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Abstract

Using �rm level panel data from the U.S., I explore the relationship between �rm size and R&D

productivity for two important and R&D-intensive industries: Semiconductors and Pharmaceu-

ticals. I employ two measures of a �rm�s R&D performance: the number of citations received

per patented innovation, and the number of citations received per dollar of R&D expenditures.

The former is a measure of the average quality of a �rm�s patents, and the latter is a measure of

total R&D output obtained per dollar of investments. I �nd that the average quality of patents

(citations received per patent) falls with �rm size in Pharmaceuticals, but there is no relation-

ship between patent quality and �rm size in Semiconductors. Citations received per R&D dollar

decrease with size in both industries, which is due to the well-documented negative relationship

between patents per R&D and �rm size.

Keywords: R&D Productivity, Firm size, Patents, Citations, Semiconductors, Pharmaceuti-

cals, Panel data.
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1 INTRODUCTION

The Schumpeterian hypothesis has been a source of much heated debate among economists. While

some economists, starting with Schumpeter (1942), claimed that large enterprises are the primary

engines of innovation and economic growth, others found evidence for both small-�rm and large-

�rm advantages in innovation. The presence of large �xed costs in innovation (Galbraith, 1952),

economies of scale and scope in R&D (Galbraith, 1952; Comanor, 1967), bene�ts of diversi�ed

product lines (Nelson, 1959), ability to spread the risks (Nelson, 1959) and costs (Cohen & Klepper,

1996) of R&D projects, easier access to external �nancing (Galbraith, 1952; Rothwell, 1989), and

possible advantages in the scienti�c labor market (Idson & Oi, 1999; Kim, Lee & Marschke, 2009a)

are commonly stated factors favoring large �rm productivity. On the other hand, small �rms may

have advantages in performing R&D due to a (comparative) lack of bureaucracy (Scherer, 1980;

Cooper, 1964; Blair, 1972), �exible decision making processes (Freeman & Soete, 1997; Rothwell,

1989) and a lack of the agency problems that may occur due to the incontractibility of the output of

a single scientist in large �rms (Lewis & Yao, 2001). Small �rms are also argued to have better R&D

performances since they tend to be more e¢ cient receivers of spillovers (Acs, Audretsch & Feldman,

1994; Audretsch & Vivarelli, 1994; Shimshoni, 1970). Since it is possible to state reasons for higher

productivity in both small and large �rms, the �nal verdict on the Schumpeterian hypothesis needs

to come from empirical research (Scherer, 1980).

In this article I perform an empirical test of the Schumpeterian hypothesis on two important

R&D-intensive industries in the U.S: Pharmaceuticals and semiconductors. For this purpose I use

two di¤erent (but related) measures of a �rm�s R&D output: the number of citations received per

patented innovation, and the number of citations received per dollar of R&D expenditures. The

former is meant as a proxy for the average quality of �rm�s patents, while the latter is a proxy for

total output achieved per dollar of R&D investments.

Focusing on individual industries has the advantage that economic units are technologically

similar, thus citation counts belonging to di¤erent �rms are comparable with one another. This, of

course, comes at the cost of losing generality since we have to make inferences about relatively nar-

row industry classi�cations. An empirical analysis of larger magnitude that spans a large number of

industry classi�cations needs to take additional caution to ensure that cross-industry di¤erences in

citation (and patenting) rates are not driving the main results. Such an e¤ort is undertaken by Din-

daroglu (2010), who addresses the same research question using a large panel of U.S. manufacturing
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�rms, and discusses some of these issues in further detail.

2 BACKGROUND

The relationship between �rm size and R&D performance is among the most intensely debated

questions in the economics of innovation. R&D performance is traditionally measured by patents

(or patents per R&D dollar), or innovation counts. While there are con�icting results, the literature

at large does not support the Schumpeterian hypothesis, and often �nds evidence on the contrary.

In an in�uential paper, Scherer (1965) studied the relationship between patenting and �rm size for

the 1955 cross section of the largest �rms in U.S. He found that the number of patents increased less

than proportionally with �rm size for most of the sample, with the exception of a small number of

very large �rms. Bound et al (1984) found that smaller �rms obtained a larger number of patents

per dollar of R&D expenditures in a 1976 cross section of U.S. manufacturing �rms. Similar

results have been found by Johannisson and Lindstrom (1971) in Swedish, and by Schwalbach and

Zimmerman (1991) in German manufacturing. Therefore, such results are not con�ned to the U.S.

Some authors have utilized databases of signi�cant innovations to study the relationship be-

tween �rm size and innovation counts1 . Pavitt, Robson & Townsend (1987) used the database of

signi�cant innovations compiled by the Science Policy Research Unit (SPRU) of the University of

Sussex to show that there is a U-shaped relationship between size and innovation intensity. Acs &

Audretsch (1991a) concluded that the data supported the hypothesis of a negative innovation-�rm

size relationship as a general rule, while Audretsch and Acs (1991) found a negative relationship

between �rm size and the number of innovations per employee2.

The problems with using patents as indicators of innovative performance are well-documented

(see, for instance, Griliches 1990). Most importantly, patent counts (or stocks) treat all patents

as identical, which can be greatly misleading (Cohen & Levin, 1989; Acs & Audretsch, 1991b).

Studies that use patents as indicators of inventive activity are also problematic due to the observed

heterogeneity in propensities to patent across industries (Scherer, 1983). Thus, it is usually not

clear whether results are due to di¤erences in R&D productivity or di¤erences in propensities to

patent across economic units. The use of R&D expenditures is additionally problematic due to the

1For a detailed discussion on these databases, see Acs & Audretsch (1990).
2For extensive surveys of the literature between size and innovation, see Symenoidis (1996), Cohen (1995), and

Cohen & Levin (1989), as well as the volumes by Acs & Audretsch (1990, 1991b) and Kamien & Schwartz (1982).

