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Abstract

This paper studies the asymptotic validity of the regularized Anderson Rubin (AR) tests

in linear models with large number of instruments. The regularized AR tests use information-

reduction methods to provide robust inference in instrumental variable (IV) estimation for

data rich environments. We derive the asymptotic properties of the tests. Their asymptotic

distribution depend on unknown nuisance parameters. A bootstrap method is used to obtain

more reliable inference. The regularized tests are robust to many moment conditions in the

sense that they are valid for both few and many instruments, and even for more instruments

than the sample size. Our simulations show that the proposed AR tests work well and have

better performance than competing AR tests when the number of instruments is very large.

The usefulness of the regularized tests is shown by proposing confidence intervals for the

Elasticity of Intertemporal Substitution (EIS).
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Non-technical summary

In many empirical works in economics, the aim of the researcher is to establish a causal

or a noncausal relationship between two variables. Because unobserved variables affect most

economics variables, identification and estimation of parameters of interest suffer from the

endogeneity problem. In presence of endogeneity, identification of the causal parameter of

interest is achieved using instrumental variables. The instrumental variables are assumed to

be highly correlated with the right-hand side endogenous variables (strong) and uncorrelated

with the structural error (valid or respecting the exclusion restriction).

In empirical applications, finding a valid instrumental variable that is at the same time

strong is very difficult. This difficulty to have perfect instruments has encouraged the study

of inference and estimation in presence of weak (weakly correlated with the right-hand side

endogenous variables) instruments. We assume, in the present paper, that we have many valid

(but potentially weak) instrumental variables. We use them along side with robust to weak

instruments robust statistics to improve the quality of the inference. The Anderson-Rubin

(AR) (Anderson and Rubin (1949)) test is an example of such robust to weak identification

procedure.

We examine the regularization of the AR test when the number of instruments is large. The

regularized AR tests use information-reduction methods to provide robust inference in instru-

mental variable estimation for data-rich environments. We derive the asymptotic properties

of the regularized AR tests. Their asymptotic distributions depend on unknown eigenvalues

and a regularization parameter. A bootstrap method is used to obtain more reliable inference.

The regularized tests are robust to many moment conditions in the sense that they are valid

for both few and many instruments, and even for more instruments than the sample size. We

perform a limited set of Monte Carlo experiments. Our simulations show that the proposed

AR tests work well and have better performance than competing AR tests when the number

of instruments is very large.
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1 Introduction

Identification and estimation of coefficients on endogenous variables in linear structural equa-

tions is the focus of many applied economics papers. The identification of these coefficients is

achieved using instrumental variables that are assumed to be highly correlated with the right

hand side endogenous variables (strong) and uncorrelated with the structural error (valid or

respecting the exclusion restriction). When these conditions are respected, there are many

estimation and inference procedures, such as two stages least squares (2SLS), limited informa-

tion maximum likelihood (LIML) and full information maximum likelihood, that can be used

to estimate the parameters and provide asymptotically valid inference. However, when the

instruments are weak, ie the correlation between the endogenous variables and instruments is

low, conventional asymptotics may provide poor approximations to the finite sample distribu-

tions of conventional estimators and test statistics. Using many valid (but potentially weak)

instrumental variables, along side with robust to weak instruments robust statistics, can im-

prove the quality of the inference.1 The Anderson-Rubin (AR) (Anderson and Rubin (1949))

test is an example of such robust to weak identification procedure. This paper examines the

regularization of AR test when the number of instrument is large.

An important problem with using many instrumental variables is that the conventional

asymptotic behavior of the IV estimator and various test statistics deteriorate. A sizable

literature on robust methods for many IVs inference currently exists. This literature considers

estimation and inference in the presence of many (possibly weak) instruments (see, among

others,Chao and Swanson (2005), Hansen, Hausman, and Newey (2008), Andrews and Stock

(2007)). Andrews and Stock (2007) and Newey and Windmeijer (2009) show that the AR

test statistic remains valid when the number of instruments grows at a slower rate than the

sample size. However, finite sample studies suggest that test performance is highly sensitive

to the number of instruments. More recently, Anatolyev and Gospodinov (2011) have studied

the AR statistics under the many instruments assumption of Bekker (1994). This means that

they allow the sample size and the number of instruments to grow at the same rate. They

find that the asymptotic size of the standard AR test exceeds the nominal level when there are

many instruments. They proposed a modification of the conventional AR tests that is based

on critical values of a chi-squared distribution. The proposed corrected test is robust to the

1A large number of instruments can be constructed by interacting different variables (see Angrist and Krueger

(1991)) or using lagged dependent variables in panel data models (see Arellano and Bond (1991)).
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number of the moment conditions increase. However, it also suffers from size distortion when

the number of instruments is very large and cannot be used when there is an infinite number

of instruments or a continuum as in Carrasco (2012) and Carrasco and Tchuente (2015).

Kapetanios, Khalaf, and Marcellino (2015) have also proposed a factor-based modifications

of three popular weak-instrument robust statistics, AR, KLM (Kleibergen (2002)) and LR

(Moreira (2003)). For the AR test statistic, they provided analytical finite sample results under

the usual assumptions, in a factor model framework. However, they did not address the issue

of the choose of the number of factors. Dufour and Valéry (2016) have used regularization

methods for Wald-type tests in the presence of a possibly singular covariance matrix. The

regularization methods used in their paper are spectral cut-off, Tikhonov and Landweber-

Fridman regularization. They show that the asymptotic distribution of the Wald test can be

simulated or bounded by simulation. Our work can be view as an extension of the use of

regularization to AR test with the aim of correcting the many instruments problem.

This paper extends Anatolyev and Gospodinov (2011) and Kapetanios, Khalaf, and Mar-

cellino (2015) by proposing a regularized version of the AR statistic. The regularisation is done

using three methods. The first one is the Tikhonov regularization, the second is based on an it-

erative method called Landweber-Fridman and the third is based on the principal components

associated with the largest eigenvalues (this regularized AR test corresponds to Kapetanios,

Khalaf, and Marcellino (2015) factor based AR test). Asymptotic behaviors of the tests statis-

tics are derived. The regularized AR tests statistic depends on the regularization parameter

as well as unknown eigenvalues. To improve the regularized tests small sample properties, we

propose a restricted efficient bootstrap test for inference. A Monte Carlo experiment reveals

that the regularized AR tests perform well and are better than the Anatolyev and Gospodinov

(2011) corrected AR test when the number of instruments is very large. More precisely, the

regularized AR circumvent the size problems resulting from many instruments and improve

the power of the AR test statistic. An empirical application proposes confidence intervals for

the Elasticity of Intertemporal Substitution (EIS). It suggests that the EIS is less than one.

The remaining of the paper is organized as follows. Section 2 introduces the AR regularized

test for continuum of moments. Section 3 proposes a bootstrap strategy. Section 4 presents

Monte Carlo experiments Section 5 discusses inference on the value of the EIS and Section 6

concludes.
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2 Model, assumptions and tests

This section presents the model used for our weak identification robust inference. It also

discusses issues related to inference in the presence of many instruments using the AR test.

