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RESEARCH Open Access

Implementing personalized medicine with
asymmetric information on prevalence
rates
Fernando Antoñanzas*, Carmelo A. Juárez-Castelló and Roberto Rodríguez-Ibeas

Abstract

Although personalized medicine is becoming the new paradigm to manage some diseases, the economics
of personalized medicine have only focused on assessing the efficiency of specific treatments, lacking a
theoretical framework analyzing the interactions between pharmaceutical firms and healthcare systems
leading to the implementation of personalized treatments. We model the interaction between the hospitals
and the manufacturer of a new treatment as an adverse selection problem where the firm does not have
perfect information on the prevalence across hospitals of the genetic characteristics of the patients making
them eligible to receive a new treatment. As a result of the model, hospitals with high prevalence rates benefit
from the information asymmetry only when the standard treatment is inefficient when applied to the patients
eligible to receive the new treatment. Otherwise, information asymmetry has no value. Personalized medicine
may be fully or partially implemented depending on the proportion of high prevalence hospitals.

Keywords: Endogenous reference price, Exogenous reference price, Off-patent drug, Generic drug, Pharmaceutical
expenditures

JEL classification: I11, I18, L13, L51

Background
Since human genome decoding in 2000, the fast devel-
opment of genomics and other biosciences has allowed
new approaches to diagnose and manage diseases, tailor-
ing protocols and treatments to personal and medical
characteristics of patients, and thereby eliminating inef-
fective therapies based in the traditional trial and error
clinical paradigm [1]. The term personalized medicine,
first used by Gibson [2] in 1971, designs the new health-
care paradigm based on genomics to match new treat-
ments and patients. This term has evolved in time, and
nowadays there are several definitions and interpreta-
tions [3]. Throughout this paper, personalized medicine
or “stratified medicine” refers to the practice “where
therapies are matched with specific patient population
characteristics using clinical biomarkers” [4]. The gen-
eral term “personalized medicine” has also been used as
a synonymous of “pharmacogenomics” to highlight the

evaluation of genetic variations to identify patients likely
to respond to specific therapies [5].
The application of personalized medicine requires to

have instruments (tests) to stratify patients as well as
personalized treatments [6]. The selection of the optimal
therapy depends on the patient’s genetic characteristics,
as the presence or absence of a biomarker usually
predicts the response to a particular treatment. Until re-
cently, there were no mechanisms to stratify the popula-
tion of patients on the basis of a genetic biomarker, thus
precluding the use of specific treatments, if available.
The new possibilities offered by genomics (there were
over 1,800 genetic tests targeting different genome sec-
tions related to known conditions in 2012 as described
in Antoñanzas et al. [7]; today, a casual observation of
different genetic databases shows that the number of
tests has skyrocketed up to more than 15,000 tests for
more than 2,800 genes) provide healthcare systems with a
highly reliable tool to stratify patients, and prescribe the
best treatment. For example, there are diagnostic tests
based on genetics (Oncotype DX® and MammaPrint®) that
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place breast cancer women into different risks categories
for which there are specific treatments. Breast cancer
women with an overexpression of HER2 may receive
chemotherapy plus Herceptin® (trastuzumab) instead of
only chemotherapy, thus reducing the recurrence of the
tumor (as described by Hornberger et al. [8]). Likewise,
there are several drugs available to treat colorectal cancer,
although their efficacy differ across the genetic mutation
involved in the development of the disease. For example,
Erbitux® (cetuximab) and Vectibix® (panitumumab) are
only recommended for patients with the normal expres-
sion of the KRAS gene (see for instance Paik et al. [9];
Lièvre et al. [10]; Behl et al. [11]; Thierry et al. [12]).
For health authorities, personalized medicine may help

