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THE CATEGORY OF NODE-AND-CHOICE FORMS
FOR EXTENSIVE-FORM GAMES

Peter A. Streufert
Department of Economics

Western University

Abstract. It would be useful to have a category of extensive-form
games whose isomorphisms specify equivalences between games.
Toward this goal, Streufert (2016) introduced the category of node-
and-choice preforms, where a “preform” is a rooted tree together
with choices and information sets. This paper takes another step:
It introduces the category of node-and-choice forms, where a
“form” is a preform augmented with players. In addition, it de-
rives some consequences of the category’s morphisms and provides
a characterization of the category’s isomorphisms.

1. Introduction

Category theory has been used to systematize many other subject

areas. There is, for example, the category of graphs whose morphisms

allow one to systematically compare graphs. Similarly, it would be use-

ful to have a category of extensive-form games whose morphisms would

allow one to systematically compare extensive-form games.1 As yet,

little has been done. Lapitsky (1999) and Jiménez (2014) define cate-

gories of normal-form games. Machover and Terrington (2014) defines

a category for simple voting games. Finally, Vannucci (2007) defines

categories of various kinds of games, but in its category of extensive-

form games, every morphism merely maps a game to itself.

Date: September 29, 2016. Keywords: preform, game form, isomorphism.
JEL Classification: C72. AMS Classification: 91A70. Contact information:
pstreuf@uwo.ca, 519-661-2111x85384, Department of Economics, Western Univer-
sity (a.k.a. University of Western Ontario), London, Ontario, N6A 5C2, Canada.

I thank Marcus Pivato and Deanna Walker.
1Extensive-form games are not readily comparable with the games defined in

the theoretical computer-science literature. Categories of such games are developed
in McCusker (2000), Abramsky, Jagadeesan, and Malacaria (2000), and Hyland and
Ong (2000).
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Building a category of extensive-form games with nontrivial mor-

phisms is a large project because each extensive-form game has so many

components: each is a rooted tree with choices, information sets, play-

ers, chance probabilities, and preferences. Accordingly, Streufert (2016,

henceforth S16) took a first step by introducing a category of preforms,

where a “preform” is a rooted tree with choices and information sets.

The present paper takes a second step by introducing a category of

forms, where a “form” is a preform augmented with players.

In particular, Section 2 introduces (node-and-choice)2 forms. Each

form incorporates an S16 preform with its node set T and choice set

C. In addition, each form specifies an allocation (Ci)i of those choices

to the players i in the player set I. Proposition 2.1 shows that this

allocation of choices across players entails [a] an allocation of decision

nodes across players and [b] an allocation of information sets across

players.

Section 3 introduces form morphisms. Each morphism takes an “old”

form to “new” form. Each morphism incorporates an S16 preform mor-

phism which transforms the old form’s preform into the new form’s

preform. In addition, it specifies a function which transforms old play-

ers to new players. Proposition 3.1 shows that such a form morphism

entails [a] a certain relationship between the old allocation of decision

nodes and the new allocation of decision nodes, and [b] a certain re-

lationship between the old allocation of information sets and the new

allocation of information sets.

Section 4 introduces the category of (node-and-choice)2 forms. It

incorporates the forms of Section 2 and the form morphisms of Sec-

tion 3. Theorem 1 shows that the category is well-defined. Further,

Theorem 2 characterizes the category’s isomorphisms. In particular,

it shows that a morphism is an isomorphism iff its node, choice, and

player transformation functions are bijections. Both directions of this

characterization are useful. The reverse direction helps one to establish

that a morphism is an isomorphism. Meanwhile, the forward direction

helps one to derive further properties of isomorphisms. For example,

2I use the adjective “node-and-choice” to distinguish [a] the preforms and forms
in S16 and here from [b] the less abstract preforms and forms in Streufert (2015b,
2015c). Here in this paper, “preform” always means “node-and-choice preform”,
and “form” always means “node-and-choice form”.
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Proposition 4.2 uses the forward direction to show how a form iso-

morphism preserves [a] the allocation of choices, [b] the allocation of

decision nodes, and [c] the allocation of information sets.

Work is currently underway to prove that this paper’s node-and-

choice forms are general enough to encompass the formulations used

in the extensive-form games of von Neumann and Morgenstern (1944),

Kuhn (1953), Osborne and Rubinstein (1994), Alós-Ferrer and Ritz-

berger (2013), and Streufert (2015b). When that work is completed,

fundamental equivalences across these various formulations can be

established as isomorphisms within the category of node-and-choice

forms.

Further, the obvious sequel to this paper is to develop a category

of extensive-form games. That category of games will incorporate this

paper’s category of forms just as this paper’s category of forms incor-

porates S16’s category of preforms. In addition, the category of games

will specify chance probabilities and player preferences. Work on this

is also underway.

2. Forms

2.1. Definition

This paragraph recalls the definition of a node-and-choice preform

from S16 Section 2.1. Let T be a set and call t ∈ T a node. Let C be a

set and call c ∈ C a choice. A (node-and-choice)2 preform Π is a triple

(T,C,⊗) such that

(∃F⊆T×C)(∃to∈T )(1a)

⊗ is a bijection from F onto Tr{to} ,
(T, p) is a tree oriented toward to(1b)

where p := {(t], t)|(∃c)(t, c, t])∈⊗} , and

H partitions F−1(C)(1c)

where H := {F−1(c)|c} .

S16 Section 2 discusses this definition in detail. There, ⊗ is called the

node-and-choice operator, F is called the feasibility correspondence, to

is called the root node, p is called the immediate-predecessor function,

F−1(C) is called the set of decision nodes, and H is called the collection

of information sets.
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This paragraph introduces the definition of a node-and-choice form.

Let I be a set and call i ∈ I a player. For each i, let Ci be a set

and call ci ∈ Ci a choice of player i. A (node-and-choice)2 form Φ is a

quadruple (T, I, (Ci)i,⊗) such that

Π := (T,C,⊗) is a preform where C := ∪iCi ,(2a)

(Ci)i is an indexed prepartition of C , and(2b)

(∀i)(∀t) F (t)⊆Ci or F (t)∩Ci=∅ ,(2c)

where an indexed prepartition (Ai)i of a set A is a function from I to

the power set of A such that (∀i6=j) Ai∩Aj = ∅ and ∪iAi = A. Note

that (2b) is equivalent to (∀i 6=j) Ci∩Cj = ∅ because (2a) defines C to

be ∪iCi.
Essentially, a form (T, I, (Ci)i,⊗) allocates the choices in the preform

(T,C,⊗) to the players i by means of their choice sets Ci. Accord-

ingly, a preform can be understood as a one-player form [to be precise,

(T,C,⊗) is a preform iff (T, {1}, (C),⊗) is a form, where (Ci)i = (C)

is taken to mean C1 = C].

The following proposition shows that the allocation (Ci)i of choices

to players entails [a] an allocation of decision nodes to players and [b]

an allocation of informations sets to players. The proposition’s proof

relies heavily on (2c).

To define terms, consider any player i. F−1(Ci) is player i’s set of

decision nodes. Further, define

Hi = { F−1(c) | c∈Ci } .(3)

Hi is player i’s collection of information sets. By inspecting (3), ∪Hi =

F−1(Ci). Further, (3) and (1c) imply that Hi consists of nonempty

disjoint sets. Thus the last two sentences imply that

Hi partitions F−1(Ci) .(4)

This is like (1c), but for player i. It states that player i’s collection of

information sets partitions her set of decision nodes.

Proposition 2.1. Suppose (T, I, (Ci)i,⊗) is a form (2) with its C

(2a), F (1a), H (1c), and (Hi)i (3). Then

(a) (F−1(Ci))i is an indexed prepartition of F−1(C).

(b) (Hi)i is an indexed prepartition of H. (Proof A.1.)

Incidentally, equation (2b) and the above definition of an indexed

prepartition allow a player to have an empty Ci. This can be useful.
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For example, it admits the possibility of a vacuous chance player. In

particular, one could [1] require that the player set I always contains a

chance player io, and then [2] set Cio = ∅ to model the special case of no

randomness. In the special case [2], one would have [a] F−1(Cio) = ∅
(that the chance player has no decision nodes), and [b] Hio = ∅ (that

the chance player has no information sets). The possibility of a vacuous

chance player can simplify notation (e.g. Streufert (2015a, page 38, last

paragraph)).

Finally, notice that a form Φ determines many entities. In particular,

Φ is itself a quadruple (T, I, (Ci)i,⊗). Further, it determines C (2a),

Π (2a), F (1a), to (1a), p (1b), H (1c), and (Hi)i (3). In addition, the

preform Π determines k, ≺, 4, Z, Zft, Zinft, E, and q by S16 (3)–(7)

and (9) (some of these additional entities make occasional appearances

in this paper’s proofs).

2.2. Examples

Here are three example forms. Define the “two-player centipede”

form Φ
two

by

T
two

= {1, 2, 3}∪{1̄, 2̄} ,

I
two

= {1, 2} ,(5)

(∀i) C two

i = {igo, istop} , and

⊗two

= { (1, 1stop, 1̄), (1, 1go, 2), (2, 2stop, 2̄), (2, 2go, 3) } .

Define the “many-player centipede” form Φmany by

Tmany = {1, 2, 3, ...}∪{1̄, 2̄, 3̄, ...} ,
Imany = {1, 2, 3, ...} ,(6)

(∀i) Cmany
i = {istop, igo} , and

⊗many = { (1, 1stop, 1̄), (1, 1go, 2), (2, 2stop, 2̄), (2, 2go, 3), ... } .

Finally, define the “planner centipede” form Φplanner by

T planner = {1, 2, 3, ...}∪{1̄, 2̄, 3̄, ...} ,
Iplanner = {planner} ,(7)

Cplanner
planner = {1stop, 1go, 2stop, 2go, ... } , and

⊗planner = { (1, 1stop, 1̄), (1, 1go, 2), (2, 2stop, 2̄), (2, 2go, 3), ... } .

These examples will appear again.
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As in S16 Section 3.1, a preform morphism α is a quadruple

[Π,Π ′, τ, δ] such that Π = (T,C,⊗) and Π ′ = (T ′, C ′,⊗′) are pre-

forms (1),

τ :T→T ′ ,(8a)

δ:C→C ′ , and(8b)

{ (τ(t), δ(c), τ(t])) | (t, c, t])∈⊗ } ⊆ ⊗′ .(8c)

A (form) morphism β is a quintuple [Φ,Φ′, τ, ι, δ] such that Φ =

(T, I, (Ci)i,⊗) and Φ′ = (T ′, I ′, (C ′i′)i′ ,⊗′) are forms (2),

[Π,Π ′, τ, δ] is a preform morphism where(9a)

Φ determines Π (2a) and Φ′ determines Π ′ (2a) , 3

ι:I→I ′ , and(9b)

(∀i) δ(Ci) ⊆ C ′ι(i) .(9c)

S16 Propositions 3.1 and 3.2 show that a preform morphism has many

properties. Thus (9a) implies that a form morphism inherits all these

properties.