We propose a regularized AR test. Under conventional assumptions, we derive the asymptotic

distribution of the proposed regularized AR test.

2.1 Model

The structural equation is the following: The model is

yi = W ′iδ0 + εi (1)

i = 1, 2, ...., n., E(Wiεi) 6= 0 which means that Wi is endogenous. yi is a scalar and xi is a vector

of exogenous variables such that E(εi|xi) = 0, we also assume conditional homoscedasticity

E(ε2i |xi) = σ2ε > 0.

Estimation and inference on δ0 can be carry out using the moment condition

E
[
(yi −W ′iδ0)zi

]
= 0

where zi is a 1× L vector function of xi. It can take the following form

- zi = xi where xi is a L- vector with a fixed L

- zij = (xi)
j−1 with j ∈ N, thus we have an infinite countable instruments.

- zi = exp(iτ ′xi) where τ ∈ Rdim(xi), thus we have a continuum of moments.

The main focus is inference on the p × 1 vector δ0 when instruments are possibly weak

(meaning that the correlation between Wi and zi is low).

The proposed model is set up in a general framework that enables us to deal with a finite

number of moments, a countable infinite number of moments, continuum of moments as well

as factor model representation.

2.2 Conventional AR test

Since Dufour (1997), it is known that if the parameter set is allowed to include values where

the model is not identified, then the correct confidence interval for a structural parameter must

be unbounded with positive probability. Hence, bounded confidence intervals, such as Wald
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intervals formed in the usual way, are not correct. To overcome this inference problem, many

robust to weak instruments methods have been proposed in the literature. The main tests

are the likelihood ratio (LR), the Anderson-Rubin (AR), and Lagrange multiplier (LM) test

statistics.

Let us focus our attention on the AR test. The number of instruments is L. A we wish to

test the null hypothesis H0 : δ = δ0.

The AR test statistic is given by

AR(δ0) =
n− L
L

(y −Wδ0)
′PZ(y −Wδ0)

(y −Wδ0)′[In − PZ ](y −Wδ0)
,

where PZ = Z
(
Z′Z

)−1
Z′ and Z = (z1, z2, ..., zn)′ is a n× L matrix of instruments.

The AR statistic possesses some appealing robustness properties (see Dufour and Taamouti

(2007) for details on these properties) and is asymptotically distributed as χ2(L)/L.

The asymptotics of this test, as well as other robust to weak identification tests, have been

studied when the number of instruments is large and the coefficients on the instruments are

relatively small (Andrews and Stock (2007)). In these models, the number of instruments

increases moderately ie the number of instruments grows asymptotically but slowly relative to

the sample size. In their framework of moderately many instruments (more precisely, when
L3

n
→ 0 as L, n→∞), Andrews and Stock (2007) show that:

√
L(AR(δ0)− 1)→ N (0, 2) (2)

As pointed out by Anatolyev and Gospodinov (2011), the asymptotic result in (2) is not

valid under Bekker (1994) asymptotic as
L

n
→ c where c is a constant. Anatolyev and Gospodi-

nov provided the corrected critical values for the conventional AR test statistic. They showed

that
√
L(AR(δ0)− 1)→ N (0, 2/(1− λ))

when
L

n
→ λ as L, n→∞,

This asymptotic distribution covers many situations in applied work. However, the asymp-

totic distribution is very flat for λ close to 1. Moreover, this test cannot be used when L > n or

when there is a continuum of instruments, see Carrasco and Florens (2000), Carrasco, Florens,

and Renault (2007) because Z′Z is singular. The next section develops a regularized AR test

that can be used to overcome these limitations.
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2.3 Regularized AR test with many instruments

This section proposes a regularized version of the AR statistic to test: H0 : δ = δ0.

This regularized AR statistic is a modified version of the classic AR statistic which is

robust to weak instruments. The conventional AR test provided in the literature suffers from

size distortion when many instruments are used. A weakness shared by many other robust to

weak identification test. Alternative asymptotics have been considered but they can only be

used in the case with a countable number of instruments and with a number of instruments

less than sample size (L < n).

The regularized Anderson Rubin statistic can be used in the case of many instruments and

also in the case of a continuum of instruments.

Let Z denote the n × L matrix having columns given by zi. ψj denote the orthonormal

eigenvectors of the n× n matrix
ZZ′

n
associated with eigenvalues λj such that

ZZ′

n
ψj =

√
λjψj

Recall that AR test statistic involves a projection matrix

PZ = Z
(
Z′Z

)−1
Z′.

The matrix Z′Z may become nearly singular when L gets large. Moreover, Z′Z is singular

whenever L ≥ n. In order to investigate all these possibilities, we will consider a regularized

version of the inverse of the matrix Z′Z.

For an arbitrary n× 1 vector v, we define the n× n matrix Pα as

Pαv =
1

n

n∑
j=1

q
(
α, λ2j

) (
v′ψj

)
ψj (3)

where q
(
α, λ2j

)
is a weight that takes different forms depending on the regularization schemes

and α is the regularization parameter. We consider four types of regularization:

• The Tikhonov (T) regularization: q
(
α, λ2j

)
=

λ2j
λ2j + α

.

• The Landweber-Fridman (LF) regularization: q(α, λ2j ) = [1− (1− cλ2j )1/α], where c is a

constant such that 0 < c < 1/
∥∥Z′Z/n∥∥2 and

∥∥Z′Z/n∥∥ denotes the largest eigenvalue of

ZZ′/n.

• Spectral cut-off (SC): q(α, λ2j ) = I(λ2j ≤ α). Only eigenvector larger than a threshold

fixed by the researcher are consider.
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• The Principal Components (PC): q(α, λ2j ) = I(j ≤ 1/α) where 1/α is a positive integer.

PC and SC are equivalent if the eigenvalue are all of multiplicity 1.

Note that all these regularization techniques involve a tuning parameter α. The case α = 0

corresponds to the case without regularization, q
(
α, λ2j

)
= 1. Then, we obtain

P 0 = PZ = Z
(
Z′Z

)−1
Z′.

The regularized AR test statistic is the following:

ARR(δ0) =
n(y −Wδ0)

′Pα(y −Wδ0)

(y −Wδ0)′[In − Pα](y −Wδ0)

where Pα is the regularized version2 of the projection matrix on the space spanned by the

instrumental variables.

Assumption 1. The elements of {yi,Wi, xi}i=1,...n are iid.

Assumption 1 means that we have an independent identically distributed sample of the

population. By assuming iid data we are restricting our result to the cases where there is

correlation or spatial correlation among observations. The assumption is proposed mainly to

simplify the problem in order to focus our attention on the many instruments problem on AR

test.

In the case where we have an infinite number of instruments, there is a need to define

covariance operator. The covariance operator is the infinite dimensional counterpart of Z′Z.

We denote the covariance operator of the instruments by K.

