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Abstract

In this paper we propose a smooth transition tree model for both the conditional

mean and variance of the short-term interest rate process. The estimation of such

models is addressed and the asymptotic properties of the quasi-maximum likelihood

estimator are derived. Model specification is also discussed. When the model is

applied to the US short-term interest rate we find (1) leading indicators for inflation

and real activity are the most relevant predictors in characterizing the multiple

regimes’ structure; (2) the optimal model has three limiting regimes. Moreover,

we provide empirical evidence of the power of the model in forecasting the first

two conditional moments when it is used in connection with bootstrap aggregation

(bagging).
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1 Introduction

The relevance of the short-term interest rate is directly related to the fact that, from a

macroeconomic point of view, the rate is a policy instrument under the control of the

central banks to maintain economic stability. Moreover, from a finance perspective, the

short rate is the essential quantity needed to construct the whole yield curve, given that

yields at other maturities are just risk adjusted averages of expected future short rates.

Therefore, it is not surprising that in the last two decades a number of different models

have been proposed for the conditional dynamics of the short-term interest rate process.

One important stylized fact that must be taken into account when constructing a

model for the short rate dynamics is that the short rate is subject to regime-shifts; see,

for example, Gray (1996), Hansen and Poulsen (2000) and Audrino (2006). The empirical

studies of Gray (1996) and Audrino (2006), in particular, confirmed that regime-switching

models for the conditional mean and variance dynamics of the short rate process yield

more accurate short rate forecasts. As a direct consequence, regime-switching models also

yield more accurate predictions of the whole yield curve, with important implications for

the pricing of interest-rate-sensitive instruments and for risk management; see, among

others, Bansal and Zhou (2002), Bansal et al. (2004), and Audrino and De Giorgi (2007).

Besides the statistical properties of a proposed model for the short rate (that is,

asymptotic results, in- and out-of-sample performances), the model must also offer some

reduced-form insight into the nature of the underlying economic forces that drive the

short rate movements. In several studies published in the last five years, researchers

incorporated macroeconomic variables as predictors or latent factors in models for the

short rate and, more generally, the whole yield curve. For example, Diebold et al. (2006)

used three observable macroeconomic variables (that is, real activity, inflation, and a

monetary-policy instrument). In Ang and Piazzesi (2003) and Ang et al. (2007) the

macroeconomic variables used are measures for inflation and real activity. In particular,

Ang and Piazzesi (2003) constructed the measures for inflation and real activity as the
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first principal component of a large set of candidate macroeconomic series for inflation and

real activity, respectively. Rudebusch and Wu (2004) provided an example of a macro-

finance model that employs more macroeconomic structure and includes both rational

expectations and inertial elements. Finally, a whole set of macroeconomic variables for

real activity and inflation were used in Audrino (2006). In his model, Audrino (2006)

chose the most important macroeconomic series for the estimation and prediction of the

short rate process dynamics via information criteria.

We propose a generalization of the Audrino (2006) tree-structured model that is able

to take into account regime-shifts in the conditional dynamics of the short rate process,

and to exploit all possible information coming from macroeconomic and other relevant

exogenous variables for estimation and interpretation as well as for prediction. The most

important difference between the Audrino (2006) model and the model we propose here

is that we allow regime-shifts to be smooth. Our model is a compromise between the

Markovian regime-switching model introduced by Gray (1996), where regime-shifts are

driven by an unobservable state variable with associated transition probabilities and a

consequent loss of interpretation, and the Audrino (2006) tree model, where regime-shifts

are drastic: at a given time, the short rate process is driven exactly by the local dynamics

of one limiting regime (that is, the probabilities associated with the regimes are of the

type 0-1). The degree of the smoothness is determined endogenously when estimating the

model.

The model we propose is also a generalization of the smooth transition regression

tree (STR-tree) model introduced by da Rosa et al. (2008). In this study, we expand the

STR-tree model to allow not only the conditional mean dynamics, but also the conditional

variance dynamics to be non-linear and regime-dependent as in Audrino and Bühlmann

(2001) and Medeiros and Veiga (2009). We derive the asymptotic theory for our model

based on the assumption that the model structure is correctly specified apart from the

error distribution, which is left unspecified. Our specification differs in many aspects from
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the above mentioned papers. First, contrary to Audrino and Bühlmann (2001) we consider

smooth transitions among regimes instead of sharp ones. Second, the model proposed in

Medeiros and Veiga (2009) allows for only one transition variable and the conditional

mean is assumed to be zero1. We relax these two restrictions and allow for multiple

transition variables and also a nonlinear conditional mean. The purpose of modelling

and forecasting the conditional variance is threefold. First, in terms of understanding

and modelling the dynamics of the short-term interest rates, it is important to check if

the regime switches are also present in the conditional variance. Second, the conditional

variance forecasts are essential for the construction of prediction intervals. Finally, the

dynamics of the conditional volatility is crucial for the understanding of the interest-rate

risk.

Since one of our goals is to investigate the appropriateness of our model for forecast-

ing the short rate process, as with Inoue and Kilian (2008) and Hillebrand and Medeiros

(2007) we use bootstrap aggregating (bagging, introduced by Breiman, 1996) to improve

predictions. In fact, tree-based procedures based on hard decisions with indicator func-

tions are known to be highly unstable. As Bühlmann and Yu (2002) have shown, bagging

is a statistical procedure effective in the case of regression trees in alleviating such a

problem.

We test the estimation and forecasting ability of our model on the time series of the US

short-term interest rate process. First, similarly to previous studies, we find that leading

indicators for inflation and real activity are the most relevant predictors in characterizing

the regimes’ structure. The optimal model has three limiting regimes, with significantly

different local conditional mean and variance dynamics. We also find some correspondence

between NBER expansions/recessions and our limiting regimes.

Second, we provide empirical evidence that our model is the one yielding the most

1The theoretical results in Medeiros and Veiga (2009) are heavily dependent on these two restrictions
and are not applicable to the present case. Our asymptotic results are not a straightforward application
of Ling and McAleer (2003) as the later considered only linear specifications.
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accurate predictions, in particular when used in connection with bagging, and also when

compared with several competitors introduced in the literature. By performing a series

of superior predictive ability (SPA) tests (Hansen, 2005), we conclude that such improve-

ments are in most cases statistically significant.

The remainder of the paper is organized as follows: In Section 2 we introduce the

double smooth transition tree (DST-Tree) model. Estimation and asymptotic properties

are discussed in Section 3. Bagging is discussed in Section 4. Section 5 presents the

empirical application to the US short-term interest rate series. Section 6 concludes.

2 Model

In this paper we consider a general version of the Smooth Transition Regression Tree

(STR-Tree) model of da Rosa et al. (2008). The novelty of our model is to allow a

similar tree-structured nonlinearity in conditional variance of the model. First, consider

the following assumption regarding the data generating process (DGP):

Assumption 1. The observed sequence of real-valued vector of variables Yt = {yt,xt}T
t=1

is a realization of a stationary and ergodic stochastic process on a complete probability

space generated as

yt = f (xt;ψ0) + εt, t = 1, . . . , T, (1)

where f (xt;ψ0) is a (nonlinear) function of the real-valued random vector xt ∈ X ⊆ Rq,

which has distribution function F on Ω, a Euclidean space. ψ0 is a vector of unknown

(true) parameters. The sequence {εt}T
t=1 is formed by random variables drawn from an

absolutely continuous (with respect to a Lebesgue measure on the real line), positive ev-

erywhere and symmetric distribution such that E[εt] = 0 and E[ε2
t ] = σ2, 0 < σ2 < ∞,

∀ t. In addition, E [εt|xt,Ft−1] = 0, where Ft−1 is the filtration with respect to all past

information. Finally, we allow the conditional variance to be time-varying, such that

E [ε2
t |xt,Ft−1] = ht(ψ0) < ∞, and ht(ψ0) > 0, ∀ t.
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In the practical application of Section 5, yt ≡ ∆rt = rt − rt−1 is the first difference

of the short rate process at time t, rt is the short rate process at time t, and xt =

(∆rt−1, rt−1, (x
ex
t−1)

′)′ is the vector of all relevant information for prediction at time t, with

xex
t−1 denoting the vector of exogenous variables, like indices for inflation and real activity.

