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Abstract

In social interaction models, the identification of the network effect is based on either group

size variation, structure of the network or the relative position in the network measured by the

Bonacich centrality measure. These identification strategies imply the use of many instruments

or instruments that are highly correlated. The use of highly correlated instruments may lead to

the weak identification of the parameters while, in finite samples, the inclusion of an excessive

number of moments increases the bias. This paper proposes regularized versions of the 2SLS and

GMM as a solution to these problems. The regularization is based on three different methods:

Tikhonov, Landweber Fridman, and Principal Components. The proposed estimators are consis-

tent and asymptotically normal. A Monte Carlo study illustrates the relevance of the estimators

and evaluates their finite sample performance.

Keywords: High-dimensional models, Social network, Identification, Spatial autoregressive

model, GMM, 2SLS, regularization methods.
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Non-technical summary

This paper considers the estimation of social interaction models with network structures and

the presence of endogenous, contextual, correlated and group fixed effects. In network models, an

agent’s behavior may be influenced by peers’ choices (the endogenous effect), by peers’ exogenous

characteristics (the contextual effect), and/or by the common environment of the network (the

correlated effect)( see Manski (1993) for a description of these models).

As discuss in Manski (1993) work on reflection problem in network model, identification and

estimation of the endogenous interaction effect are of major interest in social interaction models.

Following Manski,recent works have shown that identification of the parameters of the model is

based on the structure or the size of the group in the network. For example, identification of the

network effect can be achieved by using individuals’ Bonacich (1987) centrality as an instrumental

variables. However, the number such instruments increases with the number of groups; leading

to the many instruments problem. Identification can also be achieved using the friend of a friend

exogenous characteristics. Unfortunately, if the network is very dense, the identification is weakened.

The variation in group size is another source of identification of the network effect. However, if

the groups are very large the identification power is lowered. This paper uses high-dimensional

estimation techniques, also know as regularization methods, to estimate network models. The

regularization is proposed as a solution to the weak identification problem in network models.

The proposed regularized two stage least square and generalized method of moments based on

three regularization methods help to deal with many moments or/and weak identification problems.

We show that these estimators are consistent and asymptotically normal. Moreover, the regularized

two stage least square estimators are asymptotically unbiased and achieve the asymptotic efficiency

bound. The regularized estimators all involve the use of a regularization parameter. An optimal

data-driven selection method for the regularization parameter is derived.

A Monte Carlo experiment shows that the regularized estimator performed well. The regularized

two stage least square and generalized method of moments procedure substantially reduce the many

instruments bias for both the two stage least square and generalized method of moments estimators,

specifically in a large sample. Moreover, the qualities in term of bias and precision of the regularized

estimator improves with the increase of the network density and the number of groups. These results

show that regularization is a valuable solution to the potential weak identification problem existing

in network models estimation.
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1 Introduction

This paper considers the estimation of social interaction models with network structures and the

presence of endogenous, contextual, correlated and group fixed effects. The model considered has

the specification of a spatial autoregressive (SAR) model. In network models, an agent’s behavior

may be influenced by peers’ choices (the endogenous effect), by peers’ exogenous characteristics

(the contextual effect), and/or by the common environment of the network (the correlated effect)(

see Manski (1993) for a description of these models).

As discuss in Manski (1993) work on reflection problem in network model, identification and

estimation of the endogenous interaction effect are of major interest in social interaction models.

Following Manski (1993), Lee (2007) shows that both the endogenous and exogenous interaction

effects can be identified if there is sufficient variation in group sizes. However, with large group

sizes, identification can be weak in the sense that the estimator converge in distribution at low

rates. Bramoulle et al. (2009) use the structure of the network to identify the network effect.

Their identification strategy relies on the use of spatial lags of friends’ (or the friends of the friends)

characteristics as instruments. But, if the network is highly transitive ( a friend of my friend is

likely to be my friend) the identification is also weak. More recently, Liu and Lee (2010) have

considered the estimation of a social network model where the endogenous effect is given by the

aggregate choice of an agent’s friends. They showed that different positions of the agents in a

network captured by the Bonacich (1987) centrality measure can be used as additional instrumental

variables (IV) to improve estimation efficiency. The number of such instruments depends on the

number of groups and could be very large. Liu and Lee (2010) proposed 2SLS and GMM estimators.

The proposed estimators have an asymptotic bias due to the presence of many instruments. As

shown by Bekker (1994), the use of many instruments may be desirable to improve asymptotic

efficiency. However, finite sample properties of instrumental variable estimators can be sensitive to

the number of instruments.

In a linear model framework without network effect, Carrasco (2012) has proposed an estimation

procedure that allows the use of many instruments, this number may be smaller or larger than the

sample size, or even infinite. Moreover, Carrasco and Tchuente (2016) show that these methods

can be used to improve identification in weak instrumental variable estimation.

The present paper proposes regularized two-stage least squares (2SLS) and generalized method

of moments (GMM) estimators for network models with SAR representation. High dimensional
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reduction techniques are used to mitigate the finite sample bias of the 2SLS and GMM estimators

coming from the use of many instruments or highly correlated instruments. The regularized 2SLS

and GMM estimators are based on three ways to compute a regularized inverse of the (possibly

infinite dimensional) covariance matrix of the instruments. The regularization methods are taken

from the literature on inverse problem, see Kress (1999) and Carrasco, Florens, and Renault (2007).

The first estimator is based on Tikhonov (ridge) regularization. The second estimator is based the

iterative Landweber Fridman method. The third estimator is based on the principal components

associated with the largest eigenvalues.

The regularized 2SLS and GMM estimators are consistent and asymptotically normal and un-

bias. The regularized 2SLS achieved the semiparametric efficiency bound. However, the consistency

and asymptotic normality require more regularization compared to Carrasco (2012). The regular-

ized GMM estimators for SAR models are also consistent, asymptotically normal and without

asymptotic bias. Moreover, the same level of regularization as for the 2SLS is needed to achieve

consistency. A Monte Carlo experiment shows that the regularized estimators performed well. In

general, the quality of the regularized estimators improve with the density of the network.

The large existing literature on network models has focused its attention on two main issues, the

identification and estimation of the network effect. In his seminal work, Manski (1993) showed that

the linear-in-means specification suffers from the reflection problem so that endogenous and contex-

tual effects cannot be separately identified. Lee (2007) and Bramoullé, Djebbari, and Fortin (2009)

in a local-average network model propose identification strategies based on the difference in group

size and group structure. Liu and Lee (2010) show that Bonacich (1987) centrality measure can

be used as additional instruments to improve identification and estimation efficiency. Liu and Lee

(2010) propose generalized method of moments (GMM) estimation approaches following Kelejian

and Prucha (1998, 1999) who have proposed 2SLS and GMM approaches for the estimation of SAR

models. The use of these moment methods usually implies the use of many moment conditions(

see Donald and Newey (2001), Hansen, Hausman, and Newey (2008) and Hasselt (2010) for some

recent developments in this area). We assume, in this paper, that there are many instruments and

used a framework that enables us to have more instruments than sample size or even an infinite

number of instruments. We, therefore, complement works done in models where the number of

instruments exceeds the sample size. For instance, Kuersteiner (2012) considers a kernel weighted

GMM estimator, while Okui (2011) uses shrinkage. Bai and Ng (2010) and Kapetanios and Mar-

cellino (2010) also assume that the endogenous regressors depend on a small number of factors
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which are exogenous, and use estimated factors as instruments, they assume that the number of

variable from which the factors are estimated can be larger than the sample size. Belloni, Chen,

Chernozhukov, and Hansen (2012) propose an instrumental variable estimator under first stage

sparsity assumption. Hansen and Kozbur (2014) propose a ridge regularized jackknife instrumental

variable estimator in the presence of heteroskedasticity which does not require sparsity and provide

tests with good sizes.

Another important direction of research in the IV estimation literature is on weak instruments

or weak identification (see, e.g., Chao and Swanson (2005), Carrasco and Tchuente (2016)). In

this paper, we assume that the concentration parameter grows at the same rate as the sample size.

Hence, we restrict our attention to scenarios where instruments are stronger than assumed in the

weak-instrument literature.

The paper is organized as follows. Section 2 presents the network model. Sections 3 discusses

identification and estimation in network models. It proposes the regularized 2SLS and GMM ap-

proaches for the estimation of the model. The selection of the regularization parameter is discussed

in Section 4. Monte Carlo evidence on the small sample performance of the proposed estimators is

given in Section 5. Section 6 concludes.

2 The Model

The following social interaction model is considered.

Yr = λWrYr +X1rβ1 +WrX2rβ2 + ιmrγr + ur (1)

with ur = ρMrur + εr and r = 1...r̄ where r̄ is the total number of groups, mr is the number of

individual in the group r.

Yr = (y1r, ..., ymrr)
′ is an mr-dimensional vector, it represents the outcomes of interest. yir is

the observation of the individual i in the group r. The total number of individuals in the sample is

n =

r̄∑
r=1

mr.

Wr and Mr are mr ×mr are sociomatrices of known constants. In principle, Wr and Mr may

or may not be the same.

λ is a scalar, it captures the endogenous network effects, we assume that this effect is the same

for all groups. Outcome of individuals influences those of their successors in the network graph.
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X1r and X2r are respectively mr × k1 and mr × k2. They represents individuals exogenous

characteristics. β1 is the parameter measuring the dependence of individuals’ outcomes on their

own characteristics. The outcomes of individuals may also depend on the characteristics of their

predecessors via the exogenous contextual effect measured by β2. ιmr is an mr-dimensional vector

of ones and γr represents the unobserved group-specific effect. It is treated as a vector of unknown

parameter that we are not going to estimate.

Aside from the group fixed effect, ρ captures unobservable correlated effects of individuals with

their connections in the network. εr is the mr-dimensional disturbance vector, εir are iid mean 0

and variance σ2 for all i and r. We define Xr = (X1r,WrX2r).

For a sample with r̄ groups, the data is stack up by defining V = (V ′1 , ..., V
′
r̄ )′ for V = Y,X, ε or

u.

We also define W = D(W1,W2, ...,Wr̄) and M = D(M1,M2, ...,Mr̄), ι = D(ιm1 , ιm2 , ..., ιmr̄)

where D(A1, .., AK) is a block diagonal matrix in which the diagonal blocks are mk × nk matrices

Ak’s , k = 1, ...,K.

The full sample model is

Y = λWY +Xβ + ιγ + u (2)

where u = ρMu+ ε.

We define R(ρ) = (I − ρM), Cochrane-Orcutt type transformation of the model is obtained by

multiplying equation (2) by R = R(ρ0) where ρ0 is the true value of the parameter ρ.

RY = λRWY +RXβ +Rιγ +Ru

Which lead to the following equation

RY = λRWY +RXβ +Rιγ + ε. (3)

When the number of groups is large, we have the incidental parameter problem ( see Neyman

and Scott (1948), Lancaster (2000) for the consequences of the incidental parameter problem).

To eliminate the unobserved group heterogeneity, we define

Jr = Imr − (ιmr ,Mrιmr)[(ιmr ,Mrιmr)
′(ιmr ,Mrιmr)]

−(ιmr ,Mrιmr)
′

where A− denotes a generalized inverse of a square matrix A. In general, Jr represents the projection

of anmr-dimensional vector on the space spanned by ιmr andMrιmr if they are linearly independent.

Otherwise, Jr = Imr −
1

mr
ιmr ι

′
mr , which is the deviation from group mean projector.
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The matrix J = D(J1, J2, ..., Jr̄), is then used to pre-multiplied the (3) to gives a model without

the unobserved group effect parameters

JRY = λJRWY + JRXβ + Jε. (4)

This is the structural equation and we are interested in the estimation of λ, β1, β2 and ρ.

We define S(λ) = I − λW . Under the assumption that the model (2) represents an equilibrium

equation and S ≡ S(λ0) is invertible at the true parameter value. The equilibrium vector Y is

given by the reduced form equation.

Y = S−1(Xβ + ιγ) + S−1R−1ε (5)

It follows that WY = WS−1(Xβ + ιγ) + WS−1R−1ε and WY is correlated with ε Hence, in

general, (4) cannot be consistently estimated by OLS. Moreover, this model may not be considered

as a self-contained system where the transformed variable JRY can be expressed as a function of

the exogenous variables and disturbances, and, hence, a partial likelihood type approach may not

be feasible base only on (4).