improve health outcomes and save costs, mostly derived
from no administering some drugs to patients antici-
pated as being unresponsive, although certain personal-
ized treatments may also increase costs. Thus, the
implementation of personalized medicine requires that
health decision makers assess the value of this type of
medicine compared to the standard treatments for every
specific indication and medical context, as the incremen-
tal health benefits of personalized medicine usually
demand higher health budgets too. At the same time,
pharmaceutical firms need economic incentives (high
enough investment returns) to develop personalized
drugs. Pricing and reimbursement policies become rele-
vant, and play a fundamental role in providing such
returns to investments [13]).
Regardless of the health insurance system, once a new

treatment is authorized by a central health authority, the
decision to apply it corresponds to each individual
health provider (e.g. a hospital). Such decision will de-
pend on several variables such as the price for the new
treatment set by the pharmaceutical firm, the quality of
the treatments, the reimbursement mechanism to health
providers, as well as on the particular characteristics of
the patients. As this set of information may not be ne-
cessarily known by all parties involved (the health pro-
viders and the firm), the price of the new treatment may
differ across health providers, and personalized medicine
may be fully or partially implemented in the health
system. As it will be described later, this paper analyzes
these issues with a simple adverse selection model.
Until now, research on the economics of personalized

and predictive medicine has mainly focused on eco-
nomic evaluations assessing the efficiency of specific
tests to make decisions on price, reimbursement and
disease management (see Payne and Annemans [14];
Payne et al. [15]; Meckley and Neumann [16]) as well as
on the efficiency of individualized medicine [17, 18],
although there are also some papers dealing with meth-
odological issues in this area as Postma et al. [19] and
Annemans et al. [20].

However, there are few theoretical publications model-
ling the decision making processes related to personalized
medicine. Sahlin [21] discussed the ethical, economic and
regulatory problems raised by the application of personal-
ized medicine without modelling the decision-making.
Chiappori [22] analyzed the welfare effects of predictive
medicine from an insurance perspective, and focused on
estimating the “Hirschleifer effect”, whereby more infor-
mation available might reduce welfare. Bardey and De
Donder [23] framed the individual decision to take a gen-
etic test whose results may influence the conditions of
health insurance in a context of moral hazard. Garrison
and Finley [13] analyzed the role of some economic
elements (among them, the reimbursement system and
the diagnostic intellectual property) in the development of
personalized medicine. Antonanzas et al. [24] studied the
conditions under which genetic tests would be used by a
health authority as a previous step to implement personal-
ized medicine. However, these papers lack an integrated
framework to analyze the decision to implement personal-
ized medicine.
This paper analyzes from a theoretical perspective the

decision making processes dealing with personalized
health care by providing an integrated framework that
combines some epidemiological, clinical and economic
variables. In particular, we focus on the decision to adopt
personalized medicine hospitals face when they do not
have perfect information about the best treatment for a
population of patients with a given disease. They may
use, at a cost, a test to match patients with treatments,
and therefore, to make a better-informed decision. As
the tests do not perfectly classify the screened popula-
tion, there is a trade-off between the efficacy of the med-
ical procedures and their costs (test included) that may
advice on efficiency grounds in favor or against the
utilization of personalized medicine. A manufacturer
sells a new treatment suitable for some patients, and
hospitals must decide whether to adopt personalized
medicine. We model the interaction between the hospi-
tals and the manufacturer as an adverse selection prob-
lem where the manufacturer does not have perfect
information on the prevalence across hospitals of the
condition suitable to receive the new treatment, and
state the conditions under which personalized medicine
is implemented.
As it is well known from registries, the prevalence of

any disease is usually different across regions and hospi-
tals. When referred to the prevalence of some genetic
patterns of specific conditions (e.g. tumors), such preva-
lence rates, as shown by the biomarkers used to identify
them, may also be different across hospitals. One of the
reasons for these differences is that patients can be
exposed to different environments (pollution, poverty,
working conditions, etc.). Dissimilar prevalence rates
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may also be caused by unknown factors (not yet discov-
ered by science, and correlated to those rates) affecting
patients clustered across hospitals differently. Informa-
tion on the prevalence rates of the genetic characteristics
of the patients in the whole population is generally of
public domain; however, at micro level, hospitals have
private information about their own prevalence rate
while the manufacturer of the new treatment has usually
no access to such prevalence and only knows the average
prevalence rate.
The paper is organized as follows. In section Methods

