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Abstract

We apply various re�nements of survival regression to assess the results of some basic speci�cations

based on product life cycle theory for the case of a data set of the German automobile industry.

The methods applied pay attention to biases in the coe�cient estimates and the standard errors, the

discrete nature of the duration data and the presence of unobserved heterogeneity. Robust estimation

methods are also applied. We �nd that that the coe�cient estimates and standard errors are not

much a�ected by applying the re�ned estimators. The substantial results of a previous study with

the same data are unchanged.

JEL classi�cation: C41, C25, C14, L10, L62, O33
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1 Introduction

Research on the industry life cycle has generated many results about the speci�c pattern of the number
of �rms and the output from emergence to maturity of an industry and its drivers. This research, mainly
associated with Steven Klepper, is documented in Gort and Klepper (1982), Klepper and Graddy (1990)
and especially Klepper (1996, 2002). Of particular importance is the role of the knowledge of �rms
allowing them to survive longer and thus shaping the characteristic life cycle pattern. This knowledge
could have been already existed before a �rm is founded or could be acquired during its operation in
the market. In particular, the theoretical model of Klepper (1996) highlights the role of knowledge
accumulation by entering early in the life cycle (and thus having more time to accumulate knowledge
in the form of learning-by-doing) as well as the role of relevant knowledge already existing at the time
of entry in the industry (called pre-entry experience). The bene�t of both forms of knowledge in terms
of longer survival in the market is analyzed by Klepper (2002) for four US industries (including the
automobile industry) using parametric survival regressions.

For the case of the German automobile industry in Cantner, Dreÿler and Krüger (2006), CDK henceforth,
we follow the line of research initiated by Klepper (2002) by �rst estimating parametric survival regressions
based on the Gompertz distribution and then extending the analysis using the Cox regression with its
semiparametric �avor not requiring to specify the complete distribution of the survival times. As Klepper
(2002) we have a unique data set for the German automobile industry, following entering �rms from the
�rst automobile producers until the beginning of the Second World War, i.e. 1886-1939. These data are
also used in Cantner et al. (2009, 2011), Krüger and von Rhein (2009) and von Rhein (2008).1

In this paper we undertake an assessment of the robustness of the results in CDK. In particular, we
apply a batch of methods originating mainly from biostatistical applications. These methods o�er the
opportunity to investigate the in�uence of several speci�cation issues on the results obtained by the
ordinary Cox regression. Inter alia, this refers to the in�uence of the small-sample distribution on the
standard errors of the coe�cients (assessed by bootstrapping), the discreteness of the survival data at
hand (already dealt with by Efron's ties breaking mechanism, but more directly assessed by a discrete time
version of survival regression), the in�uence of unobserved heterogeneity (assessed by versions of mixed
proportional hazards models or frailty terms), biases in the parameter estimates and the application of a
robust version of the Cox regression.

The results of the robustness assessment documented in this paper show that the estimates of CDK are
indeed remarkably robust. This holds for the numerical magnitudes of the coe�cient estimates as well
as for the associated standard errors. All substantive conclusions about the implications of the life cycle
theory continue to hold when the re�ned estimators are applied. The conclusions are even strengthened
in the cases where we observe di�erences to the previous �ndings of CDK.

The paper proceeds by reviewing the analysis of CDK in section 2, thereby also introducing data and
variable de�nitions. Section 3 reviews the various re�ned versions of survival regression applied subse-
quently. The discussion of the results obtained and the comparison with the previous �ndings of CDK is
the purpose of section 4. Finally, section 5 concludes with a brief summary of the main lessons learned.

2 Review of CDK, Data and Variables

The analysis of CDK is based on a comprehensive data set of the �rms operating in the German auto-
mobile industry starting from 1886, the year where Daimler and Benz designed the �rst motorcars2, and
continuing until 1939 when the Second World War began. The data are obtained from various sources,
mainly yearbooks, journals and books about veteran cars. Details can be found in the appendix of CDK.
The data are collected only for automobile manufacturing �rms, excluding suppliers or truck producers.