In this paper, we consider the estimation of (4) using regularized 2SLS and regularized GMM.1

3 Identification and estimation of the network model

This section presents the identification and estimation of the network model parameters using

regularization techniques. The following assumptions are needed.

Assumption 1. The elements of εir are i.i.d. with zero mean, variance σ2 and that a moment

of order higher than the fourth exists.

Assumption 2. The sequences of matrices {W}, {M}, {S−1} and {R−1} are Uniformly

Bounded (UB). And Sup‖λW‖ < 1.2

1An extension would be to estimate the same model using LIML (the least variance ratio (LVR) ) of Carrasco and

Tchuente (2015). In models with independent observations, the LIML estimator can also be derived based on the least

variance ratio principle (see, Davidson and MacKinnon (1993)). The LVR estimator is not equivalent to the LIML

estimator for the SAR model. This is analogous to the difference between the 2SLS and maximum likelihood estimators

for the SAR model Lee (2004)
2Uniformly bounded in row (column) sums in absolute value of a sequence of square matrices {A} will be abbreviated

as UBR (UBC), and uniformly bounded in both row and column sums in absolute value as UB. A sequence of square

matrices {A}, where A = [Aij ], is said to be UBR (UBC) if the sequence of row sum matrix norm of A (column sum

matrix norm of A) is bounded.
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We take ε(ρ0, δ) = JR(Y − Zδ) = f(δ0 − δ) + JRWS−1R−1ε(λ0 − λ) + Jε

with f = JR[WS−1(Xβ0 + ιγ0), X] where λ0, β0 and γ0 are true values of the parameters and

δ = (λ, β′)′.

Under the Assumption 2 that Sup‖λW‖ < 1, the f can be approximated by a linear combination

of (WX,W 2X, ...) , (Wι,W 2ι, ...) and X. This is a typical case where the number of potential

instruments is infinite.

Define Q = J [Q0,MQ0] with Q0 = [WX,W 2X, ...Wι,W 2ι, ...,X] be the infinite dimensional

set of instruments. we can also consider the case where only a finite number of instruments3, let

say m1 < n, is used. For the finite number of instruments case, we define

Qm1 = J [Q0m1 ,MQ0m1 ]

with Q0m1 = [WX,W 2X, ...Wm1X,Wι,W 2ι, ...,Wm1ι,X].

As discussed in Liu and Lee (2010), δ is identified if Q′m1
f has full column rank k + 1. This

rank condition requires that f has a full rank k + 1. Note that this is under the assumption that

Qm1 is full rank column (meaning no perfect collinearity between instruments).4 If Wr does not

have equal degrees in all its nodes and Wr is not row-normalized, then the centrality score of each

individual in his group helps to identify δ. This is possible even if β0 = 0. However, if Wr has

constant row sums then f = JR(WS−1Xβ0, X) and the identification can not hold for β0 = 0.

Under Assumption 3 δ is identified.5

The identification in the general case with infinite number of instruments is possible if the infinite

number of row matrix Q′f is full rank column. The identification is based on moment condition

E(Q′ε(ρ0, δ)) = 0 ie Q′f(δ0 − δ) = 0. For any sample size, n, rank(Q) ≤ n. If we assume that

rank(QQ′) = n, which is not always true, then the rank condition requires only that f has a full

rank k + 1.6 An the same identification conditions as in the finite dimensional case follow.

3The finite set of instrument can be the case when the network effect is very small such the λm → 0 as m → ∞ at a

very fast rate.
4Section 3.1 discusses the consequences of near perfect collinearity on identification of the network effect.
5These identification results are from Liu and Lee (2010) our work generalized the result to infinite instruments.
6Section 3.2 proposes regularization tools that that can insure identification of δ in a regularized version of the orthogonal

condition.
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3.1 Weak identification and many instruments in a network model

Since Manski (1993), the identification problem in network model has been a major concern. Fol-

lowing his negative result on the ability to separately identify endogenous and exogenous interaction

effects, in a linear-in-mean models, many studies have investigated structures in which identifica-

tion is possible. The identification of the network effect is achieved through group size variation or

by using the structure of the network. It is notable that, in all cases, we need to have additional

information to overcome the reflection problem.

Lee (2007) uses variations in group sizes to identify both the endogenous and exogenous interac-

tion effects. His identification relies on sufficient variation in group size. Unfortunately, with large

group sizes, the identification can be weak in the sense that the estimates converge in distribution

at low rates. Using Bramoulle et al. (2009) comments on Lee’s identification with two groups of

different size, we can show the a large group size implied near perfect collinearity between WX and

W 2X.

Bramoulle et al. (2009) use the structure of the network to identify the network effect. Their

work proposes a general framework that incorporates Lee’s and Manski’s setup as special cases.

The identification strategy proposed in their work relies on the use of spatial lags of friends (or

the friends of the friends) characteristics as instruments. The variables WX,W 2X and W 3X... are

used as instruments for WY . The condition for identification is that I,W and W 2 (or I,W,W 2

ande W 3, in the presence of correlated effects) are linearly independent. Variation in group size

ensures that I,W and W 2 are linearly independent. However, if the sizes of the group are large WX

and W 2X are nearly linearly dependent leading to weak identification. Moreover, if the network is

highly transitive (friend of my friend are likely to be my friend; W ∼W 2) the identification is also

weak. In practice, as pointed out by Gibbons and Overman (2012), the used of WX,W 2X and

W 3X... as instruments can lead to near perfect collinearity which implies weak identification.

Liu and Lee (2010) have, more recently, considered the estimation of a social network model.

As in Bramoulle et al. (2009) they use the structure of the network to identify the network effect.

In addition WX,W 2X and W 3X..., the Bonacich centrality across nodes in a network is used as an

IV to identify network effects and improve estimation efficiency. The use of the Bonacich centrality

measure usually leads to the use of many instruments. The 2SLS obtained with those instruments

is biased because of the use of many instruments. Liu and Lee (2010) propose a bias corrected

2SLS to account for the many instruments bias.
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In this paper, we use regularization techniques. These high dimensional reduction techniques

enable the use of all instruments and deliver efficiency with better finite sample properties (see

Carrasco (2012) and Carrasco and Tchuente (2015)). In this case, the asymptotic efficiency can be

obtained by using many ( or all potential) instruments. We use both the Bonacich centrality measure

and WX,W 2X and W 3X..., as IVs and apply a high-dimensional technique to mitigate the problem

of near perfect collinearity resulting from network structure or the bias of many instruments.

3.2 Regularization methods

The estimation of the parameters of interests can be achieved by using instrumental variables.

We can use a finite number of instruments or all potential instruments. In the many instruments

literature, with an increasing number of instruments, estimation is asymptotically more efficient.

However, with a large number of instruments relative to sample size, we have the many instruments

problem (see, e.g., Bekker (1994); Donald and Newey (2001); Han and Phillips (2006)). It is possible

to use a fixed number of instrumental variables to avoid this problem. The 2SLS estimator with a

fixed number of instrumental variables will be consistent and asymptotically normal but may not

be efficient. In order to be able to use all potential instruments (Q), we use regularization tools.

We take π to be a positive measure on N.7 and we denote l2(π) as the Hilbert space of square

summable sequence with respect to π in the real space. We define the covariance operator K of the

instruments as

K : l2(π) → l2(π)

(Kg)j =
∑
k∈N

E(QjiQkiπk)

Where Qji is the jth column and ith line of Q. Under the assumption that |QjiQki| for all j, k and

i is bounded, K is a compact operator (see Carrasco, Florens, and Renault (2007) for a definition).

We consider λj and φj j = 1, 2, ... to be respectively the eigenvalues (ordered in decreasing

order) and the orthogonal eigenvector of K. The operator K can be estimated by Kn defined as:

Kn : l2(π) → l2(π)

(Kng)j =
∑
k∈N

1

n

n∑
i=1

QjiQkiπk

7For a detailed discussion on the role and choice of π, see Carrasco (2012), Carrasco and Florens (2014) when π is a

measure on R. In the present case model, π can be for example πk =
λk∑
k∈N λ

k
with k ∈ N.
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In the SAR model, the number of moment conditions can be infinite. Therefore, the inverse

of Kn needs to be regularized because it is nearly singular. By definition (see Kress (1999) , page

269), a regularized inverse of an operator K is

Rα : l2(π) → l2(π)

such that lim
α→0

RαKϕ = ϕ, ∀ϕ ∈ l2(π).

We consider three different types of regularization schemes: Tikhonov (T), Landwerber Fridman

(LF) and Principal Components (PC). They are defined as follows:

• Principal Component (PC)

This method consists in using the first eigenfunctions:

(Kα)−1r =

1/α∑
j=1

1

λj

〈
r, φj

〉
φj

where
1

α
is some positive integer.8 The use of PC in the first stage is equivalent to projecting

on the first principal components of the set of IVs.

• Tikhonov (T)

Also known as the ridge regularization

(Kα)−1r = (K2 + αI)−1Kr

(Kα)−1r =

∞∑
j=1

λj
λ2
j + α

〈
r, φj

〉
φj

where α > 0 and I is the identity operator.

• Landweber Fridman (LF)

Let 0 < c < 1/‖K‖2 where ‖K‖ is the largest eigenvalue of K (which can be estimated by the

largest eigenvalue of Kn).

(Kα)−1r =

∞∑
j=1

[1− (1− cλ2
j )

1
α ]

λj

〈
r, φj

〉
φj .

where
1

α
is some positive integer.

8
〈
., .
〉

represents the scalar product in l2(π) and in Rn (depending on the context).
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In the case of a finite number of moments, Pm1 = Qm1(Q′m1
Qm1)−Q′m1

is the projection matrix

on the space of instruments. The matrix Q′m1
Qm1 may become nearly singular when m1 gets large.

Moreover, when m1 > n, Q′m1
Qm1 is singular. To cover these cases, we consider a regularized

version of the inverse of the matrix Q′m1
Qm1 .

We take ψj to be the eigenvectors of the n × n matrix Qm1Q
′
m1
/n associated with eigenvalues

λj . For any vector e, the regularized version of Pm1 , Pαm1
is:

Pαm1
e =

1

n

n∑
j=1

q(α, λ2
j )
〈
e, ψj

〉
ψj

where for T: q(α, λ2
j ) =

λ2
j

λ2
j + α

,

for LF: q(α, λ2
j ) = [1− (1− cλ2

j )
1/α],

for SC: q(α, λ2
j ) = I(λ2

j ≥ α), for PC q(α, λ2
j ) = I(j ≤ 1/α).

The network models suggest the use of an infinite number of instruments. This can be done

based on Carrasco and Florens (2000) works. Following their approach, we define the counterpart

of Pα for infinite number of instruments by

Pα = G(Kα
n )−1G∗

where G : l2(π) → Rn with

Gg =
(
〈Q1, g〉′ , 〈Q2, g〉′ , ..., 〈Qn, g〉′

)′
and G∗ : Rn → l2(π) with

G∗v =
1

n

n∑
i=1

Qivi

such that Kn = G∗G and GG∗ is an n × n matrix with typical element

〈
Qi, Qj

〉
n

. Let φ̂j , λ̂1 ≥

λ̂2 ≥ ... > 0, j = 1, 2, ... be the orthonormalized eigenvectors and eigenvalues of Kn and ψj the

eigenfunctions of GG∗.

Gφ̂j =
√
λjψj andG∗ψj =

√
λjφ̂j . Note that in this case for e ∈ Rn, Pαe =

∞∑
j=1

q(α, λ2
j )
〈
e, ψj

〉
ψj .

And

v′Pαw = v′G(Kα
n )−1G∗w

=

〈
(Kα

n )−1/2
n∑
i=1

Qi (.) vi, (K
α
n )−1/2 1

n

n∑
i=1

Qi (.)wi

〉
. (6)
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All the regularization techniques presented in this section depend on a regularization parameter

α, the choice of this parameter is very important for small sample behavior of the estimator. In

Section 4 we discuss the selection of the regularization parameter. The following section presents

the regularized 2SLS for network model.