In addition, a form specifies an allocation (Ci)i of choices to players.

Proposition 2.1 showed that this implies [a] an allocation (F−1(Ci))i
of decision nodes to players and [b] an allocation (Hi)i of information

sets to players. Accordingly, a morphism between two forms implies

relationships between the two forms’ allocations of [a] decision nodes

and [b] information sets. These relationships are the subject of the

following proposition.

Proposition 3.1. Suppose [Φ,Φ′, τ, ι, δ] is a morphism (9), where

Φ = (T, I, (Ci)i,⊗) determines F (1a) and (Hi)i (3), and where Φ′ =

(T ′, I ′, (C ′i′)i′ ,⊗′) determines F ′ (1a) and (H′i′)i′ (3). Then the follow-

ing hold.

(a) (∀i) τ(F−1(Ci)) ⊆ (F ′)−1(C ′ι(i)).

(b) (∀i)(∀H∈Hi)(∃H ′∈H′ι(i)) τ(H) ⊆ H ′. (Proof B.2.)

3This phrase is equivalent to defining Π=(T,∪iCi,⊗) and Π ′=(T ′,∪i′C ′
i′ ,⊗′).

Hence a quintuple [Φ,Φ′, τ, ι, δ] is a form morphism iff [a] Φ = (T, I, (Ci)i,⊗) and
Φ′ = (T ′, I ′, (C ′

i′)i′ ,⊗′) are forms and [b] (8a)–(8c) and (9b)–(9c) hold when C =
∪iCi and C ′ = ∪i′C ′

i′ .
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Incidentally, Proposition 3.1 extends similar results for preform mor-

phisms. In particular, part (a) about decision nodes extends S16 Propo-

sition 3.2(b), and part (b) about information sets extends S16 Propo-

sition 3.2(j).

3.2. Examples

The following four examples illustrate the definition of a morphism

[Φ,Φ′, τ, ι, δ]. They also show that there is no logical connection be-

tween [a] the injectivity of ι and [b] the injectivity of τ and δ.

Every morphism from Φtwo to Φmany has an injective ι. This follows

from Remark B.3, which shows that every morphism from Φtwo to Φmany

satisfies ι(1)+1 = ι(2). A morphism in which τ and δ are injective is

τ(1)=6, τ(1̄)=6̄, τ(2)=7, τ(2̄)=7̄, τ(3)=8,

ι(1)=6, ι(2)=7, and(10)

δ(1stop)=6stop, δ(1go)=6go, δ(2stop)=7stop, δ(2go)=7go.

As required by (8c),

{ (τ(t), δ(c), τ(t])) | (t, c, t])∈⊗two }
= { (6, 6stop, 6̄), (6, 6go, 7), (7, 7stop, 7̄), (7, 7go, 8) }

⊆ ⊗many .

Further, as required by (9c), δ(Ctwo
1 ) = {6stop, 6go} is a subset of

Cmany
ι(1) = Cmany

6 , and δ(Ctwo
2 ) = {7stop, 7go} is a subset of Cmany

ι(2) =

Cmany
7 . A morphism in which τ and δ are non-injective is

τ(1)=6, τ(1̄)=τ(2)=7, τ(2̄)=τ(3)=8,

ι(1)=6, ι(2)=7, and

δ(1stop)=δ(1go)=6go, δ(2stop)=δ(2go)=7go.

As required by (8c),

{ (τ(t), δ(c), τ(t])) | (t, c, t])∈⊗two }
= { (6, 6go, 7), (7, 7go, 8) }

⊆ ⊗many .

Further, as required by (9c), δ(Ctwo
1 ) = {6go} is a subset of Cmany

ι(1) =

Cmany
6 , and δ(Ctwo

2 ) = {7go} is a subset of Cmany
ι(2) = Cmany

7 .

Every morphism from Φtwo to Φplanner is non-injective simply because

Φtwo has two players and Φplanner has one. A morphism in which τ and
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δ are injective is

τ(1)=6, τ(1̄)=6̄, τ(2)=7, τ(2̄)=7̄, τ(3)=8,

ι(1)=ι(2)=planner, and(11)

δ(1stop)=6stop, δ(1go)=6go, δ(2stop)=7stop, δ(2go)=7go.

A morphism where τ and δ are non-injective is

τ(1)=6, τ(1̄)=τ(2)=7, τ(2̄)=τ(3)=8,

ι(1)=ι(2)=planner, and

δ(1stop)=δ(1go)=6go, δ(2stop)=δ(2go)=7go.

4. The category ncForm

4.1. Definition

This paragraph and the following theorem define the category

ncForm, which is called the category of node-and-choice forms. Let an

object be a (node-and-choice)2 form Φ = (T, I, (Ci)i,⊗). Let an arrow

be a form morphism β = [Φ,Φ′, τ, ι, δ]. Let source, target, identity, and

composition be

βsrc = [Φ,Φ′, τ, ι, δ]src = Φ ,

βtrg = [Φ,Φ′, τ, ι, δ]trg = Φ′ ,

idΦ = id(T,I,(Ci)i,⊗) = [Φ,Φ, idSet
T , idSet

I , idSet
∪iCi ] ,

and β′◦β = [Φ′, Φ′′, τ ′, ι′, δ′]◦[Φ,Φ′, τ, ι, δ]
= [Φ,Φ′′, τ ′◦τ, ι′◦ι, δ′◦δ] ,

where idSet is the identity in Set.

Theorem 1. ncForm is a category. (Proof C.1.)

Recall from (2a) that a form incorporates a preform by definition.

Also recall from (9a) that a form morphism incorporates a preform

morphism by definition. These two observations can be used to define

a functor from ncForm to ncPreform (S16 Section 3.2). Details are

provided in Remark C.2. This functor is “forgetful” in the sense of

Simmons (2011, page 76).
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4.2. Isomorphisms

The following theorem characterizes the isomorphisms in ncForm.

The forward half of (a) and all of (b) are proved with relatively abstract

arguments. In contrast, the reverse half of (a) is proved by means of

the special structure of node-and-choice forms. There the obstacle is

proving that [Φ′, Φ, τ−1, ι−1, δ−1] is a morphism.

Both directions of part (a)’s characterization are useful. The forward

direction helps one to derive further properties of isomorphisms. It is

used, for example, in the proof of Proposition 4.2 below. Meanwhile,

the reverse direction can help one to establish that a morphism is an

isomorphism.

Theorem 2. Suppose β = [Φ,Φ′, τ, ι, δ] is a morphism. Then the

following hold.

(a) β is an isomorphism iff τ , ι, and δ are bijections.

(b) If β is an isomorphism, β−1 = [Φ′, Φ, τ−1, ι−1, δ−1]. (Proof C.4.)

Theorem 2(a) resembles S16 Theorem 2 (second sentence), which

showed that a morphism in ncPreform is an isomorphism iff τ and δ

are bijections. These two theorems easily lead to Corollary 4.1.

Corollary 4.1. Suppose [Φ,Φ′, τ, ι, δ] is a morphism, where Φ deter-

mines Π and Φ′ determines Π ′. Then the following hold.

(a) [Π,Π ′, τ, δ] is a preform isomorphism iff τ and δ are bijections.

(b) [Φ,Φ′, τ, ι, δ] is an isomorphism iff [1] [Π,Π ′, τ, δ] is a preform

isomorphism and [2] ι is a bijection. (Proof C.5.)

S16 Proposition 3.3 showed that a preform isomorphism has many

properties. Condition [1] of Corollary 4.1(b)’s forward direction4 shows

that a form isomorphism inherits all those properties. In addition, the

following proposition shows how a form isomorphism preserves each

player’s choices, decision nodes, and information sets. (If Ci is empty,

then δ|Ci , C ′ι(i), τ |F−1(Ci), (F ′)−1(C ′ι(i)), τ |Hi , and H′ι(i) are all empty as

well.)

4The result, that a form isomorphism implies an underlying preform isomor-
phism, could also be shown abstractly via the forgetful functor of Remark C.2.
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Proposition 4.2. Suppose [Φ,Φ′, τ, ι, δ] is an isomorphism, where

Φ=(T, I, (Ci)i,⊗) determines F and (Hi)i , and Φ′=(T ′, I ′, (C ′i′)i′ ,⊗′)
determines F ′ and (H′i′)i′. Then the following hold.

(a) (∀i) δ|Ci is a bijection from Ci onto C ′ι(i).

(b) (∀i) τ |F−1(Ci) is a bijection from F−1(Ci) onto (F ′)−1(C ′ι(i)).

(c) (∀i) τ |Hi is a bijection from Hi onto H′ι(i).
5 (Proof C.7.)

Incidentally, Proposition 4.2 extends similar results for preforms.

In particular, part (b) concerning decision nodes extends S16 Propo-

sition 3.3(c), and part (c) concerning information sets extends S16

Proposition 3.3(h).

4.3. Example

Consider the morphism from Φmany (6) to Φplanner (7) defined by

(∀t) τ(t) = t ,

(∀i) ι(i) = planner , and(12)

(∀c) δ(c) = c .

Here τ and δ are bijections (in fact they are identity functions). Thus

by Corollary 4.1(a), the two preforms underlying Φmany and Φplanner are

isomorphic (in fact the two are equal). Meanwhile, ι is not injective.

Accordingly, the morphism changes nothing except to merge all the

players of Φmany into the single player of Φplanner.

Morphism (11) from Φtwo to Φplanner is the composition of morphism

(10) from Φtwo to Φmany followed by morphism (12) from Φmany to

Φplanner. The first is an injective morphism (i.e. an embedding), and

the second merges the players together.

Appendix A. For Forms

Proof A.1 (for Proposition 2.1). (a). By rearrangements and the

definition of C,

∪iF−1(Ci) = ∪i{ t | (∃c∈Ci)(t, c)∈F }
= { t | (∃c∈∪iCi)(t, c)∈F }
= { t | (∃c∈C)(t, c)∈F }
= F−1(C) .