Assumption 2. The operator K is trace-class or nuclear.

The trace-class property of the covariance operator insures us of the possibility to use a

countably infinite number of eigenvalues and orthonormal eigenvectors to represent the oper-

ator.

The following theorem establishes the asymptotic behavior of the regularized ARR test

under the null.

2Appendix A gives a detail definition of the regularization methods and the generalization of Pα to the case with

continuum of moment conditions.
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Theorem 1. For a fixed value of α, under Assumptions 1, 2 and the null hypothesis H0 : δ =

δ0;

ARR(δ0)− J0 = op(1)

as n goes to infinity with J0 =
ε′Pαε

σ2ε

d→ χ ≡
∞∑
j=1

qjχ
2
j (1).

Where χ2
j (1) denote independent chi-square with 1 degree of freedom random variables.

Proof: In appendix B

The asymptotic distribution of our test statistic depends on unknown eigenvalues and on

a regularized parameter that is fixed. The asymptotic distribution is an unknown sum of

known object. It can be approximated by a finite weighted sum of chi-square. However, the

approximation of the asymptotic distribution may differ from its true value. The difference

can be caused by the number of terms in the sum.3 The two distributions can also differ

because of the estimates of the eigenvalues. In practice, the eigenvalues use in the weight need

to be estimated, if the estimators are consistent then the estimation of the eigenvalues is not

a problem. The performance of the test also depends on the regularization parameter.

Theorem 1 discusses the general regularized AR tests in the cases where the number of in-

struments can be infinite, finite or a continuum. The following corollary derives the asymptotic

behavior of the AR tests when the number of instruments is large but finite.

Corollary 1. (with a finite number of instruments, L < n) For fixed values of α and L,under

Assumption 1 and the null hypothesis H0 : δ = δ0;

J0 =
ε′Pαε

σ2ε

d→ χ ≡
L∑
j=1

qjχ
2
j (1).

with χ2
j (1) denoting independent chi-square with 1 degree of freedom random variables.

The number of instruments is finite (L), which gives an asymptotic distribution that is a

sum of L weighted independent χ2(1). The weight depends on the regularization technique

used. The regularization methods all involve a regularization parameter, that we have assumed

in this paper to be fixed. As the asymptotic distribution of the AR tests statistic depends on

the regularization parameter, their ability to control for size will be affected by it.

3The investigation of the property of the approximation and the number of terms to be used is left for future

research.
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In the case with a finite number of instruments, as well as, in the case with an infinite

or continuum of instruments, the asymptotic distribution of the test depends on eigenvalues

(to be estimated in practice) and the regularized parameter. To mitigate the effect of both

the eigenvalues estimation and the choice of the regularization parameter on the inference, we

used a bootstrap test strategy. The use of a bootstrap allows us to avoid the estimation of

the eigenvalues. Moreover, good asymptotic results can be obtained using any regularization

parameter.

The following remarks discuss a case of regularized AR test in a model with a factor

structure. We apply corollary 1 to these model using PC regularization this shows the links

between our work and Kapetanios, Khalaf, and Marcellino (2015).

Remark 1: For the PC regularization method, if the number of principal components

chosen is r, the asymptotic distribution is simple enough to allow direct inference.

ARR(δ0)
d→ χ ≡

∞∑
j=1

qjχ
2
j (1) = χ2(r),

We consider the following DGP coming from a factor model.

yi = W ′iδ0 + εi (4)

Wi = Fiπ + vi (5)

xi = Fi∆ + ei (6)

The specificity of this DGP is that d the endogenous variables Wi depend on r unobservable,

independent factors fi = (fi1, ..., fir). Each element of of the exogenous variable xi depends

on the common factors fi via the loadings ∆, and on an idiosyncratic component ei.

Kapetanios, Khalaf, and Marcellino (2015) show that, under standard assumption on the

errors term and factor structure, a slightly modified version of the AR statistics converges

to χ2(r). The modified AR in their case is very similar to the regularized AR using PC

regularisation, in particular in the cases where factor are estimated using principal component

method.

In their framework, the number of factors is known. However, in reality factors are un-

observable and need to be estimated. Remark 2 discusses the cases in which the estimated

number of factor is biased and how the inference using Kapetanios, Khalaf, and Marcellino

(2015) asymptotic is affected.

We can also note that result of Theorem 1 is an extension of Kapetanios, Khalaf, and

Marcellino (2015)’s result to different regularization methods in order to deal with the large
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number of instruments. Moreover or result is not restricted to factor model, it also applies to

infinite or continuum of instruments.

Remark 2: Let us assume that there are r factors. In practice this number of factor is

unobserved and unknown, the econometricians would used r1 factors.

If we use r1 PC with r1 < r, then ARR(δ0)
d→ χ ≡

∞∑
j=1

qjχ
2
j (1) = χ2(r1), the PC regularized

AR test rejects the null hypothesis less frequently and the test is liberal.

If we use r1 PC with r1 > r, then ARR(δ0)
d→ χ ≡

∞∑
j=1

qjχ
2
j (1) = χ2(r1), the PC regularized

AR test rejects the null hypothesis more frequently and the test is conservative.

The above remark implies that the choice of number of the factors can affect the reliability

of the inferences using PC regularized AR. These results are in line with Dufour and Valéry

(2016) who have found in thier simulations a loss of power (in certain directions) for the spectral

cut-off Wald statistic.

In situations where there is no factor structure in the data, other regularization methods

can be used as dimensional reduction tools. The use of the method could lead better results as

in the case forecasting of misspecified factor model investigated by Carrasco and Rossi (2016).

Note that we can construct confidence intervals for the joint parameter vector δ0 by inverting

the ARR(δ0). Specifically, let qκ,α be the 1 − κ quantile of the asymptotic distribution of χ.

The 1− κ confidence interval is

{δ, ARR(δ) ≤ qκ,α}.

This confidence interval will be asymptotically valid under weak identification and for many

weak instruments. Individual confidence intervals are obtained from the joint confidence in-

terval by projection.

In the case with finite many instruments, the asymptotic distribution of our test statistic is

simple enough to enable simulated asymptotic distribution. The asymptotic distribution can be

simulated for a fixed value of α, and critical value is obtained by computing the corresponding

quantile of the simulated distribution.

However, in the general case of an infinite or a continuum of instruments these critical

values are very difficult to compute. Furthermore, the regularized statistic proposed depends

on unknown eigenvalues. In order to made reliable inference we develop a bootstrap procedure.
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3 Bootstrapped regularized AR tests

In recent years, the use of bootstrapping to perform hypothesis testing in econometrics, has

become common. Its use for testing purpose has been advocated by Hall and Horowitz (1996),

Davidson and MacKinnon (1999), and several others. However, its use for inference in lin-

ear model estimation with instrumental variables has not been very popular and this may

be because the simplest bootstrap methods for this problem do not work very well, see, for

example, Flores-Lagunes (2007). Recently Davidson and MacKinnon (2008), Davidson and

MacKinnon (2010) , Davidson and MacKinnon (2014a), Davidson and MacKinnon (2014b)

and Wang and Kaffo (2014) have proposed more sophisticated bootstrap methods that work

much better than traditional bootstrap procedures, even when they are combined with the

usual t statistic. Davidson and MacKinnon (2008, 2010, 2014) study different type of boot-

strap methods. Their simulation results show that the restricted efficient (RE) bootstrap4

and wild restricted efficient bootstrap (WRE) approaches perform very well relative to other

methods. Davidson and MacKinnon (2014a) propose a RE bootstrap confidence sets based on

t statistics. They also show that the procedures that generally work best are CLR confidence

sets using asymptotic critical values and bootstrap confidence sets based on LIML estimates.

