing resources. This is achieved by the following

monitoring strategy:

ϕ∗(n, x, z) =


1
µ

if x 6= π(n∗(z), z)

0 otherwise
.

As long as the IRS commits to it, all taxes are enforced at no cost.13 Information on

employment at each firm is not necessary to achieve the optimum, which is implemented

10See Reinganum and Wilde [1986] and Erard and Feinstein [1994] for models in which the IRS does not
commit to a monitoring strategy.

11Indeed, by comparing expected profits, (1− τ)π(n, z) ≥ π(n, z)− τx− ϕ∗(n, x, z)µτ(π(n, z)− x) if and
only if ϕ∗(n, x, z) ≥ 1

µ .
12Indeed, by comparing expected revenue, τπ(n, z) ≥ τx + ϕ∗(n, x, z)µτ(π(n, z) − x) if and only if

ϕ∗(n, x, z) ≤ 1
µ .

13Recall that n∗(z) is the efficient labor, and it maximizes (1− τ)π(n, z). I use the superscript ∗ to denote
the full-information solution in order to highlight that it induces efficient employment per firm.
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only through off-equilibrium threats.

If the IRS does not observe z, an adverse selection problem arises. In order to increase

her expected profits, an entrepreneur may distort her labor decision and report less income.

To solve this problem, I adopt a mechanism-design approach. Since the IRS observes (n, x),

which can be interpreted as the message sent by the agent, an entrepreneur z chooses:

(n(z), x(z)) ∈ arg max
n≥0,x∈[0,π(n,z)]

π(n, z)− τx− ϕ(n, x)µτ(π(n, z)− x). (1)

As opposed to other mechanism-design applications, such as monopoly screening, the

principal does not control the agents’ choice variables (n and x in this paper). Hence, (1) is

equivalent to two sets of incentive compatibility constraints:

(IC) Π(n(z), x(z), φ(z), z) ≥ Π(n(z̃), x(z̃), φ(z̃), z),∀(z, z̃) ∈ [z, z]× [z, z]

(IC-out) Π(n(z), x(z), φ(z), z) ≥ Π(n, x, ϕ(n, x), z),∀(z, n, x) such that

z ∈ [z, z], n ≥ 0, x ∈ [0, π(n, z)] and (n, x) 6= (n(z̃), x(z̃)) ∀z̃ ∈ [z, z],

where φ(z) = ϕ(n(z), x(z)) is the direct monitoring strategy.

A variant of the revelation principle is derived, which states that it is enough to restrict

attention to the class of direct mechanisms that not only induces truth-telling due to (IC),

but also deters agents to choose out-of-equilibrium menus, which is captured by (IC-out). In

other words, without lost of generality, an agent reports her type, say z̃, and is then assigned

a menu {n(z̃), x(z̃), φ(z̃)}. The direct mechanism {n(z), x(z), φ(z)}z is designed such that

an entrepreneur reports her type truthfully (i.e., z̃ = z), and gets a payoff higher than those

associated with all possible off-equilibrium deviations.14

The set of out-of-equilibrium incentive compatibility constraints (IC-out) merits some

digression. It is optimal for the IRS to relax (IC-out) as much as possible by punishing,

14Notice that reported income is an observed choice variable instead of an unobserved type or action. The
revelation principle implies truthful revelation of types, so income can be misreported in equilibrium.
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through sufficiently high monitoring probabilities ϕ(n, x), off-scheduled deviations. However,

one particular deviation does not depend on the auditing intensity; namely, to declare true

profits, x = π(n, z), and pay the right amount of taxes. If this is the case, post-tax profits

are (1− τ)π(n, z), which are maximized at n = n∗(z); thus, any mechanism must assign at

least (1− τ)π(n∗(z), z) to the entrepreneur.

In principle, a type z entrepreneur could also deviate to other out-of-equilibrium alloca-

tions. However, given that any mechanism must assign at least (1 − τ)π(n∗(z), z) to her,

this problem is circumvented by setting ϕ(n, x) = 1/µ for all off-scheduled (n, x). Indeed,

if ϕ(n, x) = 1/µ, entrepreneurs prefer to declare their true profits instead of x < π(n, z).15

Consequently, (IC-out) can be replaced by

(IR) Π(n(z), x(z), φ(z), z) ≥ (1− τ)π(n∗(z), z),∀z ∈ [z, z].

I call this set of constraints individual rationality (IR) because it states that any mecha-

nism must assign at least a reservation value of (1 − τ)π(n∗(z), z) to an entrepreneur z. It

cannot be interpreted as a participation constraint, but rather as a constraint that preserves

out-of-equilibrium incentive compatibility.

Figure 1 illustrates the role (IR) plays in the model. Suppose that the curve depicted on

the left (n, x)-plan represents a truth-telling, direct mechanism, such that each point in this

curve is associated with a single type z and, thus, with an audit probability φ(z). If any

pair (n, x) outside this curve is audited with intensity 1/µ, (IR) ensures that entrepreneurs

stick to the curve. In other words, through off-equilibrium threats, the IRS can implement

any truth-telling, direct mechanism that respects (IR).

However, in practice, it is not sensible policy to intensively audit everyone who reports

much more than expected. The right (n, x)-plan of Figure 1 shows an alternative way to

implement a truth-telling, direct mechanism that respects (IR). Those that report a lower-

than-expected income are audited intensively. Those that report above some threshold curve,

15Recall that (1− τ)π(n, z) ≥ π(n, z)− τx− ϕ(n, x)µτ(π(n, z)− x) if and only if ϕ(n, x) ≥ 1/µ.
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the dashed line, are not audited. In the shaded region between the dashed and the solid

lines, auditing intensities are set to deter off-scheduled deviations, but not necessarily equal

to 1/µ.

Figure 1: Implementation.

I am ready to state the IRS problem. Assume that n, x, and φ are piecewise continuously

differentiable functions defined on [z, z]. Given G, the IRS problem is the following:

max
{n(z),x(z),φ(z)}z

∫ z

z

{τx(z) + φ(z)[µτ(π(n(z), z)− x(z))− c]} dG(z)

s.t.

(IC) Π(n(z), x(z), φ(z), z) ≥ Π(n(z̃), x(z̃), φ(z̃), z),∀(z, z̃) ∈ [z, z]× [z, z]

(IR) Π(n(z), x(z), φ(z), z) ≥ (1− τ)π(n∗(z), z),∀z ∈ [z, z]

(F) φ(z) ∈ [0, 1] , x(z) ∈ [0, π(n(z), z)], n(z) ≥ 0,∀z ∈ [z, z].

That is, the IRS solves for the direct mechanism {n(z), x(z), φ(z)}z that maximizes expected

net revenue subject to (IC), (IR) and feasibility (F), which requires that the set of offered

menus corresponds to feasible probabilities, income declarations, and labor input.

Using terminology from Lewis and Sappington [1989]’s, this model displays countervailing

incentives. On the one hand, an entrepreneur has incentives to underreport z and pay less

in taxes. On the other hand, since the reservation value, (1− τ)π(n∗(z), z), is increasing in

11



z, an entrepreneur is also tempted to overstate z and be assigned a higher value. That is, in

order to satisfy (IR), the principal tends to design more favorable allocations towards higher

types; thus, an entrepreneur has incentives to overstate z and get a better allocation.16

Sánchez and Sobel [1993] and Bigio and Zilberman [2011] study optimal enforcement

policies in a similar environment. The former paper assumes that income is exogenous;

thus, auditing probabilities cannot be conditioned on employment. The latter conditions

the monitoring strategy only on labor input. In these papers, the IRS is assigned a fixed

budget, which is exhausted in order to maximize revenue.17 Moreover, Sánchez and Sobel

[1993] consider a more general tax schedule, while Bigio and Zilberman [2011] consider more

general production and audit cost functions. For simplicity, I specify functional forms for

these primitives, although in Section 6, I discuss the extent to which they can be relaxed.

See these papers for further discussion of most of the assumptions used here.

The next proposition, adapted from Sánchez and Sobel [1993], serves as a benchmark for

the rest of the analysis. It assumes that labor input is not observable. The proof follows

the steps in Bigio and Zilberman [2011] and is omitted. Let the superscript x denote the

optimal solution when the monitoring strategy is conditioned only on reported income.

16Countervailing incentives imply that the solution is not necessarily characterized by the full informational
rent extraction of the lowest type, so standard tricks in the literature are not readily applicable here.

17Operationally, both environments are similar since a budget constraint of the form
∫
φ(z)cdG(z) ≤ C,

where C is the assigned budget, can be cast in the principal’s problem using a Lagrange multiplier, say
ξ ≥ 0. Hence, a revenue maximizer IRS optimizes

∫
{τx(z) + φ(z)[µτ(π(n(z), z)− x(z))− ξc]} dG(z) + ξC

subject to (F), (IR), and (IC).
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Proposition 1. (Sánchez and Sobel [1993], adapted) If the monitoring strategy does not

depend on labor input, then there always exists a solution to the model of the following form:

nx(z) = n∗(z) if z ≤ z ≤ z ,

φx(z) =

 1/µ if z ≤ z < zx

0 if zx ≤ z ≤ z
,

xx(z) =

 π(n∗(z), z) if z ≤ z < zx

π(n∗(zx), zx) if zx ≤ z ≤ z
,

where zx ∈ [z, z].

In words, there is a threshold type zx, such that the IRS monitors every type below zx

in a way that generates a truthful income report. In contrast, every type greater than, or

equal to, zx is not audited and reports zx’s profits. As a consequence, the most produc-

tive entrepreneurs are the set of evaders. Note that policy cannot distort labor input, so

production is carried out efficiently.18

3 Implementability

Let U denote the informational rent, which is the expected profits minus the reservation

value, an agent gets. Hence,

U(z) = max
z̃∈[z,z]

{π(n(z̃), z)− τx(z̃)− φ(z̃)µτ(π(n(z̃), z)− x(z̃))− (1− τ)π(n∗(z), z)} . (2)

The following lemma is standard and states necessary and sufficient conditions for the

incentive-compatibility constraint be globally satisfied. The proof is omitted.

18If the monitoring strategy depends only on labor input, as in Bigio and Zilberman [2011], the IRS audits
the most-productive entrepreneurs in a way that generates efficient production and truthful income report.
In contrast, lower types are not audited and report zero profits. Moreover, some of the lower types have their
labor input distorted away from its efficient level in order to prevent higher types from mimicking them,
which generates a missing middle – that is, medium firms are scarce.
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Lemma 1. Incentive compatibility is verified if and only if

(LIC):
dU

dz
(z) = (1− φ(z)µτ)pn(z)α − (1− τ)pn∗(z)α a.e.,

(M): (1− φ(z)µτ)n(z)α is non-decreasing,

and that U is absolutely continuous.