To mathematically represent a complex regression-tree model, we introduce the fol-

lowing notation. The root node is at position 0 and a parent node at position j generates

left- and right-child nodes at positions 2j + 1 and 2j + 2, respectively. Every parent node

has an associated split variable xsjt ∈ xt, where sj ∈ S = {1, 2, . . . , q}. Furthermore, let J

and T be the sets of indexes of the parent and terminal nodes, respectively. Then, a tree

architecture can be fully determined by J and T. The proposed model follows from the

following definition.

Definition 1. Set x̃t = (1,xt)
′. A parametric model M defined by the function HJT (xt;ψ0) :

Rq+1 → R, indexed by the vector of parameters ψ0 ∈ Ψ, a compact subset of the Euclidean

space, is called a double smooth transition tree model (DST-Tree), if

yt = HJT(xt;ψ0) + εt =
∑

i∈T

β′
ix̃tBJi (xt;θi) + ht(ψ0)

1/2ut, (2)

where

ht(ψ0) ≡ ht =
∑

i∈T

(
aiε

2
t−1 + biht−1 + λ′

ix̃t

)
BJi (xt;θi) , (3)

BJi (xt;θi) =
∏

j∈J

G(xsj ,t; γj, cj)
ni,j(1+ni,j)

2

[
1 − G(xsj ,t; γj, cj)

](1−ni,j)(1+ni,j) , (4)

G(xsj ,t; γj, cj) =
1

1 + e−γj(xsj ,t−cj)
, (5)
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and

ni,j =





−1 if the path to leaf i does not include the parent node j;

0 if the path to leaf i includes the right-child node of the parent node j;

1 if the path to leaf i includes the left-child node of the parent node j.

Let Ji be the subset of J containing the indexes of the parent nodes that form the path to

leaf i. Then, θi is the vector containing all the parameters (γk, ck) such that k ∈ Ji, i ∈ T.

Finally, {ut} is a sequence of independent and identically distributed zero-mean random

variables with unit variance, ut ∼ IID(0, 1).

Remark 1. The functions BJi, 0 < BJi < 1, are known as the membership functions.

Note that
∑

j∈J
BJi (xt;θj) = 1, ∀xt ∈ Rq+1.

Remark 2. Note that the same tree structure is considered in the conditional mean and

conditional variance. This simplifies estimation, avoids possible “curse of dimensional-

ity”, and facilitates the final interpretation of the model.

Remark 3. Although the notation in (2) may seem a bit complicated at first sight, it has

the main advantage of being capable of mathematically representing any tree-structure.

For a simple example of a smooth transition tree structured model, we refer to da Rosa et

al. (2008).

For simplicity, and to be consistent with other models introduced in the literature

(see, for example, Gray, 1996, or Audrino, 2006), in our real data investigation of Section

5 on the short rate process {rt}t∈N, we restrict the general local conditional mean and

variance dynamics given in (2) and (3) to follow:

yt = ∆rt = µt(ψ0) + εt =
∑

i∈T

(αi + βirt−1)BJi (xt;θi) + ht(ψ0)
1/2ut, (6)

7



and

ht(ψ0) =
∑

i∈T

(
aiε

2
t−1 + biht−1 + σ2

i rt−1

)
BJi (xt;θi) . (7)

Note that there are no constant terms in the variance equation (7). According to Gray

(1996), the lower bound on the variance equation, such that variance is strictly positive,

is given by the level effects of interest rates.

3 Estimation and asymptotic theory

In this section we discuss the estimation of the DST-Tree model and the corresponding

asymptotic theory. As the true distribution of ut is unknown, the parameters of model (2)

are estimated by a quasi-maximum likelihood estimator (QMLE). The quasi-maximum

likelihood function of (2) is

LT (ψ) =
1

T

T∑

t=1

ℓt(ψ) =
1

T

T∑

t=1

[
−1

2
ln(2π) − 1

2
ln(ht) −

ε2
t

2ht

]
. (8)

Note that the processes yt, xt, and ht, t ≤ 0, are unobserved, and hence are only arbitrary

constants. Thus, LT (ψ) is a quasi-log-likelihood function that is not conditional on the

true (y0,x0, h0), making it suitable for practical applications. However, to prove the

asymptotic properties of the QMLE, it is more convenient to work with the unobserved

process {(εu,t, hu,t) : t = 0,±1,±2, . . .}.

Conditional on F0 = (y0,x0, y−1,x−1, y−2,x−2, . . .), the unobserved quasi-log-likelihood

function is given by

Lu,T (ψ) =
1

T

T∑

t=1

ℓu,t(ψ) =
1

T

T∑

t=1

[
−1

2
ln(2π) − 1

2
ln(hu,t) −

ε2
u,t

2hu,t

]
. (9)

The main difference between LT (ψ) and Lu,T (ψ) is that the former is conditional on any

initial values, whereas the latter is conditional on an infinite series of past observations.

In practice, the use of (9) is not possible.
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3.1 Asymptotic theory

Let

ψ̂T = argmax
ψ∈Ψ

LT (ψ) = argmax
ψ∈Ψ

[
1

T

T∑

t=1

ℓt(ψ)

]
,

and

ψ̂u,T = argmax
ψ∈Ψ

Lu,T (ψ) = argmax
ψ∈Ψ

[
1

T

T∑

t=1

ℓu,t(ψ)

]
.

Define L(ψ) = E [ℓu,t(ψ)]. We proceed to discuss the existence of L(ψ) and prove the

consistency of ψ̂T and ψ̂u,T . We first prove the strong consistency of ψ̂u,T , and then show

that sup
ψ∈Ψ

|Lu,T (ψ) − LT (ψ)| a.s.→ 0, so that the consistency of ψ̂T follows. Asymptotic nor-

mality of both estimators is considered in sequence. We prove the asymptotic normality

of ψ̂u,T . The proof of ψ̂T is straightforward. Detailed proofs of the following theorems

are given in Appendix A.

The following theorem proves the existence of L(ψ). It is based on Theorem 2.12 in

White (1994), which establishes that under certain conditions of continuity and measur-

ability of the quasi log-likelihood function, L(ψ) exists.

Theorem 1. Under Assumption 1, L(ψ) exists and is finite.

Remark 4. In Assumption 1 we restrict the process to be stationary and ergodic. Finding

necessary and sufficient stationary conditions for nonlinear models is, in general, a very

difficult task. In most cases, only sufficient and overly restrictive conditions are available.

