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decomposing rank-dependent indicators
of socioeconomic inequality of health: an
empirical study
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Abstract

We present a flexible structural equation modeling (SEM) framework for the regression-based decomposition of rank-
dependent indicators of socioeconomic inequality of health and compare it with simple ordinary least squares (OLS)
regression. The SEM framework forms the basis for a proper use of the most prominent one- and two-dimensional
decompositions and provides an argument for using the bivariate multiple regression model for two-dimensional
decomposition. Within the SEM framework, the two-dimensional decomposition integrates the feedback mechanism
between health and socioeconomic status and allows for different sets of determinants of these variables. We illustrate
the SEM approach and its outperformance of OLS using data from the 2011 Ethiopian Demographic and Health Survey.

Keywords: Inequality measurement, Generalized health Concentration Index, Decomposition methods, Structural
Equation Modeling

JEL Classification Number: C36, D63, I00

Background
The dominant approach to the measurement of socio-
economic inequality of health consists of using rank-
dependent indicators. They are called rank-dependent
because they can be expressed as weighted averages of
individual health levels, with the weights determined by
the ranks of individuals in the socioeconomic distribu-
tion. Indices of this type allow us to find out whether
there is pro-rich or pro-poor bias in the health distribu-
tion: positive values indicate that people who are relatively
well-off in socioeconomic terms tend to have better health
than those who are less well-off, and negative values the
opposite. The standard health Concentration Index [24]
is undoubtedly the most popular rank-dependent index.
There is now also a growing literature on the decomposi-
tion of the Concentration Index using various economet-
ric techniques (see, e.g., [1, 10, 21, 25]). An overview of
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recent contributions on the measurement and decompo-
sition of socioeconomic inequality of health can be found
in [10, 19, 20].
Compared to indicators of income inequality or health

inequality, which measure the degree of inequality within
a given univariate distribution of income or health, indi-
cators of socioeconomic inequality of health are bivariate
in nature because they measure the degree of correlation
between health and socioeconomic status. To explain the
degree of correlation between these two variables rather
than the degree of inequality in one variable, Erreygers
and Kessels [4] proposed a set of two-dimensional decom-
positions that investigate both variables simultaneously.
The most salient of these decompositions is based on the
bivariate multiple regression model that explains health
and socioeconomic status simultaneously. This decompo-
sition captures not only the direct contributions of the
explanatory variables in the regressions, but also their
combined or correlated contributions.
However, two criticisms may be made of the two-

dimensional decomposition analysis based on the
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bivariate multiple regression model. The first is that the
bivariate multiple regression model uses the same set of
variables to explain both health and socioeconomic sta-
tus, which may not be the most appropriate assumption
given that the determinants of health and socioeconomic
status need not be the same. Related to this, the second
criticism is that socioeconomic status is not included
as an explanatory variable in the regression of health,
and health not included as an explanatory variable in
the regression of socioeconomic status. The existence
of a reciprocal relationship should be examined since
health is potentially both a cause and a consequence of
socioeconomic status [7, 16]. In the literature on the
decomposition of socioeconomic inequality of health,
several empirical studies (see, e.g., [2, 11, 13, 17, 18, 25])
have investigated the impact of socioeconomic status
on health, reporting evidence that socioeconomic status
is an important determinant of health. Gerdtham et al.
[7] argue, however, that an overall consensus about the
causal impact of socioeconomic status on health has not
yet been reached.
The main objective of Erreygers and Kessels [4] was to

compare the two-dimensional decomposition to the one-
dimensional decompositions that are based on regressions
of only one of the two variables under consideration.
Therefore, they used the same set of explanatory variables
in all regressions, which are all estimated using ordinary
least squares (OLS). Moreover, for the one-dimensional
decompositions, they argued that including either of the
variables as an explanatory variable in the single regres-
sions distorts the explanation of the correlation between
health and socioeconomic status. It is then as if the vari-
able in question were treated both as a dependent and
as an independent variable. As a result, for the two-
dimensional decomposition, a bivariate multiple regres-
sion modeling framework was chosen which includes
neither health nor socioeconomic status as an explanatory
variable.
To bridge the gap between empirical observations

and modeling practice, we propose a flexible model-
ing approach for the decomposition of socioeconomic
inequality of health that makes use of a structural or
simultaneous equation model (SEM). The model allows
for different sets of determinants of health and socioe-
conomic status as well as for the inclusion of socioeco-
nomic status as an explanatory variable in the regression
of health and health as an explanatory variable in the
regression of socioeconomic status. The model produces
consistent estimates of the regression coefficients using
a two-step generalized method of moments (GMM) esti-
mation procedure that includes instrumental variables.
Although such a modeling approach has been hinted at
before ([25]: 214, n.12) and commented upon for its data
requirements which may be demanding [10], this paper

is the first to adopt a SEM in a simple manner using real
data.
The outline of the remainder of the paper is as

follows. First, we review the Generalized health Con-
centration Index and the various concepts it embraces.
Next, we provide an overview of the most important
one- and two-dimensional decompositions, based on
the OLS regression approach. After that, we present a
flexible SEM approach for regression-based decompo-
sition analysis and show how it fits with the existing
decompositions. By means of an empirical analysis of
child malnutrition in Ethiopia, we then illustrate the
proper use of the one- and two-dimensional decompo-
sitions within the OLS and SEM regression framework.
Finally, we summarize the paper and discuss the main
outcomes.