Scherer (1980, Ch.15) provides an early but excellent discussion on the topic.
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bias in reported R&D. This problem is especially pronounced for small �rms (Kleinknecht, 1989).

Returns to R&D, or R&D-weighted output indicators can therefore be biased, and spurious results

may emerge due to the underreporting of R&D by small �rms.

The use of innovation counts, on the other hand, fails to account for the variation in the quality

of innovations in a systematic way. Hence, this approach mirrors the traditional treatment of

patents and R&D dollars as homogenous units, thus inherits the problems therein. It is possible

that there are important quality-quantity trade-o¤s in innovation. That is, even though large �rms

obtain patented innovations less frequently, it is possible that their patents are of higher quality.

In other words, large-�rm advantages in innovation may be favorable to the quality of innovations

rather than their quantity. This possibility sheds additional doubt on previous results that are

obtained using patent and innovation counts as output indicators. Hence, it needs to be properly

examined.

This chapter addresses this very issue by employing two measures of a �rm�s R&D output

that have not been previously employed in this line of research. These are the average number of

citations received by a company�s patents, i.e., citations per patent (Citations/Patents; henceforth

CP), and citations received per R&D dollar spent (Citations/R&D Expenditures; henceforth CR).

CP is meant as a proxy for the average quality of a �rm�s patented innovations, while CR is a

measure of the total value generated per dollar of R&D inputs. It is well established that the

number of citations made to a given patent is a proxy for its quality (see Trajtenberg, 1990, and

the literature that follows). Another important advantage of using CP as an output measure is

that it avoids the previously mentioned problems with reported R&D expenditures. Also, studying

the variation in CP o¤ers a means to look at innovative output net of the propensity to patent. On

the other hand, an important weakness of using CP and CR in the current context is that we do

not observe citations for innovations that do not lead to patenting for various reasons. Thus, these

measures also inherit some weaknesses of patent data. It should also be noted that CP is a direct

indicator of patent quality, while CR is not. This is because CR is highly correlated with patents

obtained per R&D dollar, which is not necessarily the case for CP. Most granted patents receive at

least one citation (while very few receive many), which implies that the total number of citations

is highly in�uenced by the total number of patents at the �rm level.

The use of patent citations is now common practice in the economics of innovation. In addition,

a small number of authors have used citation data in order to study the relationship between �rm

size and innovative output. Plehn-Dujowich (2009) �nds that patents and citations received per
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R&D stock falls with �rm size in a cross section of 1976 patents. Huang & Chen (2010), while

studying the relationship between R&D performance and technological diversi�cation, control for

�rm size in their regressions and �nd that the number of citations received by a �rm�s patents

increase with �rm size at a decreasing rate. This �nding implies that citations received per R&D

dollar falls with �rm size. These papers are similar to the current one in their use of citations

as proxies for R&D output. However, neither paper attempts to use a quality indicator that is

independent of the sizes of patent cohorts. As a result, their analyses that use citations do not

provide qualitatively di¤erent results than their analyses using patent counts. A similar caution also

emerges from Lanjuow & Schankerman (2004), who construct an index of patent quality by taking

the common factor of �ve patent characteristics, including the number of citations received and

made. In their analyses, their patent quality index does not behave much di¤erently than simple

patent counts unless average patent quality is taken into account rather than total quality. To

repeat, total citation counts are not very good indicators of the quality of a �rm�s innovations since

citation counts are highly correlated with patent counts at the �rm level. I study the determinants

of citations received per patent, which is a more direct indicator of quality, and is more useful to

capture possible quality-quantity trade-o¤s in innovation. Also note that CP is used as a measure

of patent quality in di¤erent contexts by Ernst (1998) and Narin (2006).

2.1 Pharmaceutical and Semiconductor Industries

Pharmaceutical and semiconductor industries have been fertile ground to test various hypotheses

in the economics of innovation due to their dependence on innovation, and their importance for the

U.S. economy. Large �rms have dominant roles in both industries, mergers have been increasingly

common, but the number of small �rms has also been increasing during the period under study

in the current paper (Graves & Langowitz, 1993; Hall & Ziedonis, 2007; Demirel & Mazzucato,

forthcoming). Thus, whether these industries exhibit economies or diseconomies of scale in inno-

vation has been extremely relevant. The pharmaceutical industry has been studied relatively more

extensively due to data availability. Comanor (1965) found evidence for scale economies for the

lower end of the size distribution of pharmaceutical �rms, but scale diseconomies for the higher

end. On the other hand, Vernon & Gusen (1974) and Schwartzman (1976) reported signi�cant

economies of scale. Graves & Langowitz (1992, 1993) found evidence for decreasing returns to scale

in pharmaceutical R&D in the production of new chemical entities and the number of innovations.

Jensen (1987) found that �rm size did not a¤ect the marginal productivity of R&D e¤orts beyond
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a certain size threshold. Henderson & Cockburn (1996) �nd large �rms to be more productive in

R&D due to economies of scale and scope. In subsequent work, the same authors report size ad-

vantages to be primarily due to scope, rather than scale economies (Cockburn & Henderson, 1996).

Dimasi, Grabowski & Vernon (1995) use project-level data obtained from 12 U.S. pharmaceutical

companies to claim that the cost of new drug development decreases with �rm size, while sales per

marketed drug falls with size. In a recent article, Plotnikova (2010) adds to this by showing that

scale economies are present in pharmaceuticals during the initial stages of drug development (i.e.,

the development of new ideas), but large scale is detrimental to project success during later stages

(i.e., actual product development).