These two conditions are crucial to understanding the results in this paper. The local

incentive compatibility (LIC) follows from applying the envelope theorem19 to (2) and evalu-

ating the resulting equation at z̃ = z. It specifies the required slope of the informational rent

to induce truth-telling. Notice that (LIC) provides a clear interpretation of countervailing

incentives. The first term captures the incentives to understate z and, thus, pay less in taxes,

whereas the second term captures the temptation to overstate z and, thus, be assigned a

higher reservation value.

(M) is a variant of the monotonicity condition present in the mechanism-design literature.

If, for example, equilibrium audits are ruled out from the problem – that is, φ(z) = 0 for

all z – then (M) collapses to n(z) being non-decreasing. Intuitively, by setting high enough

off-equilibrium auditing intensities, the IRS can always shape reported income x to work as if

it were compensatory transfers, as in a textbook mechanism-design problem (e.g., Fudenberg

and Tirole [1991]). Hence, a non-decreasing labor schedule is sufficient for implementability.

In contrast, if the monitoring strategy does not depend on n, then labor distortions

cannot be used to provide incentives. Therefore, (M) collapses to φ(z) being non-increasing.

This is a standard property in the optimal-tax-enforcement literature.20 It prevents higher

types from mimicking a low type in order to pay less in taxes.

By combining the use of both labor distortions and auditing intensities to provide in-

centives, standard monotone conditions can be relaxed, while incentive compatibility is still

19See Milgrom and Segal [2002].
20When taxpayers are risk-averse, Mookherjee and Png [1989] show that the monotonicity of the monitoring

strategy may not hold.
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satisfied. Indeed, for a given z, it is possible to increase (or decrease) both n(z) and φ(z)

such that (1− φ(z)µτ)n(z)α remains constant. In words, costly audits and labor distortions

can be traded off without violating (LIC) and (M). How should audits and distortions be

optimally combined in order to enforce taxes? I tackle this question in the next sections.

4 Example

This section shows an example that summarizes the intuition behind the results in this paper.

I assume that z follows a uniform distribution with support [2, 3], α = 1/2, p = 1, µτ = 1,

and τ = 0.25. The next section provides an analytical solution.21

Figure 2 illustrates the solution for different values of c. Rows depict the behavior

of employment n, reported income x, auditing intensity φ, and the informational rent U ,

respectively. The first column considers c = 0. Since the IRS faces no cost to audit en-

trepreneurs, the full-information revenue is recovered. In particular, audits suffice to fully

enforce taxes, and labor is not distorted away from its efficient level. That is, n(z) = n∗(z),

x(z) = π(n∗(z), z), and φ(z) = 1/µ almost everywhere.

On the other hand, if c is high enough, as in the fourth column,22 it is too costly to use

auditing probabilities in equilibrium. Therefore, only labor distortions are used. As in a stan-

dard mechanism-design problem, the top type is not distorted away from the full-information

case; that is, n(z) = n∗(z), while labor is distorted downwards to provide incentives. Below

a threshold type, call it z1, depicted by the dashed line, the individual rationality binds,

which places a limit on the further use of distortions to provide incentives. In particular,

employment has to be adjusted to keep U(z) = 0 for z ≤ z1. As opposed to problems without

countervailing incentives, the individual rationality can bind at intermediate types.

The most interesting case is when c takes intermediate values, as in the second and third

columns, for c = 0.35 and c = 0.45, respectively.

21In the next section, I state three additional assumptions on the primitives and one property that the
solution must have to be optimal. Those are satisfied in this example.

22In this particular example, for c ≥ 0.54.
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Figure 2: Optimal mechanism.

Similarly, the “non-distortion at the top” result also holds here, and labor is distorted

downwards up to a threshold type, call it z2, which is the (right) dashed line in the second

(third) column. In this region, only distortions are used.

Below z2, up to another threshold, call it z3, which is the left dashed line in the second

column,23 the IRS combines both distortions and audits to enforce taxes. For z ∈ [z3, z2),

both φ(z) and n(z) are increasing. At z = z2, they drop discontinuously.24 In this region,

23In this example, for all c > 0.375, z3 > z. If c ≤ 0.375, z3 = z.
24These discontinuities might not be visible in Figure 2, but some of the plots are reproduced in Figure 3.
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the individual rationality binds.

Figure 3: Optimal mechanism, c = 0.45.

In Figure 3 for c = 0.45, I compare the optimal mechanism that conditions the monitoring

strategy on both reported income and labor input (thin lines), with the one that conditions

it only on the former (thick lines), as in Proposition 1.25 Once the IRS also screens over labor

input, it is optimal to exchange costly audits for distortions in order to provide incentives

and maximize net revenue.

To understand the intuition behind the jump at z2, notice that, in order to increase net

revenue, the use of audits are twofold: (1) it enforces taxes from those that are audited;

and (2) it prevents deviations from other types, allowing the IRS to require higher income

declarations from them. In the top range of the type distribution, entrepreneurs have strong

incentives to understate their type and then pay less in taxes. Hence, monitoring those at the

top is effective to enforce their taxes, but ineffective to prevent deviations from other types.

Given that the audit cost is lumpy, the jump of the monitoring strategy at z2 balances these

two goals. It allows the IRS to audit and enforce taxes from intermediate productive types

and, at the same time, to establish a lower bound on the income reported by the highest

types.

If the monitoring strategy depended only on reported income, the same reasoning would

25Following the steps in Sánchez and Sobel [1993], zx (from Proposition 1) is the unique root in [2, 3] that

solves c = µτ 1−G(s)
g(s) pn∗(s) = (3−s)s

2 in s, given c ∈ [0, 1]. That is, zx = 3+
√
9−8c
2 . For c > 1, such a root does

not exist; thus, zx = z = 2.
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justify that it discontinuously drops at zx. However, as depicted in Figure 3, the ablest

entrepreneurs do not report, or bunch at, the threshold type income anymore. Intuitively,

by distorting labor downwards to provide incentives, the IRS can separate the equilibrium

and design an increasing reported income schedule. The jump in the labor schedule is

necessary to keep U continuous and, thus, preserve incentive compatibility. At the same

time, it also assigns fewer distortions for those below z2, which increases production and net

revenue collection.

To understand the intuition behind an increasing monitoring strategy at [z3, z2), recall

from Lemma 1 that the possibility to screen over n relaxes the monotonicity requirement

that φ(z) is non-increasing. Hence, a non-monotone monitoring strategy is consistent with

incentive compatibility. Moreover, incentives to overstate z and be assigned a higher reser-

vation value are relatively stronger in the bottom range of the type distribution. Therefore,

an increasing monitoring strategy at [z3, z2) not only prevents type misreporting, but also

allows the IRS to save on expenses by selecting a more productive group of entrepreneurs to

audit. Finally, individual rationality, which is binding in this region, determines the amount

of distortion used in equilibrium.26

In the third column of Figure 2, for z ≤ z3, feasibility imposes a limit on the use of

auditing probabilities. Thus, labor distortions are adjusted to respect individual rationality,

which is still binding in this region. In this case, the lowest types are not monitored in

equilibrium.

Interestingly, if c is not too high, the model predicts a missing middle in the reported

income space. In other words, some intermediate values of income are never reported to the

IRS. Moreover, there is a region in which two different types employ the same amount of

labor.

Finally, it is the possibility of setting off-equilibrium threats that makes audits a powerful

tool to enforce taxes. As Figure 1 and the second row of Figure 2 illustrate, for any value of

26In the next section, I show that U(z) = 0 if and only if (LIC) is equalized to zero; that is, (1 −
φ(z)µτ)pn(z)α = (1− τ)pn∗(z)α. Given φ(z), this equation determines n(z) wherever (IR) is binding.
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c, the reported income schedule is positive, which translates into a positive lower bound on

the net revenue collected.27 In Section 7, I explore this insight to assess the revenue gains

from adopting the optimal mechanism in practice.

In the next two subsections, I use this example to discuss further insights from the model.

4.1 Key driving forces

In this section, I argue that both countervailing incentives and observability of labor are the

key driving forces behind the non-monotonicity of the optimal auditing scheme.

If τ = 1,28 the reservation value, (1−τ)π(n∗(z), z), ceases to be type-dependent and, thus,

countervailing incentives are ruled out. I show below that, in this case, the optimal moni-

toring strategy is non-increasing. Every z below a threshold type is audited with intensity

1/µ, while every z above it is not monitored. Moreover, (LIC) and (M) become

(LICτ=1) :
dU

dz
(z) = (1− φ(z)µ)pn(z)α a.e.,

(Mτ=1) : (1− φ(z)µ)n(z)α is non-decreasing,

respectively. Consequently, a non-monotone monitoring strategy could be implementable,

although it is not optimal.

Therefore, a type-dependent reservation value is necessary to break the monotonicity

result that φ(z) is non-increasing. But is it sufficient? No. If labor input is not observable,

countervailing incentives are still present in the model, but Proposition 1 follows. Assume

27Similarly, if labor is not observable and c becomes arbitrarily large, taxpayers declare the lowest-type
income (see Proposition 1).

28τ = 1 describes a context in which the principal aims to fully appropriate the agent’s profits. This
action can be legitimate, as in the example of a holding company requiring reports on the profitability of its
subsidiaries. But it can also be illegitimate, as in the example of a local mafia extorting business owners.
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that τ < 1 and labor is not observable, so (LIC) and (M) become

(LICx) :
dU

dz
(z) = (1− φ(z)µτ)pn∗(z)α − (1− τ)pn∗(z)α a.e.,

(Mx) : φ(z) is non-increasing,

respectively. The IRS cannot implement a non-monotone monitoring strategy.

4.2 Implications

In a risk-neutral environment, if the IRS commits to a monitoring strategy that depends only

on reported income, the cut-off audit rule derived in Proposition 1 is a remarkably robust

result. However, its policy implications are unsatisfactory for two reasons. First, the amount

underreported as a fraction of income increases with income, introducing a regressive bias

on effective taxes. Second, only those who declare income honestly – precisely the poorest

taxpayers – will be audited. In this section, I show how these implications change once the

monitoring strategy also depends on labor.

4.2.1 Underreported income

Let underreported income as a fraction of true income be 1−x(z)/π(n(z), z). Figure 4 plots

this variable for different values of c. The solid line represents the optimal mechanism when

the monitoring strategy depends on both reported profits and labor input, while the dashed

line conditions the monitoring strategy only on the former.

In contrast with the previous literature, every taxpayer evades in the model. More-

over, the relationship between income and the fraction of income that is underreported is

non-monotone and discontinuous. In particular, those in the bottom and top underreport

proportionally more than those in the middle range of the type distribution.
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Figure 4: Underreported income as a fraction of true income.

4.2.2 Effective tax rate: regressive or progressive bias?

If the IRS screens only over reported income, effective taxes are regressive since the set

of evaders consists of the most productive entrepreneurs. Once the monitoring strategy is

conditioned on a signal of the true income, this regressive bias could be mitigated.29

Let the expected effective tax rate for a given type z be

τ e(z) ≡ τx(z) + µτφ(z)(π(n(z), z)− x(z))

π(n(z), z)
.