Methods
Generalized health Concentration Index
We consider a population of n individuals for which the
health level of individual i, denoted as hi, is either a ratio-
scale variable which takes non-negative values only, or a
cardinal variable with a finite lower bound. The average
health level in the population is equal to μh = 1

n
∑n

i=1 hi.
Erreygers and Van Ourti [6] pointed out that the use

of the health Concentration Index is pertinent when we
are dealing with a ratio-scale health variable which is
unbounded, i.e. which does not have a finite upper bound.
However, when we are dealing with a variable which
has a finite upper bound, a modified version is called
for. For this situation, Wagstaff [23] and Erreygers [3]
each proposed a variant of the Generalized Concentration
Index.
All these indices belong to the family of rank-dependent

indices: they can be expressed as weighted sums of health
levels with the weights determined by socioeconomic
ranks. The socioeconomic rank of individual i is deter-
mined by his/her position according to the variable cho-
sen to measure socioeconomic well-being, e.g. income.
Let the value of this variable for individual i be yi. Then
the natural number ri(y), or more simply ri, measures the
position of individual i in the rank-order according to vari-
able y, with the rank ri = 1 assigned to the person who
is least well-off, and the rank ri = n assigned to the per-
son who is most well-off. In the case of ties, we assign
to every individual of the tied group the average rank
of the group. Over the population as a whole the aver-
age rank is μr = n+1

2 . The fractional rank fi is defined
as fi ≡ 1

n
(
ri − 1

2
)
, and varies between 1

2n and 1 − 1
2n .

The average fractional rank is μf = 1
2 . Finally, the devia-

tion of the fractional rank of individual i from the average
fractional rank, denoted as di ≡ fi − μf , has an average of
μd = 0.
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The Generalized health Concentration Index GC is
defined as:

GC = 2
n

n∑

i=1
hidi (1)

The standard health Concentration Index, C, as well
as the indices introduced by Wagstaff [23], W, and by
Erreygers [3], E, can be expressed as simple functions of
GC:

C = 1
μh

GC (2)

W = bh − ah
(bh − μh)(μh − ah)

GC (3)

E = 4
bh − ah

GC (4)

where ah and bh stand for the lower and upper bounds of
the health variable. Strictly speaking, the decompositions
discussed in this paper are only applicable toGC and E. As
argued by Heckley et al. [10], only these two indices com-
ply with the assumption of weighting function ignorability
required for proper decomposition analysis. This assump-
tion states that the predictors of health do not influence
the weighting function that is specific to each form of
rank-dependent index and equal to the multiplier of GC
in formulas (2)–(4). The two indicesGC and E are charac-
terized by a constant weighting function, which equals 1
for GC and 4

bh−ah for E. The other indices C and W have
weighting functions that are functions of the mean health,
and therefore also functions of the predictors of health.
They thus violate the assumption of weighting function
ignorability. In the remainder of the paper, we will concen-
trate on the decomposition ofGC which is the basic index
satisfying weighting function ignorability.
We can rewrite the formula for GC using a well-known

relationship between the rank-dependent indices and the
covariance. Since Cov(h, d) = 1

n
∑n

i=1 hidi − μhμd and
μd = 0, the value for GC can also be computed as:

GC = 2Cov(h, d) (5)

Erreygers and Kessels [4] used both (1) and (5) to gen-
erate decompositions of the Generalized Concentration
Index. Some of these decompositions have a constant
term. Because it is problematic to give a meaningful inter-
pretation to the constant term, the most attractive decom-
positions are those without a constant term. In the next
section, we review these decompositions, two of which are
one-dimensional and one that is two-dimensional. In the
one-dimensional decompositions, either the health vari-
able or the fractional rank deviation variable is subject

to a regression, whereas in the two-dimensional decom-
position, both variables are subject to a regression. The
regression approach used is simply OLS.

One- and two-dimensional decompositions using OLS
regression
The health-oriented decomposition
The health-oriented decomposition, introduced by
Wagstaff et al. [25], has been the first and most well-
known regression-based decomposition. It starts from
the linear regression model describing the relation-
ship between the health variable h and a number of
explanatory variables x1, x2, ..., xk :

hi = β0 + β1x1,i + β2x2,i + ... + βkxk,i + εi (6)

where εi is an error term. Substituting the right-hand
side of this model for hi in the ‘product definition’ of
the GC in (1) and working out the result, we obtain the
health-oriented decomposition, henceforth referred to as
decomposition (I):

GC = 2
k∑

j=1
βjCov(xj, d) + 2Cov(ε, d) (7)

This decomposition has a deterministic component
consisting of a sum of k contributions, one for each
explanatory variable, and a residual component.
As argued by Erreygers and Kessels [4] and Heckley

et al. [10], it is misleading to include the fractional rank
deviation variable d in the OLS regression for h in decom-
position (I), or any proxy variable strongly correlated with
d such as income or consumption. In that case, the resid-
ual component will be zero, or close to zero, suggesting
that we have explained all or most of the variation in
the Generalized Concentration Index. This result is, how-
ever, merely an artefact from the OLS regression-based
approach of decomposition (I). Consider, for example, the
simple case where the variable d is the only explanatory
variable of h, i.e. x1 = d. Since the OLS estimate of β1 is
then equal to Cov(h, d)/Var(d), it follows that the deter-
ministic component of decomposition (I) is identical to
GC and therefore the residual component equal to zero.
However, in this case, we have explained nothing at all.
We are just treating the fractional rank deviation variable
d both as a dependent and as an independent variable.
In other words, the variable d is assumed endogenous,
whereas exogeneity is required for causal inference using
OLS and decomposition (I) [10].
Even though empirical work suggests that the socio-

economic variable is an important predictor for health
(see, e.g., [2, 11, 13, 17, 18, 25]), the OLS regression-
based methodology of decomposition (I) does not provide
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the right framework to use this result for the expla-
nation of socioeconomic inequality of health. To bridge
the gap between the empirical result and the regression-
based decomposition methodology, we propose using a
SEM approach (see below) that unifies these contrasting
themes.