In a companion paper Davidson and MacKinnon (2014b), the AR confidence sets are investi-

gated. Their results, however, show that AR confidence sets have many undesirable properties.

But, the AR confidence sets have correct coverage under classical assumptions. In addition,

the AR test possesses many robustness properties (eg: robust to instrument omission and to

the misspecification of the reduced form, see Dufour and Taamouti (2007)). However, these

papers focus on the case where the number of instruments is kept small relative to the sample

size.

Wang and Kaffo (2014) study bootstrap-based inference methods with many weak instru-

ments. They propose a modification to the RE bootstrap method and prove that it provides

a valid distributional approximation for LIML with many weak instruments. They show that

the modified bootstrap procedure has better performance relative to RE bootstrap method.

We propose a new RE bootstrap procedure. The procedure imposes the null hypotheses

on the structural equation. An efficient estimation of the reduced form is obtained using

regularization methods. These bootstrap regularized AR tests allow for many instruments and

4The bootstrap data are generated under the null (Restricted) and use efficient estimates of the reduced-form

equation (Efficient).
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continuum of instruments. This procedure solves the problem of the choice of the regularized

parameter and alleviates the small sample size distortion of the regularized AR tests.

The bootstrap procedure we propose, to test the null hypothesis H0 : δ = δ0, follows four

steps.

Step 1: Compute the re-centered residuals ε̃i = ε̂i−
1

n

n∑
i=1

ε̂i and ũi = ûi−
1

n

n∑
i=1

ûi which

are obtained from

ε̂i = yi −Wiδ̂ and ûi = Wi − P α̃Wi,

δ̂ is estimated using regularized LIML of Carrasco and Tchuente (2015) and α̃ is the chosen

regularization parameter in the estimation of δ, α̃ converges to zero.

Step 2: The bootstrap data-generating process (DGP) is obtained as follows

ε∗i = ε̃i and u∗i = ũi with ε̃i and ũi drawn with replacement from the re-centered residuals

obtained in Step 1.  y∗i = W ∗
′

i δ0 + ε∗i

W ∗i = P α̃Wi + u∗i

Step 3: By repeating Step 2, we generate B bootstrap samples indexed by b. From each

sample, a bootstrap test statistic is computed

AR∗Rb =
n(y∗ −W ∗δ0)′Pα(y∗ −W ∗δ0)

(y∗ −W ∗δ0)′[In − Pα](y∗ −W ∗δ0)
.

Step 4: We construct the bootstrap P-value:

p̂∗(ARR) =
1

B

B∑
b=1

I(AR∗Rb > ARR)

Step 5: Reject the null hypothesis if p̂∗(ARR) < κ where κ is the level of the test.

We make the following assumption.

Assumption 3: (i) α̃ converges to zero.

(ii) E(‖Wi‖2) ≤ ∞ and E(Wi|xi) is in the space spanned by instrumental variables.

The following proposition shows the bootstrap validity of the ARR statistic under many

weak instruments assumptions. Let us define t

AR∗Rb =
n(y∗ −W ∗δ0)′Pα(y∗ −W ∗δ0)

(y∗ −W ∗δ0)′[In − Pα](y∗ −W ∗δ0)
.

Theorem 2. For a fixed value of α, under Assumptions 1-3. Then as n goes to infinity,

AR∗R(δ0)
d∗→ χ ≡

∞∑
l=1

qlχ
2
k(1)
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In addition, since the limiting distribution function is continuous,

sup
x∈R

(|P ∗(AR∗R(δ0) ≤ x)− P (ARR(δ0) ≤ x)|) p→ 0

where P ∗ denotes the probability measure induced by the i.i.d. bootstrap and
d∗→ denotes weak

convergence under the bootstrap probability measure.

Proof In appendix.

This theorem shows that the bootstrap procedure proposed here is valid.

4 Simulation for Regularized AR test

To evaluate the finite-sample performance of the proposed tests, we conduct a small simulation

study as in Anatolyev and Gospodinov (2011).

The data for the Monte Carlo experiment are generated from the model

yi = W ′iδ0 + εi,

Wi = x′iπ + ui,

Where (εi, ui)
′ = chol(Σ)ξi with ξi ∼ N (0, I2), vi ∼ N (0, 1), xi ∼ N (0, IL)

π =

√
1

L
ιL and Σ =

 0.25 0.20

0.20 0.25


where ιL is an L-vector of ones and λ = L/n.

Tables 1, 2 and 3 present the empirical size at 5% nominal level of AR, ARcorr, ARR. and

ARR.M test which denote respectively the conventional AR test, the modified AR test proposed

in Anatolyev and Gospodinov (2011), the regularized AR test proposed in this paper using

bootstrap, and the regularized AR test using simulated critical values (T, P and L subscripts

are respectively for Tikhonov, Principal component and Landweber-Fridman). These results

are based on 1000 Monte Carlo replications. The purpose of this experiment is to compare

the quality of the three approximations corresponding to different asymptotic frameworks. We

consider values of λ =
L

N
equal to 0.04, 0.2, 0.5, 0.8 and 1.1. The values of λ are used in

combination with sample sizes of 100, 200 and 500. For the regularized AR using simulated

Monte Carlo tests, the regularized values are fixed. For Tikhonov α = 25, three first Principal

Components are used and the number of iteration is five for Landweber-Fridman.
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In the case of the bootstrap regularized AR, the same regularization parameter selected

during the estimation step is used to construct the regularized AR. The optimal α for Tikhonov

is searched over the interval [0.01, 0.5]. The range of values for the number of iterations for

LF is from 1 to 100 and, for the number of principal components, it is from 1 to the number

of instruments.

Table 1: Empirical level of Regularized Tikhonov AR tests; nominal level 0.05

λ 0.04 0.2 0.5 0.8 1.1

N

100

AR 0.062 0.076 0.135 0.274 NA

ARcorr 0.06 0.052 0.068 0.095 NA

ARRTM 0.058 0.049 0.046 0.061 0.073

ARRT 0.057 0.042 0.057 0.06 0.067

200

AR 0.062 0.088 0.145 0.279 NA

ARcorr 0.059 0.066 0.058 0.079 NA

ARRTM 0.046 0.048 0.043 0.068 0.085

ARRT 0.061 0.059 0.052 0.057 0.047

500

AR 0.047 0.071 0.115 0.25 NA

ARcorr 0.042 0.04 0.05 0.077 NA

ARRTM 0.05 0.043 0.06 0.085 0.157

ARRT 0.046 0.044 0.039 0.039 0.05

NB: AR, ARcorr , ARRT and ARRTM denote the conventional AR test,

the modified AR test proposed in Anatolyev and Gospodinov (2011),

the regularized AR Tikhonov, test proposed in this paper using bootstrap,

and the regularized AR Tikhonov test using simulated critical values, respectively.