The case of the model considered in this paper is not different. Considering equations

(6) and (7), one possible sufficient condition is to impose that the model in each limiting

regime is stationary: |βi| < 1 and |ai + bi| < 1, ∀ i. However, as pointed out in Medeiros

and Veiga (2009), this set of restrictions may be too restrictive. In practical terms, one

can always simulated the paths generated from an estimated model and check whether or

not it has stationary dynamics.

Remark 5. For example, a set of sufficient conditions for almost sure positivity of the

conditional variance of the DST-Tree model is:
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1. ai ≥ 0, bi ≥ 0, and σ2
i > 0, ∀ i ∈ T;

2. rt > 0, a.s., t = 1, . . . , T .

Consider the following assumption.

Assumption 2. The true and unique parameter vector ψ0 ∈ Ψ is in the interior of Ψ,

a compact subset of finite dimensional Euclidean space.

Assumption 3. The DST-Tree model is identifiable, in the sense that, for a sample

{yt,xt}T
t=1 and for ψ1, ψ2 ∈ Ψ, LT (ψ1) = LT (ψ2) with probability 1 is equivalent to

ψ1 = ψ1.

Assumption 2 is standard while Assumption 3 guarantees the identification of the

model. The consistency result is given in the following theorem.

Theorem 2. Under the Assumptions 1–3 the QMLE ψ̂T is weak consistent for ψ0, i.e.,

ψ̂T

p→ ψ0.

We introduce the following matrices:

A(ψ0) = E


−∂2ℓu,t(ψ)

∂ψ∂ψ′

∣∣∣∣∣
ψ0


 , B(ψ0) = E


∂ℓu,t(ψ)

∂ψ

∣∣∣∣∣
ψ0

∂ℓu,t(ψ)

∂ψ′

∣∣∣∣∣
ψ0


 ,

and

AT (ψ) =
1

T

T∑

t=1

[
1

2ht

(
ε2

t

ht

− 1

)
∂2ht

∂ψ∂ψ′ −
1

2h2
t

(
2
ε2

t

ht

− 1

)
∂ht

∂ψ

∂ht

∂ψ′

+

(
εt

h2
t

)(
∂εt

∂ψ

∂ht

∂ψ′ +
∂ht

∂ψ

∂εt

∂ψ′

)
+

1

ht

(
∂εt

∂ψ

∂εt

∂ψ′ + εt
∂2εt

∂ψ∂ψ′

)]
,

(10)
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BT (ψ) =
1

T

T∑

t=1

∂ℓt(ψ)

∂ψ

∂ℓt(ψ)

∂ψ′

=
1

T

T∑

t=1

[
1

4h2
t

(
ε2

t

ht

− 1

)2
∂ht

∂ψ

∂ht

∂ψ′ +
ε2

t

ht

∂εt

∂ψ

∂εt

∂ψ′

− εt

2h2
t

(
ε2

t

ht

− 1

)(
∂ht

∂ψ

∂εt

∂ψ′ +
∂εt

∂ψ

∂ht

∂ψ′

)]
(11)

Consider the following assumption:

Assumption 4. E [ε4
t ] = µ4 < ∞.

The following theorem states the asymptotic normality result.

Theorem 3. Under Assumptions 1–4,
√

T (ψ̂T −ψ0)
d→ N (0,A(ψ0)

−1B(ψ0)A(ψ0)
−1).

Furthermore, the matrices A(ψ0) and B(ψ0) are consistently estimated by AT (ψ̂) and

BT (ψ̂), respectively.

3.2 Modeling Cycle

In this section we briefly present the modeling cycle adopted in this paper. The choice of

relevant variables, the selection of the node to be split (if this is the case), and the selection

of the splitting (or transition) variable are carried out by the use of a information criterium,

such as the BIC. An alternative procedure, which has not been used in this paper, is to

use a a sequence of Lagrange Multiplier (LM) tests following the ideas originally presented

in Luukkonen et al. (1988) and widely used in the literature; see, for example, da Rosa

et al. (2008). Our choice to use the BIC is motivated by the empirical evidence that such

an approach works well in practice with regression-tree models; see, for example, Audrino

(2006).

As pointed out by one of the referees, the use of a information criterium to specify

the DST-Tree model inevitably means estimating a number of unidentified models, which
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may cause numerical problems and instabilities in the modelling procedure. This is of

course true, however, the use of Bagging as described in Section 4 can attenuate such

problems. Furthermore, it is not clear if sequence of LM tests advocated by da Rosa et

al. (2008) is a consistent procedure to specify the structure of the DST-Tree model due

the nested nature of such models.

Consider that yt follows a DST-Tree model with K leaves and we want to decide

whether or not the terminal node i∗ ∈ T should be split.

The approach adopted here is closely related to the one advocated in Audrino and

Bühlmann (2001). First, a growing algorithm is used until a maximum number of limiting

regimes is achieved. At each step, the idea is to select the node to be split and the

respective transition variable such that the log-likelihood is maximized. Of course, such

procedure can lead to an over-parametrized specification. The second step is to prune

the model. This is carried out by the use of information criterium: We search for a best

subtree with respect to the BIC which is often computationally feasible since the number

of regimes is not very big. For example, in our empirical analysis we found three limiting

regimes. For more details, see Audrino and Bühlmann (2001) or Audrino (2006).

4 Forecasting: The role of bagging

It is well known that instability (that is, the variance of the estimator is high) often occurs

when hard decisions with indicator functions are involved as in the case of regression or

classification trees; see, for example, Hastie et al. (2001) or Berk (2008). One way to

reduce such an instability is bootstrap aggregating (bagging, for short) introduced by

Breiman (1996). Bagging is a statistical procedure designed to improve forecast accuracy

of models selected by unstable decision rules. Bagging has been shown to be a useful

technique to improve the accuracy of final forecasts based on the predictive power of

potentially many relevant predictors that, individually, have only weak explanatory power.

In essence, bagging involves (i) fitting a given model to the original sample, considering
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as predictors in the estimation all potentially relevant variables; (ii) generating a large

number of bootstrap resamples from this approximation of the data; (iii) applying the

decision rule to each of the resamples; and (iv) averaging across bootstrap resamples

the forecasts obtained from the models selected by the decision rule when estimated on

the different resamples. By averaging across resamples, bagging effectively removes the

instability of the decision rule. Improvements are relevant in particular when the variance

of the estimator is high, as in the case of tree-based procedures.

Bühlmann and Yu (2002) showed that bagging has the potential to achieve dramatic

reductions in forecast mean squared errors for a wide range of unstable procedures. In

particular, bagging turns out to be advantageous when aiming to improve the predictive

performance of regression and classification trees. In case of regression trees, the theory

developed in Bühlmann and Yu (2002) confirms Breiman’s intuition that bagging is a

variance reduction technique, reducing also the mean squared error. Recently, Inoue and

Kilian (2004) extended the use of bagging to the time series framework, presented the

theoretical arguments in favor of bagging, and characterized the conditions under which

one would expect bagging to work. In two succeeding applications, Inoue and Kilian

(2008) (bagging applied to the forecast of US CPI inflation) and Hillebrand and Medeiros

(2007) (bagging applied to the forecast realized volatility) found good and encouraging

results. Therefore, we propose bagging to alleviate the instability problem directly related

to the use of tree-based procedures, and to improve the forecasts of short-term interest

rate process dynamics obtained from the smooth-transition tree-structured model.

Based on the bagging procedure proposed by Inoue and Kilian (2004) for the linear

regression model, the bagged DST-Tree model for the short-term interest rate dynamics

is constructed as follows.