Figure 5 plots τ e(z) against true profits for different values of c. The solid line represents

the optimal mechanism when the monitoring strategy depends on both reported profits and

labor input, while the dashed line conditions the monitoring strategy only on the former.

Effective taxes are unevenly distributed. On the one hand, the poorest entrepreneurs are

paying proportionally less in taxes. On the other hand, effective taxes decrease in the top

29To my knowledge, Scotchmer [1987] was the first to formally point out this possibility. In her model,
taxpayers are grouped into classes according to their income signal. As a result, effective taxes are progressive
across classes, although regressive within. In her paper, both income and its signal are exogenous. See, also,
Macho-Stadler and Pérez-Castrillo [2002]. In Bigio and Zilberman [2011], for instance, effective taxes are
progressive since the lowest types are the set of evaders.
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range of the distribution. Therefore, the overall bias from evasion on the progressiveness of

taxes is unknown. Intuitively, by placing higher effective taxes in the middle range of the

type distribution, the IRS not only prevents those in the top range from understating z, but

also targets its audit expenses towards a more productive group of entrepreneurs.

Figure 5: Expected effective tax rate.

4.2.3 Outcomes of audits

Once the IRS commits to the cut-off audit rule described in Proposition 1, all audited

taxpayers are known to have reported honestly. This case is depicted in the first plot of

Figure 6, where the thick line is the optimal monitoring strategy φ(z), and the thin line is

the amount evaded τ(π(n(z), z) − x(z)). Ex-post, audits do not generate revenue for the

government. Hence, the IRS is tempted to deviate from its announced monitoring strategy

and audit the ablest entrepreneurs.

Once the audit rule also depends on n, as in the second plot, audits generate some gross

revenue, but not necessarily positive net revenue. Note that audits no longer target honest

taxpayers. Hence, although there still exist ex-post profitable deviations, a stronger case for

the IRS’s ability to commit can be made.
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Figure 6: Outcomes of audits, φ(z) vs. τ(π(n(z), z)− x(z)), c=0.45.

Finally, the richest taxpayers are never audited in both mechanisms. However, in con-

trast with the cut-off audit rule, the poorest taxpayers might also not be audited once the

monitoring strategy is conditioned on n.

5 Solution

Given the characterization of (IC) in Lemma 1, the IRS problem is to solve

max
{n(z),U(z),φ(z)}z

∫ z

z

[π(n(z), z)− U(z)− cφ(z)] dG(z)− Ω

s.t.

(LIC)
dU

dz
(z) = (1− µτφ(z))pn(z)α − (1− τ)pn∗(z)α, a.e.

(IR) U(z) ≥ 0,∀z ∈ [z, z]

(F) φ(z) ≥ 0,∀z ∈ [z, z],

where Ω =
∫ z
z

(1− τ)π(n∗(z), z)dG(z).

To solve this problem, I ignore (M), φ(z) ≤ 1, n(z) ≥ 0, x(z) ≥ 0, and x(z) ≤ π(n(z), z),
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for all z, from the set of constraints. Notice that x(z) ≤ π(n(z), z) is implied by (IR)30

and that φ(z) ≤ 1 never binds in equilibrium.31 The remaining ignored constraints must be

verified in equilibrium.

Let λ be the costate variable associated with the state variable U . The Hamiltonian is

H(U, n, φ, λ, z) = [pznα − n− U − cφ]g(z) + λ[(1− µτφ)pnα − (1− τ)pn∗(z)α].

For a given type z, let ω(z) and θ(z) be the Lagrange multipliers associated with φ(z) ≥ 0

and U(z) ≥ 0, respectively. The Lagrangian is

L(U, n, φ, λ, z) = H(U, n, φ, λ, z) + θU + ωφ.

Let the superscript o denote the optimum solution to the optimization problem stated

above. Following Seierstad and Sydsæter [1987] (Theorem 2, page 361), given that H is

concave in φ, the following set of conditions is sufficient for a global maximum.

1.
[
z + (1− µτφo(z))λ(z)

g(z)

]
αpno(z)α−1 = 1;

2. cg(z) + λ(z)µτpno(z)α = ω(z);

3. dλ
dz

(z) = g(z)− θ(z);

4. dUo

dz
(z) = (1− µτφo(z))pno(z)α − (1− τ)pn∗(z)α;

5. ω(z) ≥ 0; φo(z) ≥ 0; ω(z)φo(z) = 0;

6. θ(z) ≥ 0; U o(z) ≥ 0; θ(z)U o(z) = 0;

7. λ(z)U o(z) = 0;λ(z) ≤ 0;λ(z)U o(z) = 0;λ(z) ≥ 0;

8. λ(z−) ≥ λ(z+); [λ(z−)− λ(z+)]U o(z) = 0;

30Indeed, x(z) ≤ π(n(z), z) if and only if U(z) ≥ (1− τ)[π(n(z), z)− π(n∗(z), z)].
31Recall from Section 2 that φ(z) = 1/µ suffices to generate truthful income report and to provide incen-

tives. Since monitoring is costly, φ(z) ≤ 1/µ in equilibrium.
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9. −λ(z) ≤ zg(z)
(1−µτφo(z)) .

One and two, above, are the first order conditions with respect to n and φ, respectively.

Three is the costate law of motion. Four is the local incentive-compatibility constraint. Five

and six are the complementary slackness conditions that ensure feasibility and individual

rationality, respectively. Seven is the set of transversality conditions. Eight needs to be

satisfied if the costate λ is allowed to be discontinuous.32 Finally, 9 guarantees that the

Hamiltonian is concave in n. Notice that 9 can be ignored since it is implied by 1 and

φo(z) ≤ 1/µ.

The proof consists of a guess-and-verify method. The trick is to conjecture the subsets

of the type space [z, z], in which the inequalities U o ≥ 0 and φo ≥ 0 are binding. In other

words, it is to set the appropriate values for the Lagrange multipliers θ and ω along the

interval [z, z].33

First, note that if the solution is continuously left differentiable at the top-type z, then

no(z) = n∗(z), φo(z) = 0, and U o(z) > 0. Moreover, λ(z) = 0, ω(z) > 0 and θ(z) = 0.34

This is a variant of the “non-distortion at the top” kind of result, in which the top type is

not distorted away from the full-information case and gets positive informational rent.

By continuity, U o(z) > 0 and ω(z) > 0, which implies θ(z) = 0 and φo(z) = 0, for all

z < z in a small neighborhood of z. Moreover, by solving the differential equation in 3 with

boundary λ(z) = 0, one gets λ(z) = G(z)− 1. From 1, no(z) =
(
αp
[
z − 1−G(z)

g(z)

]) 1
1−α

in this

neighborhood.

To proceed with the analysis, I assume one restriction on the distribution of types. Define

32Throughout the paper, I use the following notation: h(z−) is the left limit of h at z, h(z+) is the right

limit of h at z, d−h
dz (z) is the left derivative of h at z, and d+h

dz (z) is the right derivative of h at z.
33This strategy is partially inspired by Maggi and Rodŕıguez-Clare [1995]’s analysis of a mechanism-design

problem that features a type-dependent participation constraint. However, since this setup is different, the
map from this paper to theirs is not perfect. In particular, here, the agent’s objective is not quasi-linear
and there are two decision variables. Moreover, for a certain range of values for c, the optimal mechanism is
discontinuous. See Jullien [2000] for an alternative treatment of type-dependent participation constraints.

34Indeed, from 7, λ(z) ≥ 0. Hence, since c > 0, then ω(z) > 0 (from 2) and φ(z) = 0 (from 5). Moreover,

no(z) ≥ n∗(z) (from 1), which implies d−Uo

dz (z) > 0 (from 4). If, by contradiction, Uo(z) = 0, then there
exists z < z such that Uo(z) < 0, which violates 6. Hence, Uo(z) > 0, which implies λ(z) = 0 (from 7),
θ(z) = 0 (from 6), and no(z) = n∗(z) (from 1).
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h ≡ 1−G
g

, which is one over the hazard rate, and γ ≡ [1− (1− τ)
1−α
α ] ∈ (0, 1).

Assumption 1. γz − h(z) is non-decreasing.

This assumption is a weaker version of the monotone hazard rate condition commonly

assumed in the literature. Indeed, if h(z) is non-increasing, then Assumption 1 holds. The

role of this assumption is twofold: First, it ensures that (M) is satisfied without the addi-

tional expositional cost of dealing with bunching; second, it guarantees that the individual

rationality constraints are not violated.

The task, now, is to find a region in the type space, such that either φo(z) ≥ 0 or θ(z) ≥ 0

ceases to hold with equality. Notice that for all z in a small neighborhood of z, both

dU o

dz
(z) = p (αp [z − h(z)])

α
1−α − (1− τ)p(αpz)

α
1−α > 0 (from 4) (3)

and

cg(z) + λ(z)µτpno(z)α = g(z)
[
c− h(z)µτp (αp [z − h(z)])

α
1−α

]
> 0 (from 2) (4)

hold by continuity. I conjecture that φo(z) ≥ 0 or θ(z) ≥ 0 or both cease to hold with equality

wherever one of the inequalities in (3) or (4) is strictly reversed. The solution displays the

property that U o(z) = 0 if and only if d−Uo

dz
(z) = 0.

Formally, define A(z) ≡ γz − h(z),35 which is non-decreasing by Assumption 1, and let

z1 = sup
s∈[z,z]

{A(s) ≤ 0}. (5)

The term in curly brackets in equation (5) is obtained from reverting the inequality in (3).

By construction, if {s ∈ [z, z] : A(s) ≤ 0} is not empty, Assumption 1 implies that z1 is the

highest root that solves A(s) = 0, and that dUo

dz
(z) > 0 for all z > z1. If it is empty, let

z1 = z.

35Recall that γ ≡ [1− (1− τ)
1−α
α ] ∈ (0, 1).
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Similarly, define B(z) ≡ h(z)µτp (αp [z − h(z)])
α

1−α , and let

z2 = sup
s∈[z,z]

{B(s) > c}. (6)

The term in curly brackets in equation (6) is obtained from strictly reverting the inequality

in (4). By construction, if {s ∈ [z, z] : B(s) > c} is not empty, then B(z2) = c. If it is empty,

let z2 = z.

In words, analyzing from the right, if z1 ≥ z2, then the differential equation in 4 would

be equalized to zero before conditions 2 and 5 are violated. On the other hand, if z2 > z1,

φ(z) = 0 for some z < z2 would violate conditions 2 and 5 before the differential equation in

4 is equalized to zero. In particular, I show that for z ≤ max{z1, z2}, θ(z) ≥ 0 or φo(z) ≥ 0

or both cease to hold with equality.