5Here the symbol τ is overloaded: for any H ∈ Hi, τ(H) := {τ(t)|t∈H}.
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Thus it remains to show that (∀i1 6=i2) F−1(Ci1)∩F−1(Ci2) = ∅. Ac-

cordingly, suppose there existed i1 6= i2, c1 ∈ Ci1 , c2 ∈ Ci2 , and t, such

that t ∈ F−1(c1)∩F−1(c2). Then

c1 ∈ F (t) and(13a)

c2 ∈ F (t) .(13b)

(13a), c1 ∈ Ci1 , and (2c) together imply F (t) ⊆ Ci1 . Similarly, (13b),

c2 ∈ Ci2 , and (2c) together imply F (t) ⊆ Ci2 . Since F (t) 6= ∅ by (13a),

the last two sentences imply Ci1∩Ci2 6= ∅. This and i1 6= i2 together

violate (2b).

(b). By rearrangements and the definitions of (Hi)i, C, and H,

∪iHi = ∪i{ F−1(c) | c∈Ci }
= { F−1(c) | c∈∪iCi }
= { F−1(c) | c∈C }
= H .

Thus it remains to show that (∀i1 6=i2) Hi1∩Hi2 = ∅. Accordingly,

suppose there existed i1 6= i2 and H such that H ∈ Hi1∩Hi2 . Then

H ⊆ ∪Hi1 = ∪{F−1(c)|c∈Ci1} = F−1(Ci1) ,(14a)

where the set inclusion follows from H ∈ Hi1 , the first equality follows

from the definition of Hi1 , and the last equality is a rearrangement.

Similarly,

H ⊆ ∪Hi2 = ∪{F−1(c)|c∈Ci2} = F−1(Ci2) .(14b)

Since i1 6= i2, part (a) implies that F−1(Ci1) and F−1(Ci2) are disjoint.

Thus (14a) and (14b) imply H = ∅. This contradicts (4) because

H ∈ Hi1 and because every member of a partition is nonempty. 2

Appendix B. For Morphisms

Lemma B.1. 6 Suppose α = [Π,Π ′, τ, δ] is a preform morphism,

where Π = (T,C,⊗) determines F and where Π ′ = (T ′, C ′,⊗′) deter-

mines F ′. Then the following hold.

(a) τ(F−1(c)) ⊆ (F ′)−1(δ(c)).

(b) Suppose α is an isomorphism. Then τ(F−1(c)) = (F ′)−1(δ(c)).

6This lemma excerpts parts of proofs from S16. In particular, the proof of part
(a) rearranges part of Proof B.4’s argument for S16 Proposition 3.2(j), and the
proof of the part (b) rearranges part of the argument for S16 Lemma B.8(a).
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Proof. (a). I argue

τ(F−1(c)) = { t′ | (∃t) t′=τ(t) and t∈F−1(c) }
= { t′ | (∃t) t′=τ(t) and (t, c)∈F }
⊆ { t′ | (∃t) t′=τ(t) and (τ(t), δ(c))∈F ′ }
= { t′ | (∃t) t′=τ(t) and (t′, δ(c))∈F ′ }
⊆ { t′ | (t′, δ(c))∈F ′ }
= (F ′)−1(δ(c)) .

The first inclusion follows from (11a) of S16 Proposition 3.1(a). The

second inclusion holds because τ(T ) ⊆ T ′ by (8a). The equalities are

rearrangements.

(b). I argue

τ(F−1(c)) = { t′ | (∃t) t′=τ(t) and t∈F−1(c) }
= { t′ | (∃t) t′=τ(t) and (t, c)∈F }
= { t′ | (∃t) t′=τ(t) and (τ(t), δ(c))∈F ′ }
= { t′ | (∃t) t′=τ(t) and (t′, δ(c))∈F ′ }
= { t′ | (t′, δ(c))∈F ′ }
= (F ′)−1(δ(c)) .

The third equality holds by S16 Proposition 3.3(b). The fifth holds

because τ is a bijection by S16 Theorem 2 (second sentence). The

remaining equalities are rearrangements. 2

Proof B.2 (for Proposition 3.1). (a). Take any i. I argue

τ(F−1(Ci)) = ∪{ τ(F−1(c)) | c∈Ci }
⊆ ∪{ (F ′)−1(δ(c)) | c∈Ci }
⊆ ∪{ (F ′)−1(c′) | c′∈C ′ι(i) }
= (F ′)−1(C ′ι(i)) .

The first equation is a rearrangement, the first set inclusion follows

from Lemma B.1(a), the second set inclusion follows from (9c), and

the second equality is a rearrangement.

(b). Take any i and any H ∈ Hi. By the definition of Hi, there

exists c ∈ Ci such that H = F−1(c). Let H ′ = (F ′)−1(δ(c)). By (9c),

δ(c) ∈ C ′ι(i). Thus by the definition of H′ι(i), H ′ ∈ H′ι(i). Thus it suffices
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to argue

τ(H) = τ(F−1(c)) ⊆ (F ′)−1(δ(c)) = H ′ .

The first equality follows from the definition of c, the set inclusion

follows from Lemma B.1(a), and the second equality is the definition

of H ′. 2

Remark B.3. Consider the examples Φtwo (5) and Φmany (6). Fur-

ther suppose [Φtwo, Φmany, τ, ι, δ] is a form morphism. Then ι(1)+1 =

ι(2).

Proof. As in (5) and (6), let Φtwo = (T two, I two, (Ctwo
i )i,⊗two) and

Φmany = (Tmany, Imany, (Cmany
i )i,⊗many).

This paragraph shows that

(∀i∈{1, 2}) τ(i) = ι(i) .(15)

Take i ∈ {1, 2}. Note

δ(istop) ∈ δ(Ctwo
i ) ⊆ Cmany

ι(i) = {ι(i)stop, ι(i)go} ,(16)

where the set membership follows from the definition of Ctwo
i in (5), the

set inclusion follows from (9c), and the equality follows from the defini-

tion of Cmany
ι(i) in (6). Further, since (i, istop, ī) ∈ ⊗two by the definition

of ⊗two in (5), (8c) implies

(τ(i), δ(istop), τ (̄i)) ∈ ⊗many .(17)

(16) and (17) imply that

(τ(i), ι(i)stop, τ (̄i)) ∈ ⊗many or

(τ(i), ι(i)go, τ (̄i)) ∈ ⊗many .

By the definition of ⊗many in (6), either eventuality implies that τ(i) =

ι(i).

By (9a), [Π two, Πmany, τ, δ] is a preform morphism for Π two =

(T two,∪iCtwo
i ,⊗two) and Πmany = (Tmany,∪iCmany

i ,⊗many). Use (1b) to

derive ptwo from Π two and pmany from Πmany. By the definition of ⊗two

in (5), 1 = ptwo(2). Thus by S16 Proposition 3.2(c) at m=1, τ(1) =

pmany(τ(2)). Thus by the definition of ⊗many in (6), τ(1)+1 = τ(2).

Thus by (15), ι(1)+1 = ι(2). 2



Appendix C. For ncForm

Proof C.1 (for Theorem 1). The next two paragraphs draw upon

S16 Theorem 1, which showed that ncPreform is a well-defined cate-

gory.
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This paragraph shows that, for every form Φ, idΦ is a form morphism

(9). Accordingly, take any form Φ = [T, I, (Ci)i,⊗]. By definition,

idΦ = [Φ,Φ, idSet
T , idSet

I , idSet
C ] ,

where C = ∪iCi. (9a) requires that the quadruple [Π,Π, idSet
T , idSet

C ] is

a morphism in ncPreform, where Φ determines Π (2a). This holds

a fortiori because [1] the quadruple equals idΠ in ncPreform since

[2] Π is a preform by (2a). (9b) requires that ι:I→I, which holds

because ι = idSet
I . (9c) requires that (∀i) δ(Ci) ⊆ Cι(i), which holds

with equality because ι = idSet
I and δ = idSet

C .

This paragraph shows that, for any two morphisms β and β′, β′◦β is a

morphism (9). Accordingly, take any two morphisms β = [Φ,Φ′, τ, ι, δ]

and β′ = [Φ′, Φ′′, τ ′, ι′, δ′], where Φ = (T, I, (Ci)i,⊗), Φ′ = (T ′, I ′,

(C ′i′)i′ ,⊗′), and Φ′′ = (T ′′, I ′′, (C ′′i′′)i′′ ,⊗′′). By definition,

β′◦β = [Φ,Φ′′, τ ′◦τ, ι′◦ι, δ′◦δ] .

(9a) requires that the quadruple [Π,Π ′′, τ ′◦τ, δ′◦δ] is a morphism in

ncPreform, where Φ determines Π and Φ′′ determines Π ′′. This holds

a fortiori because [1] the quadruple equals [Π ′, Π ′′, τ ′, δ′]◦[Π,Π ′, τ, δ]
in ncPreform, where Φ′ determines Π ′, since [2] [Π,Π ′, τ, δ] and

[Π ′, Π ′′, τ ′, δ′] are morphisms in ncPreform by (9a) for β and β′. To

see (9b), note that ι:I→I ′ by (9b) for β, and that ι′:I ′→I ′′ by (9b) for

β′. Hence ι′◦ι:I→I ′′, which is (9b) for β′◦β. To show that (9c) holds

for β′◦β, take any i. I argue

δ′(δ(Ci)) ⊆ δ′(C ′ι(i)) ⊆ C ′′ι′◦ι(i) .

The first inclusion holds because δ(Ci) ⊆ C ′ι(i) by (9c) for β, applied at

i. The second inclusion holds by (9c) for β′, applied at i′ = ι(i).

The previous two paragraphs have established the well-definition of

identity and composition. The unit and associative laws are immedi-

ate. Thus ncForm is a category (e.g. Awodey (2010, page 4, Defini-

tion 1.1)). 2
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Remark C.2. Define F from ncForm to ncPreform by

F0 : (T, I, (Ci)i,⊗) 7→ (T,∪iCi,⊗) and

F1 : [Φ,Φ′, τ, ι, δ] 7→ [F0(Φ),F0(Φ
′), τ, δ] .

Then F is a well-defined functor.

Proof. By (2a), F0 maps any form into a preform. By (9a), F1 maps

any form morphism into a preform morphism. Thus it suffices to show

that F preserves source, target, identity, and composition (Awodey

(2010, page 8, Definition 1.2)). This is done in the following four

paragraphs.