we describe the model and characterize the optimal
prices for the personalized treatment under perfect and
asymmetric information. The conditions under which
personalized medicine is implemented are analyzed. We
discuss the results in section Discussion and present the
conclusions in section Conclusions.

Methods
The model
We consider a pool of hospitals dealing with patients di-
agnosed with a given disease. Without loss of generality,
we assume that each hospital treats a population of pa-
tients whose size is normalized to one; there are two
types of patients (type 1 and 2) who differ in their re-
sponse to the available treatments due to their genetic
characteristics, with π > 0 being the proportion of type 1
patients. Hospitals differ in the prevalence rate (propor-
tion) of type 1 patients. We assume that the prevalence
π may be low (πl) or high (πh), with 1 > πh > πl > 0, being
q ∈ (0, 1) the proportion of hospitals with high preva-
lence and π ¼ qπh þ 1−qð Þπl the population average
prevalence.
Each patient does not know her type, and neither does

the hospital that treats her, although the distribution of
types (e.g. the prevalence of each type) is known by each
hospital. There are available a new treatment (treatment
1) and a standard treatment (treatment 2). Let pij be the
probability that the treatment j is successful when ap-
plied to a patient of type i, i = 1, 2; j = 1, 2:

pij ¼
1 if i ¼ j

α if i ¼ 1; j ¼ 2
β if i ¼ 2; j ¼ 1

8<
:

The standard treatment is successful for type 2 pa-
tients and the new treatment for type 1 patients.
However, type 1 patients get cured with a probability
α ∈ [0, 1) when they receive the standard treatment, and
type 2 patients get cured with a probability β ∈ [0, 1) with
the new treatment. When a treatment is successful, the
patient gets a benefit b > d, where d ≥ 0 is the disutility if
either the patient is left untreated or the treatment is not
successful. The expected benefit type i patient gets when

she receives treatment j is pijb − (1 − pij)d, i = 1, 2, j = 1, 2.
The standard treatment costs C per patient. We assume
that b >C. Benefit b can be interpreted either as the eco-
nomic value of the QALYs or as the number of QALYs (in
this case, the economic value of each QALY is assumed to
be equal to 1) derived from successful treatments.
For instance, we may think of the population of

women with breast cancer, some of them having tumors
with an overexpression of the HER2/neu-receptor (type
1 patients). The new treatment may consist of the appli-
cation of a new treatment combining chemotherapy and
monoclonal antibodies (trastuzumab) while the standard
treatment applies only chemotherapy. Women with an
overexpression of the HER2/neu-receptor need to be
given monoclonal antibodies besides chemotherapy as
chemotherapy alone does not have any effect on their
health (in this case, α would be equal to zero). Chemo-
therapy works for women with no overexpression of the
HER2/neu-receptor. If monoclonal antibodies are also
prescribed to these women, they are cured also with
probability 1 (in this case, β would be equal to 1). The
values of α and β may differ for other conditions.
The idea behind personalized medicine is to give each

patient the best treatment according to her genetics and
medical characteristics. In the process, resources are
used more efficiently, and better health outcomes are
achieved. Thus, personalized medicine may make sense
when inefficiencies arise with the application of standard
treatments to type 1 patient (α(b + d) <C). Notice that if
it were possible to identify the type 1 patients, they
would never be prescribed the standard treatment as it
would be better to leave them untreated. Alternatively, if
α(b + d) ≥C, the rationale for the application of person-
alized medicine would come from higher health benefits
yielded by the new treatment.
The new treatment is produced at zero marginal costs by