3.3 Regularized 2SLS estimators

This section proposes the regularized 2SLS using three regularized methods (Tikhonov, Landweber

Fridman and Principal Component). They are presented in a unified framework covering a finite

number of instrument and an infinite number of instruments. The main focus is the estimation

of endogenous and contextual effects under the assumption of a preliminary estimator of the un-

observable correlated effects of individuals with their connections in the network. The asymptotic

properties are also derived.

Assumption 3. H = lim
n→∞

1

n
f ′f is a finite nonsingular matrix.

Assumption 4. (i) The elements of X are uniformly bounded constants, X has the full rank

k, and lim
n→∞

1

n
X ′X exists and is nonsingular.

(ii) there is a ω ≥ 1/2 such that

∞∑
j=1

〈
E(Z(., xi)fa(xi)), φj

〉2

λ2ω+1
j

<∞

Under Assumption 2, the operator K is a Hilbert-Schmidt operator; we assume that it has

nonzero eigenvalues. Assumption 4 (ii) ensures that the use of regularization enables us of to have

a good asymptotic approximation of the best instrument f .

Let ε(ρ0, δ) = JR(Y − Zδ) with δ = (λ, β′)′ and Z = (WY,X). The estimation is based on

moments corresponding to the orthogonality condition of Q and Jε given by9

E(Q′ε(ρ0, δ)) = 0

Our identification results are conditional on ρ0. We should then first have a preliminary estimator

ρ̃ of ρ. We take R̃ = I − ρ̃M to be an estimate of R.

We consider Sn(k) =
1

n

n∑
i=1

(Y̌i − Žiδ)Qik with Y̌ = R̃Y and Ž = R̃Z.

9The set of instrumental variables is Q = J [Q0,MQ0] with Q0 = [WX,W 2X, ...Wι,W 2ι, ...,X].
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We denote (Kα
n )−1 the regularized inverse of Kn and (Kα

n )−1/2 = ((Kα
n )−1)1/2.

The regularized 2SLS estimator of δ is defined as:

δ̂R2sls = argmin
〈
(Kα

n )−1/2Sn(.), (Kα
n )−1/2Sn(.)

〉
(7)

Solving the minimization problem gives,

δ̂R2sls = (Z ′R̃′PαR̃Z)−1Z ′R̃′PαR̃Y. (8)

Equation (8) defines the regularized 2SLS. The regularized 2SLS for SAR is closely related to the

regularized 2SLS of Carrasco (2012) and the 2SLS of Liu and Lee (2010). It extends Carrasco

(2012) by considering SAR models and is of the same form as Liu and Lee’s (2010) 2SLS with the

difference that the projection matrix P is replaced by its regularized counterpart Pα.

3.4 Consistency and asymptotic distributions of the regularized

2SLS

The following proposition shows consistency and asymptotic normality of the regularized 2SLS

estimators.

Proposition 1 Under Assumptions 1-4 , ρ̃ − ρ0 = Op(1/
√
n) and α → 0. Then, the T, LF and

SC estimators satisfy:

1. Consistency: δ̂R2sls → δ0 in probability as n and α
√
n go to infinity.

2. Asymptotic normality:
√
n(δ̂R2sls − δ0)

d→ N
(
0, σ2

εH
−1
)

as n and α2√n go to infinity.

The convergence rate of the regularized 2SLS for SAR is different from those obtained without

spatial correlation. For consistency in the SAR model, we need α
√
n to go to infinity. The Carrasco

(2012) regularized 2SLS estimator is consistent with convergence rate nα
1
2 . The asymptotic nor-

mality is obtained if α2√n goes to infinity which is also different from Carrasco (2012)’s asymptotic

normality condition for 2SLS. The regularization parameter α is allowed to go to zero less faster

than for the Carrasco (2012) in for consistency. Compare to Carrasco (2012), more regularization is

needed in order to achieve appropriate asymptotic behavior. The reinforcement of these conditions

is certainly due to t regularization taking into account the spatial representation of the data.

In Liu and Lee (2010), the 2SLS estimator has a bias due to the increasing number of instrumental
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variables. Interestingly, the regularized 2SLS for SAR models is well centered, under the assumption

that α
√
n go to infinity.

The bias of the 2SLS in Liu and Lee (2010) is of the form

√
nb2sls = σ2tr(PαRWS−1R−1)(Z ′RPαRZ)−1e1.

Using Lemma 1 and 2 in appendix, we show that the 2SLS bias is of order
√
nb2sls = Op(

1

α
√
n

)

which goes to zero as α
√
n goes to infinity.

4 Selection of the Regularization Parameter

This section discusses the selection of the regularized parameter for network models. We first derive

an approximation of the mean square error using Nagar-type expansion. The dominant term of the

mean square error is estimated and the selected regularization parameter is the one achieving the

minimum of this term.

4.1 Approximation of the Mean Square Error (MSE)

The following proposition provides an approximation of the MSE.

Proposition 2 If Assumptions 1 to 4 hold, ρ̃ − ρ0 = Op(1/
√
n) and nα → ∞ for LF, PC and T

regularized 2SLS estimators, we have

n(δ̂R2sls − δ0)(δ̂R2sls − δ0)′ = Q(α) + R̂(α),

E(Q(α)|X) = σ2
εH
−1 + S(α), (9)

r(α)/tr(S(α)) = op(1),

with r(α) = E(R̂(α)|X)

S(α) = σ2
εH
−1

f ′ (1− Pα)2 f

n
+ σ2

ε

1

n

∑
j

qj

2

e1ι
′D′Dιe′1

H−1.

For LF, SC, S(α) = Op

(
1

nα2
+ αω

)
and for T, S(α) = Op

(
1

nα2
+ αmin(ω,2)

)
, with D =

JRWS−1R−1.
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The relevant, for the selection of α, dominant term S(α) will be minimized to achieve the

smallest MSE. S(α) account for a trade-off between the bias and variance. When α goes to zero,

the bias term increases while the variance term decreases. The approximation of the regularized

2SLS estimator is similar to Carrasco (2012) regularized 2SLS. However, the expression of the MSE

is more complicated because of the spatial correlation.

4.2 Estimation of the MSE

The aim of this section is to find the regularized parameter that minimizes the conditional MSE of

γ̄′δ̂2sls for some arbitrary k + 1× 1 vector γ̄. This conditional MSE is:

MSE = E[γ̄′(δ̂2sls − δ0)(δ̂2sls − δ0)′γ̄|X]

∼ γ̄′S(α)γ̄

≡ Sγ̄(α).

Sγ̄(α) involves the function f which is unknown. We need to replace Sγ̄ by an estimate.

Stacking the observations, the reduced form equation can be rewritten as

RZ = f + v.

This expression involves n × (k + 1) matrices. We can reduce the dimension by post-multiplying

by H−1γ̄:

RZH−1γ̄ = fH−1γ̄ + vH−1γ̄ ⇔ RZγ̄ = fγ̄ + vγ̄ (10)

where vγ̄i = v′iH
−1γ̄ is a scalar.

We take δ̃ to be a preliminary estimator of δ obtained, for instance, from a finite number of

instruments. And denote ρ̃ as a preliminary estimator of ρ obtained by the method of moments as

follow:

ρ̃ = arming̃(ρ)′g̃(ρ)

where g̃(ρ) = [M1ε̃(ρ),M2ε̃(ρ),M3ε̃(ρ)]′ε̃(ρ),

M1 = JWJ − tr(JWJ)I/tr(J),

M2 = JMJ − tr(JMJ)I/tr(J),

M3 = JMWJ − tr(JMWJ)I/tr(J),
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ε̃(ρ) = JR(ρ)(Y − Z ′δ̃).

δ̃ = [Z ′Q1(Q′1Q1)−1Q′1Z]−1Z ′Q1(Q′1Q1)−1Q′1Y with Q1 a single instrument. We obtain the residual

ε̂(ρ) = JR(ρ̃)(Y − Z ′δ̃).

Let us denote σ̂2
ε = ε̂(ρ)′ε̂(ρ)/n, v̂γ̄ = (I − Pα)R(ρ̃)ZH̃−1γ̄ where H̃ is a consistent estimate of

H, ṽγ̄ = (I − P α̃)R(ρ̃)ZH̃−1γ̄ and, σ̂2
vγ̄ = ṽ′γ̄ ṽγ̄/n

We consider the following goodness-of-fit criteria:

Mallows Cp (Mallows (1973))

$̂m(α) =
v̂′γ̄ v̂γ̄

n
+ 2σ̂2

vγ̄

tr(Pα)

n
.

Generalized cross-validation (Craven and Wahba (1979))

$̂cv(α) =
1

n

v̂′γ̄ v̂γ̄(
1− tr(Pα)

n

)2 .

Leave-one-out cross-validation (Stone (1974))

$̂lcv(α) =
1

n

n∑
i=1

(R̃Z γ̄i − f̂αγ̄−i)
2,

where R̃Z γ̄ = WH̃−1γ̄, R̃Z γ̄i is the ith element of R̃Z γ̄ and f̂αγ̄−i = Pα−iR̃Z γ̄−i . The n × (n − 1)

matrix Pα−i is such that the Pα−i = T (Kα
n−i)T

∗
−i are obtained by suppressing the ith observation from

the sample. R̃Z γ̄−i is the (n− 1)× 1 vector constructed by suppressing the ith observation of W̃γ̄ .

Using (9), Sγ̄(α) can be rewritten as

Sγ̄(α) = σ2
ε

f ′γ̄ (I − Pα)2 fγ̄

n
+ σ2

ε

1

n

∑
j

qj

2

e1γ̄ι
′D′Dιe′1γ̄


Using Li’s results on Cp or cross-validation procedures, note that $̂(α) approximates

$(α) =
f ′γ̄ (I − Pα)2 fγ̄

n
+ σ2

vγ̄

tr
(
(Pα)2

)
n

.

Therefore, Sγ(α) is estimated by the following equation.

Ŝγ̄(α) = σ̂2
ε

[
$̂(α)− σ̂2

vγ̄

tr
(
(Pα)2

)
n

+ σ̂2
ε

1

n
(tr(Pα))2 e1γ̄ι

′D̃′D̃ιe′1γ̄

]
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where D̃ is a consistent estimator of D.

Our selection procedure is very close to Carrasco (2012), the optimality of the selection procedure

can be established using the results of Li (1986) and Li (1987).

The regularized 2SLS and the selection of the regularization parameters are based on a prelim-

inary estimator of ρ. This means that if we are not able to estimate correctly ρ the estimation of

δ could be biased in an unpredictable direction.

The following section introduces the regularized GMM to jointly estimate ρ and δ.

4.3 Regularized GMM estimator

The regularized 2SLS can be generalized to the GMM with additional quadratic moment equations.

The use of quadratic moments for the estimation of SAR models has been proposed in Kelejian and

Prucha (1999) and Liu and Lee (2010). Identification of δ and ρ follows the same strategy as in

Liu and Lee (2010). The use of quadratic moments helps in the identification of all the parameters

of the model. But, the challenge with the use of GMM is that the derivation of the approximation

of the MSE is very difficult. 10 However, we use the same regularization parameter obtained from

the data-driven procedure for the regularized 2SLS.

The moments are g1(θ) = Q′ε(θ) with θ = (ρ, δ) and

ε(θ) = JR(ρ)(Y − Zδ) = f(ρ)(δ0 − δ) + JR(ρ)WS−1R−1ε(λ0 − λ) + JR(ρ)R−1ε where f(ρ) =

JR(ρ)E(Z).

The additional quadratic moments are

g2(θ) = [U1ε(θ), ..., Uqε(θ)]
′ε(θ), where Uj are constant square matrices such that tr(JUj) = 0.

The number of quadratic moments is fixed (q). An example of Uj matrix is for any n×n constant

matrix U , define M as M = U − tr(JU)I/tr(J), then tr(JM) = 0. For notational simplicity, we

take Uj to replace JUjJ .

The vector of combined linear and quadratic empirical moments for the GMM estimation is

given by g(θ) = [g1(θ)′, g′2(θ)]′. For analytic tractability, we impose uniform boundedness on the

quadratic matrices Uj ’s.

Assumption 5. The sequence of matrices {Uj} with tr(JUj) = 0 are UB for j = 1, ..., q.

Assumption 3’. lim
n→∞

1

n
f(ρ)′f(ρ) is a finite nonsingular matrix for any ρ such that R(ρ) is

nonsingular.