1. Arrange the set of response and predictor variables in the form of a matrix of
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dimension T × K, where K = 1+ the number of predictor variables considered:

{
∆rt,x

′

t

}
, t = 1, . . . , T

where xt =
(
∆rt−1, rt−1, (x

ex
t−1)

′
)′

.

Construct B bootstrap samples of the form

(
∆r∗(i)1, (x

∗
(i)1)

′
)
, . . . ,

(
∆r∗(i)T , (x∗

(i)T )
′
)
, i = 1, . . . , B

by drawing with replacement blocks of m rows of this matrix, where the block size

m is chosen to capture the dependence in the error term.

2. For each bootstrap sample, estimate the DST-Tree model with three limiting regimes2

following the procedure proposed in Section 3. Note that for each bootstrap sample

the optimal selection of predictor variables and splitting points, as well as the op-

timal local parameters will be different. Compute the forecasts of the conditional

mean and variance of the short-rate process for the out-of-sample period by using

the optimal parameters estimated from the i-th bootstrap sample, and call them

(µ∗
(i)T+t, h

∗
(i)T+t), t = 1, . . . , Tout.

3. Compute the average forecasts of the conditional mean and variance of the short-rate

process for the out-of-sample period:

(
µ̂T+t =

1

B

B∑

i=1

µ∗
(i)T+t, ĥT+t =

1

B

B∑

i=1

h∗
(i)T+t

)
, t = 1, . . . , Tout.

In most cases, bagging trees will not be a prohibitive computational burden; see, for

2We fixed the depth of the tree to be the same as the optimal tree estimated from the original data;
see Section 5.2.
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example, the results illustrated in Berk (2008). Nevertheless, if the bagging procedure be-

comes too computationally expensive, the same properties holding for bagging trees (and

discussed above) also hold for subsample aggregating (subagging) trees, that is a compu-

tationally cheaper version of bagging, given that it implies re-estimation of the models on

resamples with smaller sizes than the original one; for more details, see Bühlmann and

Yu (2002) or Buya and Stuetzle (2006).

5 Real Data Investigation

5.1 Data

The data used in this study are one-month U.S. Treasury bill rates downloaded from the

Fama CRSP Treasury bill files. The data span the time period between January 1960

and December 2006, for a total of 564 monthly observations. We split the data sample

in two parts; Consistent with the literature, we use the period between January 1960

and December 2001 (504 observations) as in-sample estimation period. The remaining 60

observations are left to test the prediction accuracy of the different model specifications.

Figure 1 plots the data as well as the monthly changes in short-term interest rates. Table

1 presents some sample statistics.

Figure 1 illustrates well the dramatic changes in the short-term interest rates that

occurred during the OPEC oil crises in the 1973-75 period and the Fed experiment in

the 1979-82 period. The volatility of the monthly changes associated with the Fed ex-

periment is striking. Volatility is also noticeably higher than average during the 1973-75

period and immediately after the October 1987 stock market crash. As expected, Table 1

shows that the mean change in the short-term interest rates is close to zero, that there is

significant excess kurtosis, and that the correlation between ∆rt and rt−1 is negative. All

these stylized facts have been documented in the literature and justify the introduction

of regime-switching models (of Markovian or threshold type) as reasonable and simple
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processes for the short-term interest rate dynamics.

Similarly to Ang and Piazzesi (2003), Audrino (2006) and Diebold et al. (2006),

we consider a number of term structure and macroeconomic factors as predictors in our

smooth transition tree structured model. This is done to exploit the additional informa-

tion of the yield curve, real activity, and inflation, for estimation and prediction purposes.

In greater detail, we consider the 60-month zero coupon bond rates from the Fama CRSP

discount bond files, as well as the spread between the 60-month and the 1-month yields,

the CPI and the PPI of finished goods as measures of inflation, and the index of Help

Wanted Advertising in Newspapers (HELP), unemployment (UE) and the growth rate

of industrial production (IP), and GDP to capture real activity. All the macroeconomic

data have been downloaded from Datastream International for the time period under

investigation. This list of variables includes most that have been used in the macro lit-

erature. Among these variables, HELP is traditionally considered a leading indicator of

real activity. Summary statistics of these variables are reported in Table 1.

5.2 Estimation results

We analyze the optimal regimes’ structure, transition functions, and parameter estimates

of the local conditional mean and variance of the short-term interest rate obtained using

the DST-Tree model introduced in Section 2. Local parameter estimates and optimal

limiting regimes are summarized in Table 2. They are computed for the in-sample period

beginning January 1960 and ending December 2001, for a total of 504 monthly observa-

tions. The detailed specification of the model is noted under Table 2.

We find that the estimated DST-Tree model has three limiting regimes. Similar to

the findings of Audrino (2006), such limiting regimes are fully characterized by the two

main indices for real activity and inflation. The first limiting regime is characterized by a

low real activity, the implied long-run mean is relatively low (3.6%), and there is strong

statistical evidence of a moderate mean reversion. Individual shocks have a negligible
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immediate effect on the conditional variance, but are strongly persistent. The conditional

variance is also significantly related to the level of the short rate, although the small value

of the CIR parameter renders it economically insignificant.

The second and third limiting regimes are both characterized by high real activity,

but by a different level of inflation. In the second limiting regime, inflation is low. The

implied long-run mean is large and negative (approximately −26%). Individual shocks

have neither immediate nor persistent effect on the conditional variance. On the contrary,

conditional variance is significantly related to the level of the short rate.

In the third limiting regime, both real activity and inflation are high. There is strong

evidence of mean reversion around a high implied long-run mean (approximately 13%).

The local GARCH process is not weakly stationary (a3 +b3 > 1) 3; individual shocks have

a large (but not statistically significant) immediate impact on the conditional variance

and are strongly persistent. Although, the t-statistic for â3 is low (1.4551), â3 is quite

high, in particular when compared to â1 and â2.

To complete this section, we now analyze the optimal functions BJi(·), that is the

probability functions associated with the three different local specifications given in Table

2. The shape of the functions is shown in Figure 2.

The optimal parameters are γ1 = 0.2882 and γ2 = 0.1488.4 As Figure 2 clearly shows,

the three logistic functions are non-linear in the predictors and considerably smoother

than the identity (that is 0-1) functions used by classical trees. This renders a clear

interpretation of the regimes in terms of contractions/expansions periods difficult. Nev-

ertheless, time periods characterized by values of the HELP index smaller than 80 can

be reasonably associated with regime 1 (the probability of being in such a regime is very

high; see again Figure 2). On the contrary, time periods characterized by values of the

3Note that, even with a nonstationary regime, the global model can be still stationary; see Medeiros
and Veiga (2009) for a discussion

4We computed values of the t-statistics of the optimal γ parameters based on heteroskedastic-consistent
standard errors. Such values are not significant. This is not surprising, since under the null-hypothesis
the parameters are not identified and the distribution of the statistic is not correctly specified.
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HELP index larger than 100 can be associated with regimes 2 and 3. A clear distinction

between regimes 2 and 3 is more difficult and can lead to wrong conclusions. In Figure

3 we overlay shaded NBER recessions to the time series of the HELP index to illustrate

recessions/expansions correspondence.

Not surprisingly, Figure 3 shows that during most NBER recessions between 1960

and 2001, the conditional dynamics of the short-term interest rate followed closely those

described under regime 1. This is consistent with the results found in Audrino (2006).