[1] Take any β = [Φ,Φ′, τ, ι, δ]. Then

F1(β)src = F1([Φ,Φ
′, τ, ι, δ])src

= [F0(Φ),F0(Φ
′), τ, δ]src

= F0(Φ)

= F0([Φ,Φ
′, τ, ι, δ]src)

= F0(β
src) ,

where the first equation holds by the definition of β, the second by

the definition of F1, the third by the definition of src in ncPreform,

the fourth by the definition of src in ncForm, and the fifth by the

definition of β.

[2] Take any β = [Φ,Φ′, τ, ι, δ]. Then F1(β)trg = F0(β
trg) can be

shown by replacing src with trg in the preceding paragraph.

[3] Take any Φ = (T, I, (Ci)i,⊗) and let C = ∪iCi. Note F0(Φ) =

(T,C,⊗) by the definitions of Φ, F0, and C. Then

F1(idΦ)

= F1([Φ,Φ, id
Set
T , idSet

I , idSet
C ])

= [F0(Φ),F0(Φ), idSet
T , idSet

C ]

= [(T,C,⊗), (T,C,⊗), idSet
T , idSet

C ]

= id(T,C,⊗)

= idF0(Φ) ,

where the first equality holds by the definition of id in ncForm, the

second by the definition of F1, the third by the previous sentence, the

fourth by the definition of id in ncPreform, and the last by the pre-

vious sentence.
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[4] Take any β = [Φ,Φ′, τ, ι, δ] and β′ = [Φ′, Φ′′, τ ′, ι′, δ′]. Note

that since F1 is well-defined by the first paragraph, F1([Φ,Φ
′, τ, ι, δ]) =

[F0(Φ),F0(Φ
′), τ, δ] and F1([Φ

′, Φ′′, τ ′, ι′, δ′]) = [F0(Φ
′),F0(Φ

′′), τ ′, δ′] are

preform morphisms. Then

F1(β
′◦β)

= F1([Φ
′, Φ′′, τ ′, ι′, δ′]◦[Φ,Φ′, τ, ι, δ])

= F1([Φ,Φ
′′, τ ′◦τ, ι′◦ι, δ′◦δ])

= [F0(Φ),F0(Φ
′′), τ ′◦τ, δ′◦δ]

= [F0(Φ
′),F0(Φ

′′), τ ′, δ′]◦[F0(Φ),F0(Φ
′), τ, δ]

= F1([Φ
′, Φ′′, τ ′, ι′, δ′]◦F1[Φ,Φ

′, τ, ι, δ]

= F1(β
′)◦F1(β) ,

where the first equality holds by the definitions of β and β′, the sec-

ond by the definition of ◦ in ncForm, the third by the definition of

F1, the fourth by the previous sentence and by the definition of ◦ in

ncPreform, the fifth by the definition of F1, and the sixth by the

definitions of β and β′. 2

Lemma C.3. Suppose that [Φ,Φ′, τ, ι, δ] is a morphism, where Φ =

(T, I, (Ci)i,⊗) and Φ′ = (T ′, I ′, (C ′i′)i′ ,⊗′). Further suppose that ι and

δ are bijections. Then the following hold.

(a) (∀i) δ|Ci is a bijection from Ci onto C ′ι(i).

(b) (∀i′) δ−1|C′
i′

is a bijection from C ′i′ onto Cι−1(i′).

Proof. (a). Let C = ∪iCi and C ′ = ∪i′C ′i′ . Take any i. Then δ|Ci is a

function from Ci because δ is a function from C by (8b). It is injective

because δ is a bijection by assumption. It is into C ′ι(i) by (9c). Thus it

remains to show that C ′ι(i)rδ(Ci) = ∅.

Accordingly, suppose c′ ∈ C ′ι(i)rδ(Ci). Since c′ ∈ C ′ι(i) ⊆ C ′ and since

δ is a bijection by assumption, δ−1(c′) exists. Further, since c′ /∈ δ(Ci),
there is j 6= i such that δ−1(c′) ∈ Cj. Thus by (9c), δ(δ−1(c′)) ∈ C ′ι(j).
Hence c′ ∈ C ′ι(j). This and the definition of c′ imply c′ ∈ C ′ι(i)∩C ′ι(j).
This contradicts (2b) for Φ′ because i 6= j and because ι is a bijection

by assumption.

(b). This paragraph shows

(∀i) δ−1|C′
ι(i)

is a bijection from C ′ι(i) onto Ci .(18)
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Accordingly, take any i. By part (a),

δ|Ci is a bijection from Ci onto C ′ι(i) .

This has two implications. First,

(δ|Ci)−1 is a bijection from C ′ι(i) onto Ci .

Second, because δ is a bijection, (δ|Ci)−1 = δ−1|C′
ι(i)

. The previous two

sentences imply (18) at i.

Finally, the result follows from (18) because ι is a bijection. 2

Proof C.4 (for Theorem 2). Throughout this proof let the compo-

nents of Φ be (T, I, (Ci)i,⊗), define C = ∪iCi, let the components of

Φ′ be (T ′, I ′, (C ′i′)i′ ,⊗′), and define C ′ = ∪i′C ′i′ .
The forward half of (a) and all of (b). Suppose that β is an iso-

morphism (Awodey (2010, page 12, Definition 1.3)). Recall that β =

[Φ,Φ′, τ, ι, δ] and let β−1 = [Φ∗, Φ∗∗, τ ∗, ι∗, δ∗]. Then

[Φ∗, Φ∗∗, τ ∗, ι∗, δ∗]◦[Φ,Φ′, τ, ι, δ] = idΦ = [Φ,Φ, idSet
T , idSet

I , idSet
C ](19a)

and

[Φ,Φ′, τ, ι, δ]◦[Φ∗, Φ∗∗, τ ∗, ι∗, δ∗] = idΦ′ = [Φ′, Φ′, idSet
T ′ , id

Set
I′ , id

Set
C′ ],(19b)

where the first equality in both lines holds by the definition of β−1, and

the second equality in both lines holds by the definition of id.

The well definition of ◦ in (19a) implies

Φ∗ = Φ′ .(20a)

The well definition of ◦ in (19b) implies

Φ∗∗ = Φ .(20b)

The third component of (19a) implies that τ ∗◦τ = idSet
T . The third

component of (19b) implies that τ◦τ ∗ = idSet
T ′ . The last two sentences

imply that τ is a bijection from T onto T ′ and that

τ ∗ = τ−1 .(20c)

Similarly, the fourth components of (19a) and (19b) imply that ι is a

bijection from I onto I ′ and that

ι∗ = ι−1 .(20d)
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Similarly again, the fifth components of (19a) and (19b) imply that δ

is a bijection from C onto C ′ and that

δ∗ = δ−1 .(20e)

The previous three sentences have shown that τ , ι, and δ are bijections.

Further,

β−1 = [Φ∗, Φ∗∗, τ ∗, ι∗, δ∗] = [Φ′, Φ, τ−1, ι−1, δ−1] ,

where the first equality follows from the definition of β−1 near the start

of the previous paragraph, and where the second equality follows from

(20a)–(20e).

The reverse half of (a). Suppose that τ , ι, and δ are bijections.

Define β∗ = [Φ′, Φ, τ−1, ι−1, δ−1].

This paragraph shows that β∗ is a morphism. Derive Π from Φ and

Π ′ from Φ′. By (9) for β∗, it must be shown that

[Π ′, Π, τ−1, δ−1] is a preform morphism ,(21a)

ι−1:I ′→I , and(21b)

(∀i′) δ−1(C ′i′) ⊆ Cι−1(i′) .(21c)

[Π,Π ′, τ, δ] is a preform morphism by (9a) for β. Thus (21a) holds by

the lemma in the S16 addendum. (21b) is immediate. (21c) holds with

equality by Lemma C.3(b).

Finally,

β∗◦β = [Φ′, Φ, τ−1, ι−1, δ−1]◦[Φ,Φ′, τ, ι, δ] = idΦ and

β◦β∗ = [Φ,Φ′, τ, ι, δ]◦[Φ′, Φ, τ−1, ι−1, δ−1] = idΦ′ .

Thus β is an isomorphism. 2

Proof C.5 (for Corollary 4.1). (a) [Π,Π ′, τ, δ] is a preform mor-

phism by (9a). Thus part (a) follows from the second sentence of S16

Theorem 2.

(b) This follows immediately from part (a) and Theorem 2(a). 2

Lemma C.6. Suppose [Φ,Φ′, τ, ι, δ] is a morphism, where Φ =

(T, I, (Ci)i,⊗) determines (Hi)i, and where Φ′ = (T ′, I ′, (C ′i′)i′ ,⊗′)
determines (H′i′)i′. Further suppose τ and δ are bijections. Then

(∀i)(∀H∈Hi) τ(H) ∈ H′ι(i).
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Proof. Take any i and any H ∈ Hi. Then there exists c ∈ Ci such

that H = F−1(c). I argue

τ(H) = τ(F−1(c)) = (F ′)−1(δ(c)) ∈ H′ι(i) .

The first equality holds by the definition of c. To see the second, let Φ

determine Π and let Φ′ determine Π ′. Then [Π,Π ′, τ, δ] is a preform

isomorphism by Corollary 4.1(a). Thus the second equality holds by

Lemma B.1(b). Finally, the set membership holds because δ(c) ∈ C ′ι(i)
by (9c). 2

Proof C.7 (for Proposition 4.2). Theorem 2(a) implies that τ , ι,

and δ are bijections.

(a). This follows from Lemma C.3(a).

(b). Take any i. I argue

τ(F−1(Ci)) = ∪{ τ(F−1(c)) | c∈Ci }
= ∪{ (F ′)−1(δ(c)) | c∈Ci }
= ∪{ (F ′)−1(c′) | c′∈C ′ι(i) }
= (F ′)−1(C ′ι(i)) .

The first equality is a rearrangement. To see the second, derive Π from

Φ and Π ′ from Φ′. By Corollary 4.1(b), [Π,Π ′, τ, δ] is an isomorphism.

Thus the second equality follows from Lemma B.1(b). The third equal-

ity holds by part (a). The fourth equality is a rearrangement.

(c). Take any i. Lemma C.6 implies that τ |Hi is a well-defined

function from Hi into H′ι(i). It is injective because τ is injective. To

show that it is surjective, take any H ′ ∈ Hι(i). Since [Φ′, Φ, τ−1, ι−1, δ−1]

is an isomorphism by Theorem 2(b), Lemma C.6 can be applied to

[Φ′, Φ, τ−1, ι−1, δ−1]. Therefore H ′ ∈ Hι(i) implies τ−1(H ′) ∈ Hι−1◦ι(i).