Size results in Tables 1 to 3 suggest that there are considerable size distortions for the AR

statistic when the number of instruments is large. The corrected Anatolyev and Gospodinov

(2011)’s AR test reduces these distortions in large samples. However, the corrected AR test

small sample performances are not very good. Both the AR and the ARcorr can not be

computed when the number of instruments is larger than the sample size.

Table 1 suggests that the regularized Tikhonov AR has better size control for all numbers of

instruments. The regularized Tihkonov AR test using the bootstrap deliver better best result,

it is size correct in large samples (N = 500). The regularized Tikhonov tests with simulated

critical values have better performance in small sample. However, the performance depends
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Table 2: Empirical level of Regularized PC AR tests; nominal level 0.05

λ 0.04 0.2 0.5 0.8 1.1

N

100

AR 0.062 0.076 0.135 0.274 NA

ARcorr 0.06 0.052 0.068 0.095 NA

ARRPM 0.068 0.054 0.056 0.046 0.056

ARRP 0.059 0.045 0.045 0.059 0.049

200

AR 0.062 0.088 0.145 0.279 NA

ARcorr 0.059 0.066 0.058 0.079 NA

ARRPM 0.045 0.049 0.049 0.06 0.056

ARRP 0.061 0.057 0.044 0.044 0.059

500

AR 0.047 0.071 0.115 0.25 NA

ARcorr 0.042 0.04 0.05 0.077 NA

ARRPM 0.047 0.055 0.052 0.052 0.055

ARRP 0.047 0.036 0.046 0.062 0.053

NB: AR, ARcorr , ARRP and ARRPM denote the conventional AR test, the

modified AR test proposed in Anatolyev and Gospodinov (2011), the regularized AR

Principal component test proposed in this paper using bootstrap, and the

regularized AR Principal component test using simulated critical values, respectively.
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Table 3: Empirical level of regularized LF AR tests; nominal level 0.05

λ 0.04 0.2 0.5 0.8 1.1

N

100

AR 0.062 0.076 0.135 0.274 NA

ARcorr 0.06 0.052 0.068 0.095 NA

ARRLM 0.063 0.061 0.053 0.071 0.069

ARRL 0.059 0.056 0.046 0.056 0.062

200

AR 0.062 0.088 0.145 0.279 NA

ARcorr 0.059 0.066 0.058 0.079 NA

ARRLM 0.053 0.057 0.056 0.076 0.078

ARRL 0.051 0.054 0.043 0.05 0.045

500

AR 0.047 0.071 0.115 0.25 NA

ARcorr 0.042 0.04 0.05 0.077 NA

ARRLM 0.055 0.062 0.073 0.098 0.128

ARRL 0.047 0.048 0.046 0.05 0.036

NB: AR, ARcorr , ARRL and ARRLM denote the conventional AR test, the modified

AR test proposed in Anatolyev and Gospodinov (2011), the regularized AR Landweber-Frifman

test proposed in this paper using bootstrap, and the regularized AR Landweber-Frifman test using simulated

critical values, respectively.
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Figure 1: Power curves of AR tests

on the fixed regularization parameter.

Tables 2 and 3 have the same results for PC and LF AR tests. The regularized AR tests

using the bootstrap method lead in terms of overall performance.

To summarize, results for the AR tests show that the regularized AR test performs well

relative to other AR tests. Indeed, the corrected Anatolyev and Gospodinov (2011)’s AR test

allows us to correct the AR test size distortions but slightly over-rejects for large values of λ.

The regularized AR has almost correct size results even with very large number of instruments

(λ close to 1).

The Figure 1 gives the power curves of the ARRT , ARRP and ARRL. The aim is to compare

these tests as they are all sized correct. Based on Figure 1, we can conclude that the ARRT

statistic has typically better power properties than others regularized statistics.

In conclusion, these experiments suggest that using regularization as a dimension reduction

tool can increase the power, while controlling for the size. Thus, regularization provides a

promising solution to the size-power trade-offs arising from the use of many instruments, even

in small samples.
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5 Empirical application: Elasticity of Intertemporal

Substitution

In a recent paper, Carrasco and Tchuente (2015) estimate EIS using many instrument and

regularization. They follow Yogo (2004) who analyzes the problem of the estimation of the

EIS using the linearized Euler equation. He explains how weak instruments have been the cause

of the EIS empirical puzzle. He shows that, using conventional IV methods, the estimated EIS

is significantly less than 1 but its reciprocal is not different from 1. Carrasco and Tchuente

(2015) increase the number of instruments from 4 to 18 by including5 interactions and power

functions. Using the new instrument set, they propose a regularized 2SLS and LIML estimate

of the EIS. The point estimates obtained by T and LF regularized estimators are very close

to each other and are similar to those used for macro calibrations. However, we cannot reject

the null hypothesis H0 : 1/ψ = 1 or H0 : ψ = 1 using t-test. This paper proposed confidence

intervals for 1/ψ and ψ = 1 using regularized AR tests.

In this section, we follow the specifications in Yogo (2004) using quarterly data from 1947.3

to 1998.4 for the United States. The estimated model is given by:

∆ct+1 = τ + ψrf,t+1 + ξt+1

and the ”reverse regression”:

rf,t+1 = µ+
1

ψ
∆ct+1 + ηt+1

where ψ is the EIS, ∆ct+1 is the consumption growth at time t+ 1, rf,t+1 is the real return on

a risk free asset, µ and τ are constant, and ηt+1 and ξt+1 are respectively the shocks to asset

return and to consumption.