A rank-oriented decomposition
Erreygers and Kessels [4] introduced a rank-oriented
decomposition that relies on a linear regression model
for the fractional rank deviations. Assuming that the vari-
ables z1, z2, ..., zq are the relevant variables to explain the
socioeconomic ranks, this model is given by

di = γ0 + γ1z1,i + γ2z2,i + ... + γqzq,i + ξi (8)

where ξi is an error term. Substituting the right-hand side
of this model for di in the ‘covariance definition’ of the
GC in (5) and working out the result, we arrive at the
rank-oriented decomposition, henceforth referred to as
decomposition (II):

GC = 2
q∑

g=1
γgCov(h, zg) + 2Cov(h, ξ) (9)

Decomposition (II) has a similar structure to decom-
position (I) because it decomposes the Generalized Con-
centration Index into a sum of q explained contributions,
with each of these equal to a covariance weighted by a
regression coefficient, and a residual or unexplained com-
ponent, which is also a covariance. In line with good
practice to exclude the socioeconomic variable d from the
OLS regression for h in decomposition (I), Erreygers and
Kessels [4] also advise against the inclusion of h in the
OLS regression for d because it would artificially result
in a zero residual covariance in decomposition (II). In
that case, the variable h is assumed endogenous. In order
to make room for a possible effect of health on socioe-
conomic status in the framework of decomposition (II),
we recommend using a SEM procedure that describes
the feedback mechanism between these two variables (see
below).

A two-dimensional simultaneous decomposition
To give proper attention to the bivariate nature of the
Generalized Concentration Index, Erreygers and Kessels
[4] proposed a set of two-dimensional decompositions
that investigate the health levels h and the fractional rank
deviations d simultaneously. The most salient of these
decompositions is based on the bivariate multiple regres-
sion model that explains both variables simultaneously. It
is typical of the bivariate multiple regression that a com-

mon set of p variables s1, s2, ..., sp is used to explain h and d.
The bivariate multiple regression has the following form:

hi = λ0 + λ1s1,i + λ2s2,i + ... + λpsp,i + ψi (10)

di = π0 + π1s1,i + π2s2,i + ... + πpsp,i + χi (11)
where ψi and χi are error terms. It is assumed that
μψ = μχ = 0 and that the 2p covariances Cov(sj,χ) and
Cov(ψ , sj) are zero.
Applying the ‘covariance definition’ of the GC in (5)

to the bivariate multiple regression model leads to the
simultaneous decomposition, henceforth referred to as
decomposition (III):

GC = 2
p∑

j=1
λjπjVar(sj)+2

p∑

j=1

p∑

g=j+1
(λjπg+λgπj)Cov(sj, sg)

+ 2Cov(ψ ,χ)

It consists of p single-variable terms λjπjVar(sj) which
capture the direct effect of the p explanatory variables,
p(p−1)

2 two-variable terms (λjπg + λgπj)Cov(sj, sg) which
capture the correlation structure between the explanatory
variables, and a residual component which is proportional
to the covariance between the two error terms.
In the next section, we show that the simultaneous

decomposition based on the bivariate multiple regression
model is also the same decomposition that we obtain from
applying a SEM regression approach.

A flexible SEM approach for decomposition analysis
Perhaps the most pertinent critique of the bivariate mul-
tiple regression model as a basis for two-dimensional
decomposition is the one that questions the assumption
that the same set of p variables explains both the health
variable h and the fractional rank deviation d. The chal-
lenge rests on the grounds that the determinants of health
and socioeconomic status need not be the same. More-
over, the bivariate multiple regressionmodel seems inflex-
ible in the sense that it does not include h as a predictor in
the equation for d and d as a predictor in the equation for
h. Empirical evidence has shown, however, that health is
largely influenced by socioeconomic status. It might also
be the case that socioeconomic status is influenced by
health, implying that both variables influence one another
reciprocally [7].
To overcome the criticisms of the bivariate multiple

regression model, we propose the specification of a struc-
tural or simultaneous equation model (see, e.g., [8]: chap-
ter 10; [22]: chapter 5) which allows for different sets of
predictors for h and d as well as the addition of d as a pre-
dictor in the equation for h and of h as a predictor in the
equation for d. These structural equations are meant to
represent causal relationships among the variables in the
model.
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We assume that the variables x1, x2, ..., xk with xk =
d are the relevant variables in the equation for h and
z1, z2, ..., zq with zq = h are the relevant variables in the
equation for d. We then have the following structural
model of two equations:

hi = β0 +
k−1∑

j=1
βjxj,i + βkdi + εi (12)

di = γ0 +
q−1∑

g=1
γgzg,i + γqhi + ξi (13)

In this SEM, the variables h and d are assumed endoge-
nous or jointly determined by the system of simultaneous
equations. The random error terms ε and ξ affect both h
and d (which is made clear by rewriting (13) in terms of
h), suggesting a correlation between each of the endoge-
nous variables and each of the random error terms. The
remainder of the variables in the SEM are assumed exoge-
nous or determined outside the system.
Because of the endogeneity of the variables h and d,

OLS regression cannot be relied upon to produce consis-
tent estimates of the parameters of the equations. Instead,
a GMM estimation procedure using instrumental vari-
able (IV) or two-stage least squares (2SLS) estimation
is needed to consistently estimate all parameters of the
SEM [9]. This requires the introduction of at least one
instrumental variable or instrument for each equation. An
instrument for an equation is strongly correlated with the
right-hand side endogenous variable of that equation but
uncorrelated with the equation’s error term. Moreover, an
instrument does not have a direct effect on the response
variable, and thus it does not belong on the right-hand side
of the equation as an explanatory variable. It is therefore
only a tool or instrument to solve the endogeneity prob-
lem, hence the name. Using an efficient GMM estimator, a
necessary condition for identification of the two-equation
SEM is that each equation has at least one exogenous
variable that is not present in the other equation.
Once the SEM is estimated, Eq. (12) can be used as the

input for decomposition (I) and Eq. (13) as the input for
decomposition (II). In this way, by using an efficient GMM
estimation procedure instead of OLS, the contribution of
d in decomposition (I) and of h in decomposition (II) is
duly measured.
Substituting the right-hand side of (13) for di in (12) and

the right-hand side of (12) for hi in (13), we obtain:

hi = β0 +
k−1∑

j=1
βjxj,i +βk

⎡

⎣γ0 +
q−1∑

g=1
γgzg,i + γqhi + ξi

⎤

⎦+εi

di = γ0 +
q−1∑

g=1
γgzg,i +γq

⎡

⎣β0 +
k−1∑

j=1
βjxj,i + βkdi + εi

⎤

⎦+ ξi

Rearranging terms and assuming that βkγq �= 1, we
arrive at the following reformulation of the model, which
is called the reduced form of the SEM:

hi = β0 + βkγ0
1 − βkγq

+
k−1∑

j=1

βj

1 − βkγq
xj,i

+
q−1∑

g=1

βkγg

1 − βkγq
zg,i+ εi + βkξi

1 − βkγq

(14)

di = γ0 + β0γq
1 − βkγq

+
k−1∑

j=1

βjγq

1 − βkγq
xj,i

+
q−1∑

g=1

γg

1 − βkγq
zg,i + ξi + γqεi

1 − βkγq

(15)

The reduced-form equations express each endogenous
variable, h and d, in terms of the exogenous variables,
x1, x2, ..., xk−1 and z1, z2, ..., zq−1, and the intercept, plus an
error term. If variable xj∗ is equal to variable zg∗ – nothing
excludes this case – then the coefficient of the variable in
question in (14) will be (βj∗ + βkγg∗)/(1 − βkγq), and in
(15) (βj∗γq+γg∗)/(1−βkγq). The reduced-form equations
describe the (equilibrium) impact after allowing for all
interactions between the endogenous variables to work
themselves out.
Like the bivariate multiple regression model (10)–(11),

the reduced form of the SEM in (14)–(15) is characterized
by the same set of explanatory variables, which we note as
s1, s2, ..., sp. Eqs. (14) and (15) can then be simplified as:

hi = λ0 + λ1s1,i + λ2s2,i + ... + λpsp,i + ψi (16)

di = π0 + π1s1,i + π2s2,i + ... + πpsp,i + χi (17)

The parameters λ0, λ1, ..., λp and π0,π1, ...,πp in (16)–
(17) are called reduced-form parameters. The error terms
ψi and χi are called reduced-form errors.
The reduced-form Eqs. (16)–(17) are equivalent to the

bivariate multiple regression model (10)–(11), and can be
consistently estimated by OLS since the right-hand side
variables are exogenous and uncorrelated with the ran-
dom errors ψi and χi. This shows that, using a SEM
regression approach, we end up with decomposition (III)
based on the bivariate multiple regression model. Within
the SEM framework, this decomposition incorporates the
feedbackmechanism between the variables h and d, which
are allowed to depend on different sets of predictors. As
a result, the above analysis answers to the criticisms of
the bivariate multiple regression model and the resulting
decomposition (III).
In our empirical study described in the next section, we

show that a SEM regression analysis forms the basis for a
proper use of decompositions (I), (II) and (III).
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Results
Data description
For comparison the data are the same as those used
by Erreygers and Kessels [4]. They come from the 2011
Demographic and Health Survey (DHS) of Ethiopia and
are confined to children under the age of five.
The response variables in decompositions (I), (II) and

(III) are the health variable h and the fractional rank devi-
ation d. The health variable h is actually an ill-health
variable: the degree of stunting or malnutrition. It is
defined on the unit interval [0, 1] and provides informa-
tion on the depth of child malnutrition. It is measured
using the child’s height-for-age standard deviation or z-
score which is the difference between the height of a child
and the median height of a child of the same age and
sex in a well-nourished reference population, divided by
the standard deviation in the reference population. The
new WHO child growth population was chosen as the
reference population. The degree of stunting is stated rel-
ative to the threshold of minus two standard deviations
of the median of the reference population. Children with
a z-score greater than this threshold are designated as
not stunted and are assigned a zero degree value. The
other children are stunted and are assigned a value in
the unit interval that is proportional to the magnitude
of their z-score, where a z-score of minus six standard
deviations corresponds to the maximum value of one. In
total, taking into account the sample weights provided by
the DHS, 44% of the children in the dataset are stunted.
The fractional rank deviation d was obtained by rank-
ing the children’s households according to their wealth
status using the wealth indices constructed by the DHS
from a principal component analysis on all household
living conditions and assets. In the computation sam-
ple weights were taken into account so that, in effect,
the variable d stands for the weighted fractional rank
deviation.

The set of explanatory variables is the same as the one
used by Erreygers and Kessels [4] except for the variable
‘time to water source’, which turned out to be insignifi-
cant in their decomposition analyses. The variables are:
age and sex of the child, education of the mother and her
partner or husband, urban or rural residence, access to
safe drinking water, and satisfactory sanitation. In addi-
tion to that, the child’s age is specified nonlinearly in the
regression models using a squared term, which is mean-
centered to remove multicollinearity with the linear term.
Furthermore, safe drinking water and satisfactory sanita-
tion are defined along the lines proposed by the WHO
and UNICEF. ‘Safe drinking water’ includes the following
sources of water supply: piped water (piped into dwelling,
piped into yard or plot, or public tap), water from a pro-
tected well, tube well or borehole, water from a protected
spring, and rainwater. ‘Satisfactory sanitation’ includes the
following sanitation infrastructure: a flush toilet (flush to
piped sewer system, septic tank or pit latrine), a pit latrine
with slab, a ventilated improved pit (VIP) latrine and a
composting toilet.
Table 1 shows a summary of all the variables with

their descriptive statistics taking into account the sample
weights. The data contain information on 9262 children
under the age of five. The value for theGC equals−0.0136
using either the ‘product definition’ in (1) or the ‘covari-
ance definition’ in (5). Its negative sign reveals higher
rates of child malnutrition amongst the poor, that is, a
socioeconomic inequality of malnutrition to the disad-
vantage of the poor. In the next two sections, we apply
the various approaches described in this paper to com-
pute decompositions (I), (II) and (III), which we express
in percentages. We first discuss the decomposition results
from using an OLS regression approach, and then those
from using a SEM approach. We performed all regres-
sion analyses using the econometric software package
EViews 9.