Hence τ−1(H ′) ∈ Hi. This implies that τ(τ−1(H ′)) = H ′ is in the range

of τ |Hi . 2
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THE CATEGORY OF NODE-AND-CHOICE FORMS
FOR EXTENSIVE-FORM GAMES

Peter A. Streufert
Department of Economics

Western University

Abstract. It would be useful to have a category of extensive-form
games whose isomorphisms specify equivalences between games.
Toward this goal, Streufert (2016) introduced the category of node-
and-choice preforms, where a “preform” is a rooted tree together
with choices and information sets. This paper takes another step:
It introduces the category of node-and-choice forms, where a
“form” is a preform augmented with players. In addition, it de-
rives some consequences of the category’s morphisms and provides
a characterization of the category’s isomorphisms.

1. Introduction

Category theory has been used to systematize many other subject

areas. There is, for example, the category of graphs whose morphisms

allow one to systematically compare graphs. Similarly, it would be use-

ful to have a category of extensive-form games whose morphisms would

allow one to systematically compare extensive-form games.1 As yet,

little has been done. Lapitsky (1999) and Jiménez (2014) define cate-

gories of normal-form games. Machover and Terrington (2014) defines

a category for simple voting games. Finally, Vannucci (2007) defines

categories of various kinds of games, but in its category of extensive-

form games, every morphism merely maps a game to itself.

Date: September 29, 2016. Keywords: preform, game form, isomorphism.
JEL Classification: C72. AMS Classification: 91A70. Contact information:
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1Extensive-form games are not readily comparable with the games defined in

the theoretical computer-science literature. Categories of such games are developed
in McCusker (2000), Abramsky, Jagadeesan, and Malacaria (2000), and Hyland and
Ong (2000).
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Building a category of extensive-form games with nontrivial mor-

phisms is a large project because each extensive-form game has so many

components: each is a rooted tree with choices, information sets, play-

ers, chance probabilities, and preferences. Accordingly, Streufert (2016,

henceforth S16) took a first step by introducing a category of preforms,

where a “preform” is a rooted tree with choices and information sets.

The present paper takes a second step by introducing a category of

forms, where a “form” is a preform augmented with players.

In particular, Section 2 introduces (node-and-choice)2 forms. Each

form incorporates an S16 preform with its node set T and choice set

C. In addition, each form specifies an allocation (Ci)i of those choices

to the players i in the player set I. Proposition 2.1 shows that this

allocation of choices across players entails [a] an allocation of decision

nodes across players and [b] an allocation of information sets across

players.

Section 3 introduces form morphisms. Each morphism takes an “old”

form to “new” form. Each morphism incorporates an S16 preform mor-

phism which transforms the old form’s preform into the new form’s

preform. In addition, it specifies a function which transforms old play-

ers to new players. Proposition 3.1 shows that such a form morphism

entails [a] a certain relationship between the old allocation of decision

nodes and the new allocation of decision nodes, and [b] a certain re-

lationship between the old allocation of information sets and the new

allocation of information sets.

Section 4 introduces the category of (node-and-choice)2 forms. It

incorporates the forms of Section 2 and the form morphisms of Sec-

tion 3. Theorem 1 shows that the category is well-defined. Further,

Theorem 2 characterizes the category’s isomorphisms. In particular,

it shows that a morphism is an isomorphism iff its node, choice, and

player transformation functions are bijections. Both directions of this

characterization are useful. The reverse direction helps one to establish

that a morphism is an isomorphism. Meanwhile, the forward direction

helps one to derive further properties of isomorphisms. For example,

2I use the adjective “node-and-choice” to distinguish [a] the preforms and forms
in S16 and here from [b] the less abstract preforms and forms in Streufert (2015b,
2015c). Here in this paper, “preform” always means “node-and-choice preform”,
and “form” always means “node-and-choice form”.
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Proposition 4.2 uses the forward direction to show how a form iso-

morphism preserves [a] the allocation of choices, [b] the allocation of

decision nodes, and [c] the allocation of information sets.

Work is currently underway to prove that this paper’s node-and-

choice forms are general enough to encompass the formulations used

in the extensive-form games of von Neumann and Morgenstern (1944),

Kuhn (1953), Osborne and Rubinstein (1994), Alós-Ferrer and Ritz-

berger (2013), and Streufert (2015b). When that work is completed,

fundamental equivalences across these various formulations can be

established as isomorphisms within the category of node-and-choice

forms.

Further, the obvious sequel to this paper is to develop a category

of extensive-form games. That category of games will incorporate this

paper’s category of forms just as this paper’s category of forms incor-

porates S16’s category of preforms. In addition, the category of games

will specify chance probabilities and player preferences. Work on this

is also underway.

2. Forms

2.1. Definition

This paragraph recalls the definition of a node-and-choice preform

from S16 Section 2.1. Let T be a set and call t ∈ T a node. Let C be a

set and call c ∈ C a choice. A (node-and-choice)2 preform Π is a triple

(T,C,⊗) such that

(∃F⊆T×C)(∃to∈T )(1a)

⊗ is a bijection from F onto Tr{to} ,
(T, p) is a tree oriented toward to(1b)

where p := {(t], t)|(∃c)(t, c, t])∈⊗} , and

H partitions F−1(C)(1c)

where H := {F−1(c)|c} .

S16 Section 2 discusses this definition in detail. There, ⊗ is called the

node-and-choice operator, F is called the feasibility correspondence, to

is called the root node, p is called the immediate-predecessor function,

F−1(C) is called the set of decision nodes, and H is called the collection

of information sets.
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This paragraph introduces the definition of a node-and-choice form.

Let I be a set and call i ∈ I a player. For each i, let Ci be a set

and call ci ∈ Ci a choice of player i. A (node-and-choice)2 form Φ is a

quadruple (T, I, (Ci)i,⊗) such that

Π := (T,C,⊗) is a preform where C := ∪iCi ,(2a)

(Ci)i is an indexed prepartition of C , and(2b)

(∀i)(∀t) F (t)⊆Ci or F (t)∩Ci=∅ ,(2c)

where an indexed prepartition (Ai)i of a set A is a function from I to

the power set of A such that (∀i6=j) Ai∩Aj = ∅ and ∪iAi = A. Note

that (2b) is equivalent to (∀i 6=j) Ci∩Cj = ∅ because (2a) defines C to

be ∪iCi.
Essentially, a form (T, I, (Ci)i,⊗) allocates the choices in the preform

(T,C,⊗) to the players i by means of their choice sets Ci. Accord-

ingly, a preform can be understood as a one-player form [to be precise,

(T,C,⊗) is a preform iff (T, {1}, (C),⊗) is a form, where (Ci)i = (C)

is taken to mean C1 = C].

The following proposition shows that the allocation (Ci)i of choices

to players entails [a] an allocation of decision nodes to players and [b]

an allocation of informations sets to players. The proposition’s proof

relies heavily on (2c).

To define terms, consider any player i. F−1(Ci) is player i’s set of

decision nodes. Further, define

Hi = { F−1(c) | c∈Ci } .(3)

Hi is player i’s collection of information sets. By inspecting (3), ∪Hi =

F−1(Ci). Further, (3) and (1c) imply that Hi consists of nonempty

disjoint sets. Thus the last two sentences imply that

Hi partitions F−1(Ci) .(4)

This is like (1c), but for player i. It states that player i’s collection of

information sets partitions her set of decision nodes.

Proposition 2.1. Suppose (T, I, (Ci)i,⊗) is a form (2) with its C

(2a), F (1a), H (1c), and (Hi)i (3). Then

(a) (F−1(Ci))i is an indexed prepartition of F−1(C).

(b) (Hi)i is an indexed prepartition of H. (Proof A.1.)

Incidentally, equation (2b) and the above definition of an indexed

prepartition allow a player to have an empty Ci. This can be useful.
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For example, it admits the possibility of a vacuous chance player. In

particular, one could [1] require that the player set I always contains a

chance player io, and then [2] set Cio = ∅ to model the special case of no

randomness. In the special case [2], one would have [a] F−1(Cio) = ∅
(that the chance player has no decision nodes), and [b] Hio = ∅ (that

the chance player has no information sets). The possibility of a vacuous

chance player can simplify notation (e.g. Streufert (2015a, page 38, last

paragraph)).

Finally, notice that a form Φ determines many entities. In particular,

Φ is itself a quadruple (T, I, (Ci)i,⊗). Further, it determines C (2a),

Π (2a), F (1a), to (1a), p (1b), H (1c), and (Hi)i (3). In addition, the

preform Π determines k, ≺, 4, Z, Zft, Zinft, E, and q by S16 (3)–(7)

and (9) (some of these additional entities make occasional appearances

in this paper’s proofs).

2.2. Examples

Here are three example forms. Define the “two-player centipede”

form Φ
two

by

T
two

= {1, 2, 3}∪{1̄, 2̄} ,

I
two

= {1, 2} ,(5)

(∀i) C two

i = {igo, istop} , and

⊗two

= { (1, 1stop, 1̄), (1, 1go, 2), (2, 2stop, 2̄), (2, 2go, 3) } .

Define the “many-player centipede” form Φmany by

Tmany = {1, 2, 3, ...}∪{1̄, 2̄, 3̄, ...} ,
Imany = {1, 2, 3, ...} ,(6)

(∀i) Cmany
i = {istop, igo} , and

⊗many = { (1, 1stop, 1̄), (1, 1go, 2), (2, 2stop, 2̄), (2, 2go, 3), ... } .

Finally, define the “planner centipede” form Φplanner by

T planner = {1, 2, 3, ...}∪{1̄, 2̄, 3̄, ...} ,
Iplanner = {planner} ,(7)

Cplanner
planner = {1stop, 1go, 2stop, 2go, ... } , and

⊗planner = { (1, 1stop, 1̄), (1, 1go, 2), (2, 2stop, 2̄), (2, 2go, 3), ... } .

These examples will appear again.



3. Morphisms

3.1. Definition

6

As in S16 Section 3.1, a preform morphism α is a quadruple

[Π,Π ′, τ, δ] such that Π = (T,C,⊗) and Π ′ = (T ′, C ′,⊗′) are pre-

forms (1),

τ :T→T ′ ,(8a)

δ:C→C ′ , and(8b)

{ (τ(t), δ(c), τ(t])) | (t, c, t])∈⊗ } ⊆ ⊗′ .(8c)

A (form) morphism β is a quintuple [Φ,Φ′, τ, ι, δ] such that Φ =

(T, I, (Ci)i,⊗) and Φ′ = (T ′, I ′, (C ′i′)i′ ,⊗′) are forms (2),

[Π,Π ′, τ, δ] is a preform morphism where(9a)

Φ determines Π (2a) and Φ′ determines Π ′ (2a) , 3

ι:I→I ′ , and(9b)

(∀i) δ(Ci) ⊆ C ′ι(i) .(9c)

S16 Propositions 3.1 and 3.2 show that a preform morphism has many

properties. Thus (9a) implies that a form morphism inherits all these

properties.