a monopolistic firm. It is assumed that the firm only knows
the distribution of prevalence rates across hospitals (e.g. the
firm only knows that there is a proportion q of high preva-
lence hospitals and a proportion 1− q of low prevalence
hospitals), but ignores the type of hospital is dealing with.
We assume that, without additional information on the

patients, all hospitals prefer to apply the standard treat-
ment to all patients rather than to leave them untreated.
(b −C − πi(1 − α)(b + d) ≥ − d, i = l, h). There is in the mar-
ket, at a price g, a test that allows to identify, although
imperfectly, the type 1 patients. We consider that the test
is sold by a firm other than the firm marketing the new
treatment. Thus, we do not consider companion diagnos-
tic tests whose price would be set by the same drug
manufacturer. Patients receive personalized treatments
contingent on the results of the test. The new treatment is
applied to the type 1 patients identified by the test and the
standard treatment to the type 2 patients.
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Let the test be characterized by (e, s), where e ∈ [0,
1] denotes the specificity of the test and s ∈ [0, 1]
stands for the sensitivity of the test. For simplicity,
we assume that the test perfectly classifies the pa-
tients: e = s = 1. In real world, most tests are genetic,
and their specificity and sensitivity are quite high. We
also assume that πlb > g (e.g. in the low prevalence
hospitals, the aggregated benefits type 1 patients get
from the new treatment are above the cost of the
test) and C > g (e.g. the cost of the standard treatment
is above the cost of the test).
We consider a sequential decision. First, the firm

chooses a pair of prices {tl, th} for the new treatment to
maximize its expected profits. In the second stage, each
hospital, given {tl, th} and the price of the test g, decides
either to treat all patients with the standard treatment
without using the test; or to administer the test, and
contingent on the results, to personalize the treatments.
Each hospital pursues to maximize the net expected eco-
nomic benefits, defined as the expected health economic
value minus the total costs (treatments plus test).

Results
The implementation of personalized medicine under
perfect information
Let us first assume that there is no private information
on prevalence rates. The firm knows, for each hospital,
the prevalence of the condition that causes the disease
to the type 1 patients. If the firm wants the hospitals to
implement personalize medicine, the price of the new
treatment, a key variable influencing the decision, must
be subject to some constraints.
When hospital i, i = l, h, applies the standard treatment

to its patients, the net expected health economic benefits
are given by b − C − πi(1 − α)(b + d). If hospital i, i = l, h,
applies personalized medicine, the net expected health
economic benefits are πi(b − ti) + (1 − πi)(b −C) − g = b −
C − g − πi(ti −C), where ti is the price set by the firm.
Thus, hospital i, i = l, h, prefers to personalize the treat-
ments if and only if:

πi 1−αð Þ bþ dð Þ−g−πi ti−Cð Þ≥0⇒ 1−αð Þ bþ dð Þ
þC−

g
πi

≥ti i ¼ l; h

ð1Þ

The extra cost of the new treatment (ti −C) must be
below the additional benefit (1 − α)(b + d) type 1 patients
obtain when they receive the new treatment. Condition
(1) sets an upper bound for the price of the new treatment.
It easily follows that personalize medicine will not be imple-
mented when this upper bound is negative. Thus, the firm
will not sell the new treatment if πh[(1 − α)(b + d) +C] ≤ g:
the extra benefits type 1 patients in the high prevalence

hospitals get from the new treatment are lower than the
total costs of the test minus the cost of the standard treat-
ment for such patients. As πhb > g, a necessary condition
for this inequality to be satisfied is α > cþd

bþd. Intuitively, per-
sonalized medicine may not be implemented when the in-
cremental benefits the new treatment provides are
relatively low. Notice that type 1 patients would get strictly
positive net benefits from the standard treatment, and the
rationale for personalized medicine would come from the
higher benefits the new treatment provides.