Table 1 Mean, standard deviation and description of all variables

Variable Mean SD Description

Degree of stunting 0.1252 0.2073 Height-for-age z-score (WHO) scaled to the interval [0,1]

Degree of stunting > 0 if height-for-age z-score < −2 SD

Weighted fractional rank deviation 0 0.2952 Based on the wealth indices provided by the DHS

Age of child 29.8571 17.8084 In months

Squared age of child 303.3724 270.6317 Term is mean-centered: (age of child − 29.8571)2

Sex of child 0.5140 0.5110 Male (1), female (0)

Residence type 0.1237 0.3366 Urban (1), rural (0)

Education of mother 1.3446 2.8587 In years

Education of partner/husband 2.7439 3.8141 In years

Safe drinking water 0.4614 0.5097 Available (1), not available (0)

Satisfactory sanitation 0.1234 0.3362 Available (1), not available (0)
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Decomposition results using OLS regression
Decompositions (I) and (II)
The results for decompositions (I) and (II) depend on
the specification of the OLS regression model used. For
decomposition (I), an important comparison to study
is that between the exclusion and the inclusion of the
weighted fractional rank deviation d in the regression
for the degree of stunting h. For decomposition (II),
we carry out a similar analysis, comparing the results
from excluding and including h in the regression for
d. Table 2 contains the coefficients for the two sets of
regressions for h and d as well as the t- and F-statistics
and significances. We corrected standard errors for
heteroskedasticity by using White’s heteroskedasticity-
consistent standard errors.
Using OLS regression, the t-statistics indicate that the

variables d and h are highly significant in the regres-
sions for h and d, respectively. In other words, h is very
much influenced by d, and vice versa, d is very much
influenced by h. Furthermore, the regression results for
h are greatly affected when d is included as a regres-
sor, whereas the regression results for d do not seem to
differ much when h is included. When d is excluded in
the regression for h, all variables are significant at the
5% level except for safe drinking water. However, when
d is included in the regression for h, two more variables
besides safe drinking water turn out to be insignificant,
namely residence type and satisfactory sanitation. Also,
education of the mother and her partner become less

significant when including d as a regressor. Consequently,
it seems that in the regression for h, some of the vari-
ation explained by these variables is being attributed to
d. In contrast, when h is included in the regression for
d, only the child’s age variable is affected in the sense
that it becomes more significant. Although we argue that
the OLS framework is not the right methodology to esti-
mate the regression models with d and h as regressors,
because of the correlated nature of the cross-sectional
data, we suspect that the regression model for h includ-
ing d makes more sense than the regression model for d
including h.
Using the two regressions for h, excluding and includ-

ing d, we computed two versions of decomposition (I),
and using the two regressions for d, excluding and includ-
ing h, we computed two versions of decomposition (II).
The percentage contributions of these decompositions are
shown in Table 3 and visualized in Fig. 1. An impor-
tant observation is that decomposition (I) has a zero
residual component when d is included and decompo-
sition (II) has a zero residual component when h is
included. Also, the contribution of d in decomposition
(I) and of h in decomposition (II) are by far the largest,
being 66.08% and 43.08%, respectively, and seem to cap-
ture all residual variation on top of their real contribu-
tions, compared to the large residual value of 39.76%
in decomposition (I) excluding d and in decomposition
(II) excluding h. As discussed previously, this result is
an artefact of including either socioeconomic status or

Table 2 OLS regressions for the degree of stunting h and the weighted fractional rank deviation d, where d has been excluded and
included in the regression for h and h has been excluded and included in the regression for d

h d

Excluding d Including d Excluding h Including h

Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat

Constant 0.1305 15.80∗∗∗ 0.1212 14.16∗∗∗ -0.1720 -18.54∗∗∗ -0.1627 -16.99∗∗∗

Age of child 0.0016 10.94∗∗∗ 0.0016 11.10∗∗∗ 0.0003 1.82� 0.0005 2.41∗

Squared age of child -0.0001 -13.49∗∗∗ -0.0001 -13.49∗∗∗ 0.0000 0.02 0.0000 -0.80

Sex of child 0.0135 2.30∗ 0.0139 2.36∗ 0.0065 0.98 0.0074 1.12

Residence type -0.0255 -2.18∗ -0.0122 -1.02 0.2470 22.30∗∗∗ 0.2452 21.84∗∗∗

Education of mother -0.0036 -3.43∗∗∗ -0.0030 -2.87∗∗ 0.0106 8.06∗∗∗ 0.0103 7.87∗∗∗

Education of partner/husband -0.0030 -3.31∗∗∗ -0.0022 -2.38∗ 0.0146 13.49∗∗∗ 0.0144 13.28∗∗∗

Safe drinking water 0.0033 0.53 0.0103 1.60 0.1289 18.12∗∗∗ 0.1291 18.18∗∗∗

Satisfactory sanitation -0.0170 -2.03∗ -0.0110 -1.28 0.1118 12.12∗∗∗ 0.1106 11.96∗∗∗

d − − -0.0539 -4.19∗∗∗ − − − −
h − − − − − − -0.0712 -4.17∗∗∗

F 96.55∗∗∗ 90.11∗∗∗ 765.62∗∗∗ 687.07∗∗∗

R2 0.0770 0.0806 0.3983 0.4006

N 9262 9262 9262 9262

�p < 0.1, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
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Table 3 Percentage contributions from decomposition (I), excluding and including d, and decomposition (II), excluding and including
h, using the OLS regressions from Table 2