Table 4 reports the 95% confidence intervals for the EIS constructed from the different

AR tests. The Tikhonov (ridge) regularized AR test give confidence intervals that are small

and consistent for ψ and 1/ψ. The confidence interval for EIS (1/ψ) is [0.252, 0.71] for the

Tikhonov bootstrap based test and [0.26, 0.741] for the simulation based tests using both 4

and 18 instruments. The second regularized AR test is based on the principal components

5In his paper Yogo (2004) uses four instruments: the twice lagged, nominal interest rate (r), inflation (i), con-

sumption growth (c) and log dividend-price ratio (p). This set of instruments is denoted Z = [r, i, c, p]. The 18

instruments used in our regression are derived from Z and are given by II = [Z,Z.2, Z.3, Z(:, 1) ∗Z(:, 2), Z(:, 1) ∗Z(:

, 3), Z(:, 1) ∗ Z(:, 4), Z(:, 2) ∗ Z(:, 3), Z(:, 2) ∗ Z(:, 4), Z(:, 3) ∗ Z(:, 4)], Z.k = [Zkij ] , Z(:, k) is the kth column of Z and

Z(:, k) ∗ Z(:, l) is a vector of interactions between columns k and l.
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Table 4: Regularized AR test confidence interval for EIS.
AR ARcorr ARRTM ARRT ARRPM ARRP ARRLM ARRL

L=4

ψ ∅ ∅ [1.42, 4.1 ] [1.42, 4.22 ] [1.42, 4.1 ] [1.42, 4.22] [1.42, 4.1] [−∞,+∞]

1/ψ ∅ ∅ [0.23, 0.71] [0.23, 0.71] [0.23, 0.71] [0.2, 0.67] [0.23, 0.71] [−∞,+∞]

L=18

ψ ∅ ∅ [1.42, 4.1] [1.42, 4.22] [1.42, 4.1] [1.42, 4.22] [1.42, 4.1] [−∞,+∞]

1/ψ ∅ ∅ [0.252, 0.71] [0.26, 0.741] [0.26, 0.741] [0.26, 0.73] [0.26, 0.731] [−∞,+∞]

The table reports 95% confidence intervals for the EIS, constructed from AR,ARcorr , ARR. and ARR.M which denote respectively

the conventional AR test, the modified AR test proposed in Anatolyev and Gospodinov (2011), the regularized AR test proposed in

this paper using bootstrap, and the regularized AR test using simulated critical values (T, P and L are respectively for Tikhonov,

Principal component and Landweber-Frifman). ∅ indicates an empty confidence interval. The instruments are twice lagged nominal

interest rate, inflation, consumption growth, and log dividend-price ratio.

associated with the largest eigenvalues. This test confidence intervals for ψ are similar to

those of the regularized Tikhonov AR. The last AR test is based on an iterative method

called Landweber-Fridman. The regularized LF AR test using the bootstrap method suffers

from identification failure as evidenced by the uninformative confidence intervals [−∞,+∞]

for both the L = 4 and L = 18. However, its simulated test based analogue gives the same

conclusion with other tests.

As expected from Yogo (2004), the classic AR test and the corrected Anatolyev and

Gospodinov (2011) AR lead to empty confidence sets for EIS.

In summary, the regularized AR confidence intervals indicate that the EIS is less than one

and is in the range of the parameters used in the literature for macro calibrations.
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6 Conclusion

This paper introduces the use of regularization techniques for inference. We investigate the

use of three regularization techniques to construct robust to weak instruments procedures

when the number of instrument is large. We propose three regularized AR tests. Inference

can be performed using a new restricted efficient bootstrap method or simulated Monte Carlo

test. Our simulations suggest that the regularized AR tests perform well and have better

performance than Anatolyev and Gospodinov (2011) corrected AR test when the number of

instruments is very large. An empirical application, of the estimation of the EIS suggests that

the value of the the EIS is in the range of (0.2 , 0.76). Another topic of interest is the use of

regularization to provide versions of robust test for weak instruments as Lagrange Multiplier

(LM) or conditional likelihood ratio test (CLR) tests, that can be used with large numbers or

a continuum of moments conditions.
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A Regularized methods

This section present the regularization methods. These methods are the same as those used in

Carrasco (2012). We use a compact notation which allows us to deal with a finite, countable

infinite number of moments, or a continuum of moments.

Let us consider the following sequence of instruments, Zi = Z(τ ;xi) where τ ∈ S may be

an integer or an index taking its values in an interval. Examples of Zi are:

- Zi = xi where xi is a L- vector with a fixed L. Then Z(τ ;xi) denotes the τth element of xi

and S = {1, 2, ....L}.

- Zij = (xi)
j−1 with j ∈ S = N, thus we have an infinite countable instruments.

- Zi = Z(τ ;xi) = exp(iτ ′xi) where τ ∈ S = Rdim(xi), thus we have a continuum of moments.

We now define the covariance operator for the instrumental variable set. We denote L2(π)

the Hilbert space of square integrable functions with respect to π where π is a positive measure

on S. For a detailed discussion on the role of π, see Carrasco (2012).

The covariance operator K of the instruments is

K : L2(π) → L2(π)

(Kg)(τ1) =

∫
E[Z(τ1;xi)Z(τ2;xi)]g(τ2)π(τ2)dτ2

where Z(τ2;xi) denotes the complex conjugate of Z(τ2;xi).

K is assumed to be a compact operator (see Carrasco, Florens, and Renault (2007) for a

definition). Carrasco and Florens (2014) show that π can be chosen so that K is compact.

Let λj and φj j = 1, 2, ... be respectively the eigenvalues (ordered in decreasing order) and

the orthogonal eigenfunctions of K. The operator K can be estimated by Kn defined as:

Kn : L2(π) → L2(π)

(Kng)(τ1) =

∫
1

n

n∑
i=1

Z(τ1;xi)Z(τ2;xi)g(τ2)π(τ2)dτ2

If the number of moment conditions is infinite, the inverse of Kn needs to be regularized

because it is nearly singular. By definition (see Kress, 1999, page 269), a regularized inverse

of an operator K is

Rα : L2(π) → L2(π)

such that lim
α→0

RαKϕ = ϕ, ∀ϕ ∈ L2(π).

25



We consider three different types of regularization schemes: Tikhonov (T); Landwerber

Fridman (LF); Spectral cut-off (SC). They are defined as follows:

1. Tikhonov(T)

This regularization scheme is closely related to the ridge regression6.

(Kα)−1 = (K2 + αI)−1K

(Kα)−1r =
∞∑
j=1

λj
λ2j + α

〈
r, φj

〉
φj

where α > 0 and I is the identity operator.

2. Landweber-Fridman (LF)

This method of regularization is iterative. Let 0 < c < 1/‖K‖2 where ‖K‖ is the largest

eigenvalue of K (which can be estimated by the largest eigenvalue of Kn). ϕ̂ = (Kα)−1r

is computed using the following procedure:

 ϕ̂l = (1− cK2)ϕ̂l−1 + cKr, l=1,2,...,
1

α
− 1;

ϕ̂0 = cKr,

where
1

α
− 1 is some positive integer. We also have

(Kα)−1r =

∞∑
j=1

[1− (1− cλ2j )
1
α ]

λj

〈
r, φj

〉
φj .

3. Spectral cut-off (SC)

This method consists in selecting the eigenfunctions associated with the eigenvalues

greater than some threshold. The aim is to select those who have greater contribution.

(Kα)−1r =
∑
λ2
j≥α

1

λj

〈
r, φj

〉
φj

for α > 0.

This method is similar to principal components (PC) which consists in using the first

eigenfunctions:

(Kα)−1r =

1/α∑
j=1

1

λj

〈
r, φj

〉
φj

where
1

α
is some positive integer.