Proposition 1: Personalized medicine is not imple-
mented if πh[(1 − α)(b + d) +C] ≤ g.
The implementation (at least, partially) of personalized

medicine requires πh[(1 − α)(b + d) + C] > g. From now
on, we will suppose that πl[(1 − α)(b + d) +C] ≥ g. Notice
that this condition is always satisfied when α≤ Cþd

bþd , al-

though it may also be fulfilled when α > Cþd
bþd .

When πl[(1 − α)(b + d) + C] < g < πh[(1 − α)(b + d) + C],
personalized medicine will be only implemented by
the high prevalence hospitals. In this case, it does not
matter whether the information on prevalences is pri-
vate or public. This case will not be analyzed in the
text as it does not provide additional insights. It is
available upon request.
If πl[(1 − α)(b + d) +C] ≥ g, all hospitals implement per-

sonalized medicine when the individual prevalence infor-
mation is publicly shared. From (1), for each i = l, h, the
firm chooses the highest feasible price ti ¼ 1−αð Þ bþ dð Þ
þC− g

πi
, and its profits are πiti = (1 − α)(b + d)πi + πiC − g,

i = l, h. The firm extracts all surplus, leaving the hospitals
indifferent between applying the standard treatment to
all patients and personalized medicine.

Proposition 2: Let πl[b(1 − α) +C] ≥ g. If the firm knows,
for each hospital, the prevalence of the condition that
causes the disease to the type 1 patients, it charges ti ¼ b

1−αð Þ þ C− g
πi
., i = l, h, for the new treatment. Personal-

ized medicine is implemented by all hospitals.

The implementation of personalized medicine under
asymmetric information
Let us now assume that the firm only knows the dis-
tribution of π across hospitals. We keep on assuming
πl[(1 − α)(b + d) +C] ≥ g for which implementation of per-
sonalized medicine for all types of hospital is feasible.
Under asymmetric information, the firm does not offer

the same prices as in the perfect information situation as
all hospitals would pay tl ¼ b 1−αð Þ þ C− g

πl
and buy πl

treatments. Thus, the firm will not be maximizing its
expected profits. The firm has to modify its pricing pol-
icy. In order to maximize expected profits, the firm may
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choose either a pair of prices, one for each type of hos-
pital, such that all hospitals adopt personalized medicine,
or a pair of prices such that only the high prevalence
hospitals apply personalized treatments. Let us know
characterize the optimal pair of prices for both
situations.
Let us first assume that the standard treatment is inef-

ficient when applied to type 1 patients, and hospitals
prefer to leave them untreated: α(b + d) <C. Let {tl, th} be
a pair of prices such that all hospitals adopt personalized
treatments. The firm charges a price tl if the hospital
buys πl treatments, and a price th if the hospital buys πh
treatments. These prices must satisfy the participation
constraints (e.g. personalized medicine must be pre-
ferred to the standard treatment) and the incentive
compatibility constraints (e.g. hospitals with prevalence
πi must prefer to pay ti instead of tj, i = l, h and i ≠ j).
The participation constraints are:

πi b−tið Þ þ 1−πið Þ b−Cð Þ−g≥πi αb− 1−αð Þd−Cð Þ
þ 1−πið Þ b−Cð Þ i ¼ l; h

Applying personalized medicine requires first to pay
for the test that allows to stratify the patients. Once the
patients have been identified, hospital i buys πi new
treatments. Benefits from type 1 patients are πi(b − ti).
Type 2 patients are given the standard treatment
yielding benefits (1 − πi)(b − C). Thus, the left-hand
side of the above expression states the net benefits
hospital i gets when it applies personalized medicine.
If hospital i applies the standard treatment to all
patients, expected benefit from type 1 patients are
πi(αb − (1 − α)d − C). Notice that the standard treat-
ment cures type 1 patients with probability α. Benefits
for type 2 patients are (1 − πi)(b − C). The right-hand
side of the above expression states the expected net
benefits when hospital i applies the standard treat-
ment to all patients. Algebraic manipulation of the
above expression yields:

1−αð Þ bþ dð Þ þ C−
g
πi

≥ti i ¼ l; h

The incentive compatibility constraint for the high
prevalence hospitals is:

πh b−thð Þ þ 1−πhð Þ b−Cð Þ−g≥πl b−tlð Þ
þ 1−πhð Þ b−Cð Þ−g− πh−πlð Þd

The left hand side expresses the net economic health
benefits from personalized medicine when a high preva-
lence hospital pays the price th. If a high prevalence hos-
pital behaves as a low prevalence hospital, it will buy πl
treatments at a price tl, and πh − πl type 1 patients will
be left untreated, with a loss of (πh − πl)d. Notice that we

are assuming that the standard treatment is inefficient
for type 1 patients. Algebraic manipulation yields:

πh−πlð Þ bþ dð Þ≥πhth−πltl

The incentive compatibility constraint for the low
prevalence hospitals is:

πl b−tlð Þ þ 1−πlð Þ b−Cð Þ−g≥πl b−thð Þ
þ 1−πlð Þ b−Cð Þ−g− πh−πlð Þth

The left hand side expresses the net economic health
benefits from personalized medicine when a low preva-
lence hospital pays the price tl. If a low prevalence hos-
pital behaves as a high prevalence hospital, it will buy πh
treatments at a price th, and πh − πl treatments will re-
main unused. Algebraic manipulation yields:

πhth−πltl≥0

If the firm wants all hospitals to adopt personalized
medicine, it will select the pair of prices {tl, th} that
solves the following problem:

max
tl ; thf g

qπhth þ 1−qð Þπltl

s:t: 1−αð Þ bþ dð Þ þ C−
g
πi

≥ti i ¼ l; h

πh−πlð Þ bþ dð Þ≥πhth−πltl

πhth−πltl≥0

In the solution, the participation constraint for the low
prevalence hospitals is binding as well as the incentive
compatibility constraint for the high prevalence hospi-
tals. Thus:

tl ¼ 1−αð Þ bþ dð Þ þ C−
g
πl

πh−πlð Þ bþ dð Þ ¼ πhth−πltl⇒th

¼ bþ dð Þ 1−
απl

πh

� �
þ 1
πh

πlC−gð Þ

The price of the new treatment for the low prevalence
hospitals equals the price the firm would choose if it had
symmetric information. These hospitals enjoy no sur-
plus. The price of the new treatment for the high preva-
lence hospitals is lower than the price under symmetric
information. These hospitals get a positive surplus and
strictly prefer personalized medicine to the standard
treatment. The expected benefits of the firm are:
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BPM ¼ qπh bþ dð Þ 1−
απl

πh

� �
þ 1
πh

πlC−gð Þ
� �

þ 1−qð Þπl 1−αð Þ bþ dð Þ þ C−
g
πl

� �

¼ bþ dð Þ π−απl½ Þ�−g þ πlC

Let us now assume that it is efficient to treat type 1
patients with the standard treatment instead of leaving
them untreated: α(b + d) ≥ C. In this case, both participa-
tion constraints and the incentive compatibility con-
straint for the low prevalence hospitals do not change.
The incentive compatibility constraint for the high
prevalence hospitals is now given by:

πh b−thð Þ þ 1−πhð Þ b−Cð Þ−g≥πl b−tlð Þ
þ 1−πhð Þ b−Cð Þ−g þ πh−πlð Þ αb− 1−αð Þd−Cð Þ

If a high prevalence hospital behaves as a low prevalence
hospital, it will buy πl treatments at a price tl to treat πl
patients and it will apply the standard treatment to both
the remaining πh − πl type 1 patients and (1 − πh) type 2
patients. Notice than it is now efficient to apply the stand-
ard treatment to type 1 patients. Algebraic manipulation
of this expression yields:

πh−πlð Þ 1−αð Þ bþ dð Þ þ C½ �≥πhth−πltl

If the firm wants all hospitals to adopt personalized
medicine, it will select the pair of prices {tl, th} that
solves the following problem:

max
tl ; thf g

qπhth þ 1−qð Þπltl

s:t: 1−αð Þ bþ dð Þ þ C−
g
πi

≥ti i ¼ l; h

πh−πlð Þ 1−αð Þ bþ dð Þ þ C½ �≥πhth−πltl

πhth−πltl≥0

As before, the participation constraint for the low
prevalence hospitals is binding. By plugging tl into the
incentive compatibility constraint for the high preva-
lence hospitals, we get:

πh−πlð Þ 1−αð Þ bþ dð Þ þ C½ �≥πhth

−πl 1−αð Þ bþ dð Þ þ C−
g
πl

� �
⇓ 1−αð Þ bþ dð Þ

þC−
g
πh

≥th

It turns out that the participation constraint and the
incentive compatibility constraint for the high preva-
lence hospitals are equal. Thus, the expected net health
benefits high prevalence hospitals get when they apply
the standard treatment to its patients are equal to the
expected net health benefits they would get if they

behave as low prevalence hospitals. The firm has only to
assure the fulfillment of the participation constraints, as
it would happen under symmetric information. It follows
that the firm chooses the same prices that it would
choose when the information on individual prevalence
rates is public: ti ¼ 1−αð Þ bþ dð Þ þ C− g

πl
; i ¼ 1; 2 . This

is a surprising result as, under asymmetric information,
we should expect the high prevalence hospitals to enjoy
an informational rent.
Until now, we have focused on a pricing policy such

that both type of hospitals adopt personalized medicine.
Alternatively, the firm may follow a price policy such
that only the high prevalence hospitals adopt personal-
ized medicine. In this case, the firm may offer one price
th ¼ 1−αð Þ bþ dð Þ þ C− g

πh
, and the high prevalence

hospitals will be indifferent between personalized medi-
cine and the standard treatment. Notice that the low
prevalence hospitals strictly prefer the standard treat-
ment. The expected benefits of the firm would be:

B ¼ qπhth ¼ qπh 1−αð Þ bþ dð Þ þ C½ �−qg

After characterizing the optimal pricing policies for
each situation, the firm will choose the pricing policy
yielding the highest expected profits.
When α(b + d) <C, we have:

B⋛BPM⇔qπh 1−αð Þ bþ dð Þ þ C½ �

−qg⋛ bþ lð Þ π−απl½ Þ�−g

þπlC⇓B⋛BPM⇔ qπh−πlð Þ

� C−α bþ dð Þ½ � ⋛ 1−qð Þ πl bþ dð Þ−g½ �

If qπh − πl ≤ 0, full implementation of personalized
medicine is optimal for the firm. Otherwise, personal-
ized medicine may be totally or partially implemented.
Thus, it may happen that some type 1 patients (those
treated in low prevalence hospitals) do not receive per-
sonalized treatment.
When α(b + d) ≥C, the firm prefers all hospitals to

adopt personalized medicine. Notice that in this case,
informational asymmetries are irrelevant, and the firm is
better off when it extracts all the surplus from both types
of hospitals instead of only from the high prevalence ones.

Proposition 3: Let α(b + d) <C. Full implementation of
personalized medicine requires (qπh − πl)[C − α(b +
d)] ≤ (1 − q)[πl(b + d) − g]. Otherwise, personalized medi-
cine is only implemented by the high prevalence hospitals. If
α(b + d) ≥ C, all hospitals adopt personalized medicine.
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Discussion
In this paper, we have developed an adverse selection
model to describe the behavior of hospitals when they
have to decide whether to use personalized medicine to
treat a given disease. The model captures in a stylized
way the essence of the problem by taking into account
the relevant variables and parameters.
In the last decade, personalized medicine has emerged