Empirical literature on the semiconductor industry in the current context lags behind that

for pharmaceuticals. In an article highly related to the current one, Kim & Marschke (2009)

show that patents per dollar of R&D expenditures decline with �rm size in U.S. semiconductor and

pharmaceutical industries. Rothwell (1984, 1989) emphasizes the role of small �rms in this industry

and makes a case for the importance complementarities between small and large �rms. Saxenian

(1994) argues that spin-o¤s and the mobility of talented personnel have been responsible for the

success of the semiconductors industry (and the Silicon Valley at large). Hall & Ziedonis (2001)

undertakes a detailed empirical analysis of patenting in semiconductors, with particular attention

to the patenting motives and outcomes of small and large �rms.

3 EMPIRICAL METHODOLOGY

The main interest of the chapter is the size e¤ects in innovation. To this end, I estimate the

following empirical model:

yit = �S logSit + x
0
it�+ �i + �t + uit (1)

where yit is a measure of the R&D productivity of �rm i at year t, Sit is de�ated sales and xit

is a vector of controls for �rm i at year t. These controls will be introduced below. The error

term contains an unobservable and time-invariant �rm e¤ect (�i), as well as year e¤ects (�t).

Equation (1) will be estimated separately for CP and CR, using each as an alternative measure of

productivity. Both measures are used after a (natural) logarithmic transformation. The double-log

form provides better �t to data according to a Box-Cox test, thus this functional form is adopted

for all speci�cations..
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3.1 Independent Variables

I condition the relationship between R&D productivity (the logarithm of CP or CR) and �rm size

(the logarithm of sales) on a number of independent variables. These include �rm characteristics,

the characteristics of the �rm�s R&D organization and those of its patented innovations, as well as

some aspects of the �rm�s industrial and technological environment. All speci�cations include the

logarithm of R&D intensity. This is de�ned as the ratio of R&D stock to sales, where the former

is calculated using the perpetual inventory method using a 15% depreciation rate. R&D intensity

is an indicator of a �rm�s dedication to innovation, hence a potentially important determinant of

the rate and quality of the �rm�s innovative output. I also control for (the logarithm of) capital-

labor ratio since this variable may be a confounder in the size-innovation relationship. This ratio

is found by dividing net capital assets by the number of employees (in thousands). Firms with

a more capital-oriented production technology are argued to be more vulnerable against patent

infringement (Hall & Ziedonis, 2001; Kim, Lee & Marschke, 2009b) therefore may have di¤erent

incentives for innovation and patenting. When the dependent variable is log (CP), I also control the

�rm�s patent-R&D ratio (henceforth PR), which accounts for the variation in �rms�patent yields

per dollar of current R&D investments. This allows me to evaluate the determinants of patent

quality, holding the �rm�s patenting practices constant.

3.1.1 Technological Diversi�cation

A number of variables are constructed using aspects of �rms�patenting activities. Most important

among these is a measure of the diversi�cation of research activity at the �rm level, which is

calculated using the set of technological classes the �rm patents in. There is a growing literature

on the e¤ects of technological diversi�cation on R&D performance. Granstrand & Oskarsson (1994)

show that greater diversi�cation is associated with greater sales and R&D growth. Miller (2006)

�nds that diversi�cation is positively associated with a number of performance measures. Nesta &

Saviotti (2005), Leten, Belderbos & Van Looy (2007) and Garcia-Vega (2006) �nd that technological

diversi�cation is positively associated with the number of patents granted to the �rm. Huang &

Chen (2010) discover an inverted-U shaped relationship between technological diversity and the

number of patents, and citations made to these patents.

In order to contribute to this literature, I include a measure of technological diversi�cation as an

independent variable. The measure of research diversi�cation I use is one minus the concentration of
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the �rm�s patenting activity across di¤erent technological classes, where concentration is calculated

using the Her�ndahl index. That is,

DIVit = 1�
XK

k=1

�
P kit=Pit

�2
where k 2 f1; :::;Kg are United States Patent and Trademark O¢ ce (USPTO) technology classes,

P kit is the number of patents that �rm i applied for in year tand was classi�ed in technology

class k, and Pit is the total number of it patents. A more diverse research activity that spans

a large number of technological �elds will cause the �rm�s patents to be spread out among a

larger number of technological classi�cations, which motivates this diversi�cation measure. Note

that similar measures of diversi�cation have been employed by previous researchers. Huang &

Chen (2010) and Leten Belderbos & Van Looy (2007) use a similarly constructed Her�ndahl-based

index, while Garcia-Vega (2006) uses an index that is based on the entropy index of concentration.

Granstrand & Oskarsson (1994) employ both. Both the Her�ndahl and entropy indexes are indexes

of concentration, hence serve a similar purpose.

Increased diversi�cation may dilute the resources available to each technological activity. Hence,

diversi�cation is costly, and it is possible that a �rm can be "too diversi�ed". To account for this

possibility, I employ a quadratic polynomial for this variable. This will allow me to see whether too

much diversi�cation is indeed detrimental for productivity, even if diversi�cation is productivity

enhancing initially.