First, consider the case z1 ≥ z2 or, equivalently, c ≥ maxs∈[z1,z] B(s). The next proposi-

tion studies the case depicted in the fourth column in Figure 2, in which c is too high.

Proposition 2. If z1 ≥ z2 (that is, c ≥ maxs∈[z1,z] B(s)), then

no(z) =

 (1− τ)
1
α (αpz)

1
1−α if z ≤ z < z1

(αp [z − h(z)])
1

1−α if z1 ≤ z ≤ z
,

φo(z) = 0 if z ≤ z ≤ z ,

U o(z) =

 0 if z ≤ z < z1

p
∫ z
z1

[
(αp [s− h(s)])

α
1−α − (1− τ)(αps)

α
1−α

]
ds if z1 ≤ z ≤ z

,

λ(z) =

 −γzg(z) if z ≤ z < z1

G(z)− 1 if z1 ≤ z ≤ z
.

Moreover, the solution is continuous.

Proof. For z ≥ z1, the proof is outlined in the text. Hence, if z1 = z, the result follows.

Assume that z1 > z. For z < z1, set φo(z) = 0, and solve 1 and 4 (equalized to zero) in

27



no(z) and λ(z). Hence, λ(z) = −γzg(z) and no(z) = (1 − τ)
1
α (αpz)

1
1−α . By construction,

λ(z) is continuous, so 8 is satisfied.

Note that Assumption 1 implies that −[γg(z) + g′(z)h(z)] ≤ g(z). From 3 and 6, θ(z) =

g(z)− dλ
dz

(z) ≥ 0 is equivalent to−γ[g(z)+zg′(z)] ≤ g(z), which is satisfied if g(z)+zg′(z) ≥ 0.

If g(z)+zg′(z) ≤ 0, which implies that g′(z) < 0, it is enough to show that−γ[g(z)+zg′(z)] ≤

−[γg(z) + g′(z)h(z)] or, equivalently, γz ≤ h(z) for all z ≤ z1, which follows from z1’s

definition and Assumption 1. Hence, λ(z) < 0 and U o(z) = 0 are consistent with condition

6, the differential equation in 4 equalized to zero, and condition 7.

It remains to show that conditions 2 and 5 hold; that is, ω(z) = cg(z)+λ(z)µτp(no(z))α ≥

0. In fact, by plugging λ(z) and no(z) into this expression, one obtains γzµτp(1−τ)(αpz)
α

1−α ≤

c. Hence, it is enough to show that γz1µτp(1− τ)(αpz1)
α

1−α ≤ c. Recalling the definition of

z1, this requirement collapses to B(z1) ≤ c, which follows from z1 ≥ z2.

Finally, it is straightforward to verify that dno

dz
(z) ≥ 0, dφo

dz
(z) = 0, dxo

dz
(z) ≥ 0, wherever

these derivatives exist, and no(z) ≥ 0 and xo(z) ≥ 0. Hence, the omitted constraints are

satisfied.

Consider z2 > z1 instead. Hence, ω(z2) = 0 and d+Uo

dz
(z2) > 0. One attempt to solve this

case is to keep λ(z) = G(z)− 1 in a small neighborhood of z2, and for z < z2, let both no(z)

and φo(z) jointly solve conditions 1 and 2 (with ω(z) = 0) in this neighborhood. However,

the solution to this system implies that φo(z) < 0 for some z < z2 in any neighborhood of

z2.36 Therefore, this approach does not work. To make further progress, λ(z) needs to be

changed for z < z2, and from conditions 3, 7 and 8, it follows that U o(z2) = 0.

Consequently, a natural candidate for the optimal mechanism when z < z2 and z2 > z1

36Indeed, fix z < z2 in a small neighborhood of z2 such that B(z) > c. By solving condition 2 (with

ω(z) = 0) at n(z) and using c < B(z), one obtains no(z) < (αp[z − h(z)])
1

1−α . An inspection of condition 1
shows that this inequality is true if and only if φo(z) < 0.
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is the solution to the following system of three equations in three unknowns (φ, n and λ).

[g(z)z + (1− µτφ)λ]αpnα−1 − g(z) = 0

cg(z) + λµτpnα = 0 (7)

(1− µτφ)nα − (1− τ)(αpz)
α

1−α = 0.

These equations are condition 1, condition 2 (with ω = 0), and the differential equation in

condition 4 equalized to zero. The following assumption guarantees that if a solution to (7)

exists, it is unique.

Assumption 2. τ ≤ 1−
(

2α
1+α

) α
1−α .

If the tax rate is 25 percent, any α ≥ 0.22 satisfies this assumption. Similarly, if α = 2/3,

then it is satisfied for any τ ≤ 0.36. Therefore, Assumption 2 holds for empirically plausible

values of τ and α. However, if τ > 0.4, this assumption is violated for any value of α.

Note that the derivative of the reservation value with respect to z, (1 − τ)pn∗(z)α, is

decreasing in τ . Therefore, this assumption ensures that countervailing incentives are strong

enough.

The following lemma states sufficient conditions for existence and uniqueness of a solution

to the system in (7).

Lemma 2. For φ ∈ [0, 1/µ] and n ≥ 0:

If c > µτ
α

[(1− τ)− (1− τ)
1
α ](αpz)

1
1−α , then the system of equations in (7) does not have

a solution.

If c ≤ µτ
α

[(1− τ)− (1− τ)
1
α ](αpz)

1
1−α , it has a unique solution.

The proof is in Appendix A. This system might not have a solution for some small values

of z. Define z3 ∈ [0,∞) as being the unique root that solves the following equation in s.

µτ

α
[(1− τ)− (1− τ)

1
α ](αps)

1
1−α = c.
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If z3 < z, redefine z3 = z. Therefore, for all z ∈ [z3, z2), the system in (7) has a unique

solution. Let it be denoted by {n̂(z), φ̂(z), λ̂(z)}z∈[z3,z2).

The following lemma states some of the properties of this solution.

Lemma 3. {n̂(z), φ̂(z), λ̂(z)}z∈[z3,z2) has the following properties:

1. n̂(z) ∈ [(1− τ)n∗(z), n∗(z)]; φ̂(z) ∈ [0, 1/µ]; λ̂(z) < 0;

2. if z3 ∈ (z, z2), then n̂(z3) = (1−τ)
1
α (αpz3)

1
1−α ; φ̂(z3) = 0; λ̂(z3) = [(1−τ)

1−α
α −1]z3g(z3);

3. dn̂
dz

(z) ≥ 0 and dφ̂
dz

(z) ≥ 0;

4. n̂(z) and φ̂(z) do not depend on the distribution of types;

5. (1− µτφ̂(z))n̂(z)α = (1− τ)(αpz)
α

1−α .

This lemma is proved in Appendix A. The first and second properties state that the can-

didate for the optimal mechanism is feasible and continuous at z3 if z3 ∈ (z, z2), respectively.

The third and fourth properties say that the labor input and auditing probabilities that solve

(7) are increasing in z and do not depend on G, although z2 depends. Finally, the fifth is

the last equation of the system in (7), which guarantees that (M) is satisfied.

At this degree of generality, it is not possible to characterize closed-form solutions to

{n̂(z), φ̂(z), λ̂(z)}z∈[z3,z2) for all possible values of α.37 Hence, to proceed with the analysis,

I state a property that this solution might or might not have.

Property 1. For all z ∈ [z3, z2), dλ̂
dz

(z) ≤ g(z).

If Property 1 holds, it is possible to characterize the optimal mechanism. This property

is needed to ensure that θ(z) ≥ 0 for all z ∈ [z3, z2), which guarantees that the individual

rationality is satisfied (see conditions 3 and 6).

The following lemma gives a sufficient condition to ensure that Property 1 holds. Define

ρ ≡ 1+α
α

(1− τ)
1−α
α − 2, and note that ρ ≥ 0 from Assumption 2.

37If α = 1/2, for example, the system of equations in (7) has a closed-form solution. However, the formulas
are too convoluted, since a solution to a third degree polynomial equation is required. Hence, I solve this
system numerically in Section 4.
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Lemma 4. If γ ≤ ρ+ z g
′(z)
g(z)

γρ for z ∈ [z3, z2), then Property 1 holds.

The proof is in Appendix A. This sufficient condition imposes a joint restriction on α, τ ,

and G. Although not readily interpreted, it can be useful to check if Property 1 is satisfied.

If z follows a uniform distribution, for example, Property 1 holds if τ ≤ 1−
(

3α
2α+1

) α
1−α .38

Finally, one last assumption is needed to characterize the optimal mechanism.

Assumption 3. z3 ≤ z1.

Assumption 3 is sufficient to characterize the optimal allocation for z ≤ z3. In particular,

for z ≤ z3, the optimal allocation has the same closed form as the solution in Proposition 2

for z ≤ z1. This assumption is far from being restrictive. A sufficient condition, for example,

is that B(z) single crosses c.39

The cases depicted in the second and third columns of Figure 2 illustrate the following

proposition.

38If α = 1/2, as in Section 4, then any τ ≤ 1/4 ensures that Property 1 is satisfied.
39A weaker sufficient condition is if B(z1) < c, then z1 ≥ z2. Indeed, assume, by contradiction, that

z3 > z1. Hence, using the definitions of z1 and z3, one obtains B(z1) < c, which implies that z1 ≥ z2.
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Proposition 3. If z2 > z1 (that is, c < maxs∈[z1,z] B(s)) and Property 1 is satisfied, then

no(z) =


(1− τ)

1
α (αpz)

1
1−α if z ≤ z < z3

n̂(z) if z3 ≤ z < z2

(αp [z − h(z)])
1

1−α if z2 ≤ z ≤ z

,

φo(z) =


0 if z ≤ z < z3

φ̂(z) if z3 ≤ z < z2

0 if z2 ≤ z ≤ z

,

U o(z) =

 0 if z ≤ z < z2

p
∫ z
z2

[
(αp [s− h(s)])

α
1−α − (1− τ)(αps)

α
1−α

]
ds if z2 ≤ z ≤ z

,

λ(z) =


−γzg(z) if z ≤ z < z3

λ̂(z) if z3 ≤ z < z2

G(z)− 1 if z2 ≤ z ≤ z

.

The solution is discontinuous at z = z2. In particular, no(z−2 ) > no(z+
2 ), and φo(z−2 ) >

φo(z+
2 ) = 0.

The proof is in Appendix A. The next corollary assumes that c → 0, which is depicted

in the first column of Figure 2.

Corollary 1. If c→ 0, then

{no(z), φo(z), U o(z)}z → {n
∗(z), 1/µ, 0}z<z ∪ {n

∗(z), 0, 0}z=z .

Proof. At c = 0, φ̂(z) = 1/µ, n̂(z) = (αpz)
1

1−α , λ̂(z) = 0, for all z, z2 = z, and z3 = z.