1Other empirical research in industrial organization also used methods of survival analysis, see Audretsch and Mahmood
(1994, 1995), Agarwal and Audretsch (2001), Agarwal and Gort (2002), and Buddelmeyer et al. (2010) among many others.
These papers investigate the determinants of �rm survival over much shorter time spans, however. They are therefore only
distantly related to investigations following the development of an industry from its birth to maturity which is at the heart
of the industry life cycle literature on which we focus here. See Manjón-Antolín and Arauzo-Carod (2008) for a survey of
this literature.

2Meaning a vehicle designed to be powered by an internal combustion engine as a predecessor of what we today understand
as a car or an automobile.
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Recorded are the year of entry into automobile production, the year of exit and a censoring indicator
equal to unity when a �rm was subject to a merger or an acquisition or if a �rm survived beyond 1939.3

To capture post-entry experience originating from knowledge accumulated during the operation in die
automobile industry (e.g. by innovating or just through learning by doing) the �rms are grouped into
entry cohorts using Klepper's 15-15 rule.4 This leads to four entry cohorts, the �rst ranging from 1886
to 1901 (indicated by the dummy variable E1 equal to unity), the second from 1902 to 1906 (indicated
analogously by E2), the third from 1907 to 1922 (indicated by E3) and the fourth from 1923 to 1939
(indicated by E4). Pre-entry experience is coded by the dummy variable P equal to unity if the founders
of the �rm were endowed with some form of technological experience or business experience available at
the time of entry. This form of experience could originate from already having managed a �rm before
entering into the automobile industry, having diversi�ed into the automobile industry, or being a spino�
of an automobile �rm. All other �rms are treated as inexperienced with P equal to zero.

Complete data including the information about pre-entry experience are available for n = 333 �rms.
Some descriptive statistics are reported in table 1. From the table we already see that the earlier entry
cohorts E1 and E2 contain a lower number of entering �rms which survive longer on average with a larger
standard deviation compared to the later entry cohorts E3 and E4. Firms in the earlier cohorts are also
more likely to be censored and more likely to have pre-entry experience, again compared to the �rms in
the later cohorts. Overall, about 15 percent of all �rms are censored. 59 percent of all �rms are endowed
with some form of pre-entry experience.

Table 1: Descriptive Statistics

subsample number of
observations

fraction
censored

mean
duration

std. dev.
duration

fraction with
P = 1

total 333 0.147 7.036 8.751 0.589
E1 = 1 54 0.259 13.741 13.874 0.778
E2 = 1 51 0.216 10.039 9.425 0.686
E3 = 1 123 0.106 6.187 6.361 0.512
E4 = 1 105 0.105 3.124 3.480 0.533
P = 1 196 0.214 9.561 10.331 1.000
Note: Sample restricted to those �rms for which complete information for all
variables is available.

The analysis of CDK by means of the ordinary Cox regression leads to a number of �ndings which are
consistent with the predictions of the industry life cycle literature, chie�y with the theoretical model of
Klepper (1996). First, �rms entering early in the life cycle (being member of an early entry cohort) face
a signi�cantly lower exit hazard and thus survive longer. Generally, the earlier a �rm enters the lower
is its exit hazard. More precisely, �rms in the �rst entry cohort face a 75 percent lower exit hazard on
average compared to �rms in the fourth entry cohort (declining to 69 and 55 percent for the second and
third entry cohorts, respectively, also compared to the fourth). This may be attributed to their greater
opportunities to accumulate knowledge during their operation in the market. Second, �rms with pre-
entry experience have a sizable additional reduction of the exit hazard by 62 percent on average. Third,
the additional reduction of the exit hazard from pre-entry experience is particularly pronounced in the
case of the �rst and the fourth entry cohorts. Similar results are found by Klepper (2002) for the US and
by Boschma and Wenting (2007) for the British automobile industries.

In the following two sections we �rst brie�y introduce the re�nements of the Cox regression applied
subsequently and then turn to the assessment of the robustness of the �ndings of CDK just summarized.

3In the language of survival analysis we have single-spell duration data without left-truncation but with right-censoring,
of course.

4This means that �where feasible, entry cohorts are de�ned so that they have at least 15 survivors to age 15� (Klepper
2002, p. 47).
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3 Survival Regressions

Duration data have speci�c properties that require the application of special regression methods instead
of OLS or NLS estimation. The �rst property is that durations are strictly positive since they represent
the time passed until a certain event takes place and the duration ends. The second property is that
duration data are frequently censored since a certain fraction of durations is ongoing at the time of the
analysis so that one only knows that these durations are at least as large as recorded but may be much
larger.