5.3 Forecasting results

Here we investigate the accuracy of the proposed models for the prediction of first and

second conditional moments of the one-month-ahead short-term interest rate process. The

out-of-sample period goes from January 2002 to December 2006, for a total of 60 monthly

observations. To reduce computational costs, we adopt here a split-sample procedure.

We compare goodness-of-fit results of the smooth transition tree-structured (ST-tree)

model with those from: (1) a global CIR-GARCH-type model with level effects in condi-

tional variances (single-regime ST-tree model); (2) a global CIR-GARCH-type model with

level effects in conditional variances and all relevant macro-variables in the conditional

mean equation. The significant macro-variables in the conditional mean are chosen using

subset selection (see Hastie et al., 2001, pages 55-57). We found that the relevant macro-

variables are HELP, PPI and GDP; (3) the Markovian regime-switching (RS) model with

two regimes proposed by Gray (1996); (4) a modification of the RS model proposed by

Gray (1996), where probabilities are also allowed to depend on macro-variables (see Au-

drino, 2006). We found that the most relevant macro-variable is the HELP index; and

(5) the standard tree-structured model proposed by Audrino (2006).

For each model specification, we also consider the bagged version of it. We quantify the

goodness-of-fit of the different models for predicting monthly first and second conditional

moments by means of three different measures: the out-of-sample negative log-likelihood
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(Loglik), and the mean squared errors (MSE) for the conditional mean and variance.

Mathematically speaking, the last two performance measures are given by:

MSE-mean =
1

60

60∑

t=1

(
∆rt − µ̂t

)2
(12)

MSE-variance =
1

60

60∑

t=1

(
ĥt − (∆rt − µ̂t)

2
)2

(13)

where µ̂t and ĥt are computed using the optimal parameters estimated with the in-sample

data (from January 1960 to December 2001). We performed a series of the superior pre-

dictive ability (SPA) tests for forecasting one-month ahead first and second conditional

moments introduced by Hansen (2005) to quantify statistical differences among the mod-

els. In the SPA tests, we test the null-hypothesis that each particular model is not

outperformed by any of the alternative specifications.

The performance results are summarized in Table 3. In the bagging procedure using

the block-bootstrap of Künsch (1989), we use B = 50 replications and a block size of

m = 20. p-values of the SPA tests are reported in parentheses (Panel A).

Without considering bagging, the DST-Tree model yields the best result with respect

to the out-of-sample negative log-likelihood and is also competitive for forecasting condi-

tional variance. It shows some problems when the focus is the prediction of the conditional

mean. As argued in Section 4, such difficulties may be a consequence of the instability

of tree-based models. Results showed in Table 3 support this thesis. The usefulness of

bagging is particularly evident. The bagged DST-Tree yields the best results with respect

to all out-of-sample performance measures considered. It clearly outperforms all other

model specifications. Such differences are in most cases statistically significant at the 5

percent or 10 percent confidence levels, as the results of the SPA tests show.

To end the analysis, we also perform a series of generalized Diebold and Mariano tests

to take into account serial correlation (see Diebold and Mariano, 1995). We perform

pairwise comparisons of the bagged version of the DST-Tree model (benchmark model)

19



against the bagged alternative specifications. Results are shown in Panel B of Table 3.

Negative values of the statistic are in favor of the bagged DST-Tree model. Once again,

the superior forecasting power of the DST-Tree model is particularly evident.

6 Conclusions

In this paper we propose a novel smooth transition conditional heteroskedastic model

that combines regression trees and GARCH models. Our model uses the interpretability

of regression trees and the flexibility of smooth transition models. We have applied our

new model to describe regime switches in the short-term interest rate series. We care-

fully address the estimation of such models, we derive the asymptotic properties of the

quasi-maximum likelihood estimator, and we discuss the different modeling cycle strate-

gies. When the model was applied to the US short-term interest rate we reached several

interesting conclusions. First, the leading indicators for inflation and real activity are

the most relevant predictors in characterizing the multiple regimes’ structure. Second,

the optimal model has three limiting regimes, with significantly different local condi-

tional mean and variance dynamics. Third, there is some correspondence between NBER

recessions/expansions and our limiting regimes. Finally, we investigate the forecasting

accuracy of the new model’s conditional mean and variance predictions, concluding that

the new model in most cases significantly outperforms existing alternatives introduced in

the literature.
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A Proofs

Before proceeding to the proofs, we define our notation, as follows. First, set ψ =

(ψ′
M ,ψ′

V )
′
, where ψM and ψV are the parameters of the conditional mean and variance,

respectively and define, as in Section 3, zt = (ε2
t−1, ht−1, x̃

′
t)

′. In addition, let model (2)–(3)

be written as

yt = g(xt;ψM) + h(zt;ψV )1/2ut (14)

and set gt ≡ g(xt;ψM) and ht ≡ h(zt;ψV ). Furthermore, write εt ≡ εt(ψM) = yt −

gt, let J and K be the number of parent and terminal nodes, respectively, and define

πi = (ai, bi,λ
′
i)
′
, i = 1, . . . , K. Finally, to simplify notation define Bi,t ≡ BJi(xt;θi),

i = 1, . . . , K and Gj,t ≡ G (xj,t; γj, cj), j = 1, . . . , J .

Derivatives of the Log-likelihood Function

The first-order derivative of the log-likelihood function is given by

∂LT (ψ)

∂ψ
=

1

T

T∑

t=1

[
1

2ht

(
ε2

t

ht

− 1

)
∂ht

∂ψV

+
εt

ht

∂εt

∂ψM

]
, (15)
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where

∂εt

∂ψM

= −
[
x̃′

tB1,t, . . . , x̃
′
tBK,t,β

′
1x̃t

∂B1,t

∂θ′1
, . . . ,β′

K x̃t
∂BK,t

∂θ′K

]′
,

∂ht

∂ψV

=
t∑

k=1

[
t∏

j=k+1

(
K∑

i=1

biBi,t

)]
wk +

[
t∏

j=1

(
K∑

i=1

biBi,t

)]
∂h0

∂ψ′
V

,

wt =

[
z′tB1,t, . . . , z

′
tBK,t,π

′
1zt

B1,t

∂θ′1
, . . . ,π′

Kzt
∂BK,t

∂θ′K

]′
, and

∂Bi,t

∂θ′i
=

{
∑

j∈Ji

[
ni,j (1 + ni,j)

2
G

ni,j(1+ni,j)
2

−1

j,t × (1 − Gj,t)
(1−ni,j)(1+ni,j)

− (1 − ni,j) (1 + ni,j) G
ni,j(1+ni,j)

2
j,t × (1 − Gj,t)

(1−ni,j)(1+ni,j)−1

]
∂Gj,t

∂θ′i

×
∏

k∈Ji,k 6=j

G
ni,j(1+ni,j)

2
j,t (1 − Gj,t)

(1−ni,j)(1+ni,j)

}

×



∏

j /∈Ji

G
ni,j(1+ni,j)

2
j,t (1 − Gj,t)

(1−ni,j)(1+ni,j)


 .

The second order derivative is given by

∂2LT (ψ)

∂ψ∂ψ′ =

(
ε2

t

ht

− 1

)
1

2ht

∂2ht

∂ψVψ
′
V

− 1

2h2
t

(
2
ε2

t

ht

− 1

)
∂ht

∂ψV

∂ht

∂ψ′
V

+

(
εt

h2
t

)(
∂εt

∂ψM

∂ht

∂ψ′
V

+
∂ht

∂ψV

∂εt

∂ψ′
M

)
+

1

ht

(
∂εt

∂ψM

∂εt

∂ψ′
M

+ εt
∂2εt

∂ψM∂ψ′
M

)
.

