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This paper offers an identification strategy in the situation when researchers work with cross-

sectional data, face unobserved heterogeneity causing endogeneity problem, lack instrumental 

variables and, on top of it, face sample selection problem. To accomplish that, we take advantage 

of recent advances of spatial econometrics. What motives us to consider the case of cross-sectional 

data which data generating process involves sample selection and seemingly unsolvable problem 

of endogeneity and no instrumental variables? 

Recent decades have witnessed a rise of panel data sets which was accompanied by the 

proliferation of estimation techniques attempting to take advantage of the time and cross section 

dimension to identify the causal effect of regressors on the variables of interest. Similarly, 

considerable advances were made in the areas of weak instrumental variable estimation techniques 

and imperfect instruments. All of this offers researchers various identification strategies which help 

them to identify vast variety of empirical models even in the situations when strong instrumental 

variables are not available or exclusion restrictions would not necessarily hold. But what if panel 

data sets or instrumental variables are not readily available to researchers?  

There are three broad possibilities. One is to dispense of causality claim and consider the regression 

results as sophisticated correlations. Second solution is offered by the literature identifying causal 

effect with higher moments. Third solution is spatial differencing in which empirical model takes 

advantage of the spatial dimension of the data to control for unobserved heterogeneity that might 

render estimator biased and inconsistent. Our paper contributes to that literature. Spatial 

differencing has been used only in the context of linear regressions so far. We extend this approach 

to cross-section data with sample-selection. Specifically, we offer a solution to the problem of 

differencing out spatial unobserved effects when nonlinear element - in our case Mill’s ratio - is 

present, propose estimation procedure, and derive formula for estimating standard errors.  
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Abstract

This paper uses spatial differencing to estimate parameters in sample selection mod-

els with unobserved heterogeneity. We show that under the assumption of smooth

changes across the space of unobserved site-specific heterogeneity and selection proba-

bility, key parameters of a sample selection model are identified. A simple estimation

procedure is proposed and the formula for the estimator of the standard error is derived.

Keywords: Sample selection, spatial difference, Instrumental variable.

JEL: C13, C31.

1 Introduction

Identification of causality in empirical models is very difficult when only cross-sectional

data exist and no instrumental variables are readily available. Indeed, despite the in-

creasing availability of panel data which allow to control for unobserved heterogeneity,

panel data are still not always available to applied economists. Furthermore, despite the
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advances of weak instrumental variable and partial identification techniques, which al-

low to use imperfect instruments, there are many situations when no instrumental vari-

ables are available at all. This paper offers an identification strategy when researchers

face exactly this situation and, in addition, need to estimate a sample selection model.

The literature is not completely silent what to do in these situations. One solution

is offered by the literature identifying causal effect with higher moments e.g. (Lewbel

(1997), Klein and Vella (2010), Lewbel (2012)). Another is due to spatial differenc-

ing literature in which researchers can take advantage of the spatial dimension of the

cross-sectional data to control for unobserved heterogeneity, (e.g. Duranton, Gobillon,

and Overman (2011), Black (1999) or Holmes (1998)). Our paper contributes to this

literature by offering an identification strategy based on spatial differencing. So far,

it was applied only in the context of linear regressions. We extend this approach to

cross-section data with sample selection. We make two contributions. First, we provide

a solution to the problem of differencing out spatial unobserved effects when a nonlinear

element - in our case the Mill’s ratio - is present. To our knowledge, this is the first

paper which proposes a sample selection estimator in the context of spatial differenc-

ing. Second, we contribute to the literature which attempts to identify cross-sectional

models with endogenous regressors when no instrumental variables are available. The

paper uses standard two-step approach of Heckman (1974; 1979) and offers a correction

of standard errors.

2 Sample Selection Models with Spatial Corre-

lation

We are interested in estimating the regression equation:

yij = x′ijδ + γja + γj + εij (1)

where x′ij is a vector of controls, γj is location fixed effect, γja is a site-specific effect

for site a which is at a finer spatial scale than location j, and εij is the error term.1

1The site-specific component, γja, is a simplification for γjai . We are implicitly assuming that the site-

specific effects are the same for all individual sharing the same site.
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Examples include the effect of local soil quality on agricultural productivity, impact

of local taxation on growth of firms, or the effect of local amenities on house prices.

We can control for γj with location dummy variables. However, they might not be

enough to capture all unobserved heterogeneity related to location j as there can be

considerable heterogeneity across locations j at very fine spatial scale. Furthermore, the

standard location fixed effect γj relies upon an arbitrary specification of the comparison

neighborhood group, as pointed out by Gibbons and Machin (2003), making it an

imperfect control for the site-specific effect γja. If γaj is correlated with xij , OLS

estimates of δ will be biased. In absence of suitable instrumental variables for xij ,

spatial differencing offers a solution by differencing out the unobserved site-specific

effects γja. The presence of sample selection introduces nonlinearity into equation (1),

making it challenging to apply spatial differencing.