Finally, I also consider τ = 1, which describes a context in which the principal aims to

fully appropriate the agent’s profits. If τ = 1, Assumption 2 is violated; thus, Lemmas 2, 3,

and 4, and Proposition 3 are not valid. In contrast, Proposition 1, which assumes z1 ≥ z2,
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is still valid. If z2 > z1, I rely only on Assumption 1 and Property 1 to prove the following

proposition.

Proposition 4. If τ = 1 and z2 > z1 (that is, c < maxs∈[z1,z] B(s)), then

no(z) =

 n∗(z) if z ≤ z < z2

(αp [z − h(z)])
1

1−α if z2 ≤ z ≤ z
,

φo(z) =

 1/µ if z ≤ z < z2

0 if z2 ≤ z ≤ z
,

U o(z) =

 0 if z ≤ z < z2

p
∫ z
z2

(αp [s− h(s)])
α

1−αds if z2 ≤ z ≤ z
.

The solution is discontinuous at z = z2. In particular, no(z−2 ) > no(z+
2 ) and φo(z−2 ) >

φo(z+
2 ) = 0.

Proof. For z ≥ z2, the proof is outlined in the text. If z2 = z, the result follows. Assume

that z2 > z. For z < z2, the unique solution of the system of equations in (7) is φ̂(z) = 1/µ,

n̂(z) = (αpz)
1

1−α = n∗(z), and λ̂(z) = −cg(z)/µpn∗(z)α. Since no(z−2 ) > no(z+
2 ), λ(z−2 ) >

λ(z+
2 ) and 8 is satisfied. The remaining conditions follow from Property 1, which implies

θ(z) ≥ 0 and U o(z) = 0.40

This is the case discussed in Section 4.1.

6 Extensions

To solve the problem, I specify functional forms for five objects: (1) the production tech-

nology, F (z, n,K) = znα, where K is a vector of other inputs; (2) the utility function,

40In this case, Property 1 implies the following assumption on the distribution of types: g′(z) ≥[
1
z

α
1−α −

µp(αpz)
α

1−α

c

]
g(z), for all z ≤ z2. In the example, in Section 4, this inequality verifies if and

only if c ≤ 8.
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u(y) = y, where y is income or, equivalently, consumption in a static environment; (3) the

penalty function, M(e) = µe, where e is the amount evaded; (4) the tax schedule, T (x) = τx;

and (5) the audit cost function, C(z, n) = c. In this section, I argue whether or not these

assumptions can be modified without substantially changing the results.

6.1 Production technology

In this section, I discuss two possible generalizations for the production technology. First, I

consider a general function of the form zf(n). Second, I show how to extend the model to

accommodate multiple inputs, given that only one is costlessly observable.

6.1.1 General functional form

Recall that Assumptions 1, 2 and 3, which are crucial to prove the results in this paper,

depend on the technological parameter α. Consequently, in order to validate Propositions 2

and 3 under a more general production technology, it is necessary to adapt these assumptions.

Assume, for instance, that the production technology takes the form zf(n), where f ′ > 0,

f ′′ < 0, and f(0) = 0. By applying the solution method developed in Section 5, one can

derive the same qualitative results but at an expositional cost, as ad-hoc, and somewhat

convoluted, restrictions on f and its derivatives would be imposed. It is challenging to

characterize the optimal mechanism when these restrictions are violated.41 Instead, I opt to

explore the Cobb-Douglas production function.

However, even for the Cobb-Douglas case, the optimal mechanism is not fully charac-

terized. Indeed, although realistic, Assumption 2 restricts the set of values α can take for

a given τ . It is important to understand how the optimal mechanism would behave if this

assumption were relaxed. Proposition 4 is a small step in this direction. I leave the charac-

terization of the mechanism when Assumption 2 is violated as an open question for further

41For the specific case of Proposition 2, in which c is high enough such that φ(z) = 0 for all z, the problem
is isomorphic to a standard mechanism-design problem with a type-dependent reservation value. Jullien
[2000] provides a comprehensive characterization of the optimal mechanism for this case.

34



research.

6.1.2 Multiple inputs

In this section, I show how the production technology can be generalized to multiple inputs,

as long as only one is costlessly observable by the IRS. Let F (z, n, k1, ..., kI) = znα0
∏I

i=1 k
αi
i ,

where {ki}Ii=1 are the inputs that are not observable by the IRS.42 Assume that F displays

decreasing returns to scale, so
∑I

i=0 αi < 1, and αi ≥ 0 for i = 0, .., I. Finally, let ri be the

price of input ki, which is bought in a competitive market.

In Appendix A, given that {ki}Ii=1 are chosen in the second stage of the game, I show

that pre-tax profits can be written as

π(n, z) = ζ(z; p, {ri}, {αi})nα − n, (8)

where α = α0/
(

1−
∑I

i=1 αi

)
∈ (0, 1), and ζ is a function of {αi}Ii=1, {ri}Ii=1, p, and z.

Consequently, the distribution of z, G, induces a distribution of ζ, say Ĝ, and the mechanism

developed above can be applied directly to ζ. However, Assumptions 1 and 3 and Property

1 need to be restated in terms of ζ and Ĝ. Finally, although pre-tax profits are ζnα−n, the

output produced is not ζnα.

In Section 7, where I pursue an empirical evaluation of the mechanism developed in this

paper, this extension will be useful for two reasons. First, it accounts for a more realistic

production technology. Second, if z is either log-normally or Pareto distributed, which is

commonly assumed in the literature, then ζ also is.

6.2 Audit cost

Without compelling empirical evidence, it is hard to inspect the shape of the audit cost

C(z, n).

42Similarly, even if some of these inputs are observable, it is enough to assume that the IRS does not
condition its monitoring strategy on them.
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One might argue, for instance, that large firms take longer to monitor than smaller

firms, which justifies ∂C
∂n
≥ 0. In contrast, there may be a visibility effect that reduces the

informational cost associated with monitoring larger firms, so it is also possible that ∂C
∂n
≤ 0.

Similarly, a high-ability entrepreneur could find it easier to circumvent the law and hide

her income, which justifies ∂C
∂z
≥ 0. However, if high ability translates into more-complex

business operations, the need to use accounting books could make ∂C
∂z
≤ 0. Along these

lines, as Kleven et al. [2009] argue, if these books are known to many employees, because

of whistleblowing rewards, the entrepreneur is less likely to hide them successfully from the

IRS, so ∂C
∂n∂z
≤ 0.

Consequently, I adopt an agnostic view about the audit cost. In particular, I look for

restrictions on its partial derivatives that are sufficient to support the qualitative results

from the previous section.

For simplicity, I assume that the concavity of the Hamiltonian with respect to n is

preserved.43 Hence, from the set of sufficient conditions for an optimum, only items 1 and 2

change.

1′.

[
z + (1− µτφo(z))

λ(z)

g(z)

]
αpno(z)α−1 = 1 +

∂C

∂n
(z, no(z))φo(z)

2′. C(z, no(z))g(z) + λ(z)µτpno(z)α = ω(z).

It is easy to verify that Proposition 2, which assumes that z1 ≥ z2,44 would still be valid

whenever the LHS of 2′ is greater than, or equal to, zero for all z ≤ z1.45

If z2 ≥ z1, for z ∈ [z3, z2], the optimal mechanism solves the system of equations in

(7). To account for a general audit cost, the first and second equations in (7) need to be

substituted for 1′ and 2′ (with ω(z) = 0). A close inspection of Appendix A, especially the

proofs of Lemmas 2 and 3, reveals that the extra term ∂C
∂n

(z, no(z))φ(z) in 1′ complicates

43A sufficient condition is ∂2C
∂n2 ≥ 0.

44Note that the definition of z1 does not change, but z2 needs to be redefined. In particular, z2 =

sups∈[z,z]{B(s) < C(s, (αp[s− h(s)])
1

1−α )}.
45A sufficient condition is z ∂C∂n (z, no(z))dn

o

dz (z) + z ∂C∂z (z, no(z)) ≤ 1
1−α

µτ
α γ(1− τ)(αpz)

1
1−α .
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the characterization of the mechanism. Thus, I set ∂C
∂n

= 0 and study the case in which the

audit cost C depends only on z.46

Under the additional assumption that zC ′(z) ≤ 1
1−αC(z), one can follow the steps in

Section 5 and verify that the characterization of the mechanism is qualitatively the same.

Note that this assumption can accommodate a non-monotone audit cost.

If zC ′(z) > 1
1−αC(z) at some range, the characterization of the mechanism would be

more complicated. Intuitively, if the cost to audit increases at a high rate, the IRS might

prefer to save audit expenses by following a non-monotone monitoring strategy in [z3, z2).

6.3 Tax schedule

By imposing a tax schedule of the form T (x) = τx, I rule out possible interactions between

non-linearities on the tax system and the optimal monitoring strategy.47

Consider a general tax schedule T , twice continuous differentiable. For simplicity, I

assume that the concavity of the Hamiltonian with respect to n is preserved. From the set

of sufficient conditions for an optimum, the first-order condition with respect to n becomes

[
z + (1− µT ′o(z)φo(z))

λ(z)

g(z)

]
αpno(z)α−1 = 1 + µTo

′′(z)φo(z)
λ(z)

g(z)

[
αpzno(z)α−1 − 1

]
pno(z)α,

where Ti(z) = T (π(ni(z), z)), T ′i (z) = T ′(π(ni(z), z)), and T ′′i (z) = T ′′(π(ni(z), z)), for

i = o, ∗. Unfortunately, no enters this expression in a convoluted way, jeopardizing any

attempt to extend the analytical results in Proposition 3 to a general tax schedule.

If c is high enough, such that φo(z) = 0 for all z, an analogous proposition to Proposition

2, in which T ′∗(z) plays the role of τ , can be derived.48 The crucial step is to show that

dλ
dz

(z) ≤ g(z), which is true under the assumptions that T ′ ∈ [0, 1), T ′′ > 0, and h(z) is

46z3 also needs to be redefined. In particular, z3 = sups∈[z,z]{
µτ
α γ(1− τ)(αps)

1
1−α < C(s)}.

47If T (x) = τ0 +τx, the characterization of the optimal mechanism does not change. However, net revenue
collection is increasing in τ0.

48In this case, z1 can be defined in a similar way, and for z ≤ z1, λ(z) = −γ(z)zg(z), where γ(z) =
[1− (1− T ′∗(z))

α
1−α ].
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non-increasing.

6.4 Penalty and utility functions

Linear penalties and risk neutrality are the hardest assumptions to relax. Consider penalties,

for instance. Under the assumption that the penalty function M is differentiable, the local

incentive-compatibility constraint can be rewritten as

dU

dz
(z) = (1− φ(z)M ′(e(z))τ)pn(z)α − (1− τ)pn∗(z)α, a.e.,

where e(z) = τ(π(n(z), z) − x(z)). If M ′(e) depended on e, the IRS problem could not be

rewritten in terms of informational rent U since x would still pop out in the Hamiltonian.