In addition, a form specifies an allocation (Ci)i of choices to players.

Proposition 2.1 showed that this implies [a] an allocation (F−1(Ci))i
of decision nodes to players and [b] an allocation (Hi)i of information

sets to players. Accordingly, a morphism between two forms implies

relationships between the two forms’ allocations of [a] decision nodes

and [b] information sets. These relationships are the subject of the

following proposition.

Proposition 3.1. Suppose [Φ,Φ′, τ, ι, δ] is a morphism (9), where

Φ = (T, I, (Ci)i,⊗) determines F (1a) and (Hi)i (3), and where Φ′ =

(T ′, I ′, (C ′i′)i′ ,⊗′) determines F ′ (1a) and (H′i′)i′ (3). Then the follow-

ing hold.

(a) (∀i) τ(F−1(Ci)) ⊆ (F ′)−1(C ′ι(i)).

(b) (∀i)(∀H∈Hi)(∃H ′∈H′ι(i)) τ(H) ⊆ H ′. (Proof B.2.)

3This phrase is equivalent to defining Π=(T,∪iCi,⊗) and Π ′=(T ′,∪i′C ′
i′ ,⊗′).

Hence a quintuple [Φ,Φ′, τ, ι, δ] is a form morphism iff [a] Φ = (T, I, (Ci)i,⊗) and
Φ′ = (T ′, I ′, (C ′

i′)i′ ,⊗′) are forms and [b] (8a)–(8c) and (9b)–(9c) hold when C =
∪iCi and C ′ = ∪i′C ′

i′ .
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Incidentally, Proposition 3.1 extends similar results for preform mor-

phisms. In particular, part (a) about decision nodes extends S16 Propo-

sition 3.2(b), and part (b) about information sets extends S16 Propo-

sition 3.2(j).

3.2. Examples

The following four examples illustrate the definition of a morphism

[Φ,Φ′, τ, ι, δ]. They also show that there is no logical connection be-

tween [a] the injectivity of ι and [b] the injectivity of τ and δ.

Every morphism from Φtwo to Φmany has an injective ι. This follows

from Remark B.3, which shows that every morphism from Φtwo to Φmany

satisfies ι(1)+1 = ι(2). A morphism in which τ and δ are injective is

τ(1)=6, τ(1̄)=6̄, τ(2)=7, τ(2̄)=7̄, τ(3)=8,

ι(1)=6, ι(2)=7, and(10)

δ(1stop)=6stop, δ(1go)=6go, δ(2stop)=7stop, δ(2go)=7go.

As required by (8c),

{ (τ(t), δ(c), τ(t])) | (t, c, t])∈⊗two }
= { (6, 6stop, 6̄), (6, 6go, 7), (7, 7stop, 7̄), (7, 7go, 8) }

⊆ ⊗many .

Further, as required by (9c), δ(Ctwo
1 ) = {6stop, 6go} is a subset of

Cmany
ι(1) = Cmany

6 , and δ(Ctwo
2 ) = {7stop, 7go} is a subset of Cmany

ι(2) =

Cmany
7 . A morphism in which τ and δ are non-injective is

τ(1)=6, τ(1̄)=τ(2)=7, τ(2̄)=τ(3)=8,

ι(1)=6, ι(2)=7, and

δ(1stop)=δ(1go)=6go, δ(2stop)=δ(2go)=7go.

As required by (8c),

{ (τ(t), δ(c), τ(t])) | (t, c, t])∈⊗two }
= { (6, 6go, 7), (7, 7go, 8) }

⊆ ⊗many .

Further, as required by (9c), δ(Ctwo
1 ) = {6go} is a subset of Cmany

ι(1) =

Cmany
6 , and δ(Ctwo

2 ) = {7go} is a subset of Cmany
ι(2) = Cmany

7 .

Every morphism from Φtwo to Φplanner is non-injective simply because

Φtwo has two players and Φplanner has one. A morphism in which τ and
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δ are injective is

τ(1)=6, τ(1̄)=6̄, τ(2)=7, τ(2̄)=7̄, τ(3)=8,

ι(1)=ι(2)=planner, and(11)

δ(1stop)=6stop, δ(1go)=6go, δ(2stop)=7stop, δ(2go)=7go.

A morphism where τ and δ are non-injective is

τ(1)=6, τ(1̄)=τ(2)=7, τ(2̄)=τ(3)=8,

ι(1)=ι(2)=planner, and

δ(1stop)=δ(1go)=6go, δ(2stop)=δ(2go)=7go.

4. The category ncForm

4.1. Definition

This paragraph and the following theorem define the category

ncForm, which is called the category of node-and-choice forms. Let an

object be a (node-and-choice)2 form Φ = (T, I, (Ci)i,⊗). Let an arrow

be a form morphism β = [Φ,Φ′, τ, ι, δ]. Let source, target, identity, and

composition be

βsrc = [Φ,Φ′, τ, ι, δ]src = Φ ,

βtrg = [Φ,Φ′, τ, ι, δ]trg = Φ′ ,

idΦ = id(T,I,(Ci)i,⊗) = [Φ,Φ, idSet
T , idSet

I , idSet
∪iCi ] ,

and β′◦β = [Φ′, Φ′′, τ ′, ι′, δ′]◦[Φ,Φ′, τ, ι, δ]
= [Φ,Φ′′, τ ′◦τ, ι′◦ι, δ′◦δ] ,

where idSet is the identity in Set.

Theorem 1. ncForm is a category. (Proof C.1.)

Recall from (2a) that a form incorporates a preform by definition.

Also recall from (9a) that a form morphism incorporates a preform

morphism by definition. These two observations can be used to define

a functor from ncForm to ncPreform (S16 Section 3.2). Details are

provided in Remark C.2. This functor is “forgetful” in the sense of

Simmons (2011, page 76).
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4.2. Isomorphisms

The following theorem characterizes the isomorphisms in ncForm.

The forward half of (a) and all of (b) are proved with relatively abstract

arguments. In contrast, the reverse half of (a) is proved by means of

the special structure of node-and-choice forms. There the obstacle is

proving that [Φ′, Φ, τ−1, ι−1, δ−1] is a morphism.

Both directions of part (a)’s characterization are useful. The forward

direction helps one to derive further properties of isomorphisms. It is

used, for example, in the proof of Proposition 4.2 below. Meanwhile,

the reverse direction can help one to establish that a morphism is an

isomorphism.

Theorem 2. Suppose β = [Φ,Φ′, τ, ι, δ] is a morphism. Then the

following hold.

(a) β is an isomorphism iff τ , ι, and δ are bijections.

(b) If β is an isomorphism, β−1 = [Φ′, Φ, τ−1, ι−1, δ−1]. (Proof C.4.)

Theorem 2(a) resembles S16 Theorem 2 (second sentence), which

showed that a morphism in ncPreform is an isomorphism iff τ and δ

are bijections. These two theorems easily lead to Corollary 4.1.

Corollary 4.1. Suppose [Φ,Φ′, τ, ι, δ] is a morphism, where Φ deter-

mines Π and Φ′ determines Π ′. Then the following hold.

(a) [Π,Π ′, τ, δ] is a preform isomorphism iff τ and δ are bijections.

(b) [Φ,Φ′, τ, ι, δ] is an isomorphism iff [1] [Π,Π ′, τ, δ] is a preform

isomorphism and [2] ι is a bijection. (Proof C.5.)

S16 Proposition 3.3 showed that a preform isomorphism has many

properties. Condition [1] of Corollary 4.1(b)’s forward direction4 shows

that a form isomorphism inherits all those properties. In addition, the

following proposition shows how a form isomorphism preserves each

player’s choices, decision nodes, and information sets. (If Ci is empty,

then δ|Ci , C ′ι(i), τ |F−1(Ci), (F ′)−1(C ′ι(i)), τ |Hi , and H′ι(i) are all empty as

well.)

4The result, that a form isomorphism implies an underlying preform isomor-
phism, could also be shown abstractly via the forgetful functor of Remark C.2.
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Proposition 4.2. Suppose [Φ,Φ′, τ, ι, δ] is an isomorphism, where

Φ=(T, I, (Ci)i,⊗) determines F and (Hi)i , and Φ′=(T ′, I ′, (C ′i′)i′ ,⊗′)
determines F ′ and (H′i′)i′. Then the following hold.

(a) (∀i) δ|Ci is a bijection from Ci onto C ′ι(i).

(b) (∀i) τ |F−1(Ci) is a bijection from F−1(Ci) onto (F ′)−1(C ′ι(i)).

(c) (∀i) τ |Hi is a bijection from Hi onto H′ι(i).
5 (Proof C.7.)

Incidentally, Proposition 4.2 extends similar results for preforms.

In particular, part (b) concerning decision nodes extends S16 Propo-

sition 3.3(c), and part (c) concerning information sets extends S16

Proposition 3.3(h).

4.3. Example

Consider the morphism from Φmany (6) to Φplanner (7) defined by

(∀t) τ(t) = t ,

(∀i) ι(i) = planner , and(12)

(∀c) δ(c) = c .

Here τ and δ are bijections (in fact they are identity functions). Thus

by Corollary 4.1(a), the two preforms underlying Φmany and Φplanner are

isomorphic (in fact the two are equal). Meanwhile, ι is not injective.

Accordingly, the morphism changes nothing except to merge all the

players of Φmany into the single player of Φplanner.

Morphism (11) from Φtwo to Φplanner is the composition of morphism

(10) from Φtwo to Φmany followed by morphism (12) from Φmany to

Φplanner. The first is an injective morphism (i.e. an embedding), and

the second merges the players together.

Appendix A. For Forms

Proof A.1 (for Proposition 2.1). (a). By rearrangements and the

definition of C,

∪iF−1(Ci) = ∪i{ t | (∃c∈Ci)(t, c)∈F }
= { t | (∃c∈∪iCi)(t, c)∈F }
= { t | (∃c∈C)(t, c)∈F }
= F−1(C) .