We specify the model with sample selection as follow. Consider two latent dependent

variables y∗1ij and y∗2ij on a cross-section. They both follow a regular linear model for

individual i in a location j and are specified as follow:

y∗1ij = z′ijβ + θja + θj + ε1ij - selection equation

y∗2ij = x′ijδ + γja + γj + ε2ij - outcome equation

where ε1ij and ε2ij are independent identically distributed across individual error

terms, θja and γja are a site-specific effects for site a affecting the selection and the

outcome equation respectively and which are defined at a finer spatial scale than j.

We are interested in the estimation of the effect xij on an observed outcome y2ij .

The outcome is modeled in the form of a truncated sample selection model and is

represented by equation (2).

y2ij =

 y∗2ij if y∗1ij > 0

− if y∗1ij ≤ 0
(2)

A consistent estimate of δ can be achieved by undertaking a Tobit regression as-

suming:2

Condition 1: Cov[zij , θja + θj + ε1ij ] = 0, zij is exogenous;

2Identification required an exclusion restriction i.e. a variable that affects y∗1ij but not y∗2ij otherwise it

relies on the nonlinearity of the inverse Mills ratio.
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Condition 2: Cov[xij , γja + γj + ε2ij ] = 0, xij is exogenous;

Condition 3: errors (ε1ij , ε2ij) satisfy ε2ij = ρ× ε1ij + vij with ε1ij ∼ N (0, 1) and

independent of vij .

In most applications, the condition 2 is unlikely to hold because there is a possibility

that, within a location, there could be omitted variables driving both the average site-

specific effect and some observed characteristic of interest. The standard way to deal

with the correlation between xij and γja would be to find a suitable instrument for the

xij and estimate an IV Tobit or IV two-stage Heckit. However, it is often difficult to

find a variable correlated with xij and uncorrelated with local conditions. The exclusion

restriction is likely to be violated and yield inconsistent estimates for δ. Another option

is to use the finer location fixed effect and estimate the model using the classic Heckman

two-stage procedure, but this will in practice lead to a proliferation of variables and

reduced degrees of freedom.

2.1 Identification via Spatial Differencing

An alternative to the IV two-stage Heckit estimation technique is spatial differencing.

Duranton, Gobillon, and Overman (2011), Black (1999) or Holmes (1998) use spatial

differencing in the case of linear models to solve endogeneity problems arising from

unobserved site effect γja. We investigate the application of this spatial differencing

technique when IVs are not available.

We denote ∆d to be a spatial difference operator. An example is a pair wise differ-

ence operator which takes the difference between each observation and another obser-

vation located at distance less than d from that observation.3 We can also consider the

neighbourhood of an individualNid, and define the spatial difference operator as the dif-

ference between the individual outcome and the average outcome of his/her neighbour.

This operator is similar to a fixed-effect, the difference being that the neighbourhood

can overlap. We call this operator the fixed-effect difference operator. A further possi-

bility is to use a kernel as in Kyriazidou (1997) to weight neighbours in Nid according

to how far they are, in term of characteristics. This operator is the kernel difference

operator.

3d is a number chosen by the researcher which define the neighborhood of an individual.
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We define the pairwise spatial difference operator for any variable A with the ob-

servation k in a neighbourhood d of i as follows:

∆dAij = Aij −Akj

For the spatial difference operator ∆d, ∆dy2ij = y2ij − y2kj with k an observation

in the neighbourhood d of i. It follows,

E[∆dy2ij |x, z, y∗1ij > 0, y∗1kj > 0, γd, θd] = E[y2ij − y2kj |x, z, y∗1ij > 0, y∗1kj > 0, γd, θd] (3)

= E[y2ij |x, z, y∗1ij > 0, γd, θd]− E[y2kj |x, z, y∗1kj > 0, γd, θd] (4)

= x′ijδ + γaj + γj + ρλ(z′ijβ + θja + θj)

− [x′kjδ + γaj + γj + ρλ(z′kjβ + θja + θj)]

= ∆dx
′
ijδ + ∆dγaj + ρ∆dλ(z′ijβ + θja + θj) (5)

where λ(c) = φ(c)/Φ(c) is the inverse Mills ratio.

Going from equation (3) to (4) follows from the linearity of expectation and from

the mean independence of y2ij and y∗1kj conditional on {x, z, y∗1ij > 0, γd, θd} and of

mean independence of y2kj and y∗1ij conditional on {x, z, y∗1kj > 0, γd, θd}.4 The second

term ∆dγaj (site-specific difference) and the third term ρ∆dλ(z′ijβ + θja + θj) (sample

selection term) in equation (5) present a challenge for identification. The conditions to

consistently estimate the model are the following.