10As a solution in a recent work, Kotchoni (2012) uses a bootstrap procedure to select the regularization parameter.
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Under assumption 3’, δ0 is identified. Knowing δ0, ρ0 can be identified based on the quadratic

moment conditions.

Assumption 6.

limn→∞
1

n
tr(UjMR−1 + U ′jMR−1) 6= 0 for some j, and

limn→∞
1

n
[tr(U1MR−1 + U ′1MR−1), ..., tr(UqMR−1 + U ′qMR−1)]

is linearly independent of

limn→∞
1

n
[tr(R−1′M ′U1MR−1 +R−1′M ′U ′1MR−1), ..., tr(R−1′M ′UqMR−1 +R−1′M ′U ′qMR−1)].

Assumptions 5 and 6 are sufficient for the identification condition for ρ0 via the unique solution

of E(g2(θ)|δ = δ0) = 0 for a large enough sample size.

For any n× n matrix A = [aij ], we denote vecD(A) = (a11, ..., ann)′. Let µ3 and µ4 denote, re-

spectively, the third and fourth moments of the error term εi. Let also φ = [vecD(U1), ..., vecD(Uq)]

and ḡ2(θ) =
µ3

σ2
0

φ′Pαε(θ)− g2(θ)

The optimal GMM objective function can be treated as a linear combination of the objective

functions of the 2SLS and the optimal GMM based on moments ḡ2(θ) ( see Liu and Lee (2010)

for the proof). Following the same arguments, the regularized GMM with an infinite number of

instruments is the sum of the objective functions of the regularized 2SLS and the optimal GMM

based on moments ḡ2(θ) which has a fixed dimension. The advantage of such a representation is

that it uses the same regularization operators in both estimation procedures.

The regularized GMM estimator of θ is defined as:

θ̂rgmm = argmin σ−2
〈
(Kα

n )−1/2S̄n(.), (Kα
n )−1/2S̄n(.)

〉
+

1

n
ḡ2(θ)′V ḡ2(θ) (11)

with V = [V ar(ḡ2(θ))]−1 while S̄n(k) =
1

n

n∑
i=1

(Ẏi − Żiδ)Qik where Ẏ = R(ρ)Y and Ż = R(ρ)Z.

Lemma 5 in appendix shows that V −1 =
µ2

3

σ2
φ′P 2φ+ (µ4 − 3σ4)φ′φ+ σ4Γ− 2

µ2
3

σ2
φ′Pφ

with Γ =
1

2
[vec(U1 + U ′1), ...vec(Uq + U ′q)]

′[vec(U1 + U ′1), ...vec(Uq + U ′q)]

Assumption 7. limn→∞nV exists and is a nonsingular matrix.

Assumption 8. The true parameter θ0 is in the interior of the compact parameter space Θ.
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Proposition 3 Under Assumptions 1-2, 3’, 4-8 , with σ2
ε , µ3 and µ4 replaced by their consistent

initial estimators then the feasible optimal regularized GMM estimators for T, LF and PC satisfy

θ̂rgmm → θ0 in probability as n and α
√
n go to infinity.

Interestingly, the regularized GMM are consistent and converge with the same rate as the 2SLS.

The following proposition result gives the asymptotic distribution of the feasible regularized GMM

estimators.

Proposition 4 Under Assumptions 1-2, 3’, 4-8 , with σ2
ε , µ3 and µ4 replaced by

√
n-consistent

initial estimators, the feasible optimal regularized GMM estimator for T, LF and PC satisfied
√
n(θ̂rgmm − θ0)

d→ N
(
0, [σ−2

ε D(0, H) + plimD̄′2V D̄2]−1
)

as n and α2√n go to infinity; with

D̄2 = D2 −
µ3

σ2
ε

(0, φ′f)

where D2 = E(
∂g2(θ)

∂θ′
) = −σ2

ε



tr[(U1 + U ′1)MR−1] tr[(U1 + U ′1)RWS−1R−1] 0

tr[(U2 + U ′2)MR−1] tr[(U2 + U ′2)RWS−1R−1] 0

. . .

. . .

. . .

tr[(Uq + U ′q)MR−1] tr[(Uq + U ′q)RWS−1R−1] 0


.

The regularized GMM is well centred, under the assumption that α2√n go to infinity. This

results were expected given that the regularized 2SLS estimators do not suffer from many instru-

ments asymptotic bias. The regularized GMM proposed in this paper have the advantage that they

can be computed with the same regularization parameter as in the regularized 2SLS estimators.

5 Monte Carlo simulations

To investigate the finite sample performance of the regularized 2SLS and GMM estimators, we

conduct a simulation study based on the following model.

Y = λ0WY +Xβ10 +WXβ20 + ια0 + u

with u = ρ0Mu+ ε.

There are four samples with different numbers of groups r̄ and group sizes mr. The first sample

contains 30 groups with equal group sizes of mr = 10. The second sample contains 60 groups with
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equal group sizes of mr = 10. To study the effect of group sizes, we also consider, respectively, 30

and 60 groups with equal group sizes of mr = 15. For each group, the sociomatrix Wr is generated

as follows. First, for the ith row of Wr (i = 1, ...,mr), kri is generated uniformly at random from

the set of integers [0, 1, 2, 3] , [0, 1, ..., 6] or [0, 1, ..., 8]. Allowing for a difference in the maximum

number of friends helps to study the effect of the density of the network on the estimator.

The sociomatrix Wr is constructed as follows:

-Set the (i + 1)th, ..., (i + kri)th elements of the ith row of Wr to be ones and the rest of elements

in that row to be zeros, if i+ kri ≤ mr;

-Otherwise, the entries of ones will be wrapped around.

-In the case of kri = 0, the ith row of Wr will have all zeros. M is the row-normalized W .

X ∼ N (0, I), α0r ∼ N (0, 0.01) εr,i ∼ N (0, 1). The data are generated with β10 = β20 = 0.2

λ0 = ρ0 = 0.1.

The estimation methods considered are:

• 2SLS with few instruments, the set of instrument is given by Q1 = J [X,WX,MX,MWX],

• 2SLS with many instruments where the instrument set is Q2 = [Q1, JWι].

• the regularized 2SLS estimator T 2SLS (Tikhonov), LF 2SLS (Landweber Fridman), PC 2SLS

(Principal component) with many instruments Q̃2. Q̃2 is a matrix of instruments with Q2’s

instruments normalized to unit variance.11

• Liu and Lee (2010) Bias-corrected 2SLS with many instruments

• Optimal GMM with g(θ) = [Q1, U1ε(θ), U2ε(θ)]
′ε(θ) for few moments, with U1 = JMR−1J −

tr(JMR−1J)I/tr(J) and

U2 = JRWS−1R−1J − tr(JRWS−1R−1J)I/tr(J)

• Optimal GMM with g(θ) = [Q2, U1ε(θ), U2ε(θ)]
′ε(θ) for many moments, with U1 = JMR−1J−

tr(JMR−1J)I/tr(J) and

U2 = JRWS−1R−1J − tr(JRWS−1R−1J)I/tr(J)

• Liu and Lee (2010) Bias-corrected GMM, Bias-corrected GMM with many instruments

• the regularized GMM estimators TGMM (Tikhonov), LFGMM (Landweber Fridman), PCGMM

(Principal component) with many instruments Q̃2.

11As pointed out by Newey (2013) the choice of identity as regularization matrix for the Tikhonov regularization method

does not take into account difference in location and scale.
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For all 2SLS estimator, a preliminary estimator of ρ is obtained by the method of moments,

ρ̃ = arming̃(ρ)′g̃(ρ) where g̃(ρ) = [M1ε̃(ρ),M2ε̃(ρ),M3ε̃(ρ)]′ε̃(ρ),

M1 = JWJ − tr(JWJ)I/tr(J),

M2 = JMJ − tr(JMJ)I/tr(J),

M3 = JMWJ − tr(JMWJ)I/tr(J),

ε̃(ρ) = JR(ρ)(Y − Z ′δ̃)

and

δ̃ = [Z ′Q1(Q′1Q1)−1Q′1Z]−1Z ′Q1(Q′1Q1)−1Q′1Y.

Before presenting the simulations results, it important to note that the data generating process in

this experiment exhibit a very low transitivity level. Moreover, the reduced form model is sparse (for

example, when the maximum number of friend is 3, W q = 0 for q > 4). The instruments coming

from the relative position in the network are independent of each other. This means that high

dimensional reduction techniques should not going very effective in summarizing the information.

Mean, standard deviation (SD) and root mean square errors (RMSE) of the empirical distribu-

tions of the estimates are reported.

The simulation results are summarized as follows.

1. The used on additional linear moment conditions reduce SDs in 2SLS estimators of λ0 and

β20 and GMM estimators of λ0 , β20 and ρ0. The 2SLS and GMM (large iv) have smaller

standard deviation compare to the 2SLS and GMM (finite iv).

2. The additional instruments in Q2 introduce biases into 2SLS estimators of λ0 and β20 and

GMM estimators of λ0 , β20 and ρ0. The 2SLS and GMM (finite iv) have a mean value of

estimators closer to the true value of the parameter than 2SLS and GMM (large iv).

3. The regularized 2SLS and GMM procedures substantially reduce the many instruments’ bias

for both the 2SLS and GMM estimators, specifically in large samples. The bias-correction

estimators are similar to regularized estimators in term of bias correction for large sample

with a relatively more dense network. But, in a small sample, the bias of the bias-corrected

estimator is smaller than those of the regularized estimators. Relative to the 2SLS with many

instruments, the regularized 2SLS estimators reduce the many instruments bias and have

comparable standard deviations.
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Table 1: Simulation results for maximum number of connections 3 (1/2)

m = 10 g = 30

λ0 = 0.1 β10 = 0.2 β20 = 0.2 ρ0 = 0.1

2SLS (finite iv) 0.098(0.207)[0.207] 0.200(0.071)[0.071] 0.208(0.071)[0.071] 0.128(0.231)[0.233]

2SLS (large iv) 0.015(0.100)[0.131] 0.190(0.068)[0.068] 0.220(0.060)[0.063] -

Bias-corrected 2SLS 0.106(0.131)[0.131] 0.198(0.069)[0.069] 0.205(0.063)[0.064] -

T 2SLS 0.040(0.110)[0.125] 0.187(0.079)[0.080] 0.216(0.065)[0.066] -

LF 2SLS 0.052(0.121)[0.130] 0.188(0.083)[0.084] 0.215(0.067)[0.068] -

PC 2SLS 0.052(0.121)[0.130] 0.188(0.083)[0.084] 0.215(0.067)[0.068] -

GMM (finite iv) 0.097(0.150)[0.150] 0.198(0.070)[0.070] 0.206(0.065)[0.065] 0.116(0.227)[0.227]

GMM (large iv) 0.075(0.078)[0.082] 0.195(0.069)[0.069] 0.208(0.059)[0.060] 0.051(0.139)[0.147]

Bias-corrected GMM 0.095(0.095)[0.096] 0.197(0.069)[0.069] 0.205(0.061)[0.061] 0.098(0.169)[0.169]

TGMM 0.085(0.097)[0.099] 0.198(0.080)[0.080] 0.208(0.066)[0.066] 0.090(0.166)[0.167]

LFGMM 0.088(0.136)[0.137] 0.204(0.110)[0.110] 0.207(0.074)[0.074] 0.121(0.232)[0.233]

PCGMM 0.096(0.183)[0.183] 0.243(0.555)[0.556] 0.208(0.128)[0.129] 0.115(0.251)[0.251]

g = 60

2SLS (finite iv) 0.104(0.136)[0.136] 0.203(0.047)[0.047] 0.204(0.049)[0.049] 0.116(0.177)[0.178]

2SLS (large iv) 0.032(0.081)[0.105] 0.196(0.046)[0.046] 0.217(0.043)[0.046] -

Bias-corrected 2SLS 0.108(0.099)[0.099] 0.202(0.047)[0.047] 0.204(0.045)[0.045] -

T 2SLS 0.055(0.088)[0.099] 0.193(0.051)[0.052] 0.213(0.046)[0.048] -

LF 2SLS 0.064(0.095)[0.101] 0.193(0.053)[0.054] 0.212(0.048)[0.049] -

PC 2SLS 0.064(0.095)[0.101] 0.193(0.053)[0.054] 0.212(0.048)[0.049] -

GMM (finite iv) 0.092(0.106)[0.106] 0.201(0.047)[0.047] 0.205(0.045)[0.045] 0.119(0.184)[0.185]