There is a wide range of methods for analyzing duration data, fully parametric as well as nonparametric
and semiparametric. Therneau and Grambsch (2000) and van den Berg (2001) provide overviews of
the literature of survival analysis. Out of these methods, the Cox regression, designed to estimate the
proportional hazards speci�cation, can be viewed as the 'workhorse' of survival analysis in economics and
other disciplines such as biostatistics. This model speci�es the hazards rate of �rm i as

λ(yi |xi) = λ0(yi) · exp(β′xi), (1)

where the hazard rate λ(yi |xi) is split multiplicatively into the baseline hazard rate λ0(yi) which depends
only on the duration of survival yi and the part exp(β′xi) which depends only on the explanatory
variables, collected in the vector xi (excluding the intercept). In this speci�cation, the estimates of the
parameters in the vector β can directly be interpreted as the rates of change of the hazard rate when the
corresponding explanatory variable changes by one unit.

Original Cox regression was introduced by Cox (1972, 1975) with maximization of the partial likelihood
function to eliminate the baseline hazard rate. For the case that all durations are completed (no censoring)
and in the absence of ties the log-likelihood function for the unique ordered duration times y1 < y2 <
... < yn after canceling out the baseline hazard rate is

lnL(β) =

n∑
i=1

β′xi − ln

 ∑
j∈R(yi)

exp(β′xj)

 , (2)

with R(yi) as the set of observations which are at risk at survival time yi (the so-called risk set). Censoring
is handled by including the censored observations in the risk set but omitting them from the outer sum.
Ties in the duration times are treated by the schemes of Breslow or Efron, where Efron's scheme (Efron
1977) is more e�cient and is used as the default option in the R package 'survival'.

The �rst-order conditions (score function) are given by

∂ lnL(β)

∂β
=

n∑
i=1

[
xi −

∑
j∈R(yi)

exp(β′xj) · xj∑
j∈R(yi)

exp(β′xj)

]
= 0 (3)

and can be solved numerically for the regression parameters β, resulting in the Cox partial likelihood
estimator (PLE) β̂.

The Cox proportional hazards model is attractive because of the possibility to estimate the β parameters
by partial likelihood maximization without having to specify the whole distribution (i.e. not having to
specify the baseline hazard rate) which gives it its semiparametric character. There are, however, several
speci�c problems arising with this model and with this estimation approach:

• the assumption of proportional hazards (this assumption may also be violated because of the other
problems listed next),

• the discrete measurement of the duration (the Cox model expects continuously measured duration
data, but is able to deal with ties if there are not excessively many),

• unobserved heterogeneity (i.e. subgroups of observations with di�ering parameter values) and

• measurement errors and outliers.
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The PLE is sensitive to these problems and departures from the underlying assumptions may cause
parameter estimates to be biased towards zero and also leads to downward biases of the corresponding
standard errors. To test the validity of the proportional hazards assumption we use the test of Grambsch
and Therneau (1994). This test is applied to each regressor variable separately as well as to the whole
speci�cation. We also apply several re�nements or alternatives to the ordinary Cox regression which are
brie�y discussed in the following paragraphs.

Cox regression with censored bootstrapping is used for implementing a bias correction and com-
puting standard errors which are more valid in small samples. Davison and Hinkley (1997) describe the
bootstrap for censored data in detail. Efron and Tibshirani (1986) propose to bootstrap the data directly
together with the censoring indicator (resampling cases), claiming that standard errors are correctly es-
timated even in the case of violations of the supposed censoring mechanism. This approach is deemed to
be quite robust to departures from the underlying model assumptions (see also Hjort (1992)).