I II

Excluding d Including d Excluding h Including h

Age of child -1.04 -1.05 -2.79 -3.72

Squared age of child 0.20 0.20 0.04 -1.55

Sex of child -0.27 -0.28 -0.31 -0.36

Residence type 18.26 8.74 22.18 22.02

Education of mother 17.65 14.86 10.03 9.79

Education of partner/husband 20.60 15.18 18.88 18.61

Safe drinking water -2.81 -8.66 4.91 4.91

Satisfactory sanitation 7.65 4.94 7.30 7.22

d − 66.08 − −
h − − − 43.08

Residual 39.76 0 39.76 0

Total 100.00 100.00 100.00 100.00

health as a variable in the decompositions that aim to
explain the correlation between these variables.
One might thus inadvertently conclude that the contri-

butions of d and h are very large in decompositions (I) and
(II). However, for decomposition (I), the contribution of d
exceeds the residual term from the same decomposition
when d is excluded by a factor of 1.66, whereas for decom-
position (II), the contribution of h is about the same as
the residual term from the same decomposition exclud-
ing h. Compared to these residual terms, the contribution
of the socioeconomic variable in decomposition (I) may
be real and large, but not as large as 66.08%, whereas the
contribution of the health variable in decomposition (II)
may not be real. Also, similar to the regression results,
when d is included in decomposition (I), the contributions

of most other variables are smaller in absolute magni-
tude than when d is excluded. In contrast, when h is
included in decomposition (II), the contributions of the
other variables seem largely unaffected.

Decomposition (III)
We computed decomposition (III) starting from the
bivariate multiple regression model, the coefficients of
which are the same as those from the univariate regres-
sions for h excluding d and for d excluding h, shown in
Table 2. Table 4 contains the individual percentage contri-
butions of decomposition (III). As indicated by Erreygers
and Kessels [4], the column and row totals of the contri-
butions of decomposition (III) relate to decompositions
(I) and (II) from the regressions for h excluding d and for

Fig. 1 Percentage contributions from a decomposition (I), excluding and including d, and b decomposition (II), excluding and including h, using the
OLS regressions from Table 2
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Table 4 Percentage contributions from decomposition (III) in relationship with decompositions (I) and (II) using the OLS regressions
for h excluding d and for d excluding h from Table 2

Age Squared Sex Residence Education Education Safe Satisfactory Total
child age child child type mother partner water sanitation χ (I)

Age child -2.49 0.00 -0.02 0.16 0.59 0.96 -0.46 0.21 − -1.04

Squared age child -0.19 0.04 0.03 0.31 0.19 0.75 -0.88 -0.03 − 0.20

Sex child -0.01 0.00 -0.32 0.03 0.02 0.00 0.04 -0.03 − -0.27

Residence type 0.00 0.00 0.00 10.05 1.51 2.64 2.65 1.42 − 18.26

Education mother -0.04 0.00 0.00 4.99 4.41 4.75 2.16 1.39 − 17.65

Education partner -0.04 0.00 0.00 5.22 2.86 8.99 2.13 1.45 − 20.60

Safe water 0.00 0.00 0.00 -0.66 -0.16 -0.27 -1.57 -0.14 − -2.81

Satisfactory sanitation -0.01 0.00 0.00 2.09 0.62 1.08 0.83 3.03 − 7.65

ψ − − − − − − − − 39.76 39.76

Total (II) -2.79 0.04 -0.31 22.18 10.03 18.88 4.91 7.30 39.76 100.00

d excluding h. The contribution of the residual term in
decomposition (III) is therefore the same as in decompo-
sitions (I) and (II), equating to 39.76%. Table 5 contains
a summary presentation of decomposition (III) showing
the direct and combined or correlated percentage contri-
butions. Similar to the results of Erreygers and Kessels
[4], the total of the combined or correlated contributions
is almost twice as large as the total of the direct con-
tributions. As a comparison, Fig. 2 contains the direct
percentage contributions of decomposition (III) as well as
the contributions from decomposition (I) excluding d and
from decomposition (II) excluding h.
Assuming that all explanatory variables in the bivari-

ate multiple regression model are the exogenous vari-
ables in a two-equation SEM for the estimation of h
and d, decomposition (III) takes into account the mutual
dependency between h and d and thus captures the

net or reduced effects of the explanatory variables upon
both h and d. In the next section, we further discuss
the relevant decompositions obtained by using a SEM
approach.

Decomposition results using a SEM approach
SEM estimation
A first step in a SEM regression analysis for the estimation
of h and d as endogenous variables in Eqs. (12)–(13) is to
define the exogenous variables for each equation as well
as the instrumental variables for GMM analysis. Looking
at the OLS regression results in Table 2, we learn that the
variables ‘child’s age’, both its linear and squared term, and
‘sex of child’ are important predictors for h, but not for d,
whereas the variables ‘residence type’, ‘safe drinking water’
and ‘satisfactory sanitation’ are important predictors for
d, but not for h. We have therefore removed the variables

Table 5 Percentage direct and combined contributions from decomposition (III) using the individual contributions from Table 4

Direct effect Combined effect

Age Squared Sex Residence Education Education Safe
child age child child type mother partner water

Age child -2.49

Squared age child 0.04 -0.19

Sex child -0.32 -0.02 0.03

Residence type 10.05 0.15 0.31 0.03

Education mother 4.41 0.54 0.19 0.01 6.50

Education partner 8.99 0.92 0.75 0.00 7.86 7.60

Safe water -1.57 -0.46 -0.88 0.04 1.99 2.00 1.86

Satisfactory sanitation 3.03 0.21 -0.03 -0.03 3.51 2.01 2.52 0.69

Component total 22.13 38.11

Residual 39.76

Total 100.00
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Fig. 2 Percentage contributions from direct effects related to
decompositions (I), (II) and (III) using the OLS regressions for h
excluding d and for d excluding h from Table 2