However, this trick substantially facilitates the use of optimal control techniques in order to

solve the problem. A similar argument can be developed for risk neutrality.49

7 A quantitative exploration

The message of this paper is that the IRS can increase net revenue if it is willing to impose

distortions almost everywhere. Hence, in order to inform policy, it is desirable to quantify

this trade-off.

Ideally, one would like to embed the IRS’s actual practiced monitoring strategy into a

general model and use data on reported profits, actual profits, inputs, and audits to pin

down the distribution of managerial ability and the parameters of the model, such as the

audit cost c. Thus, it would be possible to counterfactually assess the implications of the

mechanism developed in this paper.

49In a standard mechanism-design problem, the principal’s objective is usually written in terms of infor-
mational rents, instead of compensatory transfers. Consequently, transfers can not pop out in the set of
local incentive-compatibility constraints. This is obtained under the commonly used assumption that utility
is quasi-linear in transfers. In this paper, both linear penalties and risk neutrality allow reported income to
play a role similar to that of transfers.
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However, this approach poses two challenges. First, in most countries, including the

U.S., the audit scheme is strictly guarded or too obscure.50 Hence, it cannot be used as

a benchmark. Second, even in countries in which the tax-collection agency commits to a

publicly known monitoring strategy, such as in Italy,51 the lack of public data limits this

approach.

Therefore, in order to provide some assessment of the trade-off between revenue collection

and efficiency, I follow an alternative approach. In particular, I focus on the potential revenue

gains from adopting the optimal mechanism. Let Ro be the revenue collection generated by

the optimal mechanism, and Ra be the actual revenue collected by the IRS from some set of

self-employed entrepreneurs. I establish a lower bound to Ro/Ra.

7.1 Back-of-the-envelope calculation

Let Y i and X i, i = a, o, ∗, be aggregate pre-tax profits and reported income, respectively.

Recall that a stands for the actual figures, o for the optimal mechanism outcome, and ∗

for the full-information outcome, in which production is carried out efficiently. Notice that

Y ∗ ≥ max{Y a, Y o}. Moreover, let repi ≡ X i/Y i be the fraction of aggregate income that

is reported to the IRS. Finally, let φ be the maximum probability that a firm is actually

audited by the IRS. Consequently,

Ro

Ra
≡

τXo +
∫
φo(z)[µτ(π(no(z), z)− xo(z))− c]dG(z)

τXa +
∫
φa(z)[µτ(π(na(z), z)− xa(z))− c]dG(z)

≥

≥ Xo

Xa + µφ(Y a −Xa)
=

repo × Y o

Y a

repa + µφ(1− repa)
≥

repo × Y o

Y ∗

repa + µφ(1− repa)
. (9)

50Andreoni et al. [1998] describe how audit policy is conducted in the U.S. for individual income tax
returns. In a first stage, intensive audits are conducted on a stratified random sample. Then, these results
are used to assess the likelihood that a report contains evasion. Slightly over one-half of all audit selections
are based at least partly on this method. However, the rules used to assign each report a likelihood that it
contains irregularities are strictly guarded.

51In Italy, for a given class of firms under the Studi di settore, presumed sales proceeds are statistically
inferred from easily observable variables, such as the surface area of offices and warehouses, the number of
employees, the type of customers, and so on. In particular, a small- or medium-sized firm can be audited if
it reports sales proceeds that are lower than a presumed level. See Arachi and Santoro [2007] and Santoro
[2008] for more details.
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The first inequality imposes that c is high enough, such that φo(z) = 0 for all z, which

underestimates the net revenue gain from adopting the optimal mechanism. Consequently,

the RHS of (9) is a lower bound to Ro/Ra. Since information on µ, φ, and repa can be

gathered, it remains to calculate repo and Y o/Y ∗, which I do next.

7.2 Calculating Y ∗, Y o, and repo

Recall from Section 6.1 that the model accommodates a production technology of the form

znα0
∏I

i=1 k
αi
i , as long as only labor n is observable. Consequently, pre-tax profits can be

rewritten as

ζ(z; p, {ri}Ii=1, {αi}Ii=1)nα − n,

where α = α0/
(

1−
∑I

i=1 αi

)
∈ (0, 1), and ζ is a function of the prices, the technological

parameters, and the managerial ability.52 If z follows a truncated Pareto distribution, which

is assumed from now on, ζ also does. Let β be the shape parameter of ζ’s underlying

distribution, Ĝ, which has support [ζ, ζ]. The idea is to apply the optimal mechanism

directly to Ĝ.

To calculate Y ∗, Y o, and repo, I follow an approach similar to that of Guner et al.

[2008]’s analysis of policies that depend on firm size. In particular, I assume that the U.S. is

a “relatively distortion-free” competitive economy and use employment data to impose some

discipline on the distribution of managerial ability. By relatively distortion-free, I mean an

economy in which policies do not target the firm size. By competitive, I mean an economy

in which entrepreneurs take prices as given and maximize expected profits. Hence,

n∗(ζ) = (αζ)
1

1−α . (10)

Note that distortions that do not target firm size, such as an input linear tax, are innocuous.

52Recall that production znα0
∏I
i=1 k

αi
i is not equal to ζ(z; p, {ri}Ii=1, {αi}Ii=1)nα. Therefore, without

specifying values to prices, it is not possible to identify the efficiency loss induced by the optimal mechanism.
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Indeed, in addition to prices, technological parameters, and managerial ability, ζ would also

absorb these distortions.

Note that I am implicitly assuming that either the actual monitoring strategy does not

depend on labor input (or any other proxy for firm size), or entrepreneurs do not internalize

it whenever they make employment decisions. Although it is likely that the IRS uses infor-

mation on business size to select audits, many authors have argued that taxpayers have little

knowledge of the audit function. In particular, they tend to overestimate the probability of

an IRS audit. See, for example, Andreoni et al. [1998].

By combining data on employment at each firm with equation (10), I set the parameters

ζ, ζ, and β to match some properties of the data. Hence, the assumption that the U.S. is a

relatively distortion-free competitive economy is needed only to impose some discipline on

the parameters underlying the distribution Ĝ, which are subject to sensitivity analysis in

Appendix B.

Define η ≡ 1 −
∑I

i=0 αi, which is the share of output that goes to the entrepreneur as

pre-tax profits, so that α = α0/(α0 + η). By calibrating η, α0, ζ, ζ, and β, I can calculate

the full-information aggregate profits, Y ∗ ≡
∫

[ζn∗(ζ)α − n∗(ζ)]dĜ(ζ).

To calculate Y o and repo and, thus, generate the counterfactual, I make two additional

assumptions. First, I rule out general equilibrium effects through prices; that is, I assume that

p and {ri}Ii=1 are fixed. Second, I assume that the distribution of occupations is fixed, such

that entrepreneurs are not allowed to become workers and vice-versa. These assumptions

make the distribution of ζ, Ĝ, invariant to policy. Thus, the optimal mechanism can be

applied directly to Ĝ, which was backed out from employment data in a previous step.

If the demand for inputs in the corporate sector is relatively large, once compared with the

set of firms considered in this exercise, general equilibrium effects through prices is a minor

issue. Moreover, given that prices are fixed and, due to withholding or third-party report,

wage taxes are fully enforced without cost, the possibility of moving across occupations

would further increase net revenue. Indeed, once adopted, the optimal mechanism reduces
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profits in the entrepreneurial sector. Therefore, a standard occupational-choice model would

predict more workers fully complying with taxes and fewer entrepreneurs managing firms,

which reinforces the aim of this exercise in providing a lower bound to Ro/Ra.53

Finally, in order to establish the RHS of (9), I assume that c is high enough, such that

only labor distortions are used in equilibrium, which underestimates the net revenue gain

from adopting the optimal mechanism. Consequently, to calculate Y o and Xo, I use the

optimal allocation derived in Proposition 2. Notice that I do not need to specify values for

the audit cost c and the linear penalty µ to calculate these figures.

7.3 Calibration

Following Guner et al. [2008], I set η = 0.2, and α0 = (1− η)× 0.6.

To calibrate ζ, ζ, and β, I use data on employment and entrepreneurship from the

2001 Survey of Consumer Finance (SCF). In particular, I restrict the sample to families in

which one member actively manages and owns only one business, as in the theory presented

above, and employs at least one worker. I consider only nonfarm sole proprietors, a group

that underreported 57 percent of its income in 2001, as documented in Slemrod [2007]. This

procedure leads to 825 observations. Table 1 shows some descriptive statistics for the number

of workers at each firm.

Mean St. dev. Min Max Obs
# workers 6.92 26.68 1 299 825

Table 1: Descriptive statistics (weighted). Source: SCF 2001.

# workers [1,5) [5,10) [10,20) [20,100) [100,299]
Data 80.0% 13.1% 2.9% 2.5% 1.4%

Model 77.1% 10.9% 5.9% 5.2% 1.0%

Table 2: Firm size distribution in the data (weighted) and in the model that assumes a rela-
tively distortion-free competitive economy. Source: SCF 2001 and author’s own calculations.

53This argument assumes that both self-employers and employees face the same income tax rate τ .
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I set ζ = 1.42 and ζ = 7.58, which implies that n∗(ζ) = 1 and n∗(ζ) = 299, as in the

sample. Similarly, β = 3.07 generates the average employment per firm in the data. Table 2

shows that this simple strategy matches the observed firm size distribution reasonably well.

Efficient aggregate profits, Y ∗, are 14.4, which is reasonable once wages are the numeraire.

Under the assumptions stated above, to calculate Y o and repo, I need to specify a value for

τ and then use the formulas from Proposition 2.54

Piketty and Saez [2007] document that the average federal individual income tax rate

was 11.5 percent in 2004. If payroll taxes are added, the tax rate increases to 20.8 percent.

Since this figure ignores both local and state taxes, I generate results for τ ranging from 0.15

to 0.35.

I turn to the choice of µ and φ̄. According to the U.S. code, title 26,6663, “if any part

of any underpayment of tax required to be shown on a return is due to fraud, there shall be

added to the tax an amount equal to 75 percent of the portion of the underpayment which

is attributable to fraud.” However, typically, penalties are assessed at a rate of 20 percent

of the amount underpaid (Andreoni et al. [1998]).

Similarly, the IRS does not seem to rely on an intensive use of audits to enforce taxes.

According to the 2001 IRS Data Book, fewer than two percent of the schedule C returns were

audited.55 Hence, setting µφ̄ = 0.15 seems a conservative choice, although I also generate

results for µφ̄ ranging from 0.05 to 0.25.56

It is worth mention that if non-pecuniary penalties, such as the possibility of impris-

onment, were properly accounted for in the model, Ro/Ra would increase even more. The

same argument is valid for other types of cost, such as the financial cost of hiring professional

assistance or the moral cost of being an outlaw.