3.1.2 Basicness (Generality) of Patents

In addition, I control for a measure of the average basicness of the �rm�s patented innovations. This

variable is included to control for the variation in the types of innovations patented by di¤erent

�rms, which may have implications for citation patterns. The basicness of patented innovations is

measured by the index of generality constructed by Trajtenberg, Henderson & Ja¤e (2002), which is

based on citations made to the original patent and their decomposition into di¤erent technological

classes. Suppose that patent p receives a total of Np citations, Npk of which come from patents in

technological class k 2 f1; :::;Kg. Generality index for patent p is de�ned as

GENp = 1�
XK

k=1
(Npk=Np)

2 (2)

I take the average generality for all it patents to get the generality score for �rm i�s year t patents.

Trajtenberg et al (2002) validate this measure by comparing a matched sample of university and
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corporate patents, and noting that patents granted to universities score higher than corporate

patents on this scale. Thus, the average generality of it patents measures to what extent the research

undertaken within the �rm is science-oriented, as opposed to applied product development.

3.1.3 Spillovers

Spillovers may play di¤erent roles in small and large �rm innovation (Audretsch & Feldman, 1994;

Audretsch & Vivarelli, 1994). Therefore, it is also useful to directly control for spillover e¤ects. To

accomplish this I include a weighted sum of external R&D expenditures in all regressions, which is

calculated as

SPit = log
X

i6=j
wijRjt

where Rjt denotes the R&D expenditures of �rm j during year ; and wij is a measure of the

technological proximity between �rms i and j. I follow Ja¤e (1986) and construct wij as follows.

Let Ti be a K-dimensional vector that contains the number of patents of �rm i that are classi�ed

in USPTO technology class k 2 f1; :::;Kg in its kth element. This can be called the technological

position vector of �rm i. The technological proximity between �rms i and j (wij) is de�ned as the

uncentered correlation between vectors Ti and Tj . Additional properties of this distance metric are

discussed in Ja¤e (1986). The spillover measure is lagged one year.

3.1.4 Technological Opportunity

Finally, to capture the e¤ects of technological opportunity, I include the annual growth of the

total R&D expenditures in the �rm�s technological neighborhood as an independent variable. This

variable is calculated as the annual growth of the total weighted R&D annual expenditures of all

external �rms where weights are the technological distance metrics constructed above.

3.2 Data and the Sample

All data on patents and citations are taken from the NBER patents and citations data �le (Hall,

Ja¤e and Trajtenberg, 2001). All data on annual R&D expenditures, sales, and other �rm level

variables are taken from the historical Compustat panel compiled by the same authors. The stock

of R&D expenditures is calculated as a perpetual inventory using an annual depreciation rate of

15%. The procedure outlined in Hall, Ja¤e and Trajtenberg (2001) is used to correct for the e¤ect

of time truncation in the arrival of citations. This method is based on an estimate of the citation
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lag distribution. When an estimate of the lag distribution of citations is available, one can estimate

the true citation count for an age-a patent by dividing the raw (observed) citation count by the

fraction of citations an average patent receives during the �rst a years after application year. All

raw citation counts are corrected using the estimated weights given in tables 6 through 8 of the same

study. Note that this procedure is valid only for patents that have received citations for a signi�cant

number of years, since estimation of lifetime citations become unreliable as one approaches the �nal

year citation data is available. For instance, a patent classi�ed under �Drugs & Medical�receives

2:6% of its lifetime citations during the �rst year, and 6:7% of its lifetime citations during the �rst

two years after patent application. The corresponding percentages are 4:8% and 11:5% for a patent

classi�ed under �Electrical & Electronic�. Predicting total citations from such small percentages

of observed citation counts can be misleading. I leave a nine year window between the �nal year

used in this study (application year 1993) and the �nal year there is citation data available (2002).

On average, patents receive about half of their lifetime citations during the �rst nine years after

application.

Tables 1 and 2 should be placed about here

All variables in current dollar values are de�ated using the GNP de�ator. After deleting large

outliers and �rms with only a single year in the data, I am left with unbalanced panel of 362

observations for pharmaceuticals and an unbalanced panel of 310 observations for semiconductors,

both covering a period of 24 years between 1969 and 1992. Sample statistics are provided in Table

1 (pharmaceuticals) and Table 2 (semiconductors).

4 RESULTS

4.1 Citations per Patent

I begin by reporting estimates of equation (1) that take log (CP) as the dependent variable. Tables

3 and 4 report regression estimates for the baseline regression for pharmaceuticals and semiconduc-

tors, respectively. Recall that CP is a proxy for the average quality of a �rm�s patents, while CR

is a proxy for the total R&D output per R&D dollar invested. In other words, CP can be taken as

an indicator of quality, while CR can be considered as an indicator of quantity. Therefore, we also

get the opportunity to study the possibility of quality-quantity trade-o¤s in innovation.

Table 3 provides estimates from �xed e¤ects OLS regressions for the sample of pharmaceuticals.

Column 1 in this table provides coe¢ cient estimates for equation (1) controlling for permanent �rm
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e¤ects, while column 2 introduces year e¤ects in addition to �rm e¤ects. While it is important to

control for year e¤ects, this may also hinder the estimation of coe¢ cients for which the independent

variable is relatively stable over time. Therefore, initial estimates (columns 1 in all tables) ignore

year e¤ects, which are introduced in later regressions (columns 2 and 3 in all tables). Column 3

estimates the same speci�cation in column 2, but uses the number of non-self citations instead

of total citations while constructing CP. While both self citations and non-self citations can be

considered important indicators of patent value, using non-self cites has the additional property

that it measures the external "impact" of a �rm�s patents. Results in this column should be treated

as complementary to those in columns 1 and 2. Table 4 contains estimates from regressions identical

to those in Table 3, but for the sample of �rms in the semiconductors industry.