5Here the symbol τ is overloaded: for any H ∈ Hi, τ(H) := {τ(t)|t∈H}.
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Thus it remains to show that (∀i1 6=i2) F−1(Ci1)∩F−1(Ci2) = ∅. Ac-

cordingly, suppose there existed i1 6= i2, c1 ∈ Ci1 , c2 ∈ Ci2 , and t, such

that t ∈ F−1(c1)∩F−1(c2). Then

c1 ∈ F (t) and(13a)

c2 ∈ F (t) .(13b)

(13a), c1 ∈ Ci1 , and (2c) together imply F (t) ⊆ Ci1 . Similarly, (13b),

c2 ∈ Ci2 , and (2c) together imply F (t) ⊆ Ci2 . Since F (t) 6= ∅ by (13a),

the last two sentences imply Ci1∩Ci2 6= ∅. This and i1 6= i2 together

violate (2b).

(b). By rearrangements and the definitions of (Hi)i, C, and H,

∪iHi = ∪i{ F−1(c) | c∈Ci }
= { F−1(c) | c∈∪iCi }
= { F−1(c) | c∈C }
= H .

Thus it remains to show that (∀i1 6=i2) Hi1∩Hi2 = ∅. Accordingly,

suppose there existed i1 6= i2 and H such that H ∈ Hi1∩Hi2 . Then

H ⊆ ∪Hi1 = ∪{F−1(c)|c∈Ci1} = F−1(Ci1) ,(14a)

where the set inclusion follows from H ∈ Hi1 , the first equality follows

from the definition of Hi1 , and the last equality is a rearrangement.

Similarly,

H ⊆ ∪Hi2 = ∪{F−1(c)|c∈Ci2} = F−1(Ci2) .(14b)

Since i1 6= i2, part (a) implies that F−1(Ci1) and F−1(Ci2) are disjoint.

Thus (14a) and (14b) imply H = ∅. This contradicts (4) because

H ∈ Hi1 and because every member of a partition is nonempty. 2

Appendix B. For Morphisms

Lemma B.1. 6 Suppose α = [Π,Π ′, τ, δ] is a preform morphism,

where Π = (T,C,⊗) determines F and where Π ′ = (T ′, C ′,⊗′) deter-

mines F ′. Then the following hold.

(a) τ(F−1(c)) ⊆ (F ′)−1(δ(c)).

(b) Suppose α is an isomorphism. Then τ(F−1(c)) = (F ′)−1(δ(c)).

6This lemma excerpts parts of proofs from S16. In particular, the proof of part
(a) rearranges part of Proof B.4’s argument for S16 Proposition 3.2(j), and the
proof of the part (b) rearranges part of the argument for S16 Lemma B.8(a).
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Proof. (a). I argue

τ(F−1(c)) = { t′ | (∃t) t′=τ(t) and t∈F−1(c) }
= { t′ | (∃t) t′=τ(t) and (t, c)∈F }
⊆ { t′ | (∃t) t′=τ(t) and (τ(t), δ(c))∈F ′ }
= { t′ | (∃t) t′=τ(t) and (t′, δ(c))∈F ′ }
⊆ { t′ | (t′, δ(c))∈F ′ }
= (F ′)−1(δ(c)) .

The first inclusion follows from (11a) of S16 Proposition 3.1(a). The

second inclusion holds because τ(T ) ⊆ T ′ by (8a). The equalities are

rearrangements.

(b). I argue

τ(F−1(c)) = { t′ | (∃t) t′=τ(t) and t∈F−1(c) }
= { t′ | (∃t) t′=τ(t) and (t, c)∈F }
= { t′ | (∃t) t′=τ(t) and (τ(t), δ(c))∈F ′ }
= { t′ | (∃t) t′=τ(t) and (t′, δ(c))∈F ′ }
= { t′ | (t′, δ(c))∈F ′ }
= (F ′)−1(δ(c)) .

The third equality holds by S16 Proposition 3.3(b). The fifth holds

because τ is a bijection by S16 Theorem 2 (second sentence). The

remaining equalities are rearrangements. 2

Proof B.2 (for Proposition 3.1). (a). Take any i. I argue

τ(F−1(Ci)) = ∪{ τ(F−1(c)) | c∈Ci }
⊆ ∪{ (F ′)−1(δ(c)) | c∈Ci }
⊆ ∪{ (F ′)−1(c′) | c′∈C ′ι(i) }
= (F ′)−1(C ′ι(i)) .

The first equation is a rearrangement, the first set inclusion follows

from Lemma B.1(a), the second set inclusion follows from (9c), and

the second equality is a rearrangement.

(b). Take any i and any H ∈ Hi. By the definition of Hi, there

exists c ∈ Ci such that H = F−1(c). Let H ′ = (F ′)−1(δ(c)). By (9c),

δ(c) ∈ C ′ι(i). Thus by the definition of H′ι(i), H ′ ∈ H′ι(i). Thus it suffices
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to argue

τ(H) = τ(F−1(c)) ⊆ (F ′)−1(δ(c)) = H ′ .

The first equality follows from the definition of c, the set inclusion

follows from Lemma B.1(a), and the second equality is the definition

of H ′. 2

Remark B.3. Consider the examples Φtwo (5) and Φmany (6). Fur-

ther suppose [Φtwo, Φmany, τ, ι, δ] is a form morphism. Then ι(1)+1 =

ι(2).

Proof. As in (5) and (6), let Φtwo = (T two, I two, (Ctwo
i )i,⊗two) and

Φmany = (Tmany, Imany, (Cmany
i )i,⊗many).

This paragraph shows that

(∀i∈{1, 2}) τ(i) = ι(i) .(15)

Take i ∈ {1, 2}. Note

δ(istop) ∈ δ(Ctwo
i ) ⊆ Cmany

ι(i) = {ι(i)stop, ι(i)go} ,(16)

where the set membership follows from the definition of Ctwo
i in (5), the

set inclusion follows from (9c), and the equality follows from the defini-

tion of Cmany
ι(i) in (6). Further, since (i, istop, ī) ∈ ⊗two by the definition

of ⊗two in (5), (8c) implies

(τ(i), δ(istop), τ (̄i)) ∈ ⊗many .(17)

(16) and (17) imply that

(τ(i), ι(i)stop, τ (̄i)) ∈ ⊗many or

(τ(i), ι(i)go, τ (̄i)) ∈ ⊗many .

By the definition of ⊗many in (6), either eventuality implies that τ(i) =

ι(i).

By (9a), [Π two, Πmany, τ, δ] is a preform morphism for Π two =

(T two,∪iCtwo
i ,⊗two) and Πmany = (Tmany,∪iCmany

i ,⊗many). Use (1b) to

derive ptwo from Π two and pmany from Πmany. By the definition of ⊗two

in (5), 1 = ptwo(2). Thus by S16 Proposition 3.2(c) at m=1, τ(1) =

pmany(τ(2)). Thus by the definition of ⊗many in (6), τ(1)+1 = τ(2).

Thus by (15), ι(1)+1 = ι(2). 2



Appendix C. For ncForm

Proof C.1 (for Theorem 1). The next two paragraphs draw upon

S16 Theorem 1, which showed that ncPreform is a well-defined cate-

gory.
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This paragraph shows that, for every form Φ, idΦ is a form morphism

(9). Accordingly, take any form Φ = [T, I, (Ci)i,⊗]. By definition,

idΦ = [Φ,Φ, idSet
T , idSet

I , idSet
C ] ,

where C = ∪iCi. (9a) requires that the quadruple [Π,Π, idSet
T , idSet

C ] is

a morphism in ncPreform, where Φ determines Π (2a). This holds

a fortiori because [1] the quadruple equals idΠ in ncPreform since

[2] Π is a preform by (2a). (9b) requires that ι:I→I, which holds

because ι = idSet
I . (9c) requires that (∀i) δ(Ci) ⊆ Cι(i), which holds

with equality because ι = idSet
I and δ = idSet

C .

This paragraph shows that, for any two morphisms β and β′, β′◦β is a

morphism (9). Accordingly, take any two morphisms β = [Φ,Φ′, τ, ι, δ]

and β′ = [Φ′, Φ′′, τ ′, ι′, δ′], where Φ = (T, I, (Ci)i,⊗), Φ′ = (T ′, I ′,

(C ′i′)i′ ,⊗′), and Φ′′ = (T ′′, I ′′, (C ′′i′′)i′′ ,⊗′′). By definition,

β′◦β = [Φ,Φ′′, τ ′◦τ, ι′◦ι, δ′◦δ] .

(9a) requires that the quadruple [Π,Π ′′, τ ′◦τ, δ′◦δ] is a morphism in

ncPreform, where Φ determines Π and Φ′′ determines Π ′′. This holds

a fortiori because [1] the quadruple equals [Π ′, Π ′′, τ ′, δ′]◦[Π,Π ′, τ, δ]
in ncPreform, where Φ′ determines Π ′, since [2] [Π,Π ′, τ, δ] and

[Π ′, Π ′′, τ ′, δ′] are morphisms in ncPreform by (9a) for β and β′. To

see (9b), note that ι:I→I ′ by (9b) for β, and that ι′:I ′→I ′′ by (9b) for

β′. Hence ι′◦ι:I→I ′′, which is (9b) for β′◦β. To show that (9c) holds

for β′◦β, take any i. I argue

δ′(δ(Ci)) ⊆ δ′(C ′ι(i)) ⊆ C ′′ι′◦ι(i) .

The first inclusion holds because δ(Ci) ⊆ C ′ι(i) by (9c) for β, applied at

i. The second inclusion holds by (9c) for β′, applied at i′ = ι(i).

The previous two paragraphs have established the well-definition of

identity and composition. The unit and associative laws are immedi-

ate. Thus ncForm is a category (e.g. Awodey (2010, page 4, Defini-

tion 1.1)). 2
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Remark C.2. Define F from ncForm to ncPreform by

F0 : (T, I, (Ci)i,⊗) 7→ (T,∪iCi,⊗) and

F1 : [Φ,Φ′, τ, ι, δ] 7→ [F0(Φ),F0(Φ
′), τ, δ] .

Then F is a well-defined functor.

Proof. By (2a), F0 maps any form into a preform. By (9a), F1 maps

any form morphism into a preform morphism. Thus it suffices to show

that F preserves source, target, identity, and composition (Awodey

(2010, page 8, Definition 1.2)). This is done in the following four

paragraphs.

[1] Take any β = [Φ,Φ′, τ, ι, δ]. Then

F1(β)src = F1([Φ,Φ
′, τ, ι, δ])src

= [F0(Φ),F0(Φ
′), τ, δ]src

= F0(Φ)

= F0([Φ,Φ
′, τ, ι, δ]src)

= F0(β
src) ,

where the first equation holds by the definition of β, the second by

the definition of F1, the third by the definition of src in ncPreform,

the fourth by the definition of src in ncForm, and the fifth by the

definition of β.