GMM (large iv) 0.078(0.058)[0.062] 0.199(0.047)[0.047] 0.207(0.041)[0.042] 0.066(0.090)[0.096]

Bias-corrected GMM 0.092(0.071)[0.071] 0.201(0.047)[0.047] 0.204(0.043)[0.043] 0.101(0.109)[0.109]

TGMM 0.086(0.077)[0.078] 0.200(0.053)[0.053] 0.206(0.046)[0.047] 0.100(0.125)[0.125]

LFGMM 0.088(0.100)[0.101] 0.203(0.075)[0.075] 0.204(0.049)[0.050] 0.118(0.172)[0.173]

PCGMM 0.088(0.162)[0.163] 0.192(0.516)[0.516] 0.201(0.109)[0.109] 0.112(0.221)[0.222]

Mean (SD) [RMSE]
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Table 2: Simulation results for maximum number of connections 3 (2/2)

m = 15 g = 30

λ0 = 0.1 β10 = 0.2 β20 = 0.2 ρ0 = 0.1

2SLS (finite iv) 0.098(0.155)[0.155] 0.203(0.052)[0.052] 0.202(0.055)[0.055] 0.115(0.204)[0.205]

2SLS (large iv) 0.069(0.094)[0.099] 0.200(0.052)[0.052] 0.209(0.044)[0.045] -

Bias-corrected 2SLS 0.101(0.105)[0.105] 0.202(0.052)[0.052] 0.202(0.047)[0.047] -

T 2SLS 0.086(0.106)[0.107] 0.199(0.059)[0.059] 0.207(0.049)[0.050] -

LF 2SLS 0.089(0.114)[0.115] 0.200(0.062)[0.062] 0.207(0.053)[0.054] -

PC 2SLS 0.089(0.114)[0.115] 0.200(0.062)[0.062] 0.207(0.053)[0.054] -

GMM (finite iv) 0.092(0.122)[0.122] 0.202(0.051)[0.051] 0.203(0.050)[0.050] 0.113(0.171)[0.171]

GMM (large iv) 0.091(0.072)[0.073] 0.201(0.051)[0.051] 0.202(0.043)[0.043] 0.090(0.116)[0.116]

Bias-corrected GMM 0.096(0.078)[0.078] 0.201(0.051)[0.051] 0.201(0.044)[0.044] 0.100(0.123)[0.123]

TGMM 0.094(0.091)[0.092] 0.201(0.061)[0.061] 0.203(0.049)[0.049] 0.105(0.139)[0.139]

LFGMM 0.098(0.123)[0.123] 0.210(0.096)[0.097] 0.201(0.060)[0.060] 0.106(0.177)[0.177]

PCGMM 0.087(0.177)[0.177] 0.202(0.399)[0.399] 0.207(0.179)[0.179] 0.092(0.179)[0.179]

g = 60

2SLS (finite iv) 0.093(0.103)[0.103] 0.198(0.037)[0.037] 0.200(0.039)[0.039] 0.109(0.143)[0.143]

2SLS (large iv) 0.066(0.061)[0.070] 0.197(0.038)[0.038] 0.206(0.034)[0.035] -

Bias-corrected 2SLS 0.096(0.072)[0.072] 0.198(0.038)[0.038] 0.199(0.036)[0.036] -

T 2SLS 0.079(0.069)[0.072] 0.196(0.043)[0.043] 0.204(0.037)[0.037] -

LF 2SLS 0.082(0.074)[0.076] 0.196(0.046)[0.046] 0.203(0.040)[0.040] -

PC 2SLS 0.082(0.074)[0.076] 0.196(0.046)[0.046] 0.203(0.040)[0.040] -

GMM (finite iv) 0.087(0.079)[0.080] 0.198(0.038)[0.038] 0.201(0.036)[0.036] 0.118(0.134)[0.135]

GMM (large iv) 0.090(0.050)[0.050] 0.198(0.038)[0.038] 0.199(0.033)[0.033] 0.085(0.085)[0.087]

Bias-corrected GMM 0.095(0.053)[0.053] 0.198(0.038)[0.038] 0.198(0.034)[0.034] 0.096(0.089)[0.089]

TGMM 0.090(0.062)[0.062] 0.197(0.044)[0.044] 0.200(0.036)[0.036] 0.105(0.102)[0.102]

LFGMM 0.091(0.086)[0.087] 0.200(0.067)[0.067] 0.199(0.042)[0.042] 0.111(0.140)[0.141]

PCGMM 0.078(0.153)[0.155] 0.185(0.331)[0.331] 0.211(0.157)[0.158] 0.111(0.172)[0.173]

Mean (SD) [RMSE]
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Table 3: Simulation results for maximum number of connections 6 (1/2)

m = 10 g = 30

λ0 = 0.1 β10 = 0.2 β20 = 0.2 ρ0 = 0.1

2SLS (finite iv) 0.102(0.118)[0.118] 0.196(0.074)[0.074] 0.206(0.049)[0.049] 0.103(0.187)[0.188]

2SLS (large iv) 0.052(0.056)[0.074] 0.183(0.069)[0.071] 0.206(0.047)[0.047] -

Bias-corrected 2SLS 0.109(0.078)[0.078] 0.196(0.072)[0.072] 0.202(0.048)[0.048] -

T 2SLS 0.065(0.063)[0.073] 0.172(0.079)[0.083] 0.203(0.051)[0.051] -

LF 2SLS 0.071(0.069)[0.075] 0.167(0.085)[0.091] 0.203(0.053)[0.053] -

PC 2SLS 0.071(0.069)[0.075] 0.167(0.085)[0.091] 0.203(0.053)[0.053] -

GMM (finite iv) 0.101(0.101)[0.101] 0.195(0.073)[0.073] 0.204(0.049)[0.049] 0.076(0.204)[0.205]

GMM (large iv) 0.078(0.050)[0.055] 0.189(0.071)[0.071] 0.204(0.047)[0.048] -0.047(0.145)[0.207]

Bias-corrected GMM 0.090(0.057)[0.058] 0.192(0.071)[0.072] 0.204(0.048)[0.048] 0.073(0.180)[0.182]

TGMM 0.087(0.063)[0.064] 0.184(0.083)[0.085] 0.203(0.051)[0.051] 0.030(0.178)[0.191]

LFGMM 0.092(0.104)[0.104] 0.185(0.147)[0.147] 0.202(0.057)[0.057] 0.067(0.209)[0.212]

PCGMM 0.077(0.162)[0.164] 0.161(0.396)[0.398] 0.210(0.145)[0.146] 0.064(0.238)[0.241]

g = 60

2SLS (finite iv) 0.099(0.090)[0.090] 0.204(0.051)[0.051] 0.207(0.034)[0.035] 0.118(0.158)[0.159]

2SLS (large iv) 0.053(0.038)[0.060] 0.193(0.047)[0.048] 0.209(0.032)[0.034] -

Bias-corrected 2SLS 0.099(0.064)[0.064] 0.203(0.049)[0.049] 0.205(0.034)[0.034] -

T 2SLS 0.066(0.044)[0.056] 0.184(0.054)[0.056] 0.205(0.035)[0.035] -

LF 2SLS 0.072(0.049)[0.057] 0.180(0.058)[0.061] 0.204(0.036)[0.036] -

PC 2SLS 0.072(0.049)[0.057] 0.180(0.058)[0.061] 0.204(0.036)[0.036] -

GMM (finite iv) 0.097(0.082)[0.082] 0.203(0.050)[0.050] 0.207(0.034)[0.035] 0.094(0.209)[0.209]

GMM (large iv) 0.077(0.035)[0.042] 0.199(0.048)[0.048] 0.207(0.033)[0.034] -0.031(0.112)[0.172]

Bias-corrected GMM 0.089(0.042)[0.043] 0.201(0.049)[0.049] 0.206(0.033)[0.034] 0.073(0.141)[0.144]

TGMM 0.088(0.046)[0.048] 0.198(0.058)[0.058] 0.205(0.035)[0.036] 0.051(0.138)[0.146]

LFGMM 0.092(0.083)[0.084] 0.200(0.104)[0.104] 0.204(0.038)[0.038] 0.097(0.196)[0.196]

PCGMM 0.077(0.115)[0.118] 0.186(0.291)[0.291] 0.210(0.130)[0.130] 0.094(0.223)[0.223]

Mean (SD) [RMSE]
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Table 4: Simulation results for maximum number of connections 6 (2/2)

m = 15 g = 30

λ0 = 0.1 β10 = 0.2 β20 = 0.2 ρ0 = 0.1

2SLS (finite iv) 0.104(0.068)[0.069] 0.205(0.053)[0.053] 0.203(0.038)[0.038] 0.116(0.144)[0.145]

2SLS (large iv) 0.081(0.043)[0.047] 0.199(0.052)[0.052] 0.207(0.035)[0.036] -

Bias-corrected 2SLS 0.100(0.065)[0.065] 0.203(0.053)[0.053] 0.204(0.037)[0.037] -

T 2SLS 0.092(0.048)[0.049] 0.198(0.060)[0.060] 0.207(0.039)[0.040] -

LF 2SLS 0.095(0.053)[0.053] 0.198(0.062)[0.062] 0.207(0.041)[0.041] -

PC 2SLS 0.095(0.053)[0.053] 0.198(0.062)[0.062] 0.207(0.041)[0.041] -

GMM (finite iv) 0.098(0.060)[0.060] 0.203(0.052)[0.053] 0.204(0.037)[0.037] 0.117(0.189)[0.190]

GMM (large iv) 0.090(0.038)[0.039] 0.201(0.052)[0.052] 0.204(0.035)[0.035] 0.076(0.103)[0.105]

Bias-corrected GMM 0.098(0.042)[0.042] 0.202(0.052)[0.052] 0.203(0.035)[0.035] 0.090(0.109)[0.109]

TGMM 0.095(0.046)[0.046] 0.201(0.062)[0.062] 0.205(0.039)[0.040] 0.096(0.139)[0.140]

LFGMM 0.095(0.065)[0.065] 0.195(0.102)[0.103] 0.204(0.043)[0.044] 0.121(0.207)[0.208]

PCGMM 0.096(0.105)[0.105] 0.192(0.355)[0.356] 0.206(0.098)[0.099] 0.137(0.226)[0.229]

g = 60

2SLS (finite iv) 0.103(0.050)[0.050] 0.200(0.039)[0.039] 0.200(0.026)[0.026] 0.108(0.100)[0.100]

2SLS (large iv) 0.086(0.030)[0.033] 0.196(0.039)[0.039] 0.202(0.024)[0.025] -

Bias-corrected 2SLS 0.105(0.035)[0.035] 0.200(0.039)[0.039] 0.199(0.025)[0.025] -

T 2SLS 0.094(0.035)[0.035] 0.193(0.043)[0.043] 0.201(0.027)[0.027] -

LF 2SLS 0.097(0.038)[0.039] 0.193(0.044)[0.044] 0.201(0.028)[0.028] -

PC 2SLS 0.097(0.038)[0.039] 0.193(0.044)[0.044] 0.201(0.028)[0.028] -

GMM (finite iv) 0.100(0.045)[0.045] 0.199(0.038)[0.038] 0.200(0.026)[0.026] 0.104(0.125)[0.126]

GMM (large iv) 0.094(0.027)[0.028] 0.198(0.038)[0.038] 0.200(0.024)[0.024] 0.077(0.070)[0.074]

Bias-corrected GMM 0.102(0.031)[0.031] 0.199(0.038)[0.038] 0.199(0.024)[0.024] 0.089(0.074)[0.075]

TGMM 0.098(0.035)[0.035] 0.196(0.045)[0.045] 0.200(0.027)[0.027] 0.093(0.083)[0.084]

LFGMM 0.099(0.053)[0.053] 0.194(0.080)[0.080] 0.199(0.030)[0.030] 0.107(0.129)[0.129]

PCGMM 0.102(0.095)[0.095] 0.203(0.352)[0.352] 0.198(0.079)[0.079] 0.121(0.170)[0.172]