Table 3 should be placed about here

In all reported regressions in Table 3, the coe¢ cient of log(Sales) is negative and statistically

signi�cant. Therefore, we see that average patent quality falls with �rm size in the pharmaceutical

industry. This is in contrast to the results we get in Table 4 for semiconductors. According to

the estimates in Table 4, the coe¢ cient of log(Sales) is positive in column 1, negative in columns

2 and 3, but it is statistically indistinguishable from zero at all at all reasonable levels of signif-

icance. Therefore, we conclude that �rm size is not a determinant of average patent quality in

semiconductors.

Regarding remaining variables of interest, we �nd that increased R&D intensity has a negative

e¤ect on CP in both industries (in both Table 3 and Table 4). This implies that there are decreasing

returns to R&D dollars in both industries in terms of the total value generated by R&D inputs.

Table 4 should be placed about here

Patent/R&D ratio has a negative and signi�cant coe¢ cient in Table 3 (pharmaceuticals), but

its coe¢ cient is statistically insigni�cant in all columns of Table 4. That is, the marginal patent

seems to be of lower quality than the average patent in pharmaceuticals, but there is no such

relationship between average and marginal patent quality in semiconductors. The capital-labor

ratio has negative coe¢ cients in all columns in Table 3, has positive coe¢ cients in all columns in

Table 4, while all of these coe¢ cients are statistically indistinguishable from zero. Thus, I �nd no

e¤ect of a �rm�s capital intensity on patent quality.

While generality has a positive e¤ect on CP (and CP, non-self) for both industries, the impact

of technological diversi�cation is di¤erent for pharmaceuticals and semiconductors. In Table 3,
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the coe¢ cients of the quadratic speci�cation of diversi�cation are statistically insigni�cant at the

5% level of signi�cance. Hence, diversi�cation is found to have no signi�cant impact on patent

quality in the pharmaceutical industry. For semiconductors (Table 4), the estimated coe¢ cients

of the quadratic speci�cation of the diversi�cation measure are consisted with an inverted-U type

relationship between CP and diversi�cation. That is, increased diversi�cation causes patent quality

to increase up to a certain level, after which diversi�cation impedes patent quality. On the other

hand, this result is lost when self-citations are excluded from the citation measure (Table 4, column

3). When self-citations are excluded, we still observe the inverted-U pattern, but the polynomial

terms are signi�cant only at the 10% level of signi�cance.

Regarding remaining variables of interest, technological opportunity and spillovers have positive

impacts on CP in the pharmaceutical industry (Table 3, column 1). However, the signi�cance of

these coe¢ cients is lost when year e¤ects are included (Table 3, columns 2 and 3). Neither variable

has a signi�cant impact in the semiconductor industry in any speci�cation. It is natural that

estimating the e¤ect of technological opportunity while controlling for both �rm and year e¤ects

proves di¢ cult, as little variation is left in this variable after these e¤ects are accounted for. For

this variable, it may be more desirable to put faith in the estimates in column 1 for both industries

(Tables 3 and 4), which implies a positive e¤ect for both variables in pharmaceuticals, but no

signi�cant e¤ect in semiconductors.

4.2 Citations per R&D Dollar

In Tables 5 and 6 I explore the determinants of citations received per R&D dollar. The dependent

variable in these regressions is the logarithm of CR. Table 5 reports results for the pharmaceutical

industry, while Table 6 contains estimates for the semiconductor industry. Recall that CR has

the interpretation of the total R&D output achieved per dollar of investments. The progression

of estimates in Tables 5 and 6 is similar to that in Tables 3 and 4; I �rst estimate equation (1)

using �xed e¤ects OLS (column 1), then introduce year e¤ects to the same speci�cation (column 2).

Column 3 includes estimates for the same regression equation in column 2 except that self-citations

are excluded when CR is calculated (we called this variable CR, non-self).

Table 5 should be placed about here

The most important result here is that log(Sales) has a negative and signi�cant coe¢ cient in

all speci�cations. Therefore, CR falls with �rm size in both industries considered. This parallels
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previous results on the dependence of patent per R&D on �rm size (Acs & Audretsch, 1991a; Kim,

Lee & Marschke, 2009a; Bound et al, 1984). R&D intensity has a negative coe¢ cient in all columns

as well, mirroring the results presented in Tables 3 and 4.

Capital-labor ratio has an insigni�cant coe¢ cient in most columns, though it does have a

negative and statistically signi�cant e¤ect on �non-self CR�for semiconductors (Table 6, column3).

This coe¢ cient is signi�cant only at the 10% level of signi�cance in column 2 of the same table,

where the dependent variable is log (CR). These observations are in line with the arguments of Hall

& Ziedonis (2001) that large, capital intensive semiconductor �rms began patenting their "latent",

previously unpatented innovations, and strategically patented around already existing designs since

the beginning of 1980s. These patents are expected to have lower quality and impact. Similar to

previous estimates, generality has a positive coe¢ cient in all speci�cations.

Technological diversi�cation a¤ects CR positively according to all estimates. Interestingly, the

relationship between diversi�cation and CR is linear for pharmaceuticals (where the squared term

has an insigni�cant coe¢ cient), but it is quadratic for semiconductors (where only the squared

term has an signi�cant coe¢ cient). I �nd a positive e¤ect of technological opportunity for phar-

maceuticals (column 2 of Table 5), but no such e¤ect for semiconductors (Table 6). Spillovers, on

the other hand, a¤ect CR positively for both industries (with the exception of column 3 of Table

5), but has no signi�cant impact on CP. This suggests that spillovers are helpful mostly during the

development of new ideas, but do not necessarily improve the success of existing projects. In other

words, quantity seems to bene�t from externally produced knowledge, but quality is determined

mostly by in-house research e¤orts.