Proof of Theorem 1

It is easy to see that model (14) is a continuous function in the parameter vector ψ.

Similarly, we can see that (14) is continuous in xt and zt, and therefore is measurable, for

each fixed value of ψ.

Furthermore, under the stationarity requirement in Assumption 1 and the restrictions

in Assumption 3, E

[
sup
ψ∈Ψ

|hu,t|
]

< ∞ and E

[
sup
ψ∈Ψ

|yu,t|
]

< ∞. By Jensen’s inequality, it

is clear that E

[
sup
ψ∈Ψ

|ln |hu,t||
]

< ∞. Thus, E [|ℓu,t(ψ)|] < ∞ ∀ψ ∈ Ψ.

Let h0,t be the true conditional variance and ε0,t = h
1/2
0,t ut. In order to show that L(ψ)
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is uniquely maximized at ψ0, rewrite the maximization problem as

max
ψ∈Ψ

[L(ψ) − L(ψ0)] = max
ψ∈Ψ

{
E

[
ln

(
h0,t

hu,t

)
−

ε2
u,t

hu,t

+ 1

]}
. (16)

Writing εu,t = εu,t − ε0,t + ε0,t, equation (16) becomes

max
ψ∈Ψ

[L(ψ) − L(ψ0)] = max
ψ∈Ψ

{
E

[
ln

(
h0,t

hu,t

)
− h0,t

hu,t

+ 1

]
− E

[
[εu,t − ε0,t]

2

hu,t

]

− E

[
2uth

1/2
0,t (εu,t − ε0,t)

hu,t

]}

= max
ψ∈Ψ

{
E

[
ln

(
h0,t

hu,t

)
− h0,t

hu,t

+ 1

]
− E

[
[εu,t − ε0,t]

2

hu,t

]}
,

(17)

where E

[
2uth

1/2
0,t (εu,t−ε0,t)

hu,t

]
= 0 by the Law of Iterated Expectations.

Note that, for any x > 0, m(x) = ln(x) − x ≤ 0, so that

E

[
ln

(
h0,t

hu,t

)
− h0,t

hu,t

]
≤ 0.

Furthermore, m(x) is maximized at x = 1. If x 6= 1, m(x) < m(1), implying that

E[m(x)] ≤ E[m(1)], with equality only if x = 1 a.s.. However, this will occur only if

h0,t

hu,t
= 1, a.s.. In addition,

E

[
[εu,t − ε0,t]

2

hu,t

]
= 0

if and only if εu,t = ε0,t. Hence, ψ = ψ0. This completes the proof. �

Proof of Theorem 2

Following White (1994), Theorem 3.5, ψ̂u,T
a.s.→ ψ0 if the following conditions hold: (1)

The parameter space Ψ is compact; (2) Lu,T (ψ) is continuous in ψ ∈ Ψ. Furthermore,

Lu,T (ψ) is a measurable function of yt, xt, and zt, t = 1, . . . , T , for all ψ ∈ Ψ; (3)L(ψ)
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has a unique maximum at ψ0; and (4) lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ) − L(ψ)| = 0, a.s..

Condition (1) holds by assumption. Theorem 1 shows that Conditions (2) and (3) are

satisfied. By Lemma 1, Condition (4) is also satisfied. Thus, ψ̂u,T
a.s.→ ψ0. Lemma 2 shows

that lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ) − LT (ψ)| = 0 a.s., implying that ψ̂T
a.s.→ ψ0. This completes the

proof. �

Proof of Theorem 3

We start by proving asymptotic normality of the QMLE using the unobserved log-likelihood.

When this is shown, the proof using the observed log-likelihood is immediate by Lemmas

2 and 4. According to Theorem 6.4 in White (1994), to prove the asymptotic normality

of the QMLE we need the following conditions in addition to those stated in the proof of

Theorem 2: (5) The true parameter vector ψ0 is interior to Ψ; (6)the matrix

AT (ψ) =
1

T

T∑

t=1

(
∂2ℓt(ψ)

∂ψ∂ψ′

)

exists a.s. and is continuous in Ψ; (7) the matrix AT (ψ)
a.s.→ A(ψ0), for any sequence ψT ,

such that ψT
a.s.→ ψ0; and (8) the score vector satisfies

1√
T

T∑

t=1

(
∂ℓt(ψ)

∂ψ

)
d→ N(0,B(ψ0)).

Condition (5) is satisfied by assumption. Condition (6) follows from the fact that ℓt(ψ)

is differentiable of order two on ψ ∈ Ψ, and the stationarity of the DST-Tree model. The

non-singularity of A(ψ0) and B(ψ0) follows from Lemma 4. Furthermore, Lemmas 3 and

5 implies that Condition (7) is satisfied. In Lemma 6 below, we prove that condition (8)

is also satisfied. This completes the proof. �
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B Lemmas

Lemma 1. Suppose that yt follows a DST-Tree model satisfying the restrictions in As-

sumptions 1 and 3, and stationarity holds. Then, lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ) − L(ψ)| = 0, a.s..

Proof. Set g(Yt,ψ) = ℓu,t(ψ) − E [ℓu,t(ψ)], where Yt =
[
yt,x

′
t,x

′
t−1, . . .

]′
. Hence,

E [g(Yt,ψ)] = 0. Under stationarity, it is clear that E

[
sup
ψ∈Ψ

|g(Yt,ψ)|
]

< ∞. Further-

more, as g(Yt,ψ) is strictly stationary and ergodic, then, by Theorem 3.1 in Ling and

McAleer (2003), it follows that lim
T→∞

sup
ψ∈Ψ

∣∣∣T−1
∑T

t=1 g(Yt,ψ)
∣∣∣ = 0, a.s.. This completes

the proof. �

Lemma 2. Under the assumptions of Lemma 1, lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ) − LT (ψ)| = 0, a.s..

Proof. Set a(xt) =
∑K

i=1 aiBi,t, b(xt) =
∑K

i=1 biBi,t, λ(xt) =
∑K

i=1 λiBi,t, and write

ht = a(xt)ε
2
t−1 + b(xt)ht−1 + λ(xt)

′x̃t

=
t∑

i=1

{
[
a(xi)ε

2
i−1 + λ(xt)

′x̃t

]
[

t∏

j=i+1

b(xj)

]}
+

[
t∏

j=1

b(xj)

]
h0, and

hu,t = a(xt)ε
2
t−1 + b(xt)ht−1 + λ(xt)

′x̃t

=
t∑

i=1

{
[
a(xi)ε

2
u,i−1 + λ(xt)

′x̃t

]
[

t∏

j=i+1

b(xj)

]}
+

[
t∏

j=1

b(xj)

]
hu,0

(18)

Hence,

hu,t − ht = a(x1)

[
t∏

j=1

b(xj)

]
(
ε2

u,0 − ε2
0

)
+

[
t∏

j=1

b(xj)

]
(hu,0 − h0)

and

|hu,t − ht| ≤ a(x1)

[
t∏

j=1

b(xj)

]
∣∣(ε2

u,0 − ε2
0

)∣∣+
[

t∏

j=1

b(xj)

]
|(hu,0 − h0)| ,

as a(xt) > 0 and b(xt) > 0, ∀ t by assumption and, under the stationarity of the process,

[
t∏

j=1

b(xj)

]
a.s.→ 0.