‘residence type’, ‘safe drinking water’ and ‘satisfactory san-
itation’ from the equation for h, and used ‘residence type’
and ‘satisfactory sanitation’ as instruments for d. We did
not include ‘safe drinking water’ as an instrument because
we obtained a more powerful GMM analysis by not con-
sidering this variable. Similarly, we have removed the
variables ‘child’s age’, both its linear and squared term,
and ‘sex of child’ from the equation for d, and used all
three terms as instruments for h. For each equation in the
SEM, we then have at least one exogenous variable that
is not present in the other equation, so that our system is
identified.
We estimated the SEM in (12)–(13) using a feasible

efficient two-step GMM procedure for robust covari-
ance estimation in the presence of heteroskedasticity [26]
using EViews 9. This procedure is also known as two-
stage instrumental variables (2SIV) or heteroskedastic
two-stage least squares (H2SLS). Table 6 contains the
GMM regression coefficients for the two-equation SEM
as well as the OLS regression coefficients, for compari-
son. Regarding the GMM analysis, Table 6 includes the
t-, Hansen’s J- and Cragg-Donald F-statistics and signif-
icances. Hansen’s J-statistic has a χ2-distribution under
the null hypothesis that the instruments for an equation
in the SEM are valid. The J-statistics for the two equations
in the SEM are not significant at the 5% level so that
we conclude that all our instruments are valid. The
Cragg-Donald F-statistic is used to test for weak instru-
ments or instruments that are not highly correlated with
an equation’s right-hand side endogenous variable. The
Cragg-Donald F-statistics for the two equations in the
SEM are highly significant, meaning that the instruments
for each equation are strong.
Using a GMM regression, the t-statistics indicate that

the health variable h is largely influenced by the weighted
fractional rank deviation d, but there is no feedback or

two-way influence in the sense that the weighted frac-
tional rank deviation d is not affected by h. This result is
different from the result from the OLS regression shown
in Table 6 where h is highly significant in the regression
for d (see also the discussion above). Furthermore, most
exogenous variables in the GMM analysis of the SEM are
significant at the 5% level, except in the GMM regression
for h, where ‘education of the mother’s partner’ is insignif-
icant and ‘education of the mother’ is only significant at
the 10% level.

Decompositions
Because the GMM analysis has shown that d has a signif-
icant impact on h, but not vice versa, we use the GMM
regression for h from Table 6 as our input for decompo-
sition (I) and we can simply use the OLS regression for d
excluding h, from Table 2, as our input for decomposition
(II).We refer to the section where we computed decompo-
sition (II) based on this OLS regression. Note that whether
or not we include the variables ‘child’s age’, both its linear
and squared term, and ‘sex of child’ in the OLS regression
for d does not make much difference in decomposition
(II). Table 7 shows the percentage contributions of decom-
position (I) based on the SEM equation for h in (12).
We report the contributions using the GMM regression
coefficients from Table 6 as well as the OLS regression
coefficients for comparison. Figure 3 visualizes the two
sets of contributions from decomposition (I). Note that,
to compute the contribution of the weighted fractional
rank deviation d using the GMM regression coefficients,
we did not include d itself, but the predicted value of d
resulting from the OLS regression of d on all the exoge-
nous and instrumental variables in the SEM equation
for h.
Table 7 and Fig. 3 show that decomposition (I) using

GMM regression has a large residual component of
38.11%, which is of the same size as that of decomposition
(I) excluding d and using OLS regression. Furthermore,
the contribution of d is much lower and more realistic
using GMM instead of OLS. It was reduced from 68.45%
using OLS to 42.62% using GMM, which is, however,
still a substantial percentage. Also, the contributions of
the variables ‘education of the mother’ and ‘education of
the mother’s partner’ were lowered to a similar extent,
approximately by a factor of 0.6, by using GMM instead of
OLS.
Lastly, regarding decomposition (III), whether we use

the bivariate multiple regression model or the SEM
regression approach, we end up with the same decompo-
sition (III) which we discussed previously.

Discussion
Results reveal that the SEM for the estimation of health
and socioeconomic status can easily be transformed into
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Table 6 GMM regressions (and OLS regressions for comparison) for the structural equation model (SEM) which includes the degree of
stunting h and the weighted fractional rank deviation d as endogenous variables

h d

GMM OLS GMM OLS

Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat

Constant 0.1187 13.52∗∗∗ 0.1240 15.32∗∗∗ -0.1700 -16.01∗∗∗ -0.1493 -26.15∗∗∗

Age of child 0.0017 11.18∗∗∗ 0.0016 11.13∗∗∗ − − − −
Squared age of child -0.0001 -13.48∗∗∗ -0.0001 -13.55∗∗∗ − − − −
Sex of child 0.0143 2.41∗ 0.0138 2.34∗ − − − −
Residence type − − − − 0.2502 22.55∗∗∗ 0.2457 21.94∗∗∗

Education of mother -0.0022 -1.81� -0.0033 -3.36∗∗∗ 0.0108 8.01∗∗∗ 0.0102 7.80∗∗∗

Education of partner/husband -0.0014 -1.27 -0.0024 -2.63∗∗∗ 0.0148 13.37∗∗∗ 0.0144 13.21∗∗∗

Safe drinking water − − − − 0.1288 17.96∗∗∗ 0.1296 18.23∗∗∗

Satisfactory sanitation − − − − 0.1132 12.17∗∗∗ 0.1108 11.97∗∗∗

d -0.0987 -3.46∗∗∗ -0.0559 -4.67∗∗∗ − − − −
h − − − − 0.0826 1.25 -0.0621 -3.73∗∗∗

R2 0.0767 0.0796 0.3895 0.3996

N 9262 9262 9262 9262

J 0.42 − 2.69 −
Cragg-Donald F 917.43∗∗∗ − 194.31∗∗∗ −

�p < 0.1, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001

a bivariate multiple regression model for these vari-
ables, which, in the SEM framework, is also called the
reduced form of the SEM. The SEM’s exogenous vari-
ables are the explanatory variables in each equation of
this model format. We can then simply apply OLS to
estimate the bivariate multiple regression model and
use the regression coefficients as input for the two-
dimensional simultaneous decomposition introduced by

Table 7 Percentage contributions from decomposition (I) using
the SEM equation for h and the GMM and OLS regression
coefficients from Table 6