Table 6 should be placed about here

4.3 Discussion

Coming back to the main research question of the paper, my results indicate that small �rms pro-

duce higher quality patents in pharmaceuticals (higher CP), while also producing higher patent

value per dollar invested in R&D (higher CR). For the semiconductor industry, I �nd no signif-

icant di¤erence in the average patent quality of small and large �rms. These results are true

holding constant key �rm characteristics (capital-labor ratio, R&D intensity), characteristics of

�rm technology (diversi�cation, generality) and aspects of the �rm�s technological and industrial

environment (spillovers, technological opportunity).
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Considering these �ndings in conjunction with those of the previous literature on the size-

innovation relationship, my results add valuable insights into these two industries. The �nding

that patent quality is higher for small �rms in pharmaceuticals are in line with previous research

on the di¤erent stages of drug development in this industry. Drug development occurs through

several stages, with the average drug being developed over a period of 10 to 15 years, including

FDA review (Plotnikova, 2010). Patenting occurs at a very early phase during these stages, but

failure in later stages is common. Lower patent quality in large �rms may be due to the fact

that large �rms take on a large number of simultaneous development projects and have higher

failure rates at later stages, as stressed by Plotnikova (2010). This is possible if the �rm needs to

diversify into more risky research areas as the number of development projects increase. Hence,

many patents that large �rms obtain during earlier stages of development belong to projects that

fail during later stages, leaving the �rm with low-quality patents for its dead-end e¤orts. These

observations are supported by the �ndings of Dimasi, Grabowski & Vernon (1995), i.e., that the

cost of new drug development decreases, but sales per marketed drug falls with �rm size. Their

former �nding implies that there are incentives for large �rms to take on riskier projects as they

diversify, while the latter is in line with lower success and lower patent quality, even if the project

leads to the marketing of a drug.

The result that small semiconductor �rms obtain patents that are not inferior in quality than

those of large �rms is meaningful when the organization of this industry is taken into account.

The technological base of this industry is highly complex and the development of a product often

requires the use interdependent, complementary technologies. While large �rms hold dominant

positions in the manufacturing and distribution of new technologies, small, specialized �rms are

known to be able to sustain high quality innovation by occupying strategic niches (Hall & Ziedonis,

2001; Agarwal and Audretsch, 1999). My results indicate that small �rms are indeed as successful

as large �rms in this industry, in terms of the average quality of their patents. Other factors aid the

success of small �rms, such as the abundant availability of venture capital in Silicon Valley, which

helped technology-based small �rms to enter the market with new designs and technologies, often

through entrepreneurial spin-o¤s from larger �rms (Saxenian, 1994). The geographic location of this

industry also facilitates spillovers and entrepreneurial capital emanating from nearby universities.

The �nding that small �rms are not better innovators than large �rms may be an indication that

small and large �rm success is highly interdependent in this industry. For instance, Rothwell

(1983, 1989) argues that semiconductor innovation thrives on synergies (which he calls �dynamic
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complementarities�) between small and large �rms. Similar arguments have also been raised by

Pavitt & Wald (1971) and Acs & Audretsch (1988) in di¤erent contexts.

5 FUTURE RESEARCH DIRECTIONS

In the current chapter it has been observed that the response of R&D productivity to �rm size is

not homogenous among two of the most R&D-intensive industries. A natural next step to take is

to study the causes of this discrepancy. A promising point of departure for future work is to exploit

the "technology regimes" concept of Winter (1984). In Winter (1984), industrial conditions that

favor small �rm and large �rm innovation are characterized by the so-called entrepreneurial regime

and routinized regime, respectively. Acs & Audretsch (1990) �nd some evidence for the existence

of these regimes using data on innovation counts. These observations are also in line with the

often cited innovation patterns that large �rms are likely to be the sources of minor, incremental

innovations, while the majority of major, radical innovations come from small �rms (Hamberg,

1966).

On a related note, further research will also need to take additional characteristics of these

two industries, and characteristics of the particular technologies into account. Research in these

directions is somewhat disadvantaged due to data constraints and a lack of empirical measures for

detailed technological characteristics. For instance, it is di¢ cult (but necessary) to have empirical

measures that describe to what extent innovations are "radical", or "cumulative" in a given industry.

The e¤ects of the major episodes these two industries went though during the period in question

needs to be examined as well. While results of the current paper add important insights, the analyses

are admittedly "aggregate" in the sense that they include a large number of years spanning three

decades. Hence, more detailed studies of the two industries are called for, with particular attention

to various sub-periods, including a re-examination of both industries for more recent years.

6 CONCLUSION

This chapter performed empirical tests of the Schumpeterian hypothesis using U.S. data on phar-

maceutical and semiconductor industries. Two innovation indicators have been used as measures

of R&D outputs. These were citations received per patent, which is an indicator of the average

quality of a �rm�s patents, and citations received per R&D dollar invested, which is an indicator

of total output achieved per R&D dollar. It has been shown that citations received per patent
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(CP) falls with �rm size in pharmaceuticals. There is no signi�cant relationship between average

patent quality and �rm size in semiconductors. On the other hand, citations received per R&D

dollar invested (CR) falls with �rm size in both industries. This latter result is in line with the

previous literature on the size determinants of patent yields (patents per R&D dollar invested)

and innovation counts. An important contribution of the chapter, therefore, is that quality and

quantity of invention may have di¤erent determinants.

The chapter also studied the e¤ects of technological diversi�cation, generality of a �rm�s patents,

technological opportunity and spillovers on the two performance measures used in the chapter.