25



Furthermore, hu,0 and ε2
0,u are well defined, as

Pr

[
sup
ψ∈Ψ

(hu,0 > K1)

]
→ 0 as K1 → ∞, and Pr

[
sup
ψ∈Ψ

(
ε2

u,0 > K2

)]
→ 0 as K2 → ∞.

Thus,

sup
ψ∈Ψ

|ht − hu,t| ≤ Khρ
t
1, a.s., and

sup
ψ∈Ψ

∣∣ε2
0 − ε2

u,0

∣∣ ≤ Kερ
t
2, a.s.,

where Kh and Kε are positive and finite constants, 0 < ρ1 < 1, and 0 < ρ2 < 1. Hence,

as ht > δ,δ a positive and finite constant, and log(x) ≤ x − 1,

sup
ψ∈Ψ

|ℓt − ℓu,t| ≤ sup
ψ∈Ψ

[
ε2

t

∣∣∣∣
hu,t − ht

hthu,t

∣∣∣∣+
∣∣∣∣log

(
1 +

ht − hu,t

hu,t

)∣∣∣∣
]

≤ sup
ψ∈Ψ

(
1

δ2

)
Khρ

t
1ε

2
t + sup

ψ∈Ψ

(
1

δ

)
Khρ

t
1, a.s..

Following the same arguments as in the proof of Theorems 2.1 and 3.1 in Francq and

Zaköıan (2004), it can be shown that lim
T→∞

sup
ψ∈Ψ

|Lu,T (ψ) − LT (ψ)| = 0, a.s.. This com-

pletes the proof. �

Lemma 3. Under the conditions of Theorem 3,

E

[∣∣∣∣∣
∂ℓt(ψ)

∂ψ

∣∣∣∣
ψ0

∣∣∣∣∣

]
< ∞, (19)

E

[∣∣∣∣∣
∂ℓt(ψ)

∂ψ

∣∣∣∣
ψ0

∂ℓt(ψ)

∂ψ′

∣∣∣∣
ψ0

∣∣∣∣∣

]
< ∞, and (20)

E

[∣∣∣∣∣
∂2ℓt(ψ)

∂ψ∂ψ′

∣∣∣∣
ψ0

∣∣∣∣∣

]
< ∞. (21)

Proof. As the derivatives of the transition function are bounded, if stationarity holds,

the derivatives of the likelihood function are clearly bounded. Hence, the remainder of

the proof follows from the proof of Theorem 3.2 (part (i)) in Francq and Zaköıan (2004).

This completes the proof. �
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Lemma 4. Under the conditions of Theorem 3, A(ψ0) and B(ψ0) are nonsingular and,

when ut has a symmetric distribution, are block-diagonal.

Proof. First, note that the restrictions in Assumption 3 guarantee the minimality

(identifiability) of the DST-Tree model considered in this paper. Therefore, the results

follow from the proof of Theorem 3.2 (part (ii)) in Francq and Zaköıan (2004). This

completes the proof. �

Lemma 5. Under the conditions of Theorem 3,

(a) lim
T→∞

sup
ψ∈Ψ

∥∥∥∥∥
1

T

T∑

t=1

[
∂ℓu,t(ψ)

∂ψ
− ∂ℓt(ψ)

∂ψ

]∥∥∥∥∥ = 0, a.s.,

(b) lim
T→∞

sup
ψ∈Ψ

∥∥∥∥∥
1

T

T∑

t=1

[
∂2ℓu,t(ψ)

∂ψ∂ψ′ − ∂2ℓt(ψ)

∂ψ∂ψ′

]∥∥∥∥∥ = 0, a.s, and

(c) lim
T→∞

sup
ψ∈Ψ

∥∥∥∥∥
1

T

T∑

t=1

∂2ℓu,t(ψ)

∂ψ∂ψ′ − E

[
∂2ℓu,t(ψ)

∂ψ∂ψ′

]∥∥∥∥∥ = 0, a.s..

Proof. First, assume that h0 and hu,0 are fixed constants and write

∂

∂ψ
(hu,t − ht) =

[
∂

∂β′
1

(hu,t − ht) , . . . ,
∂

∂β′
K

(hu,t − ht) ,
∂

∂π′
1

(hu,t − ht) , . . . ,
∂

∂π′
K

(hu,t − ht) ,

∂

∂θ′1
(hu,t − ht) , . . . ,

∂

∂θ′J
(hu,t − ht)

]′
,
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where

∂

∂β′
i

(hu,t − ht) = 2a(x1)

[
t∏

j=1

b(xj)

](
εu,0

∂εu,0

∂βi

− ε0
∂ε0

∂βi

)
,

∂

∂π′
i

(hu,t − ht) =

[
t∏

j=1

b(xj)

](
∂hu,0

∂πi

− ∂h0

∂πi

)
,

∂

∂θ′i
(hu,t − ht) =

{
∂a(x1)

∂θ′i

[
t∏

j=1

b(xj)

]
+ a(x1)

∂

∂θ′i

[
t∏

j=1

b(xj)

]}
(
ε2

u,0 − ε2
0

)

+ 2a(x1)

[
t∏

j=1

b(xj)

](
εu,0

∂εu,0

∂θi

− ε0
∂ε0

∂θi

)

+
∂

∂θi

[
t∏

j=1

b(xj)

]
(hu,0 − h0) +

[
t∏

j=1

b(xj)

](
∂hu,0

∂πi

− ∂h0

∂πi

)
.

It is clear that, under stationarity of the process, all the derivatives above are bounded.

Hence, as in Francq and Zaköıan (2004), part (a) follows trivially. The proof of part (b)

follows along similar lines. The proof of part (c) follows the same arguments as in the

proof of Theorem 3.2 (part (v)) in Francq and Zaköıan (2004). This completes the proof.

�

Lemma 6. Under the conditions of Theorem 3,

1√
T

T∑

t=1

∂ℓt(ψ)

∂ψ

∣∣∣∣∣
ψ0

d→ N(0,B(ψ0)).

Proof. Let ST =
∑T

t=1 c′∇0ℓu,t, where c is a constant vector. Then ST is a martingale

with respect to Ft, the filtration generated by all past observations of yt. By the given

assumptions, E [ST ] > 0. Using the central limit theorem of Stout (1974),
√

TST
d→

N (0, c′B(ψ0)c). By the Cramer-Wold device,
√

T
∑T

t=1
∂ℓu,t(ψ)

∂ψ

∣∣∣∣
ψ0

d→ N (0,B(ψ0)).

By Lemma 5,
√

T
∑T

t=1

∥∥∥∥∥
∂ℓu,t(ψ)

∂ψ

∣∣∣∣
ψ0

− ∂ℓt(ψ)
∂ψ

∣∣∣∣
ψ0

∥∥∥∥∥
a.s.→ 0. Thus,

√
T
∑T

t=1
∂ℓt(ψ)

∂ψ

∣∣∣∣
ψ0

d→

N(0,B0). This completes the proof. �
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Künsch, H. R. (1989). The jackknife and the bootstrap for general stationary obser-

vations. Annals of Statistics 17, 1217–1241.