6
〈
., .
〉

represents the scalar product in L2(π) and in Rn (depending on the context).
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These regularized inverses can be rewritten in common notation as:

(Kα)−1r =
∞∑
j=1

q(α, λ2j )

λj

〈
r, φj

〉
φj

where for T: q(α, λ2j ) =
λ2j

λ2j + α
,

for LF: q(α, λ2j ) = [1− (1− cλ2j )1/α],

for SC: q(α, λ2j ) = I(λ2j ≥ α), for PC q(α, λ2j ) = I(j ≤ 1/α).

In order to compute the inverse of Kn we have to choose the regularization parameter α.

(Kα
n)−1 is the regularized inverse of Kn and Pα a n × n matrix defined as in Carrasco

(2012) by Pα = T (Kα
n)−1T ∗ where

T : L2(π) → Rn

Tg =



〈
Z1, g

〉〈
Z2, g

〉
.

.〈
Zn, g

〉


and

T ∗ : Rn → L2(π)

T ∗v =
1

n

n∑
i=1

Zivi

such that Kn = T ∗T and TT ∗ is an n × n matrix with typical element

〈
Zi, Zj

〉
n

. Let φ̂j ,

λ̂1 ≥ λ̂2 ≥ ... > 0, j = 1, 2, ... be the orthonormalized eigenfunctions and eigenvalues of Kn.

λ̂j are consistent estimators of λj , the eigenvalues of TT ∗. We then have T φ̂j =
√
λjψj and

T ∗ψj =
√
λjφ̂j .

For v ∈ Rn, Pαv =
∞∑
j=1

q(α, λ2j )
〈
v, ψj

〉
ψj . It follows that for any vectors v and w of Rn :

v′Pαw = v′T (Kα
n )−1T ∗w

=

〈
(Kα

n )−1/2
n∑
i=1

Zi (.) vi, (K
α
n )−1/2

1

n

n∑
i=1

Zi (.)wi

〉
. (7)

Pα is the regularized version of the projection matrix on the space spanned by the set of

instruments.
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B Proofs

Proof of Theorem 1:

This section presents the derivation of the asymptotic behavior of the ARR(δ0) statistic. We

know that

ARR(δ0) =
n(y −Wδ0)

′Pα(y −Wδ0)

(y −Wδ0)′[In − Pα](y −Wδ0)

and ε = (y −Wδ0). Hence,

ARR(δ0) =
nε′Pαε

ε′[In − Pα]ε

=
ε′Pαε

σ2ε

nσ2ε
ε′[In − Pα]ε

= J0

[
ε′ε

nσ2ε
− J0/n

]−1
where J0 =

ε′Pαε

σ2ε
.

From lemma 1 Carrasco (2012), J0 = Op(
1

α
) and by Taylor expansion.

ARR(δ0) = J0

[
1− (

ε′ε

nσ2ε
− 1) +Op(

1

nα
)

]−1
= J0 +

(
1− ε′ε

nσ2ε

)
+Op(

1

nα
)

= J0 +Op(
1

nα
)

Thus, up to an Op

(
1

nα

)
remainder,

ARR(δ0) = J0

=

n∑
i=1

Pαii
ε2i
σ2ε

+
1

n

∑
i 6=j

Pαij
εiεj
σ2ε

We can derived the asymptotic behavior of regularized AR test using two methods. We first

use results on V-statistics and after that we will derive the same asymptotic by definition of

Pα and asymptotic behavior established in Carrasco and Florens (2000).

Let us define x̃i =
Ziεi
σε

and h(x̃i, x̃j) =
〈
x̃i, (K

α)−1x̃j
〉

(remember that x̃i is a function

indexed by τ because Zi is also a function of τ , such a representation can handle both countable

and continuum of instruments).
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We can write J0 as a degenerated V -statistics7. Using definition of Pα in equation (7).

J0 = Vn =
1

n

∑
i,j

h(x̃i, x̃j)

Where h(x1, x2) =
∞∑
l=1

qlΦl(x1)Φl(x2) with Φl(x1) =
〈
x1, ψj

〉
.

We now prove that

ARR(δ0)→d
∞∑
l=1

qlχ
2
l (1)

Let us replace h by its decomposed value in Vn,

Vn =
1

n

∑
i,j

∞∑
l=1

qlΦl(x̃i)Φl(x̃j)

And let us define Vn,M =
1

n

∑
i,j

M∑
e=1

qeΦe(x̃i)Φe(x̃j),

V =

∞∑
l=1

qlχ
2
l (1),

and VM =
M∑
e=1

qeχ
2
e(1).

To derive the asymptotic distribution of ARR(δ0), we show that EeitVn → EeitV .

|EeitVn − EeitVnM | ≤ E|eitVn − eitVnM |

≤ E|eit(Vn−VnM ) − 1|

≤ |t|E|Vn − VnM |

≤ |t|
[
E(Vn − VnM )2

] 1
2

The second inequality uses |eiz − 1| ≤ |z|. Using the definition of Vn and VnM we have

E(Vn − VnM )2 ≤ cα(
∞∑

e=M+1

q2e)
2

Let t be fixed and ε be given.

Therefore, for M large enough, under Assumption 2,

|t|(cα
∞∑

e=M+1

q2e) ≤ ε

7See Leucht and Neumann (2009) and Leucht and Neumann (2012) for some information on V-statistics
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This establishes that for M large enough and all n

|EeitVn − EeitVnM | ≤ ε

Now let us show that VnM
d→ VM

hn =
1√
n

n∑
1

Ziεi
σε

and Wne =
〈
hn, φe

〉
/
√
λe

where {φe}∞e=1 are orthonormal eigenfunctions.

The compactness of K implies a functional central limit theorem, hn converges in L2(π) to

a mean zero Gaussian process with covariance operator σ2εK.

Thus, Wne
d→ N (0, 1) and are all independent.

We can then conclude for n sufficiently large that

|EeitVnM − EeitVM | ≤ ε.

Thus, VnM
d→ VM

By definition of V and VM , we show that for M large enough

|EeitV − EeitVM | ≤ ε

And we can conclude that |EeitVn − EeitV | ≤ 3ε, for any t and any ε, and all n sufficiently

large.

It follows that

ARR(δ0)
d→
∞∑
l=1

qlχ
2
l (1)

This prove uses the same argument as in Serfling (1980)(pp. 193-194).

Now let us establish the same results using only definition of Pα.

ARR(δ0) = J0 +Op

(
1

nα

)

with J0 =
ε′Pαε

σ2ε
using definition of Pα and hn one can show that

J0 =

∞∑
l=1

ql
λl

〈
hn, φl

〉2
=

∞∑
l=1

ql

〈
hn, φl

〉2
λl
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Following Carrasco and Florens (2000) we can show that

〈
hn, φl

〉2
λl

d→ χ2(1) and are all

independently distributed.