Complementary log-log model is considered to take account of the discrete nature of the survival
data. Cox regression principally expects continuous duration data but is principally able to deal with ties
(here by Efron's (1977) procedure). Despite that Efron's procedure is considered to be quite robust even
for moderately tied data (Broström/Lindkvist (2008, p. 681)), our data record the years of survival and
are heavily tied with just 37 di�erent survival times for a total of 333 observations. Thus, the application
of a discrete time duration method, which is better suited when data are heavily tied and then also
provides improved small sample properties, is strongly suggested as a further robustness check. Basically
this amounts to create risk sets containing the observations which are at risk at the distinct survival
times and transforming the duration of survival to a binary variable yitk ∈ {0, 1} equal to one when an
event occurs for �rm i at survival time tk. Then a binary choice model with a complementary log-log
link function Pr(yitk = 1 |xi) = 1− exp(− exp(β′xi + λ0k)), where λ0k is the additive baseline hazard at
tk, is estimated. This corresponds to a discrete time analog to Cox's proportional hazards model. See
Prentice and Gloeckler (1978) and Broström (2002) for details.5 The complementary log-log model is
used as implemented in the R package 'eha' (see Broström and Lindkvist (2008)).

Complementary log-log model with bootstrapping based bias correction and bootstrapped stan-
dard errors are used analogous to the Cox regression in the form of case resampling.

Mixed Cox regression can take account of unobserved heterogeneity (so-called frailty in the biostatistics
literature). Neglecting unobserved heterogeneity potentially leads to biased parameter estimates and
may also lead to a rejection of the proportional hazards assumption. We use three variants of a mixed
e�ects model to introduce unobserved heterogeneity of the hazard rates. The �rst variant is the usual
Gamma-distributed frailty term (γ-frailty) introduced by Lancaster (1979). Estimated is the model
λ(yi |xi) = λ0(yi)·exp(β′xi)·υi with υi ∼ Gamma(θ, θ) independently, parameterized such that E(υi) = 1
and Var(υi) = 1/θ. The parameter θ is estimated along with the other model parameters. The generality
and robustness of the proportional Gamma-frailty is highlighted by Abbring and van den Berg (2007).
The second variant is based on a penalized likelihood approach as described in Therneau et al. (2003)
with a Gaussian frailty term. In that case the model estimated is λ(yi |xi) = λ0(yi) · exp(β′xi + bi) with
bi ∼ N(0, σ2

b ) representing the independently normally distributed random e�ects coe�cients and σ2
b is a

variance parameter to be estimated. The third variant consists of variable-speci�c normally distributed
random e�ects. Its hazard rate is λ(yi |xi) = λ0(yi) · exp(β′xi + b′ixi), where bi now is a vector of
random e�ects coe�cients which is multivariate normally distributed with E(bi) = 0 and covariance
matrix Var(bi) = Σ. The implementation used here is based on the EM algorithm as outlined in Vaida
and Xu (2000). Reported in the tables below are only the estimates of the �xed e�ects coe�cients.

Cox regression with a bias correction is proposed in Heinze and Schemper (2001) adapting a general
procedure proposed by Firth (1993). Cox regression can be subject to a problem called the problem of
monotone likelihood.6 Heinze and Schemper (2001) suggest a remedy against this problem to introduce

a bias term into the score function of the Cox PLE to reduce the bias in β̂. This reduces the bias
that may be caused by the monotone likelihood problem in Cox regressions. Since this problem arises
more frequently with dummy explanatory variables, its correction is particularly relevant in the present
application. The mathematical foundation for the general case of maximum likelihood estimation are

5In addition, Beck et al. (1998, pp. 1284f.) provide a nice derivation of this correspondence.
6The problem of monotone likelihood is described by Heinze and Schemper (2001, p. 114) as follows: �... during the

iterative �tting process, the likelihood converges to a �nite value while at least one parameter estimate diverges to ±∞. In
general, one does not assume in�nite parameter values in underlying populations. The problem of monotone likelihood is
rather one of nonexistence of the maximum likelihood estimate under special conditions in a sample.�
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outlined by Firth (1993), while the computational details of the application to the Cox regression can be
found in Heinze and Schemper (2001).

Robust estimation of the Cox regression as proposed in Bednarski (1993) and Minder and Bednarski
(1996) amounts to modifying the score function by introducing trimming using a kind of weights to
reduce the in�uence of large values of exp(β′xi). The weight function is chosen to smooth the estimator
with respect to the data. Monte-Carlo results show that the downward biases (towards zero) of the
parameter estimates and their standard errors caused by unobserved heterogeneity, omitted variables
or measurement errors are smaller when the robust Cox estimator is applied (see Bednarski (1993) and
Minder and Bednarski (1996) for the details).