Among interesting results related to these set of variables is that there is an inverted-U type

relationship between technological diversi�cation and average patent quality for semiconductors.

This implies that increased diversi�cation initially increases patent quality, but hinders it if the �rm

is already highly diversi�ed. In other words, while increased diversi�cation is initially bene�cial

to a semiconductor �rm, the �rm can also be �too diversi�ed�. On the other hand, total value

generated per R&D dollar increases with diversi�cation at an increasing rate in this industry.

Hence, too much diversi�cation does not hinder a �rm�s total R&D output. On the other hand, we

observe no signi�cant relationship between patent quality and diversi�cation the pharmaceutical

industry, and observe a positive and linear relationship between total output per R&D dollar and

diversi�cation in the same industry.

In terms of industrial research policy, my results suggest that subsidies for research and devel-

opment activities need to support innovative small �rms in these two industries, as small �rms are

found to publish higher quality patents in pharmaceuticals, and do not seem to have a disadvantage

in terms of quality in semiconductors. Hence, at the outset, a reallocation of subsidies from larger

to smaller �rms may be called for. However, further recommendation on whether and how these

reallocations should be performed will require more detailed insight into these two industries that

will come from more detailed empirical research.
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KEY TERMS AND DEFINITIONS

Schumpeterian hypothesis: The claim that larger �rms in more concentrated industries have

better innovative performances. While the hypothesis speaks of both the size of the �rm and the

concentration of the industry it operates in, the economic literature has mostly focused on the

former.

Patent citation: A reference made by a patent on its front page to a previously granted patent,

indicating that the former (citing patent) builds on the knowledge embodied within the latter (cited

patent). Patent applicants have the responsibility to cite all relevant �prior art�that they are aware

of. During patent examination, it is the patent examiner�s duty to make sure that all relevant prior

art is cited by the patent in examination.

R&D intensity: R&D expenditures of the �rm divided by a measure of its size. The size measure

is usually taken to be sales, but other indicators of scale (such as net capital, employment, or value

added) can be used. R&D intensity of a �rm quanti�es its devotion to research and development

activities.

Technological diversi�cation: A measure of the diversity of a �rm�s technological activities. In

the current chapter it is measured by an index that is based on the Her�ndahl index of concentra-

tion. The index measures the extent that a �rm�s patents are �spread�across di¤erent technology

classi�cations, rather than being concentrated into a few.

Generality: The generality index constructed and proposed by Trajtenberg, Henderson & Ja¤e

(2002). It measures the extent at which a �rm�s patented inventions provide the foundations for

future patents. Trajtenberg et al (2002) motivate generality as an indicator of the �basicness�of

an innovation by demonstrating that patents owned by universities score much higher scores in this

measure than patents owned by corporations.

Technological opportunity: A term describing all external factors that favor invention and

growth in a given technology.
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Table 1 
Sample Statistics – Pharmaceuticals 

 
Mean 

Standard  
Deviation Minimum Maximum 

log (CP) 2.471        0.747       .136     5.148 
log (CR) 1.168       1.222       -3.195        5.094 
log (Sales) 7.245        1.730       .948 9.529 
log (R&D Intensity) -1.391       .811      -4.366        2.454 
log (Patents/R&D) -1.245       1.111       -6.142        2.777 
log (Capital/Labor) 4.423        .469        3.158        6.551 
Generality .329        .120 0  .764 
Diversification .698        .281                0 .958 
     
R&D Growth in Tech. Neighborhood .075 .047 -.417        .4101 
log (Spillover pool) 9.500        .556        7.217       11.554 
     Notes: All dollar values are in millions of 1992 dollars, deflated using the GNP deflator. All logarithms are 
natural logs. Sample size: 362.  Sample period: 1969-1992.  

 
 
 

Table 2 
Sample Statistics – Semiconductors 

 
Mean 

Standard  
Deviation Minimum Maximum 

log (CP) 2.672        .736       .059        5.022 
log (CR) 1.825        1.182 -1.445     5.366 
log (Sales) 5.407        1.485       1.841      8.915 
log (R&D Intensity) -1.374       .701       -4.258      .106 
log (Patents/R&D) -.846       1.099       -4.074      2.582 
log (Capital/Labor) 3.902        .581 2.269      5.183 
Generality .419        .163                0 .876 
Diversification .573        .338                0 .970 
     
R&D Growth in Tech. Neighborhood .072        .206       -.119      2.401 
log (Spillover pool) 9.813        .768        7.081     11.069 
     Notes: All dollar values are in millions of 1992 dollars, deflated using the GNP deflator.  All logarithms are 
natural logs. Sample size: 310.  Sample period: 1969-1992.  
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Table 3  
Pharmaceuticals 
Dependent Variables: log (CP) (Columns 1 and 2), and log (CP, non-self) (Column 3)  
Fixed Effects OLS 

 (1) 
log (CP) 

(2) 
log (CP) 

(3) 
log (CP, non-self) 

    

log (Sales) -0.381*** -0.389*** -0.357*** 
 (-3.88)  (-3.69)  (-3.27)  
    

log (R&D Intensity) -0.0845 -0.0916 -0.110 
 (-0.74) (-0.74) (-0.86) 
    

log (Patents/R&D) -0.239*** -0.200*** -0.205*** 
 (-3.96)  (-2.95)  (-2.91)  
    

log (Capital/Labor) -0.0267 -0.0476 -0.0293 
 (-0.21) (-0.35) (-0.21) 
    

Diversification 0.623 0.584 0.503 
 (1.44) (1.30) (1.08) 
    