Mean (SD) [RMSE]
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Table 5: Simulation results for maximum number of connections 8 (1/2)

m = 10 g = 30

λ0 = 0.1 β10 = 0.2 β20 = 0.2 ρ0 = 0.1

2SLS (finite iv) 0.092(0.108)[0.108] 0.191(0.073)[0.074] 0.204(0.047)[0.047] 0.111(0.211)[0.211]

2SLS (large iv) 0.064(0.043)[0.056] 0.188(0.069)[0.070] 0.206(0.045)[0.046] -

Bias-corrected 2SLS 0.099(0.062)[0.062] 0.194(0.071)[0.071] 0.203(0.048)[0.048] -

T 2SLS 0.073(0.049)[0.056] 0.180(0.083)[0.086] 0.201(0.049)[0.049] -

LF 2SLS 0.077(0.054)[0.058] 0.177(0.093)[0.096] 0.200(0.051)[0.051] -

PC 2SLS 0.077(0.054)[0.058] 0.177(0.093)[0.096] 0.200(0.051)[0.051] -

GMM (finite iv) 0.093(0.093)[0.094] 0.191(0.073)[0.073] 0.204(0.048)[0.048] 0.078(0.261)[0.262]

GMM (large iv) 0.080(0.040)[0.045] 0.190(0.073)[0.073] 0.204(0.047)[0.047] -0.110(0.184)[0.279]

Bias-corrected GMM 0.088(0.044)[0.045] 0.191(0.073)[0.073] 0.203(0.047)[0.047] 0.064(0.225)[0.228]

TGMM 0.086(0.050)[0.052] 0.187(0.086)[0.087] 0.202(0.050)[0.050] 0.001(0.231)[0.252]

LFGMM 0.087(0.091)[0.092] 0.184(0.128)[0.129] 0.200(0.059)[0.059] 0.059(0.295)[0.297]

PCGMM 0.073(0.143)[0.146] 0.183(0.412)[0.412] 0.200(0.118)[0.118] 0.068(0.277)[0.278]

g=60

2SLS (finite iv) 0.096(0.065)[0.065] 0.202(0.048)[0.048] 0.204(0.033)[0.033] 0.113(0.162)[0.162]

2SLS (large iv) 0.071(0.028)[0.040] 0.198(0.047)[0.047] 0.207(0.032)[0.032] -

Bias-corrected 2SLS 0.102(0.039)[0.039] 0.202(0.048)[0.048] 0.202(0.033)[0.033] -

T 2SLS 0.080(0.032)[0.037] 0.194(0.056)[0.057] 0.203(0.034)[0.034] -

LF 2SLS 0.084(0.036)[0.039] 0.192(0.063)[0.063] 0.201(0.035)[0.035] -

PC 2SLS 0.084(0.036)[0.039] 0.192(0.063)[0.063] 0.201(0.035)[0.035] -

GMM (finite iv) 0.095(0.062)[0.062] 0.201(0.049)[0.049] 0.204(0.033)[0.033] 0.096(0.181)[0.181]

GMM (large iv) 0.084(0.027)[0.031] 0.199(0.049)[0.049] 0.205(0.033)[0.033] -0.062(0.119)[0.201]

Bias-corrected GMM 0.092(0.029)[0.030] 0.201(0.049)[0.049] 0.203(0.033)[0.033] 0.073(0.148)[0.151]

TGMM 0.091(0.032)[0.033] 0.199(0.058)[0.058] 0.203(0.035)[0.035] 0.040(0.151)[0.162]

LFGMM 0.096(0.065)[0.065] 0.200(0.088)[0.088] 0.202(0.039)[0.039] 0.073(0.192)[0.193]

PCGMM 0.081(0.109)[0.111] 0.190(0.469)[0.469] 0.204(0.118)[0.118] 0.080(0.207)[0.208]

Mean (SD) [RMSE]
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Table 6: Simulation results for maximum number of connections 8 (2/2)

m = 15 g = 30

λ0 = 0.1 β10 = 0.2 β20 = 0.2 ρ0 = 0.1

2SLS (finite iv) 0.102(0.052)[0.052] 0.203(0.053)[0.053] 0.203(0.033)[0.033] 0.112(0.136)[0.137]

2SLS (large iv) 0.087(0.028)[0.031] 0.198(0.051)[0.051] 0.204(0.032)[0.032] -

Bias-corrected 2SLS 0.101(0.036)[0.036] 0.202(0.052)[0.052] 0.202(0.032)[0.032] -

T 2SLS 0.093(0.032)[0.033] 0.195(0.058)[0.058] 0.204(0.034)[0.034] -

LF 2SLS 0.095(0.036)[0.036] 0.193(0.061)[0.061] 0.204(0.035)[0.035] -

PC 2SLS 0.095(0.036)[0.036] 0.193(0.061)[0.061] 0.204(0.035)[0.035] -

GMM (finite iv) 0.100(0.048)[0.048] 0.202(0.053)[0.053] 0.203(0.033)[0.033] 0.096(0.164)[0.164]

GMM (large iv) 0.091(0.027)[0.028] 0.199(0.051)[0.051] 0.203(0.032)[0.032] 0.057(0.099)[0.108]

Bias-corrected GMM 0.097(0.030)[0.030] 0.201(0.051)[0.051] 0.202(0.032)[0.032] 0.084(0.108)[0.109]

TGMM 0.096(0.033)[0.033] 0.198(0.060)[0.060] 0.203(0.034)[0.034] 0.076(0.115)[0.117]

LFGMM 0.100(0.054)[0.054] 0.196(0.114)[0.114] 0.202(0.036)[0.036] 0.087(0.153)[0.153]

PCGMM 0.099(0.094)[0.094] 0.195(0.261)[0.261] 0.209(0.108)[0.108] 0.110(0.179)[0.179]

g = 60

2SLS (finite iv) 0.103(0.038)[0.038] 0.199(0.039)[0.039] 0.199(0.022)[0.022] 0.105(0.097)[0.097]

2SLS (large iv) 0.091(0.020)[0.022] 0.195(0.038)[0.039] 0.200(0.021)[0.021] -

Bias-corrected 2SLS 0.104(0.026)[0.026] 0.199(0.039)[0.039] 0.198(0.021)[0.021] -

T 2SLS 0.096(0.023)[0.023] 0.191(0.043)[0.043] 0.200(0.022)[0.022] -

LF 2SLS 0.098(0.026)[0.026] 0.190(0.044)[0.045] 0.200(0.023)[0.023] -

PC 2SLS 0.098(0.026)[0.026] 0.190(0.044)[0.045] 0.200(0.023)[0.023] -

GMM (finite iv) 0.101(0.035)[0.035] 0.199(0.039)[0.039] 0.199(0.021)[0.021] 0.099(0.158)[0.158]

GMM (large iv) 0.095(0.019)[0.020] 0.197(0.038)[0.039] 0.200(0.021)[0.021] 0.062(0.072)[0.081]

Bias-corrected GMM 0.101(0.021)[0.021] 0.199(0.039)[0.039] 0.199(0.021)[0.021] 0.083(0.078)[0.080]

TGMM 0.099(0.024)[0.024] 0.195(0.044)[0.045] 0.199(0.022)[0.022] 0.083(0.088)[0.090]

LFGMM 0.101(0.043)[0.043] 0.192(0.085)[0.086] 0.198(0.025)[0.025] 0.101(0.125)[0.125]

PCGMM 0.099(0.080)[0.080] 0.178(0.224)[0.225] 0.197(0.078)[0.078] 0.114(0.157)[0.158]

Mean (SD) [RMSE]

28



4. The regularized GMM estimators reduce the bias in the estimation of ρ0 relative to bias

corrected GMM and GMM with a large number of instruments. However, the precision of the

regularized GMM estimators of ρ is not as good as the bias correction.12

5. The performance of the regularized estimators increases with the higher density of the network

and the larger number of groups. The behavior of the regularized estimator with respect to

the network density suggests that the regularized estimators are good candidates to improve

the asymptotic behavior of the estimator of network effect when the level of transitivity in

the groups is very high.

6 Conclusion

This paper uses the regularization methods for the estimation of network models. The regularization

is proposed as a solution to the weak identification problem in network models. Identification of the

network effect can be achieved by using individuals’ Bonacich (1987) centrality as an instrumental

variables. But, the number such instruments increased with the number of groups; leading to the

many instruments problem. Identification can also be achieved using the friend of a friend exogenous

characteristics. However, if the network is very dense or the group size is very large, the identification

is weaken. The proposed regularized 2SLS and GMM based on three regularization methods help

to deal with many moments and weak identification problems. These estimators are consistent and

asymptotically normal. The regularized 2SLS estimators achieve the asymptotic efficiency bound.

We derive an optimal data-driven selection method for the regularization parameter. A Monte

Carlo experiment shows that the regularized estimator performed well. The regularized 2SLS and

GMM procedures substantially reduce the many instruments bias for both the 2SLS and GMM

estimators, specifically in a large sample. Moreover, the qualities in term of bias and precision

of the regularized estimator improves with the increase of the network density and the number

of groups. These results show that regularization is a valuable solution to the potential weak

identification problem existing in network models estimation.

12Note that, with some moment selection method applied to the same type of models, the problem of precision of the

estimator is observed, for example, in Liu and Lee (2013) the decile range of the C2LS-op and 2SLS-op seems to be the

largest.
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A Appendix: Summary of notations

To avoid heavy notations let us use

P = Pα , qj = q(λ2
j , α)

tr(A) is the trace of matrix A

ej is the jth unit (column) vector

ef =
1

n
f ′(I − P )f ,

e2f =
1

n
f ′(I − P )2f ,

∆f = tr(ef ) and ∆2f = tr(e2f )

Γ =
1

2
[vec(U1 + U ′1), ...vec(Uq + U ′q)]

′[vec(U1 + U ′1), ...vec(Uq + U ′q)]

φ = [vecD(U1), ..., vecD(Uq)]

ḡ2(θ) =
µ3

σ2
0

φ′Pαε(θ)− g2(θ)

g2(θ) = [U1ε(θ), ..., Uqε(θ)]
′ε(θ), where Uj are constant square matrices such that tr(JUj) = 0.

B Appendix: Some Lemmas

Lemma 1:

(i) tr(P ) =
∑
j

qj = O(1/α) and tr(P 2) =
∑
j

q2
j = o((

∑
j

qj)
2).

(ii) Suppose that {A} is a sequence of n × n UB matrices. For B = PA, tr(B) = o((
∑
j

qj)
2),

tr(B2) = o((
∑
j

qj)
2), and

∑
i

B2
ii = o((

∑
j

qj)
2), where Bii’s are diagonal elements of B.

Proof of Lemma 1

(i) proof is in Carrasco (2012) Lemma 4 (i).

(ii) By eigenvalue decomposition, AA′ = Π∆Π′, where Π is an orthonormal matrix and ∆ is

the eigenvalue matrix. It follows that PAA′P ≤ λmaxP
2 with λmax the largest eigenvalue. It

follows that tr(PAA′P ) ≤ λmaxtr(P
2) = op((

∑
j

qj)
2). By Cauchy-Schwartz inequality tr(B) ≤

[tr(P 2)]1/2[tr(PAA′P )]1/2 = op((
∑
j

qj)
2). Also by Cauchy-Schwartz inequality tr(B) ≤ tr(BB′) =

tr(PAA′P ) = o((
∑
j

qj)
2)

Lemma 2: Let C and D be two UB n× n matrix sequences.

(i) C ′PD = O(n/α)
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(ii) ε′C ′PDε = Op(1/α
2) and C ′PDε = Op(

√
n/α)

Proof of Lemma 2

(i) By Cauchy-Schwartz inequality |e′iC ′PαDej ≤
√
e′iC

′Cei

√
e′jD

′P 2Dej = O(n/α) which implies

C ′PD = O(n/α)

(ii) E|ε′C ′PDε| ≤
√
E(ε′C ′P 2Cε)

√
E(ε′D′P 2Dε) = σ2

√
tr(C ′P 2C)

√
tr(D′P 2D) = O(

1

α2
) by

Markov inequality ε′C ′PDε = Op(
1

α2
)

By Cauchy-Schwartz inequality |e′jC ′PDε| ≤
√
e′jC

′Cej
√
ε′D′P 2Dε = Op(

√
n/α),thus C ′PDε =

Op(
√
n/α)

Lemma 3: Suppose ρ̃ is a consistent estimator of ρ0 and R̃ = R(ρ̃).