These re�nements of the Cox regression are implemented in several packages for the R programming
environment (Chambers (2008)). Used for generating the estimation results discussed in the following
section are the packages 'survival' (for the original Cox regression, the test of proportional hazards and the
Gamma-fraily model), 'boot' (for the bootstraps), 'eha' (for the conditional log-log model), 'coxme' and
'phmm' (for the models with unobserved heterogeneity), 'coxphf' (for the bias correction), and 'coxrobust'
(for the robust Cox regression estimates).

4 Results and Robustness

For our robustness assessment we focus on models 3 and 4 of CDK where both pre-entry and post-entry
experience are considered. We �rst turn to the tests of the proportional hazards assumption. Recall
that, as de�ned above, abbreviations used in the tables are E1, E2, E3 and E4 for the dummy variables
indicating membership in the �rst to fourth entry cohort, respectively, and P is a dummy variable
indicating the presence of some form of pre-entry experience.

Table 2 shows the p-values of the proportional hazards tests. We see that for model 3, which includes the
cohort dummy variables E1, E2 and E3 (the dummy E4 serves as the omitted reference category) and
the pre-entry experience dummy P , the proportional hazards assumption is generally rejected. For the
original Cox regression the rejection holds for the cohort dummies as well as globally. The exception is
the dummy for pre-entry experience. When we incorporate γ-frailty the rejections become weaker (the
p-values are higher) and now we �nd no rejections for the variables E1 and P . The picture changes when
we turn to model 4, where the pre-entry experience is interacted with the entry-cohort dummies. Now
we �nd no rejection of the proportional hazards assumption with the single exception of the global test
for the original Cox regression, but this rejection is rather weak with a p-value close to 0.05. Thus, we
see here that the tests of the proportional hazards assumption appear also to have power against model
misspeci�cation in general which is a more general insight of the literature concerned with speci�cation
testing (see e.g. MacKinnon (1992) and more speci�cally Therneau and Grambsch (2000, ch. 6)).

Table 2: Proportional Hazards Tests

Model 3 Model 4
model
variables

original Cox
regression

γ-frailty Cox
regression

original Cox
regression

γ-frailty Cox
regression

E1 0.039 0.258 0.249 0.330
E2 0.002 0.019 0.187 0.238
E3 0.000 0.004 0.105 0.122
P 0.512 0.324
E1 · P 0.644 0.538
E2 · P 0.991 0.906
E3 · P 0.932 0.864
E4 · P 0.191 0.329
global 0.005 0.020 0.048 0.136
Note: Reported are p-values of the tests of Grambsch and Therneau (1994).

The comparison of the survival regression results focuses on the coe�cient estimates and their standard
errors (reported in parentheses). Table 3 collects the whole set of results for model 3. The �rst column
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shows the results of CDK for the original Cox regression as summarized above in section 2.7 We see that
all coe�cient estimates are negative and highly signi�cant. The next column shows that these results
are robust to the application of the bootstrap. This holds for the magnitude of the now bias-corrected
coe�cient estimates as well as for the standard errors which are all numerically close to that of the
original Cox regression. Hence, no biases or underestimation of standard errors can the detected in this
way.

In column three we �nd the estimates of the complementary log-log model for taking better account of
the discreteness of the duration data. Compared to the original Cox regression we see that the coe�cient
estimates for the early entry cohorts (E1 and E2) are more negative while the coe�cient estimate for
the later entry cohort (E3) is less negative. Thus, the di�erences in the survival chances of the earlier
and later entrants appear more pronounced when using this estimator. The coe�cient estimate of the
pre-entry experience is slightly more negative, also showing that pre-entry experience is here even more
important for reducing the exit hazard. The standard errors are a bit larger but give no reason to change
any conclusion about the signi�cant in�uence of the variables. The application of the bootstrap to the
complementary log-log model results in minor changes of the coe�cient estimates which are far too small
to change any conclusions. The standard errors are further increased somewhat.