[2] Take any β = [Φ,Φ′, τ, ι, δ]. Then F1(β)trg = F0(β
trg) can be

shown by replacing src with trg in the preceding paragraph.

[3] Take any Φ = (T, I, (Ci)i,⊗) and let C = ∪iCi. Note F0(Φ) =

(T,C,⊗) by the definitions of Φ, F0, and C. Then

F1(idΦ)

= F1([Φ,Φ, id
Set
T , idSet

I , idSet
C ])

= [F0(Φ),F0(Φ), idSet
T , idSet

C ]

= [(T,C,⊗), (T,C,⊗), idSet
T , idSet

C ]

= id(T,C,⊗)

= idF0(Φ) ,

where the first equality holds by the definition of id in ncForm, the

second by the definition of F1, the third by the previous sentence, the

fourth by the definition of id in ncPreform, and the last by the pre-

vious sentence.
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[4] Take any β = [Φ,Φ′, τ, ι, δ] and β′ = [Φ′, Φ′′, τ ′, ι′, δ′]. Note

that since F1 is well-defined by the first paragraph, F1([Φ,Φ
′, τ, ι, δ]) =

[F0(Φ),F0(Φ
′), τ, δ] and F1([Φ

′, Φ′′, τ ′, ι′, δ′]) = [F0(Φ
′),F0(Φ

′′), τ ′, δ′] are

preform morphisms. Then

F1(β
′◦β)

= F1([Φ
′, Φ′′, τ ′, ι′, δ′]◦[Φ,Φ′, τ, ι, δ])

= F1([Φ,Φ
′′, τ ′◦τ, ι′◦ι, δ′◦δ])

= [F0(Φ),F0(Φ
′′), τ ′◦τ, δ′◦δ]

= [F0(Φ
′),F0(Φ

′′), τ ′, δ′]◦[F0(Φ),F0(Φ
′), τ, δ]

= F1([Φ
′, Φ′′, τ ′, ι′, δ′]◦F1[Φ,Φ

′, τ, ι, δ]

= F1(β
′)◦F1(β) ,

where the first equality holds by the definitions of β and β′, the sec-

ond by the definition of ◦ in ncForm, the third by the definition of

F1, the fourth by the previous sentence and by the definition of ◦ in

ncPreform, the fifth by the definition of F1, and the sixth by the

definitions of β and β′. 2

Lemma C.3. Suppose that [Φ,Φ′, τ, ι, δ] is a morphism, where Φ =

(T, I, (Ci)i,⊗) and Φ′ = (T ′, I ′, (C ′i′)i′ ,⊗′). Further suppose that ι and

δ are bijections. Then the following hold.

(a) (∀i) δ|Ci is a bijection from Ci onto C ′ι(i).

(b) (∀i′) δ−1|C′
i′

is a bijection from C ′i′ onto Cι−1(i′).

Proof. (a). Let C = ∪iCi and C ′ = ∪i′C ′i′ . Take any i. Then δ|Ci is a

function from Ci because δ is a function from C by (8b). It is injective

because δ is a bijection by assumption. It is into C ′ι(i) by (9c). Thus it

remains to show that C ′ι(i)rδ(Ci) = ∅.

Accordingly, suppose c′ ∈ C ′ι(i)rδ(Ci). Since c′ ∈ C ′ι(i) ⊆ C ′ and since

δ is a bijection by assumption, δ−1(c′) exists. Further, since c′ /∈ δ(Ci),
there is j 6= i such that δ−1(c′) ∈ Cj. Thus by (9c), δ(δ−1(c′)) ∈ C ′ι(j).
Hence c′ ∈ C ′ι(j). This and the definition of c′ imply c′ ∈ C ′ι(i)∩C ′ι(j).
This contradicts (2b) for Φ′ because i 6= j and because ι is a bijection

by assumption.

(b). This paragraph shows

(∀i) δ−1|C′
ι(i)

is a bijection from C ′ι(i) onto Ci .(18)
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Accordingly, take any i. By part (a),

δ|Ci is a bijection from Ci onto C ′ι(i) .

This has two implications. First,

(δ|Ci)−1 is a bijection from C ′ι(i) onto Ci .

Second, because δ is a bijection, (δ|Ci)−1 = δ−1|C′
ι(i)

. The previous two

sentences imply (18) at i.

Finally, the result follows from (18) because ι is a bijection. 2

Proof C.4 (for Theorem 2). Throughout this proof let the compo-

nents of Φ be (T, I, (Ci)i,⊗), define C = ∪iCi, let the components of

Φ′ be (T ′, I ′, (C ′i′)i′ ,⊗′), and define C ′ = ∪i′C ′i′ .
The forward half of (a) and all of (b). Suppose that β is an iso-

morphism (Awodey (2010, page 12, Definition 1.3)). Recall that β =

[Φ,Φ′, τ, ι, δ] and let β−1 = [Φ∗, Φ∗∗, τ ∗, ι∗, δ∗]. Then

[Φ∗, Φ∗∗, τ ∗, ι∗, δ∗]◦[Φ,Φ′, τ, ι, δ] = idΦ = [Φ,Φ, idSet
T , idSet

I , idSet
C ](19a)

and

[Φ,Φ′, τ, ι, δ]◦[Φ∗, Φ∗∗, τ ∗, ι∗, δ∗] = idΦ′ = [Φ′, Φ′, idSet
T ′ , id

Set
I′ , id

Set
C′ ],(19b)

where the first equality in both lines holds by the definition of β−1, and

the second equality in both lines holds by the definition of id.

The well definition of ◦ in (19a) implies

Φ∗ = Φ′ .(20a)

The well definition of ◦ in (19b) implies

Φ∗∗ = Φ .(20b)

The third component of (19a) implies that τ ∗◦τ = idSet
T . The third

component of (19b) implies that τ◦τ ∗ = idSet
T ′ . The last two sentences

imply that τ is a bijection from T onto T ′ and that

τ ∗ = τ−1 .(20c)

Similarly, the fourth components of (19a) and (19b) imply that ι is a

bijection from I onto I ′ and that

ι∗ = ι−1 .(20d)
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Similarly again, the fifth components of (19a) and (19b) imply that δ

is a bijection from C onto C ′ and that

δ∗ = δ−1 .(20e)

The previous three sentences have shown that τ , ι, and δ are bijections.

Further,

β−1 = [Φ∗, Φ∗∗, τ ∗, ι∗, δ∗] = [Φ′, Φ, τ−1, ι−1, δ−1] ,

where the first equality follows from the definition of β−1 near the start

of the previous paragraph, and where the second equality follows from

(20a)–(20e).

The reverse half of (a). Suppose that τ , ι, and δ are bijections.

Define β∗ = [Φ′, Φ, τ−1, ι−1, δ−1].

This paragraph shows that β∗ is a morphism. Derive Π from Φ and

Π ′ from Φ′. By (9) for β∗, it must be shown that

[Π ′, Π, τ−1, δ−1] is a preform morphism ,(21a)

ι−1:I ′→I , and(21b)

(∀i′) δ−1(C ′i′) ⊆ Cι−1(i′) .(21c)

[Π,Π ′, τ, δ] is a preform morphism by (9a) for β. Thus (21a) holds by

the lemma in the S16 addendum. (21b) is immediate. (21c) holds with

equality by Lemma C.3(b).

Finally,

β∗◦β = [Φ′, Φ, τ−1, ι−1, δ−1]◦[Φ,Φ′, τ, ι, δ] = idΦ and

β◦β∗ = [Φ,Φ′, τ, ι, δ]◦[Φ′, Φ, τ−1, ι−1, δ−1] = idΦ′ .

Thus β is an isomorphism. 2

Proof C.5 (for Corollary 4.1). (a) [Π,Π ′, τ, δ] is a preform mor-

phism by (9a). Thus part (a) follows from the second sentence of S16

Theorem 2.

(b) This follows immediately from part (a) and Theorem 2(a). 2

Lemma C.6. Suppose [Φ,Φ′, τ, ι, δ] is a morphism, where Φ =

(T, I, (Ci)i,⊗) determines (Hi)i, and where Φ′ = (T ′, I ′, (C ′i′)i′ ,⊗′)
determines (H′i′)i′. Further suppose τ and δ are bijections. Then

(∀i)(∀H∈Hi) τ(H) ∈ H′ι(i).
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Proof. Take any i and any H ∈ Hi. Then there exists c ∈ Ci such

that H = F−1(c). I argue

τ(H) = τ(F−1(c)) = (F ′)−1(δ(c)) ∈ H′ι(i) .

The first equality holds by the definition of c. To see the second, let Φ

determine Π and let Φ′ determine Π ′. Then [Π,Π ′, τ, δ] is a preform

isomorphism by Corollary 4.1(a). Thus the second equality holds by

Lemma B.1(b). Finally, the set membership holds because δ(c) ∈ C ′ι(i)
by (9c). 2

Proof C.7 (for Proposition 4.2). Theorem 2(a) implies that τ , ι,

and δ are bijections.

(a). This follows from Lemma C.3(a).

(b). Take any i. I argue

τ(F−1(Ci)) = ∪{ τ(F−1(c)) | c∈Ci }
= ∪{ (F ′)−1(δ(c)) | c∈Ci }
= ∪{ (F ′)−1(c′) | c′∈C ′ι(i) }
= (F ′)−1(C ′ι(i)) .

The first equality is a rearrangement. To see the second, derive Π from

Φ and Π ′ from Φ′. By Corollary 4.1(b), [Π,Π ′, τ, δ] is an isomorphism.

Thus the second equality follows from Lemma B.1(b). The third equal-

ity holds by part (a). The fourth equality is a rearrangement.

(c). Take any i. Lemma C.6 implies that τ |Hi is a well-defined

function from Hi into H′ι(i). It is injective because τ is injective. To

show that it is surjective, take any H ′ ∈ Hι(i). Since [Φ′, Φ, τ−1, ι−1, δ−1]

is an isomorphism by Theorem 2(b), Lemma C.6 can be applied to

[Φ′, Φ, τ−1, ι−1, δ−1]. Therefore H ′ ∈ Hι(i) implies τ−1(H ′) ∈ Hι−1◦ι(i).

Hence τ−1(H ′) ∈ Hi. This implies that τ(τ−1(H ′)) = H ′ is in the range

of τ |Hi . 2
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