GMM OLS

Age of child -1.06 -1.06

Squared age of child 0.20 0.20

Sex of child -0.29 -0.28

Residence type − −
Education of mother 10.75 16.21

Education of partner/husband 9.67 16.47

Safe drinking water − −
Satisfactory sanitation − −
d 42.62 68.45

h − −
Residual 38.11 0

Total 100.00 100.00

Erreygers and Kessels [4]. As such, we have shown that
this decomposition takes into account the mutual depen-
dency between health and socioeconomic status and cap-
tures the reduced effects of the explanatory variables upon
health and socioeconomic status.
In the case that one wishes to use one of the main

one-dimensional decompositions, the health-oriented
decomposition proposed by Wagstaff et al. [25] or the
rank-oriented decomposition (without a constant term)
proposed by Erreygers and Kessels [4], a GMM analy-
sis of the SEM is required for a proper application of

Fig. 3 Percentage contributions from decomposition (I) using the
SEM equation for h and the GMM and OLS regression coefficients
from Table 6
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these decompositions. However, if the GMM regressions
indicate that socioeconomic status is insignificant in the
equation for health or health in the equation for socioe-
conomic status, we can resort again to an OLS regression
analysis of the particular equation(s) after having removed
the insignificant endogenous variable(s). We would advise
very strongly against applying OLS to the initial SEM
equations.
The data used in our empirical study on child malnu-

trition in Ethiopia has been sufficiently rich to specify
and estimate a SEM. The GMM analysis of the SEM con-
firms previous findings that health is largely influenced
by socioeconomic status, but the opposite relationship
appears not to hold. In the GMM analysis the effect of
socioeconomic status on health is, however, indirect and
measured by the instrumental variables ‘residence type’
and ‘satisfactory sanitation’. We used the GMM regression
coefficients of the health equation in the health-oriented
decomposition and the OLS regression coefficients of
the socioeconomic status equation (without an explana-
tory health variable) in the rank-oriented decomposition.
We recommend such modeling practice when comput-
ing one-dimensional decompositions. The contribution of
socioeconomic status in the health-oriented decomposi-
tion turns out to be 42.62%, which is substantial and by
far the largest. This contribution is, however, indirect and
measured by the variables ‘residence type’ and ‘satisfac-
tory sanitation’. The residual term is not zero, as when
using OLS regression coefficients, but amounts to 38.11%,
which is about the same size as the residual term from
decompositions based on OLS regressions without health
and socioeconomic status as explanatory variables.
Furthermore, we computed the two-dimensional simul-

taneous decomposition based on the bivariate multi-
ple regression model, since this model is equivalent to
the reduced form of the SEM. The total of the com-
bined or correlated contributions in this decomposition
is almost twice as large as the total of the direct con-
tributions, and the residual term amounts to 39.76%. All
in all, we can conclude that the SEM provides a flexible
modeling framework for correctly applying the one- and
two-dimensional decompositions and we therefore rec-
ommend it as a starting basis for decomposition analysis.
Strictly speaking, only inequality indices with weighting
functions that are independent of the predictors of health
can be decomposed correctly [10].
For reasons of comparison, the empirical study present-

ing the SEM contains the same set of explanatory variables
as the one used by Erreygers and Kessels [4]. Because this
set is rather limited, the study should be seen as a pilot that
can naturally be extended with more variables that may
deepen the understanding of the determinants of child
malnutrition in Ethiopia. Also, if data for different years
were available, lagged versions of the variables could be

incorporated in the SEM to explore changes in inequalities
over different years. Such an approach should however
be carefully compared to the Oaxaca-type decomposition
technique [14] that has been especially developed for this
purpose.
We emphasize that although the SEM of the empirical

study has been corroborated by the data, this does not
mean that it has been proven true. It just has not been fal-
sified, but there may be competing models that would not
have been falsified either. Also, the causal relationships
implied by the SEM may be true, but strictly speaking,
because of the non-experimental or correlational nature
of the data, there is nothing in the SEM that magically
transforms correlational data into causal conclusions. The
same holds for OLS regression equations.
Finally, the SEM proposed in this paper is an observed-

variables SEM because the endogenous variables health
and socioeconomic status are observed or measured. A
potentially interesting topic for further research would
be to construct a SEM where the endogenous variables
are not observed, but latent [12]. We refer to [15] for an
application formeasuring the outcome ofWorksite Health
Promotion Programs. Using a latent-variables SEM, the
socioeconomic variable, when assumed latent, can be
made directly dependent on a series of wealth-related
variables. Also, instead of transforming the socioeco-
nomic levels into ranks, another avenue would be to use
the socioeconomic levels as they are, and to construct
a level-dependent index of socioeconomic inequality of
health, as proposed by Erreygers and Kessels [5], to which
a SEM regression-based decomposition analysis can easily
be applied.

Conclusion
Empirical research has provided evidence that socioeco-
nomic status, represented by a wealth- or income-related
variable, is an important determinant of health. Vice versa,
it is likely that health is an important determinant of
socioeconomic status. However, to explain socioeconomic
inequality of health, or the correlation between health
and socioeconomic status, neither of the variables, health
or socioeconomic status, can be used as an explana-
tory variable in an OLS regression-based decomposition
approach, because we would then explain the bivariate
dependent variable by one of its univariate components,
which is meaningless. To unify the potentially bidirec-
tional relationship between health and socioeconomic
status with the regression-based decomposition method-
ology, we recommend using a structural or simultane-
ous equation model (SEM) which captures the feedback
mechanism between health and socioeconomic status
using a system of equations for these variables, which
are assumed endogenous. More specifically, this two-
equation model allows the inclusion of socioeconomic
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status as an explanatory variable for health and health as
an explanatory variable for socioeconomic status, while
providing consistent estimates using a two-step GMM
estimation procedure. It also allows for the specification
of different sets of determinants of health and socioeco-
nomic status.
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