The next three columns consider the mixed proportional hazard models with the consideration of un-
observed heterogeneity in three di�erent ways. Here, the magnitude of the coe�cient estimates lies in
between those of the Cox regression and the complementary log-log model. When they are outside of this
range, then not by far. The sole exception are the coe�cient estimates of the cohort dummy E3 which
are much more negative than in the estimates discussed before. They are, however, not larger in absolute
magnitude than those of the other cohort dummies and thus do not overrule the substantial conclusion
about the bene�t of entering early in the life cycle. The standard errors are overall similar in magnitude
to showing the robustness of estimation precision to the allowance of unobserved heterogeneity. The vari-
ances of the random e�ects (not reported) are generally rather small and the e�ects themselves are not
signi�cant. This outcome of modest e�ects of accounting for unobserved heterogeneity is also reported
in the survey of Manjón-Antolín and Arauzo-Carod (2008).8

In the �nal two columns we �nd the bias-corrected and robust Cox regression estimates. Besides minor
exceptions the coe�cient estimates are in the range of those computed by the other estimation methods.
Here, the standard errors are among the lowest for the bias-corrected estimator while they are among
the largest for the robust estimator. But even in the latter case, they are not nearly as large as would
be required to overrule any previous �ndings of statistical signi�cance. All conclusions drawn by CDK
therefore also hold for these re�nements of the Cox regression.

Model 4 examines the di�erences of the e�ect of pre-entry experience for the entry cohorts in more detail.
Therefore, the regressor P is divided into four interaction terms of the cohort dummies and the dummy for
pre-entry experience (now the dummy E4 for the fourth entry cohort interacted with P is also included,
of course). The corresponding results are collected in table 4. With our objective to assess the robustness
of the results we �rst �nd again all coe�cient estimates to be negative and all standard error to be much
smaller than necessary to safely reject the null hypothesis of no in�uence of a particular variable. Thus,
again both pre-entry experience and post-entry experience signi�cantly reduce the exit hazard.

As regards coe�cient magnitudes we are able to con�rm the two essential results from this speci�cation
across all estimation methods. First, the coe�cient estimates of the �rst two entry cohorts (E1 and E2)
are throughout considerably larger in absolute magnitude than the coe�cient estimates for the third
entry cohort (E3). In most cases we also have a larger absolute coe�cient magnitude of E1 compared to
E2. This reveals again the advantages from entering in the market early. Second, with minor exceptions
the coe�cient estimates of the interaction terms of the �rst and the fourth entry cohort dummies with
the pre-entry experience dummy (E1 · P and E4 · P ) are considerably larger in absolute magnitude than
the coe�cient estimates of the interaction terms of the second and third entry cohort dummies with the
pre-entry experience dummy (E2 · P and E3 · P ), thereby generating an ∪-shaped e�ect. Hence, we can
again conclude that the substantial conclusions drawn by CDK from this speci�cation are also robust to
the di�erent re�nements of the Cox regression applied here.

7The interpretation is as outlined above. As an example, the coe�cient estimate of P is −0.964, implying a reduction
of the hazard rate to e−0.964 ≈ 0.38, meaning a reduction of the hazard rate by 62 percent.

8See also Strotmann (2007).
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5 Conclusions

The results reported above show that the various assumptions involved in the usually applied ordinary
version of the Cox regression appear not to be critical for the results of the application of survival analysis
in industry life cycle investigations of the sort considered here. This is demonstrated in the present paper
for the case of the German automobile industry over the period 1886-1939 from its foundation until
maturity. It can be expected that this �nding holds for related samples, too, although this needs deeper
investigation. The possible speci�cation errors investigated here are the assumption of proportional
hazards, the discrete measurement of the durations leading to excessively many ties, the neglection of
unobserved heterogeneity of the �rms and the existence of measurement errors and outliers in the data.

The robustness of the results found previously in a study of CDK is established by using various re-
�nements of the Cox regression mainly developed in the biostatistics literature. All previous results
concerning the bene�ts of early entry in the life cycle, providing more opportunities to accumulate ex-
perience after entry and of the existence of technological or business experience already before entry can
be con�rmed and in some cases even strengthened. Moreover, not only the qualitative pattern of the
coe�cient estimates regarding sign and signi�cance can be con�rmed, but we also observe remarkable
stability of the coe�cient estimates and their standard errors across the di�erent estimation methods.

By that, our results reinforce the results of the empirical analyses of CDK for the German automobile
industry and indirectly also those of related studies such as Klepper (2002) for the US automobile industry
and other US industries. The �ndings are also in agreement with the predictions of the theoretical life cycle
model of Klepper (1996) concerning the role of knowledge in di�erent forms for shaping the characteristic
pattern of �rm survival.
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