Then,
1

n
Z ′R̃′PR̃Z =

1

n
Z ′R′PRZ +Op[(ρ̃− ρ0)/α] and

1

n
Z ′R̃′PR̃R−1ε =

1

n
Z ′RPε+Op[(ρ̃− ρ0)/(α

√
n(1 + α

√
n))].

Proof of Lemma 3

R̃ = R− (ρ̃− ρ0)M , thus

Z ′R̃′PR̃Z/n = Z ′R′PRZ/n

− (ρ̃− ρ0)Z ′M ′PRZ/n− (ρ̃− ρ0)Z ′R′PMZ/n

+ (ρ̃− ρ0)2Z ′M ′PMZ/n

Let show that Z ′R′PMZ/n = Op(1/α) and Z ′M ′PMZ/n = Op(1/α)

Note that Z = [WS−1(Xβ0 + ιγ0), X] +WS−1R−1εe′1.

Under assumption 3, Z ′R′PMZ/n = O(1/α) + Op(1/
√
nα) + Op(1/nα

2) = Op(1/α) and

Z ′M ′PMZ/n = Op(1/α) by lemma 2 (i).

Z ′R̃′PR̃ε/n = Z ′RPε/n

− (ρ̃− ρ0)Z ′M ′Pε/n− (ρ̃− ρ0)Z ′R′PMR−1ε/n

+ (ρ̃− ρ0)2Z ′M ′PMR−1ε/n

I used the same argument as in the previous case under assumption 3,

Z ′R′PMR−1ε/n = Op(1/
√
nα+1/nα2) = Op[1/α

√
n(1+1/α

√
n)] , Z ′M ′Pε/n = Op[1/α

√
n(1+

1/α
√
n)] and Z ′M ′Pε/n = Op[1/α

√
n(1 + 1/α

√
n)] by lemma 2 (ii).

Lemma 4: If Assumptions 1-4, are satisfied and α→ 0 then:
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(i)Z ′RPRZ/n = H + op(1) if α
√
n→∞

(ii)Z ′RPε/
√
n = f ′ε/

√
n+ op(1) if α2√n→∞

Proof of Lemma 4

Let v = JRWS−1R−1ε, JRZ = f + ve′1

(i)
1

n
Z ′RPRZ =

1

n
f ′f − 1

n
f ′(I − P )f +

1

n
e1v
′Pve′1 +

1

n
f ′Pve′1 +

1

n
e1v
′Pf

Let ef =
1

n
f ′(I−P )f , e2f =

1

n
f ′(I−P )2f , ∆f = tr(ef ) and ∆2f = tr(e2f ) By Cauchy-Schwartz

inequality
1

n
|e′if ′(I − P )fej | ≤

1

n

√
e′if
′fei

√
e′jf
′(I − P )2fej = O(

√
∆2f )

From Carrasco (2012) Lemma 5 (i) ∆2f =

 Op(α
ω) for LF and SC

Op(α
min(ω,2)) for T

Thus, ∆2f = op(1)

By Lemma 2 (ii)
1

n
e1v
′Pve′1 +

1

n
f ′Pve′1 +

1

n
e1v
′Pf = Op(

1

nα2
+

1

α
√
n

) = op(1)

(ii) Z ′RPε/
√
n = f ′ε/

√
n− f ′(I − P )ε/

√
n+ e1v

′Pε/
√
n

By Lemma 5 (ii) of Carrasco (2012) f ′(I − P )ε/
√
n = Op(

√
∆2f ) and by Lemma 2 (ii)

e1v
′Pε/

√
n = Op(1/α

2√n)

Lemma 5: If Assumptions 1-4, are satisfied.

(i) V −1 =
µ2

3

σ2
φ′P 2φ+ (µ4 − 3σ4)φ′φ+ σ4Γ− 2

µ2
3

σ2
φ′Pφ

with Γ =
1

2
[vec(U1 + U ′1), ...vec(Uq + U ′q)]

′[vec(U1 + U ′1), ...vec(Uq + U ′q)]

(ii) E(ḡ2(θ)g1(θ)′) = µ3φ
′PQ− µ3φ

′Q = o(1)

Proof of Lemma 5

Note that V = [V ar(ḡ2(θ))]−1

V −1 = V ar(ḡ2(θ)) = E[
µ2

3

σ4
φ′Pε(θ)ε(θ)′Pφ]− 2E[

µ3

σ2
φ′Pε(θ)g2(θ)′]

+ E[g2(θ)g2(θ)′]

It can be shown that

E[
µ2

3

σ4
φ′Pε(θ)ε(θ)′Pφ] = E[

µ2
3

σ4
φ′PJεε′JPφ]

=
µ3

σ2
φ′P 2φ

Then the second term is
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E[
µ3

σ2
φ′Pε(θ)g2(θ)] =

µ3

σ2
E[φ′PJεε′J [U1Jε, ..., UqJε]]

=
µ3

σ2
E[φ′Pε[ε′JU1Jε, ..., ε

′JUqJε]]

=
µ3

σ2
E[φ′Pε[tr(ε′JU1Jε), ..., tr(ε

′JUqJε)]]

=
µ2

3

σ2

∑
ij

φ′iPij [tr(e
′
jJU1Jej), ..., tr(e

′
jJUqJej)]

=
µ2

3

σ2
φ′Pφ

With UjJ replace by JUjJ for all j. And the last term

E[g2(θ)g2(θ)′] = µ4φ
′φ+ σ4[γ − 3φ′φ]

= (µ4 − 3σ4)φ′φ+ σ4Γ

with Γ =
1

2
[vec(U1 + U ′1), ...vec(Uq + U ′q)]

′[vec(U1 + U ′1), ...vec(Uq + U ′q)]

C Appendix: Proofs of propositions

Proof of Proposition 1

The regularized 2SLS estimator satisfies δ̂R2sls − δ0 = (Z ′R̃′PR̃Z)−1Z ′R̃′PR̃R−1ε.

Z ′R̃′PR̃Z/n = Op(1) +On(1/α
√
n) by Lemma 3 and 4.

R̃′PR̃R−1ε/n = Op(1/
√
n) +Op[(1/(nα(1 + α

√
n)) by lemma 3 and 4.

Then δ̂R2sls− δ0 = op(1) as α
√
n→∞ and α→ 0 This prove the consistency of the regularized

2SLS for SAR with many instruments.

√
n(δ̂R2sls − δ0) = (Z ′R̃′PR̃Z/n)−1[Z ′R̃′PR̃R−1ε/

√
n].

Using Lemma 3 , 4 and Slutzky theorem

√
n(δ̂R2sls − δ0)

d→ N
(
0, σ2

εH
−1
)

if α2√n→∞ and α→ 0
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Proof of Proposition 2

Let us considers the MSE of the estimation of the parameters.

n(δ̂R2sls − δ0)(δ̂R2sls − δ0) = Ĥ−1ĥĥ′Ĥ−1

with Ĥ =
Z ′R̃′PR̃Z

n
and ĥ =

Z ′R̃′PR̃Y√
n

. Our objective is to approximate the MSE. To achieve

this aim, we are going to use a Nagar-type approximation in order to be able to concentrate on the

largest part of the MSE. By Lemma 3,

Ĥ = Z ′RPRZ/n

− (ρ̃− ρ0)Z ′M ′PRZ/n− (ρ̃− ρ0)Z ′R′PMZ/n

+ (ρ̃− ρ0)2Z ′M ′PMZ/n

And Ĥ = Z ′RPRZ/n+Op((ρ̃− ρ0)/α). By Lemma 4, we have that

Ĥ =
1

n
f ′f − 1

n
f ′(I − P )f +

1

n
e1v
′Pve′1 +

1

n
f ′Pve′1 +

1

n
e1v
′Pf +Op((ρ̃− ρ0)/α)

Let us define TH = TH1 + TH2 + TH3 with

TH1 = − 1

n
f ′(I − P )f , TH2 =

1

n
e1v
′Pve′1 and TH3 =

1

n
f ′Pve′1 +

1

n
e1v
′Pf + Op((ρ̃ − ρ0)/α). Such

that

Ĥ =
1

n
f ′f + TH1 + TH2 + TH3

= H + TH1 + TH2 + TH3 + op(1)

= H + TH + op(1).

Following similar arguments, we have

ĥ = f ′ε/
√
n− f ′(I − P )ε/

√
n+ e1v

′Pε/
√
n+Op[(ρ̃− ρ0)/(α(1 + α

√
n))]

Let us also define, T h = T h1 + T h2 with

T h1 = −f ′(I − P )ε/
√
n and T h2 = e1v

′Pε/
√
n+Op[(ρ̃− ρ0)/(α(1 + α

√
n))].

We therefore have

ĥ = f ′ε/
√
n+ T h1 + T h2

= h+ T h1 + T h2 + op(1)

= h+ T h + op(1).
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Using Nagar-type enpension on Ĥ−1

n(δ̂R2sls− δ0)(δ̂R2sls− δ0) = H−1[I − THH−1][hh′ + hT h + T hh′ + T hT h
′
][I −H−1TH ]H−1 +op(1)

Let us define A(α) = [I − THH−1]=(α)[I −H−1TH ] with =(α) = [hh′ + hT h + T hh′ + T hT h
′
].

Therefore, A(α) = =(α) + THH−1=(α)H−1TH − THH−1=(α)−=(α)H−1TH

E[=(α)|X] = σ2[H − 2ef +
1

n
f ′Pve′1 +

1

n
e1v
′Pf + e2f ]

− E[
1

n
f ′(I − P )εε′Pve′1 +

1

n
e1v
′Pεε′(I − P )f |X]

+ E[
1

n
e1v
′Pεε′Pve′1|X]

E(THH−1=(α)|X) = −σ2ef + op(1) and

E(=(α)H−1TH |X) = −σ2ef + op(1)

E(THH−1=(α)H−1TH |X) = σ2HOp([
1

nα2
+

1

α
√
n

+ ∆f ]2)

= Op([
1

nα2
+

1

α
√
n

+ ∆f ]2)

We have

E(A(α)|X) = σ2H + σ2e2f + E[
1

n
e1v
′Pεε′Pve′1|X]

− E[
1

n
f ′(I − P )εε′Pve′1 +

1

n
e1v
′Pεε′(I − P )f |X]

+
1

n
f ′Pve′1 +

1

n
e1v
′Pf +Op([

1

nα2
+

1

α
√
n

+ ∆f ]2)

By Lemma 5 (viii) of Carrasco (2012), we have

E[
1

n
f ′(I − P )εε′Pve′1 +

1

n
e1v
′Pεε′(I − P )f |X] = Op(

√
∆2f/

√
αn)

and
1

n
e1v
′(P − P 2)f = Op(

√
∆2f/

√
αn).

By Lemma 5 (iii) of Carrasco (2012),
1

n
f ′Pve′1 +

1

n
e1v
′Pf = Op(

1

nα
).

And, by Lemma 5 (iv) of Carrasco (2012),

E[
1

n
e1v
′Pεε′Pve′1/n|X] =

1

n
(
∑
j

qj)
2σ4e1ι

′D′Dιe′1 + op((
∑
j

qj)
2/n)

with D = JRWS−1R−1.
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We can conclude that

n(δ̂R2sls − δ0)(δ̂R2sls − δ0) = Q(α) + R̂(α)

with E[Q(α)|X] = H−1σ2 +H−1

σ2e2f +
1

n
(
∑
j

qj)
2σ4e1ι

′D′Dιe′1

H−1 and

r(α) = E(R̂(α)|X) = op((
∑
j

qj)
2/n) +Op([

1

nα2
+

1

α
√
n

+ ∆f ]2 +
1

nα
+

∆2f√
αn

)

S(α) = H−1

σ2e2f +
1

n
(
∑
j

qj)
2σ4e1ι

′D′Dιe′1

H−1

It can be noticed that r(α)/tr(S(α)) = op(1), our argument are similar to those used in Carrasco

(2012). Which means that S(α) is the dominant part of the mean squared error of the estimation

of the model using regularized 2SLS.

Proof of Proposition 3

First, we show that the minimizer of σ−2
〈
(Kα

n )−1/2S̄n(.), (Kα
n )−1/2S̄n(.)