It follows that

ARR(δ0)
d→
∞∑
l=1

qlχ
2
l (1)

To end the proof we discuss how λ̂j
p→ λj affects the asymptotic value of the regularized

AR test. λ̂j is the a consistent estimate of the jth eigenvalue. For any α, qj is a continuous

function of λj and

∞∑
l=1

qlχ
2
l (1) < ∞ is a continuous function of all λj . Using the continuous

mapping theorem, we can conclude that

∞∑
l=1

q̂lχ
2
l (1)

d→
∞∑
l=1

qlχ
2
l (1)

This ends the proof of Theorem 1.

Proof of Theorem 2:

Here we show that the AR∗R(δ0) statistic that we define have the same asymptotic distribution

in the bootstrap world as the original one.

AR∗R(δ0) =
nε∗

′
Pαε∗

ε∗′ [In − Pα]ε∗

=
ε∗
′
Pαε∗

σ2ε∗

σ2ε∗
1
nε
∗′ [In − Pα]ε∗′

= J∗0

[
ε∗
′
ε∗

nσ2ε∗
− J∗0

n

]−1

where J∗0 =
ε∗
′
Pαε∗

σ2ε∗
with σ2ε∗ = E∗(ε∗i ε

∗
i )

Let us first show that E∗(ε∗i ε
∗
i ) is bounded under Assumption 3.

Let us define ε̄ =
1

n

n∑
i=1

εi, W̄ =
1

n

n∑
i=1

Wi
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Using Minkowski and Cauchy-Schwartz inequalities, we show that

E∗(ε∗i ε
∗
i ) =

1

n

n∑
i=1

ε∗i ε
∗
i

=
1

n

n∑
i=1

(εi − ε̄− (Wi − W̄ )′(δ̂ − δ))2

≤ c1

[
1

n

n∑
i=1

(εi − ε̄)2 +
1

n

n∑
i=1

((Wi − W̄ )′(δ̂ − δ))2
]

≤ c2

[
1

n

n∑
i=1

(εi − ε̄)2 + ‖δ̂ − δ)‖2 1

n

n∑
i=1

‖Wi − W̄‖2
]

≤ c3

[
1

n

n∑
i=1

(ε2i − ε̄2 + ‖δ̂ − δ)‖2 1

n

n∑
i=1

‖Wi‖2 + ‖W̄‖2
]
.

Under Assumption 3 we can then conclude that E∗(ε∗i ε
∗
i ) is bounded.

It is therefore possible to show that

E∗[(J∗0 )/n] =
tr(PαE∗((ε∗

′
ε∗)|X)

nσ2
ε∗′

= Op∗(
1

nα
)

by the Markov inequality.

Next we can show that

AR∗R(δ0) = J∗0

[
1− (

ε∗
′
ε∗

nσ2ε∗
− J∗0

n
− 1) +Op∗(

1

nα
)

]
= J∗0 +Op∗(

1

nα
)

Thus, up to an Op∗(
1

nα
) remainder,

AR∗R(δ0) = J∗0

=
n∑
i=1

Pαii
ε∗i

2

σ2ε∗i

+
∑
i 6=j

Pαij
ε∗i ε
∗
j

σ2ε∗i

We have showed that the AR∗R(δ0) are up to negligible remainder terms V-statistics. Therefore,

following the same arguments as in Proposition 1, but now in the bootstrap world, we show

that AR∗R(δ0)
d∗→
∞∑
k=1

qlχ
2
l (1).

And the second result follows by Polya’s Theorem, because the
∞∑
k=1

qlχ
2
l (1) distribution is

everywhere continuous.

32



 

Recent Kent Discussion Papers in Economics 

 

16/07: 'Estimation of social interaction models using regularization', Guy Tchuente 

16/06: 'The Post-crisis Slump in Europe: A Business Cycle Accounting Analysis', Florian Gerth and 

Keisuke Otsu 

16/05: 'The Revenue Implication of Trade Liberalisation in Sub-Saharan Africa: Some new 

evidence', Lanre Kassim 

16/04: 'The rise of the service economy and the real return on capital', Miguel León-Ledesma and 

Alessio Moro 

16/03: 'Is there a mission drift in microfinance? Some new empirical evidence from Uganda', 

Francis Awuku Darko 

16/02: 'Early Marriage, Social Networks and the Transmission of Norms', Niaz Asadullah and Zaki 

Wahhaj 

16/01: 'Intra-household Resource Allocation and Familial Ties', Harounan Kazianga and Zaki 

Wahhaj 

15/21: 'Endogenous divorce and human capital production', Amanda Gosling and María D. C. 

García-Alonso 

15/20: 'A Theory of Child Marriage', Zaki Wahhaj  

15/19: 'A fast algorithm for finding the confidence set of large collections of models', Sylvain Barde 

15/18: 'Trend Dominance in Macroeconomic Fluctuations', Katsuyuki Shibayama 

15/17: 'Efficient estimation with many weak instruments using regularization techniques', Marine 

Carrasco and Guy Tchuente 

15/16: 'High school human capital portfolio and college outcomes', Guy Tchuente 

15/15: 'Regularized LIML for many instruments, Marine Carrasco and Guy Tchuente 

15/14: 'Agglomeration Economies and Productivity Growth: U.S. Cities, 1880-1930', Alexander 

Klein and Nicholas Crafts 

15/13: 'Microcredit with Voluntary Contributions and Zero Interest Rate - Evidence from Pakistan', 

Mahreen Mahmud 

15/12: 'Act Now: The Effects of the 2008 Spanish Disability Reform', Matthew J. Hill, Jose Silva 

and Judit Vall 

15/11:  'Testing for Level Shifts in Fractionally Integrated Processes: a State Space Approach', 

Davide Delle Monache, Stefano Grassi and Paolo Santucci de Magistris 

http://www.kent.ac.uk/economics/research/papers/2016/1607.html
http://www.kent.ac.uk/economics/research/papers/2016/1606.html
http://www.kent.ac.uk/economics/research/papers/2016/1605.html
http://www.kent.ac.uk/economics/research/papers/2016/1604.html
http://www.kent.ac.uk/economics/research/papers/2016/1603.html
http://www.kent.ac.uk/economics/research/papers/2016/1602.html
http://www.kent.ac.uk/economics/research/papers/2016/1601.html
http://www.kent.ac.uk/economics/research/papers/2015/1521.html
http://www.kent.ac.uk/economics/research/papers/2015/1520.html
http://www.kent.ac.uk/economics/research/papers/2015/1519.html
http://www.kent.ac.uk/economics/research/papers/2015/1518.html
http://www.kent.ac.uk/economics/research/papers/2015/1517.html
http://www.kent.ac.uk/economics/research/papers/2015/1516.html
http://www.kent.ac.uk/economics/research/papers/2015/1515.html
http://www.kent.ac.uk/economics/research/papers/2015/1514.html
http://www.kent.ac.uk/economics/research/papers/2015/1513.html
http://www.kent.ac.uk/economics/research/papers/2015/1512.html
http://www.kent.ac.uk/economics/research/papers/2015/1511.html
http://www.kent.ac.uk/economics/research/papers/2015/1510.html
http://www.kent.ac.uk/economics/research/papers/2015/1510.html