Ling, S. and McAleer, M. (2003). Asymptotic theory for a vector ARMA-GARCH

model. Econometric Theory 19, 280–310.
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Summary statistics of data

Central moments Autocorrelations

Mean Stdev Skew Kurt Lag 1 Lag 2 Lag 3

1 mth rates 5.2462 2.6496 1.1198 4.9472 0.9652 0.9376 0.9120

1 mth changes 0.0023 0.6953 1.0930 16.721 -0.1028 -0.0361 -0.0589

60 mth rates 6.6416 2.5365 0.9179 3.5773 0.9878 0.9739 0.9615

Spread 1.3944 1.1878 0.0353 3.8250 0.8449 0.7607 0.6774

CPI 4.0881 2.7835 1.3625 4.5441 0.9902 0.9761 0.9606

PPI 3.5130 4.4441 1.0462 4.5846 0.9761 0.9449 0.9159

HELP 83.169 25.369 0.1720 2.1040 0.9892 0.9786 0.9653

IP 3.0453 4.3952 0.7951 3.9041 0.9684 0.9178 0.8537

UE 1.3869 15.616 1.0880 4.2022 0.9550 0.9149 0.8566

GDP 6.8332 2.7445 0.0191 3.3684 0.9661 0.9324 0.8986

Table 1: The one-month yield is from the Fama CRSP treasury bill files. The 60 month
yield is the annual zero coupon bond yield from the Fama CRSP bond files. Spread refers
to the difference between long and short-term interest rates. The inflation measures
CPI and PPI refer to CPI inflation and PPI (finished goods) inflation, respectively. We
calculate the inflation measure at time t using log(Pt/Pt−12) where Pt is the (seasonally
adjusted) inflation index. The real activity measures HELP, IP, UE and GDP refer to
the index of help wanted advertising in newspapers, the (seasonally adjusted) growth rate
in industrial production, the unemployment rate, and the US gross domestic product,
respectively. The growth rate in industrial production is calculated using log(It/It−12)
where It is the (seasonally adjusted) industrial production index. The sample period is
January 1960 to December 2006, for a total of 564 observations.

32



DST-Tree local parameter estimates

Number of regimes: 3 regimes

Limiting Regimes Parameter Estimate t |(p-value)

HELPt−1 ≤ 90.91

α1 0.2109 3.1297∗

β1 −0.0586 −3.3020∗

a1 ≈ 0 ≈ 0
b1 0.8977 2.8193∗

σ2
1 0.0013 1.8126∗

α2 −2.1159 −1.3761
HELPt−1 > 90.91, β2 −0.0807 −0.4259
CPIt−1 ≤ 1.467 a2 ≈ 0 0.0001

b2 ≈ 0 ≈ 0
σ2

2 0.0369 2.1224∗

α3 3.5026 2.6878∗

HELPt−1 > 90.91, β3 −0.2703 −2.3732∗

CPIt−1 > 1.467 a3 0.2748 1.4551
b3 1.0015 3.6891∗

σ2
3 0.0029 0.1766

Log-likelihood −358.703

LB2
5 3.8051 (0.5778)

LB2
10 9.6482 (0.4719)

LB2
15 10.892 (0.7602)

Table 2: Local parameter estimates, limiting regimes’ structure (that is, when the slope
parameters γk = ∞, k ∈ Ji, i ∈ T), and related statistics for the double smooth transition
tree (DST-Tree) model which uses the additional information included in the term struc-
ture and in other macroeconomic variables for prediction (xt = (∆rt−1, rt−1, (x

ex
t−1)

′

)
′

).
The sample period is January 1960 to December 2001, for a total of 504 monthly ob-
servations. t-statistics are based on heteroskedastic-consistent standard errors. Asterisks
denote significance at the 5% level. LB2

i denotes the Ljung-Box statistic for serial corre-
lation of the squared residuals out to i lags. p-values are reported in parentheses.
In the double smooth transition tree (DST-Tree) model: yt | Ft−1 = ∆rt | Ft−1 ∼
N(µt, ht), with

µt =
∑

i∈T

(αi + βirt−1)BJi (xt;θi) ,

ht =
∑

i∈T

(
aiε

2
t−1 + biht−1 + σ2

i rt−1

)
BJi (xt;θi) ,

where the (probability) functions BJi (xt;θi) , i ∈ T, are given in (4).
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Panel A: Forecasting performances: SPA tests

Model Loglik MSE-mean MSE-variance

Global −5.4947 (0.0001) 0.0464 (0.0001) 0.0071 (0.0471)
Global with macro 4.7607 (0.0089) 0.0680 (0.0158) 0.0095 (0.0228)
Bagged Global 7.3379 (0.0000) 0.0432 (0.0019) 0.0081 (0.0103)
Gray’s RS −4.1150 (0.0075) 0.0456 (0.0835) 0.0064 (0.0606)
RS with macro −4.3733 (0.0098) 0.0451 (0.0521) 0.0055 (0.0463)
Bagged RS with macro −4.1298 (0.0054) 0.0412 (0.3662) 0.0054 (0.0885)
Audrino’s tree −7.3686 (0.0401) 0.0475 (0.0039) 0.0057 (0.3241)
Bagged Audrino’s tree −14.756 (0.0166) 0.0399 (0.5889) 0.0049 (0.4608)
DST-Tree −8.8808 (0.0109) 0.0517 (0.0631) 0.0056 (0.1871)
Bagged DST-Tree −18.320 (0.6846) 0.0389 (0.6259) 0.0045 (0.8834)

Panel B: Forecasting performances: Diebold and Mariano tests

Alternative Model Loglik MSE-mean MSE-variance

Bagged Global −11.929 (0) −2.3475 (0.0094) −5.1461 (0)
Bagged RS with macro −11.445 (0) −1.1047 (0.1346) −2.3462 (0.0095)
Bagged Audrino’s tree −4.0838 (0) −0.8376 (0.2011) −3.2600 (0.0005)

Table 3: The models considered in the analysis are: the classical global CIR-GARCH-
type model, also including macro-variables as linear predictors in the conditional mean
equation; the Markovian regime-switching (RS) model with and without macro-variables
used to specify the transition probabilities; the tree-structured model proposed by Audrino
(2006); the double smooth transition tree (DST-Tree) model; and the bagged versions of
the best performing different model specifications. In Panel B, we consider pairwise
comparisons of the bagged alternative specifications against the bagged DST-Tree model.
Negative statistic values are in favor of the bagged DST-Tree model. Loglik refers to the
out-of-sample negative log-likelihood, and MSE-mean and MSE-variance are the mean
squared errors computed for predicting first and second conditional moments, respectively.
p-values of superior predictive ability (SPA) tests (Panel A) and pairwise generalized
Diebold and Mariano tests (Panel B) are reported in parentheses.
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One-month T-bill rates (in %)

Time
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Figure 1: The top panel contains a time series of monthly one-month treasury-bill rates (in
percentages). The first differences of this series are shown in the bottom panel. The sample
period is January 1960 to December 2006, for a total of 564 observations.
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HELP index values
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Figure 2: Probability functions associated with the three optimal limiting regimes (first regime
top, second and third regimes bottom left and right, respectively) of the double smooth transition
tree (DST-Tree) model. The in-sample period goes from January 1960 to December 2001, for a
total of 504 observations.
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HELP time series

Time
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Figure 3: Help Wanted Advertising in Newspaper (HELP) time series for the period
January 1960 to December 2001. Shaded NBER recession periods are overlaid to show
regime correspondence with recessions/expansions. For values of the HELP index smaller
(larger) than 80 (100) the dynamics of the short-term interest rate closely follow the local
processes under regime 1 (regimes 2 and 3) given in Table 2.
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