54Given the values chosen for the parameters, the truncated Pareto distribution does not satisfy Assump-
tion 1. However, for the purpose of this empirical exercise, an inspection of the proof of Proposition 2 reveals
that this assumption can be relaxed as follows: 1. z−h(z) is non-decreasing for z ≥ z1; 2. γz−h(z) ≤ 0 for
z ≤ z1; and 3. −γ[g(z) + zg′(z)] ≤ g(z) for z ≤ z1. These properties are satisfied in this section.

55Schedule C returns are those filed by nonfarm self-employed taxpayers.
56Even if some taxpayers face high probabilities of being audited, by plugging a smaller value for φ̄, it is

still likely that the inequality in (9) is satisfied, especially if these taxpayers represent a small fraction of the
population.
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Finally, following Slemrod [2007], I set repa = 0.43, which is the fraction of nonfarm

sole-proprietor income reported to the IRS in 2001. This figure is provided by the IRS,

which combines information from a program of random intensive audits, ongoing enforcement

activities, and other special studies about particular sources of income (such as cash earnings)

that is unlikely to be uncovered even in an intensive audit. Alternatively, I also generate

results for repa = 0.65, which Feldman and Slemrod [2007] estimate by using unaudited tax

returns data for 1999 in the U.S. Under the assumption that charity donations are unrelated

to the source of income, these authors adapt the econometric approach in Pissarides and

Weber [1989] to estimate self-employment income underreporting.57

7.4 Results

Table 3 displays the results for repa = 0.43. It reports the lower bound to Ro/Ra, which is

the RHS of (9).

lower bound to Ro/Ra

τ repo Y o

Y ∗
φ̄µ = 0.05 φ̄µ = 0.10 φ̄µ = 0.15 φ̄µ = 0.20 φ̄µ = 0.25

0.15 0.91 0.98 1.95 1.83 1.73 1.64 1.56
0.20 0.88 0.97 1.87 1.76 1.66 1.57 1.50
0.25 0.86 0.96 1.79 1.68 1.59 1.51 1.43
0.30 0.83 0.94 1.71 1.61 1.52 1.44 1.37
0.35 0.81 0.92 1.62 1.53 1.45 1.37 1.30

Table 3: Results for repa = 0.43.

A conservative choice of the parameters indicates substantial gains, in terms of net rev-

enue, from adopting the optimal mechanism. If τ = 0.25 and φ̄µ = 0.15, for instance, net

revenue collection from this set of entrepreneurs would increase at least by 59 percent. For

nonfarm proprietor business income, repa = 0.43 is associated with a tax gap of $68 billion,

as reported in Slemrod [2007].58 Consequently, the extra revenue collected could potentially

57In their original approach, Pissarides and Weber [1989] assume that food consumption, instead of charity
donations, is unrelated to the source of income. These authors estimate that income underreporting for
British self-employed individuals was approximately 35 percent in 1982.

58A tax gap of $68 billion accounts for only individual federal income taxes, ignoring payroll, local, and
state taxes.
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be $30 billion, which was 0.3 percent of the GDP in 2001 or, equivalently, three percent of

the total federal individual income taxes collected in 2001.59 Interestingly, even in the worst

scenario – that is, τ = 0.35 and repo = 0.81 – the degree of evasion is substantially lower

than the one observed in the data.

Table 4 displays the results for repa = 0.65. As expected, the gains from adopting the

mechanism are smaller, but still potentially large. For example, if τ = 0.2 and φ̄µ = 0.10,

net revenue collection from this set of entrepreneurs would increase by 25 percent.

lower bound to Ro/Ra

τ repo Y o

Y ∗
φ̄µ = 0.05 φ̄µ = 0.10 φ̄µ = 0.15 φ̄µ = 0.20 φ̄µ = 0.25

0.15 0.91 0.98 1.34 1.30 1.27 1.24 1.21
0.20 0.88 0.97 1.28 1.25 1.22 1.19 1.16
0.25 0.86 0.96 1.23 1.20 1.17 1.14 1.11
0.30 0.83 0.94 1.17 1.14 1.11 1.09 1.06
0.35 0.81 0.92 1.12 1.09 1.06 1.03 1.01

Table 4: Results for repa = 0.65.

In Appendix B, I do some sensitivity analysis by varying both β and α. Results are

remarkably robust to variations of β, but net revenue collected would increase even more for

higher values of α.

Leaving aside explanations based on moral, psychological, or social factors, the discrep-

ancy between the model and the data highlights the inability of the IRS to deter evasion

through audits. Given that in the U.S., the strategy to select audits is strictly guarded,

these results suggest that the IRS can substantially fight evasion and, thus, increase revenue

collection by committing to an optimal monitoring strategy that depends on proxies for busi-

ness size. Recall that this exercise assumes that c is high enough, such that in equilibrium,

φo(z) = 0 for all z; thus, these results do not rely on an intensive use of audits, which is

consistent with actual practices.

59A tax gap of $68 billion is an aggregation across heterogeneous classes of entrepreneurs, including those
that usually do not hire workers, such as independent contractors. Consequently, the potential $30 billion
of extra revenue should be viewed as an imperfect aggregator across classes, given that optimal monitoring
strategies were designed for each class based on a single observable input.
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The adoption of such mechanism raises other issues, such as the distortions it imposes or

its implications for horizontal equity. From an ethical point of view, an IRS behavior that

not only tolerates, but also explicitly, induces evasion would be questionable.

Finally, it is important to emphasize that this exercise is somewhat limited, as a non-

linear tax schedule has implications for the optimal mechanism, the empirical strategy, and

the calibration procedure. It is not clear what kind of bias would arise if non-linearities in

the tax schedule were accounted for. I leave it as an open question for further research.

8 Final comments

The relevance of the theory presented in this paper hinges on the plausibility of two hy-

potheses. First, employment at each firm is easily observable by the IRS. Second, audits are

relevant to explain self-employment income tax evasion.

At least in developed countries, to a first approximation, there is empirical evidence

suggesting that labor is readily available information to the IRS. Only a tiny percent of

wages and salaries are not reported to the IRS in the U.S. (Slemrod [2007]) and in Denmark

(Kleven et al. [2011]).60 If income taxes are subject to third-party report, as in the case of

employers withholding taxes on wages and salaries, it is unlikely that the parties involved

would collude to evade taxes.61 Moreover, as long as wages are partially declared, the IRS

still has information about the employee and the firm for which she works. Even if unskilled

workers, such as illegal immigrants, can be hidden, the extension in Section 6.1 shows that

the optimal mechanism can be applied as long as a single input is easily observable. Examples

of such input are skilled labor or an intermediate good bought from a formal firm.

What if reasons other than audits are the main determinants of self-employed income

tax evasion? Entrepreneurs, for example, might be caught in a web of business-to-business

60In contrast, di Porto [2011] documents that in Italy, artisan firms hide their workers in order to pay less
in social security taxes.

61In the U.S., for instance, firms issue W-2 forms, one for each worker, detailing her identity and the
amount of wages paid. Each form is sent to the IRS and the relevant employee. The latter uses the W-2
form to file her income tax return. See Logue and Slemrod [2010] for more details.
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transactions that facilitate enforcement for tax reasons.62 Similarly, access to the financial

sector generates information that the IRS can use to enforce taxes (Gordon and Li [2009]).

Finally, when the use of accounting books, necessary to run complex business operations,

are known to many employees, the entrepreneur is less likely to hide them successfully from

the IRS (Kleven et al. [2009]).

Nonetheless, recent evidence from field experiments, in which auditing probabilities are

exogenously controlled, shows that audits have a strong impact on self-reported income. See

Slemrod et al. [2001] for an experiment in the U.S., and Kleven et al. [2011] for another in

Denmark. Consequently, the design of monitoring strategies can play an important role in

increasing revenue collection, as the exercise in Section 7 highlights.

62For example, whenever a downstream firm buys from an upstream firm, value-added taxes along the
production chain generate tax credits to be used against future tax liabilities. Thus, this transaction is
observable by the IRS, and compliant firms have an incentive to deal among themselves (Kopczuk and
Slemrod [2006] and de Paula and Scheinkman [2010]).
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Appendix

A Proofs

The following proofs involve a change of variables that reduces the number of equations in

(7). Define Φ ≡ 1− µτφ and N ≡ nα. Using the first and the second equations to eliminate

λ from the problem, one reaches the following system of two equations in two unknowns (Φ

and N).

Φ =
µτ

αc

[
αpzN −N

1
α

]
(11)

Φ =
(1− τ)[αpz]

α
1−α

N

Moreover, φ ∈ [0, 1/µ] implies that Φ ∈ [1− τ, 1].

Let Φ1(N) = µτ
αc

[αpzN − N 1
α ], Φ2(N) = (1−τ)(αpz)

α
1−α

N
, and define N∗ ≡ (αpz)

α
1−α . Since

Φ2 is strictly decreasing, then any solution to this system implies that N ∈ [(1− τ)N∗, N∗].

A.1 Proof of Lemma 2

Notice that Φ1 is strictly concave, and Φ2 is strictly convex. Therefore, Φ1 = Φ2 at most

at two values of N . Moreover, Φ1(N∗) = 0 < (1 − τ) = Φ2(N∗); thus, this system has one

solution if Φ1((1− τ)N∗) > Φ2((1− τ)N∗) = 1. A little algebra shows that this requirement

holds if and only if c < µτ
α

[(1− τ)− (1− τ)
1
α ](αpz)

1
1−α .

This system does not have a solution if and only if Φ1(N) < Φ2(N) for all N ∈ [(1 −

τ)N∗, N∗]. Note that Φ1(N) < Φ2(N) if and only if

µτ [αpzN2 −N 1+α
α ]

α(1− τ)(αpz)
α

1−α
< c.

Taking the first-order condition of the LHS with respect to N , one gets N̂ =
(
2 α

1+α
αpz

) α
1−α .
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But Assumption 2 implies that N̂ ≤ (1 − τ)N∗. Hence, there are two possible candidates

for a maximum: (1− τ)N∗ and N∗. Plugging them into the LHS and choosing the one that

yields the highest value, one concludes that this system does not have a solution if and only

if µτ
α

[(1− τ)− (1− τ)
1
α ](αpz)

1
1−α < c.

Finally, when c = µτ
α

[(1− τ)− (1− τ)
1
α ](αpz)

1
1−α , N = (1− τ)N∗ and Φ = 1 is the only

solution to the system of equations above.

A.2 Proof of Lemma 3

Items 1, 4 and 5 are immediate. Item 2 follows from the fact that c = µτ
α

[(1 − τ) − (1 −

τ)
1
α ](αpz3)

1
1−α ; thus, N(z3) = (1− τ)N∗(z3) and Φ(z3) = 1. It remains to show 3 – that is,

dN
dz
≥ 0 and dΦ

dz
≤ 0.

Equalizing both equations in (11), one obtains

αpzN2 −N
1+α
α =

αc

µτ
(1− τ)(αpz)

α
1−α .