Diversification2 -0.290 -0.225 0.0646 
 (-0.62) (-0.46) (0.13) 
    

Generality 1.549*** 1.543*** 1.559*** 
 (6.74)  (6.30)  (6.15)  
    

R&D Growth in Tech. 1.632*** 1.168 0.850 
Neighborhood (3.35)  (0.81) (0.57) 

    

Spillovers | t - 1 0.640*** 0.682 0.539 
 (5.37)  (1.02) (0.78) 
    

Year Dummies No Yes Yes 
    

Intercept -2.103*** -2.208 -1.311 
 (-2.61) (-0.32) (-0.18) 
    

R2 .394 .434 .420 
N 362 362 362 
Notes: All logarithms are natural logs. Standard errors are robust to arbitrary form of heteroscedasticity. t 
statistics in parentheses. *p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table 4 
Semiconductors 
Dependent Variables: log (CP) (Columns 1 and 2), and log (CP, non-self) (Column 3)  
Fixed Effects OLS 

 (1) 
log (CP) 

(2) 
log (CP) 

(3) 
log (CP, non-self) 

    

log (Sales) 0.0710 -0.00598 -0.0197 
 (0.70) (-0.05) (-0.18) 
    

log (R&D Intensity) -0.0369 -0.135 -0.124 
 (-0.45) (-1.38) (-1.28) 
    

log (Patents/R&D) 0.0892* 0.0408 0.0187 
 (1.73) (0.71) (0.33) 
    

log (Capital/Labor) 0.193 0.242 0.239 
 (1.46) (1.64) (1.64) 
    

Diversification 0.891** 0.791** 0.746* 
 (2.36) (2.01) (1.92) 
    

Diversification2 -1.300** -1.081** -0.959* 
 (-2.55) (-2.04) (-1.83) 
    

Generality 1.848*** 1.929*** 1.950*** 
 (9.42) (9.53) (9.77) 
    

R&D Growth in Tech. 0.203 -0.786 -0.770 
Neighborhood (1.25) (-0.85) (-0.84) 

    

Spillovers | t - 1 0.205* 0.0233 0.0417 
 (1.65) (0.02) (0.03) 
    

Year Dummies No Yes Yes 
    

Intercept -1.182 0.786 0.560 
 (-1.16) (0.06) (0.04) 
    

R2 .290 .369 .371 
N 310 310 310 
Notes: All logarithms are natural logs. Standard errors are robust to arbitrary form of heteroscedasticity. t 
statistics in parentheses. *p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table 5 
Pharmaceuticals 
Dependent Variables: log (CR) (Columns 1 and 2), and log (CR, non-self) (Column 3)  
Fixed Effects OLS 

 (1) 
log (CR) 

(2) 
log (CR) 

(3) 
log (CR, non-self) 

    

log (Sales) -1.082*** -1.100*** -0.951*** 
 (-11.00) (-10.56) (-8.88) 
    

log (R&D Intensity) -0.892*** -0.886*** -0.912*** 
 (-7.68) (-7.12) (-7.13) 
    

log (Capital/Labor) 0.148 0.0453 -0.104 
 (0.94) (0.28) (-0.62) 
    

Diversification 2.202*** 2.239*** 2.300*** 
 (4.36) (4.36) (4.36) 
    

Diversification2 -0.773 -0.819 -0.745 
 (-1.37) (-1.40) (-1.24) 
    

Generality 1.153*** 1.032*** 1.296*** 
 (4.16) (3.55) (4.34) 
    

R&D Growth in Tech. 0.735 4.843*** 1.920 
Neighborhood (1.25) (2.87) (1.10) 

    

Spillovers | t - 1 0.799*** 1.795** 1.245 
 (5.55) (2.25) (1.52) 
    

Year Dummies No Yes Yes 
    

Intercept -2.015** -12.00 -8.078 
 (-2.05) (-1.44) (-0.94) 
    

R2 .509 .551 .570 
N 362 362 362 
Notes: All logarithms are natural logs. Standard errors are robust to arbitrary form of heteroscedasticity. t 
statistics in parentheses. *p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table 6 
Semiconductors 
Dependent Variables: log (CR) (Columns 1 and 2), and log (CR, non-self) (Column 3)  
Fixed Effects OLS 

 (1) 
log (CR) 

(2) 
log (CR) 

(3) 
log (CR, non-self) 

    

log (Sales) -0.859*** -0.931*** -0.828*** 
 (-5.78) (-6.06) (-5.85) 
    

log (R&D Intensity) -0.526*** -0.663*** -0.972*** 
 (-4.04) (-4.66) (-7.41) 
    

log (Capital/Labor) 0.328 0.387* 0.485** 
 (1.51) (1.72) (2.34) 
    

Diversification 0.871 0.968 0.863 
 (1.41) (1.61) (1.56) 
    

Diversification2 2.043** 1.770** 1.775** 
 (2.58) (2.29) (2.50) 
    

Generality 1.074*** 1.329*** 1.644*** 
 (3.40) (4.37) (5.86) 
    

R&D Growth in Tech. 0.136 0.712 0.915 
Neighborhood (0.51) (0.50) (0.70) 

    

Spillovers | t - 1 0.739*** 4.750** 5.751*** 
 (3.71) (2.38) (3.12) 
    

Year Dummies No Yes Yes 
    

Intercept -4.644** -46.15** -59.64*** 
 (-2.83) (-2.25) (-3.16) 
    

R2 .369 .512 .575 
N 310 310 310 
Notes: All logarithms are natural logs. Standard errors are robust to arbitrary form of heteroscedasticity. t 
statistics in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 

 