Assumption 1: The site-specific unobservable effect is homogenous in the a neigh-

bourhood of the individual i.e. ∆dγja = 0 for d small enough.

Under Assumption 1 we have:

E[∆dy2ij |x, z, y∗1ij > 0, y∗1kj > 0, γd, θd] = ∆dx
′
ijδ + ρ∆dλ(z′ijβ + θja + θj) (6)

Here we apply the same identification condition as Duranton, Gobillon, and Overman

(2011) allowing to difference out the site-specific unobserved effect γja. The sample

selection term depends on the unobservable site-specific and location effects θja + θj .

Because of nonlinearity simple differencing will not work as in the case of γja. Assump-

tion 2 helps us to deal with this challenge:

4θd and γd are respectively the location and the site-effect of the selection and outcome equation of all

neighbours in neighbourhood d of i.
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Assumption 2:

(i) ∆dθja = 0 for d small enough.

(ii) The changes in the probability of selection are similar in a neighborhood of the

individual i.e.

λ(z′ijβ + θjai + θj)− λ(z′ijβ)

θjai + θj
= λ′(cik) =

λ(z′kjβ + θjak + θj)− λ(z′kjβ)

θjak + θj

for i and k in a neighbourhood d small enough.

Under Assumption 2, the equation (6) becomes

E[∆dy2ij |x, z, y∗1ij > 0, y∗1kj > 0, γd, θd] = ∆dx
′
ijδ + ρ∆dλ(z′ijβ) (7)

Assumptions 1 and 2 are sufficient for the identification of δ and ρ. We derive

the results using the pair wise spatial difference operator, but they also hold for other

spatial difference operators.

2.2 Estimation and Inference

The estimation of the model can be done using Heckman’s two-step procedure after

differencing. We proposed a procedure to correct for heteroscedasticity in the error

term arising form the use of spatial differencing and Heckman’s two-step procedure

(see Heckman (1974) and, Heckman (1979)).

• Step 1: Estimate β by probit with location random effect

calculate λ̂i = λ(z′ij β̂) and ∆̃dλ(z′ijβ) = λ(z′ij β̂)− λ(z′kj β̂)

• Step 2: Estimate δ and ρ in the OLS regression

∆dy2ij = ∆dx
′
ijδ + ρ∆̃dλ(z′ijβ) + wikj (8)

The error term wikj is heteroscedastic, we derive an estimator to yield correct stan-

dard errors.

Consider a generic matrix of spatial difference ∆. The matrix form notation of

equation (8) can be expressed in as

∆y2 = ∆x′δ + ρ∆λ(z′β̂) + ∆η

6



where ηij = y2ij − x′ijδ − ρλ(z′ij β̂) are the same error as in standard sample selection

models. Let us denote θ = (δ, ρ)′ and W = [x′, λ(z′β̂)]. Then the model becomes

∆y2 = ∆Wθ + ∆η and the OLS estimate of θ is

θ̂ = [(∆W )′∆W ]−1[(∆W )′∆y2] (9)

The spatial nature of our data implies that an observation k with n neighbours will

have n pairs. This induces correlation in the error term ∆η for all n of these pairs

because of the spatial differencing in the second step of the estimation procedure.

The variance-covariance matrix is

V ar(θ̂) = BΣB′

with B =
[
(∆W )′∆W

]−1
and Σ = (∆W )′V ar(∆η)(∆W ).

We consider V ar(∆η) = V1 + V2 with

V1 = ∆V ar
[
y2 − x′δ − ρλ(z′β)

]
∆′

= ∆[I + ρ2R]∆′

where R is a diagonal matrix of dimension N (total number of observations), with

dij = 1− λ(z′ijβ)[z′ijβ + λ(z′ijβ)] as the diagonal elements.

V2 = ρ2∆V ar
[
λ(z′β̂)− ρλ(z′β)

]
∆′

= ρ2∆DzVpz
′D∆′

where D is the square, diagonal matrix of dimension N with 1 − dij as the diagonal

elements; z is the data matrix of selection equation; and Vp is the variance-covariance

estimate from the probit estimation of the selection equation.

The corrected variance covariance estimate for θ̂ is then:

Vtwostep = B(∆W )′[V̂1 + V̂2](∆W )B′

where V̂1 = ∆[I + ρ̂2R̂]∆′ and V̂2 = ρ̂2∆D̂zV̂pz
′D̂∆′ with all elements replaced by

their estimates.
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3 Conclusion

This paper proposes the use of spatial differencing as an alternative solution when IV

are not available. The paper discusses the assumptions under which the parameters

of the model are identified. The estimation of the parameters is achieved using the

classic Heckman’s two-step estimation procedure. We also derive an easy to implement

standard errors estimator that corrects for heteroscedasticity emerging from the use of

two-step estimation and differencing.
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