〉
+

1

n
ḡ2(θ)′V ḡ2(θ) is a

consistent estimator of θ0.

〈
(Kα

n )−1/2S̄n(.), (Kα
n )−1/2S̄n(.)

〉
=

1

n
ε′(θ)Pε(θ)

with ε(θ) = JR(ρ)(Y − Zδ), R(ρ) = R+ (ρ0 − ρ)M and S(λ) = S + (λ0 − λ)W .

ε(θ) = v(θ) + h(θ)

v(θ) = f(δ0 − δ) + (ρ0 − ρ)F (δ0 − δ) where F = JME(Z)

and h(θ) = (λ0− λ)JRWS−1R−1ε+ Jε+ (ρ0− ρ)JMR−1ε+ (λ0− λ)(ρ0− ρ)JMWS−1R−1ε thus

h(θ) = JR(ρ)S(λ)S−1R−1ε.

1

n
ε′(θ)Pε(θ) =

1

n
v(θ)′(θ)Pv(θ)

+
1

n
v(θ)′Ph(θ) +

1

n
h(θ)′Pv(θ)

+
1

n
h(θ)′Ph(θ)
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1

n
v(θ)′(θ)Pv(θ) =

1

n
(δ0 − δ)′f ′Pf(δ0 − δ)

+
1

n
(ρ0 − ρ)(δ0 − δ)′f ′PF (δ0 − δ) +

1

n
(ρ0 − ρ)(δ0 − δ)′F ′Pf(δ0 − δ)

+
1

n
(ρ0 − ρ)2(δ0 − δ)′F ′PF (δ0 − δ)

=
1

n
(δ0 − δ)′f(ρ)′Pf(ρ)(δ0 − δ)

= (δ0 − δ)′
[

1

n
f(ρ)′f(ρ) +

1

n
f(ρ)′(I − P )f(ρ)

]
(δ0 − δ)

By Carrasco (2012) Lemma 5 (i) we can conclude that

1

n
v(θ)′(θ)Pv(θ) = (δ0 − δ)′

[
limn→∞

1

n
f(ρ)′f(ρ)+

]
(δ0 − δ) + op(1)

and by Lemma 2 (ii)
1

n
v(θ)′Ph(θ) +

1

n
h(θ)′Pv(θ) = Op(1/α

√
n) and

1

n
h(θ)′Ph(θ) = Op(1/nα

2)

thus
1

n
ε′(θ)Pε(θ) = (δ0 − δ)′

[
limn→∞

1

n
f(ρ)′f(ρ)+

]
(δ0 − δ) + op(1) (12)

as n and α
√
n go to infinity.

Under assumption 3’ lim
n→∞

1

n
f(ρ)′f(ρ) is a finite nonsingular matrix for any ρ such that R(ρ) is

nonsingular. Therefore,

(δ0 − δ)′
[
limn→∞

1

n
f(ρ)′f(ρ)+

]
(δ0 − δ) ≥ 0 with equality if δ = δ0.

The second part of the regularized GMM function minimized the optimal GMM function of the

moments ḡ2(θ) =
µ3

σ2
0

φ′Pαε(θ)− g2(θ) using similar arguments,

1

n
φ′Pαε(θ) =

1

n
φ′Pαv(θ) +

1

n
φ′Pαh(θ)

=
1

n
φ′Pαf(ρ)(δ0 − δ) + op(1)

= limn→∞
1

n
φ′Pαf(ρ)(δ0 − δ) + op(1).

as n and α
√
n go to infinity. Hence,

1

n
φ′Pαε(θ) has a limit of zero at δ = δ0 . Because the number

of quadratic is fixed, by a similar argument as in the proof of Proposition 4 of Liu and Lee (2010)
1

n
g2(θ)− 1

n
E[g2(θ)] = op(1) uniformly in θ in any bounded set Θ. The consistency follows from the

uniform convergence in probability and the identification uniqueness of the limiting function.

This prove that the of σ−2
〈
(Kα

n )−1/2S̄n(.), (Kα
n )−1/2S̄n(.)

〉
+

1

n
ḡ2(θ)′V ḡ2(θ) is a consistent esti-

mator of θ0.
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It remains to show that

(σ̃−2−σ−2)
1

n
ε′(θ)Pε(θ)+

1

n
ε(θ)′Pφ

[
µ̃3

σ̃2
nṼ − µ3

σ2
nV

]
1

n
φ′Pε(θ)− 2

n
ε(θ)′Pφ

[
µ̃3

σ̃2
nṼ − µ3

σ2
nV

]
1

n
g2(θ)+

1

n
g2(θ)′

[
µ̃3

σ̃2
nṼ − µ3

σ2
nV

]
1

n
g2(θ) = op(1) uniformly in θ ∈ Θ.

Note that
1

n
ε′(θ)Pε(θ) = Op(1) uniformly in θ ∈ Θ.

1

n
Ṽ −1 − 1

n
V −1 = (

µ̃2
3

σ̃2
− µ2

3

σ2
)
1

n
φ′P 2φ+ [(µ̃4 − 3σ̃4)− (µ4 − 3σ4)]

1

n
φ′φ

+ (σ̃4 − σ4)
1

n
Γ− 2(

µ̃2
3

σ̃2
− µ2

3

σ2
)
1

n
φ′Pφ

= op(1)

By Lemma 2 (i) and the fact that Uj are UB. It follows that nṼ − nV = op(1) by the continuous

mapping theorem.

‖ 1

n
ε(θ)′Pφ

[
(
µ̃3

σ̃2
nṼ − µ3

σ2
nV )

]
1

n
φ′Pε(θ)‖ ≤ ‖ 1

n
ε(θ)′Pφ‖2.‖( µ̃3

σ̃2
nṼ − µ3

σ2
nV )‖

as
1

n
‖ε(θ)′Pφ‖ = Op(1) uniformly in θ ∈ Θ. Hence, ‖ 1

n
ε(θ)′Pφ‖2.‖( µ̃3

σ̃2
nṼ − µ3

σ2
nV )‖ = op(1) By a

similar argument in the proof of Proposition 4 Liu and Lee (2010),
1

n
‖g2(θ)‖ = Op(1) uniformly in

θ ∈ Θ.

‖ 1

n
ε(θ)′Pφ

[
(
µ̃3

σ̃2
nṼ − µ3

σ2
nV )

]
1

n
g2(θ)‖ ≤ 1

n
‖ε(θ)′Pφ‖.‖( µ̃3

σ̃2
nṼ − µ3

σ2
nV )‖. 1

n
‖g2(θ)‖ = op(1)

and

‖ 1

n
g2(θ)′

[
(
µ̃3

σ̃2
nṼ − µ3

σ2
nV )

]
1

n
g2(θ)‖ ≤ ‖( µ̃3

σ̃2
nṼ − µ3

σ2
nV )‖.‖ 1

n
‖g2(θ)‖2 = op(1)

uniformly in θ ∈ Θ. It follows that

(σ̃−2−σ−2)
1

n
ε′(θ)Pε(θ)+

1

n
ε(θ)′Pφ

[
µ̃3

σ̃2
nṼ − µ3

σ2
nV

]
1

n
φ′Pε(θ)− 2

n
ε(θ)′Pφ

[
µ̃3

σ̃2
nṼ − µ3

σ2
nV

]
1

n
g2(θ)+

1

n
g2(θ)′

[
µ̃3

σ̃2
nṼ − µ3

σ2
nV

]
1

n
g2(θ) = op(1) uniformly in θ ∈ Θ. This prove the consistency of regu-

larized GMM.

Proof of Proposition 4

Let H(θ) = σ̃−2
〈
(Kα

n )−1/2S̄n(.), (Kα
n )−1/2S̄n(.)

〉
+

1

n
ḡ2(θ)′Ṽ ḡ2(θ) be the objective function of the

regularized GMM. By the Taylor expansion of
∂H(θ̂)

∂θ
= 0 at θ0,

√
n(θ̂ − θ0) = −

[
∂2H(θ̄)

∂θ∂′θ

]−1

×
√
n
∂H(θ0)

∂θ
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where θ̄ is between θ̂ and θ0.

H(θ) = σ̃−2 1

n
ε(θ)′Pε(θ) +

1

n
ḡ2(θ)′Ṽ ḡ2(θ)

Hence,
1

2

∂H(θ)

∂θ
= σ−2

0

1

n

∂ε(θ)′

∂θ
Pε(θ) +

1

n

∂ḡ2(θ)′

∂θ
Ṽ ḡ2(θ)

√
n
∂H(θ0)

∂θ
= 2

[
σ̃−2 1√

n

∂ε(θ0)′

∂θ
Pε(θ0) +

1√
n

∂ḡ2(θ0)′

∂θ
Ṽ ḡ2(θ0)

]

−σ2
0

1√
n

∂ε(θ0)′

∂θ
Pε(θ0) = σ−2

0

1√
n

[
MR−1ε,RZ

]′
Pε

= σ−2
0

1√
n

[
MR−1ε, f + ve′1
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Pε

= σ−2
0

1√
n

(0, f ′ε) +Op(1/α
2√n) + op(1)

And It can be shown that

1√
n

∂ḡ2(θ0)′

∂θ
Ṽ ḡ2(θ0) =

∂ḡ2(θ0)′

∂θ
Ṽ

1√
n
ḡ2(θ0)

Let D2 = E(
∂g2(θ)

∂θ′
) = −σ2

0



tr[(U1 + U ′1)MR−1] tr[(U1 + U ′1)RWS−1R−1] 0

tr[(U2 + U ′2)MR−1] tr[(U2 + U ′2)RWS−1R−1] 0

. . .

. . .

. . .

tr[(Uq + U ′q)MR−1] tr[(Uq + U ′q)RWS−1R−1] 0


and

D̄2 = D2 −
µ3

σ2
0

(0, φ′f)

It can be shown that − 1

n

∂ḡ2(θ0)′

∂θ
=

1

n
D̄′2 +Op(1/α

√
n) + op(1)

Using central limit theorem of Kelejian and Prucha (2001) as in Liu and Lee (2010).

1√
n

∂ḡ2(θ0)′

∂θ
Ṽ ḡ2(θ0)

d→ N
(
0, plimD̄′2V D̄2

)
Moreover, by Lemma 5

1√
n

(0, f ′ε) and
1√
n
ḡ2(θ0) are asymptotically uncorrelated.

Thus,
√
n
∂H(θ0)

∂θ

d→ 2N
(
0, σ−2

0 D(0, H) + plimD̄′2V D̄2

)
The hessian is

∂2H(θ̄)

∂θ∂′θ
= 2

[
σ̃−2 1

n

∂ε(θ̄)′

∂θ
P
∂ε(θ̄)

∂θ′
+

1

n

∂ḡ2(θ̄)′
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Ṽ
∂ḡ2(θ̄)

∂θ′
+ σ̃−2 1

n

∂2ε(θ̄)′

∂θ∂θ′
Pε(θ̄) +

1

n

∂2ḡ2(θ̄)′

∂θ∂θ′
Ṽ ḡ2(θ̄)

]
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Under assumptions of proposition 3, θ̄
p→ θ0. In addition,

1

n

∂2ḡ2(θ̄)′

∂θ∂θ′
= Op(1) and

1

n

∂2ε(θ̄)′

∂θ∂θ′
=

Op(1) uniformly for θ ∈ Θ .

Thus,
1

n

∂2ε(θ̄)′

∂θ∂θ′
Pε(θ̄) =

1

n

∂2ε(θ̄)′

∂θ∂θ′
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1

α
√
n
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1

n

∂2ḡ2(θ̄)′
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=

1
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=
1
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=
1
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1

n

 ([MR−1ε)′PMR−1ε ([MR−1ε)′P (f + ve′1)
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= D(0, H) +Op(1/α
2n) + op(1)

And
1

n

∂ḡ2(θ̄)′

∂θ
Ṽ
∂ḡ2(θ̄)

∂θ′
= plimD̄′2V D̄2 +Op(1/α
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Using the fact that σ̃−2 is a consistent estimator of σ−2
0 and nṼ − nV = op(1)

∂2H(θ̄)

∂θ∂′θ
= 2[σ−2

0 D(0, H) + plimD̄′2V D̄2] + op(1)

The result follows by Slutzky theorem.
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