Differentiating it with respect to N and z leads to

dN

dz
=

(1− τ)αc
µτ

α
1−α

(αpz)
α

1−α

z
− αpN2

αpz2N − 1+α
α
N

1
α

.

For dN
dz
≥ 0, it is enough to show that both the denominator and the numerator are negative.

Indeed, the numerator is smaller than zero if and only if

(1− τ)
αc

µτ

α

1− α
(αpz)

α
1−α

z
− αpN2 < 0.

Therefore, by plugging in the smallest possible value for N , (1 − τ)N∗, and after some

manipulations,

c <
1− α
α

(1− τ)
µτ

α
(αpz)

1
1−α .
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Since c ≤ µτ
α

[(1− τ)− (1− τ)
1
α ](αpz)

1
1−α , it is enough to show that

1− (1− τ)
1−α
α <

1− α
α

,

which follows from Assumption 2.

The denominator is smaller than zero if and only if

αpz2N − 1 + α

α
N

1
α ≤ 0 ⇐⇒ αpz2

α

1 + α
≤ N

1−α
α .

Hence, it is enough to plug the smallest possible value for N , (1− τ)N∗, into this inequality

and check that it holds. Indeed,

2
α

1 + α
≤ (1− τ)

1−α
α

is true by Assumption 2.

Similarly, from (11),

Φ =
µτ

αc

[
(1− τ)

(αpz)
1

1−α

Φ
− (1− τ)

1
α

(αpz)
1

1−α

Φ
1
α

]
.

Differentiating it with respect to Φ and z, and after some manipulation, leads to

dΦ

dz
=

(1− τ)µτ
αc

1
1−α

(αpz)
1

1−α

z

[
Φ

1−α
α − (1− τ)

1−α
α

]
1+α
α

Φ
1
α − µτ

αc
(1− τ)(αpz)

1
1−α 1−α

α
Φ

1
α
−2

.

Therefore, given Φ ≥ (1− τ), for dΦ
dz
≤ 0, it is enough to show that the denominator of the

previous equation is negative. That is,

1 + α

α
Φ

1
α − µτ

αc
(1− τ)(αpz)

1
1−α

1− α
α

Φ
1
α
−2 ≤ 0 ⇐⇒ c ≤ µτ

α
(1− τ)(αpz)

1
1−α

1− α
1 + α

Φ−2.
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Since c ≤ µτ
α

[(1− τ)− (1− τ)
1
α ](αpz)

1
1−α , it is enough to show that

1− (1− τ)
1−α
α ≤ 1− α

1 + α
,

which follows from Assumption 2.

A.3 Proof of Lemma 4

Notice that λ(z) = − cg(z)
µτpN(z)

. Taking derivatives and reorganizing the terms, one obtains

dλ

dz
(z) =

1

N(z)

c

µτp

[
N ′(z)

N(z)
g(z)− g′(z)

]
.

If N
′(z)

N(z)
g(z)−g′(z) ≤ 0, then the assertion is trivial. On the other hand, if N

′(z)
N(z)

g(z)−g′(z) > 0,

dλ

dz
(z) ≤ z

N(z)
[(1− τ)− (1− τ)

1
α ](αpz)

α
1−α

[
N ′(z)

N(z)
g(z)− g′(z)

]
≤ (12)

≤ γ

[
N ′(z)

N(z)
zg(z)− zg′(z)

]
,

where the first inequality follows from c ≤ µτ
α

[(1− τ)− (1− τ)
1
α ](αpz)

1
1−α for all z ∈ [z3, z2),

while the second follows from N(z) ∈ [(1− τ)N∗, N∗] for all z ∈ [z3, z2).63

Note that

z
N ′(z)

N(z)
=

αpzN(z)− (1− τ)αc
µτ

α
1−α(αpz)

α
1−α 1

N(z)

1+α
α
N(z)

1
α − 2αpzN(z)

< (13)

<
αpz

1+α
α
N(z)

1−α
α − 2αpz

≤ 1
1+α
α

(1− τ)
1−α
α − 2

=
1

ρ
.

Consequently, by plugging (13) into (12), it is straightforward to verify that

γ ≤ ρ+ z
g′(z)

g(z)
γρ⇒ dλ

dz
(z) ≤ g(z).

63Recall that γ ≡ 1− (1− τ)
1−α
α .

51



A.4 Proof of Proposition 3

For z ≥ z2, the proof is outlined in the text. Hence, if z2 = z, the result follows. Assume

that z2 > z. For z ∈ [z3, z2), set φo(z) = φ̂(z), no(z) = n̂(z), and λo(z) = λ̂(z), which satisfy

conditions 1, 2, and 5. Moreover, Property 1 and condition 3 imply θ(z) ≥ 0; thus, from 6,

I set U(z) = 0, which agrees with the differential equation in 4 equalized to zero, given that

U(z3) = 0 is the boundary condition. If z3 = z, since λ̂(z3) < 0, condition 7 is satisfied.

It remains to show that 8 is satisfied. Note that at z = z2, both conditions 1 and 2 (with

ω = 0) hold with equality, but 0 = d−Uo

dz
(z2) < d+Uo

dz
(z2). Hence, at z = z2, no(z) and φo(z)

are discontinuous.

If the domain of N and Φ are extended to [0, N∗] and [1−τ,∞), respectively, by following

similar steps to the ones in the proof of Lemma 2, one can verify that this system always

has two solutions if 0 < c < µτ
α

[(1− τ)− (1− τ)
1−α
α ](αpz)

1
1−α . Index these solutions by l and

h. At z = z2 , it is easy to verify that, without lost of generality, n̂l(z2) < no(z+
2 ) < n̂h(z2),

φ̂l(z2) < φo(z+
2 ) < φ̂h(z2), and λ̂l(z2) < λ(z+

2 ) < λ̂h(z2). By restricting the domain of N and

Φ to be between [(1 − τ)N∗, N∗], and [(1 − τ), 1], respectively, the solution indexed by l is

lost. Consequently, 8 is satisfied.

Finally, for z < z3, given that z3 > z, the proof is similar to the one in Proposition 2,

provided that Assumption 3 holds.

A.5 Working out equation (8)

If F (z, n, k1, ..., kI) = znα0
∏I

i=1 k
αi
i , expected profits are

pznα0

I∏
i=1

kαii − n−
I∑
i=1

riki − τx− µτϕ(n, x)

(
pznα0

I∏
i=1

kαii − n−
I∑
i=1

riki − x

)
. (14)

By taking the first-order condition of (14) with respect to kI , which is chosen in the last
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stage of the game, one obtains

kI =

(
αI
rI
pznα0

I−1∏
i=1

kαii

) 1
1−αI

.

By plugging it back into (14), expected profits can be rewritten as

ζ(z; p, rI , αI)n
α̃o

I−1∏
i=1

kα̃ii −n−
I−1∑
i=1

riki−τx−µτϕ(n, x)

(
ζ(z; p, rI , αI)n

α̃o

I−1∏
i=1

kα̃ii − n−
I−1∑
i=1

riki − x

)
,

where α̃i = αi
1−αI

, and ζ(z; p, rI , αI) =

[(
αI
rI

) αI
1−αI − rI

(
1
rI

) αI
1−αI

]
(pz)

αI
1−αI .

Proceeding iteratively, one reaches (8). Moreover, if z is either log-normally or Pareto

distributed, then ζ also is.

B Sensitivity analysis

In this section, I check the robustness of the empirical results obtained in Section 7 by

varying β, η, and αo. In particular, I generate results for β equal to 4.13 and 2.49, which are

consistent with an average employment of four and ten, respectively. I also set η = 0.12 and

αo = (1− η)× 0.64, which is in line with the calibration by Kitao [2008] in another context.

Tables 5 and 6 report the results for repa = 0.43 and repa = 0.65, respectively. Notice

that the results are remarkably robust to variations of β, but net revenue collected would

increase even more for higher values of α.
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lower bound to Ro/Ra

η = 0.2 and α0 = (1− η)× 0.6 η = 0.12 and α0 = (1− η)× 0.64
τ repo φ̄µ = 0.05 φ̄µ = 0.10 φ̄µ = 0.15 repo φ̄µ = 0.05 φ̄µ = 0.10 φ̄µ = 0.15

0.15 0.91 1.94 1.83 1.73 0.92 1.98 1.86 1.76
β = 0.20 0.88 1.86 1.75 1.66 0.90 1.90 1.79 1.69
4.13 0.25 0.86 1.78 1.68 1.58 0.87 1.83 1.72 1.63

0.30 0.83 1.70 1.60 1.51 0.85 1.75 1.65 1.56

0.15 0.91 1.95 1.83 1.73 0.92 1.98 1.86 1.76
β = 0.20 0.88 1.87 1.76 1.66 0.90 1.91 1.80 1.70
3.07 0.25 0.86 1.79 1.68 1.59 0.88 1.84 1.73 1.63

0.30 0.83 1.71 1.61 1.52 0.86 1.76 1.66 1.57

0.15 0.91 1.95 1.83 1.73 0.92 1.98 1.86 1.76
β = 0.20 0.88 1.87 1.76 1.66 0.90 1.91 1.80 1.70
2.49 0.25 0.86 1.79 1.68 1.59 0.88 1.84 1.73 1.64

0.30 0.83 1.71 1.61 1.52 0.86 1.77 1.67 1.57

Table 5: Results for repa = 0.43.

lower bound to Ro/Ra

η = 0.2 and α0 = (1− η)× 0.6 η = 0.12 and α0 = (1− η)× 0.64
τ repo φ̄µ = 0.05 φ̄µ = 0.10 φ̄µ = 0.15 repo φ̄µ = 0.05 φ̄µ = 0.10 φ̄µ = 0.15

0.15 0.91 1.34 1.30 1.27 0.92 1.36 1.32 1.29
β = 0.20 0.88 1.28 1.25 1.22 0.90 1.31 1.27 1.24
4.13 0.25 0.86 1.22 1.19 1.16 0.87 1.27 1.22 1.19

0.30 0.83 1.16 1.13 1.11 0.85 1.20 1.17 1.14

0.15 0.91 1.34 1.30 1.27 0.92 1.36 1.32 1.29
β = 0.20 0.88 1.28 1.25 1.22 0.90 1.31 1.28 1.24
3.07 0.25 0.86 1.23 1.20 1.17 0.88 1.26 1.23 1.20

0.30 0.83 1.17 1.14 1.11 0.86 1.21 1.18 1.15

0.15 0.91 1.34 1.30 1.27 0.92 1.36 1.32 1.29
β = 0.20 0.88 1.28 1.25 1.22 0.90 1.31 1.28 1.25
2.49 0.25 0.86 1.23 1.20 1.17 0.88 1.26 1.23 1.20

0.30 0.83 1.18 1.15 1.12 0.86 1.22 1.18 1.15

Table 6: Results for repa = 0.65.
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