as a novel approach to match new treatments and
patients. For some diseases, mainly in the area of oncol-
ogy, the application of standard treatments has proven
to have low therapeutic effects for specific groups of pa-
tients. Until recently, there were no mechanisms to
stratify the population of patients on the basis of a gen-
etic biomarker, thus precluding the use of specific treat-
ments, if available. Lately, the development of tests
(mainly genetics) and therapies has skyrocketed, making
feasible the use of personalized medicine.
As it was mentioned in the introduction, most of the

economic literature on personalized medicine has fo-
cused on the economic evaluation of specific tests
and their corresponding new therapies; the results
about their efficiency are not conclusive and the
strength of evidence available for existing personal-
ized medicine technology varies widely, as some au-
thors have remarked [17, 18].
Theoretical studies on the economics of personalized

medicine are less common as it was aforementioned at
the introduction section. As their goals and methodo-
logical approaches were different from ours, their results
are not directly comparable. Our analysis has pursued to
present in an integrated way some of the relevant issues
that should be taking into account to make decisions on
the implementation of personalized medicine. In real
world practice, exact figures of the parameters would be
needed to populate the model so that it yield final re-
sults to adopt the decision.
The model was developed for a health system with free

pricing for new treatments, without including an
authorization process. In some jurisdictions with public
systems of health insurance, a central health authority
defines the price and reimbursement policy. Our model
allows to accommodate this fact by implicitly assuming that
the firm may set for the new treatment any price below a
price ceiling fixed by the central health authority in its
commercial relationships with hospitals. Likewise, drug
prices may be common to all hospitals or each hospital
may negotiate the price with the manufacturer. Our model
considers both scenarios. We have focused on the situation
in which hospitals may end up paying different prices for
the same treatment as a result of the existence of asymmet-
ric information between the hospital and the manufacturer.
For the sake of simplicity we have considered that that

the test perfectly classifies the patients. In real world, the

specificity and sensitivity of the tests are usually below one,
and this may influence the adoption of personalized medi-
cine as expected health benefits and costs are affected by
these parameters. Within the framework of the model,
from a qualitative point of view, there would be no change
in the analysis, although the specific conditions for the
adoption of personalized medicine would be different as
well as the prices for the new treatment fixed by the firm.
We have also assumed, for the sake of mathematical

simplicity, that all patients benefit from the received treat-
ments although patients are better off when they are
matched with the right treatment according to their char-
acteristics. Although we are aware of the existence in real
world of medical uncertainty on the right treatments and
their efficacy for many diseases, we have opted for the
simplest formulation of the problem at hand to highlight
the key issues. A more sophisticated model should incorp-
orate these aspects into the analysis. Although promising,
there are uncertainties regarding the efficacy of treatments
and relative sizes of target populations that demand fur-
ther research as stated by Towse and Garrison [25],
O’Donnell [26] and Faulkner et al. [27].

Conclusions
From the perspective of the health system, it is better not
to reveal individual prevalence information if standard
treatments are inefficient when applied to unresponsive
patients. Otherwise, informational asymmetry on the preva-
lence rates is irrelevant. This is a surprising result as private
information should be valuable. Personalized medicine may
be fully or partially adopted depending on the proportion
of high prevalence hospitals.
When informational asymmetries matter, hospitals

with high prevalence benefit from the private informa-
tion by paying for the new treatment a price lower than
the price they pay when prevalence information is pub-
lic. For the low prevalence hospitals, asymmetric infor-
mation does not make a difference on the price.
If one were to use the model framework to adopt deci-

sions on the implementation of personalized medicine
more accurate statistical and economic information re-
lated to tests results and efficacy of the treatments
would be needed. In general, the efficiency of personalize
medicine is still waiting for assessment. Although
personalized medicine was thought to be the panacea
for patients and healthcare systems, except on oncology,
it is still far from being extensively applied.
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