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THE CATEGORY OF NODE-AND-CHOICE PREFORMS
FOR EXTENSIVE-FORM GAMES

Peter A. Streufert
Department of Economics

Western University

Abstract. It would be useful to have a category of extensive-form
games whose isomorphisms specify equivalences between games.
Since working with entire games is too large a project for a single
paper, I begin here with preforms, where a “preform” is a rooted
tree together with choices and information sets.

My first contribution is to introduce a compact preform spec-
ification called a “node-and-choice” preform. This specification’s
compactness allows me to introduce tractable morphisms which
map one node-and-choice preform to another. I incorporate these
morphisms into a category called the “category of node-and-choice
preforms”. Finally, I characterize the isomorphisms of this cate-
gory.

1. Introduction

Category theory has been used to systematize many subjects in

mathematics and elsewhere. For example, there is the category of

graphs whose morphisms allow one to systematically compare graphs.

There, morphisms can be used to state that one graph is embedded

within another. Further, isomorphisms can be used to state that two

graphs are equivalent.

Similarly, it would be useful to have a category of extensive-form

games whose morphisms would allow one to systematically compare

extensive-form games. As yet, little has been done.1 Lapitsky (1999)

Date: August 10, 2016. Keywords: game form, isomorphism. JEL Classifi-
cation: C72. AMS Classification: 91A70. Contact information: pstreuf@uwo.ca,
519-661-2111x85384, Department of Economics, University of Western Ontario,
London, Ontario, N6A 5C2, Canada.

I thank Marcus Pivato and Deanna Walker.
1Extensive-form games are not readily comparable with the games defined in

the theoretical computer-science literature. Categories of such games are developed
in McCusker (2000), Abramsky, Jagadeesan, and Malacaria (2000), and Hyland and
Ong (2000).
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2 1. Introduction

and Jiménez (2014) define categories of normal-form games. Machover

and Terrington (2014) defines a category of simple voting games. Fi-

nally, Vannucci (2007) defines categories of various kinds of games, but

in its category of extensive-form games, every morphism merely maps

a game to itself.

Building a category of extensive-form games with nontrivial mor-

phisms is a large project because each extensive-form game has so

many components: each is a rooted tree with choices, information sets,

players, chance probabilities, and preferences. Accordingly, this paper

takes a small necessary step: it builds a category of preforms, where a

“preform” is a rooted tree with choices and information sets (Streufert

(2015a, 2015b)).2

This paper’s first contribution is to introduce a compact preform

specification. In particular, Section 2 defines a “node-and-choice” pre-

form to consist of nodes, choices, and an operator ⊗. The operator ⊗
is new. It maps node-and-choice pairs to nodes. In particular, each

node-and-choice pair in the operator’s domain is mapped to the node

that follows the pair’s node by way of the pair’s choice. This operator

is sufficient to determine the tree, the information-set collection, and a

number of other derivative entities.

Section 3 uses this compact preform specification to define tractable

preform morphisms. Each such morphism maps an “old” preform to a

“new” preform. More precisely, each morphism takes old nodes to new

nodes, and old choices to new choices, in such a way that the structure

of the old operator is preserved within the new operator. Theorem 1

incorporates these morphisms into the “category of node-and-choice

preforms”. Then, Theorem 2 characterizes the isomorphisms of this

category.

Because each preform’s operator ⊗ determines its tree, the exis-

tence of a morphism or isomorphism between two preforms implies a

relationship between their two trees. Similarly, it implies a relation-

ship between their two information-set collections. Relatedly, it im-

plies relationships between their root nodes, their feasibility correspon-

dences, their immediate-predecessor functions, their stage functions,

2A “form” is understood to be a rooted tree with choices, information sets, and
players.



2. Preforms 3

their precedence relations, their decision-node sets, their finite-play col-

lections, and their infinite-play collections. All these relationships and

a few more are derived by the three propositions in Section 3.

Work is currently underway to prove that node-and-choice preforms

are general enough to encompass the formulations used in the extensive-

form games of von Neumann and Morgenstern (1944), Kuhn (1953),

Osborne and Rubinstein (1994), Alós-Ferrer and Ritzberger (2013),

and Streufert (2015a).3 When that work is completed, fundamental

equivalences across these various formulations can be stated formally

as isomorphisms within the category of node-and-choice preforms.

In addition, the obvious sequel to this paper is to develop a category

of forms2 built upon this paper’s category of preforms. Work on that

is also underway.

2. Preforms

2.1. Definition

Let T be a set and call t ∈ T a node. Let C be a set and call c ∈ C a

choice. A (node-and-choice) 4 preform Π is a triple (T,C,⊗) such that

(∃F⊆T×C)(∃to∈T )(1a)

⊗ is a bijection from F onto Tr{to} ,
(T, p) is a tree oriented toward to(1b)

where p := {(t], t)|(∃c)(t, c, t])∈⊗} , and

H partitions F−1(C)(1c)

where H := {F−1(c)|c} .
Call ⊗ the node-and-choice operator. Note that equation (1) derives

F , to, p, and H from (T,C,⊗). Call F the feasibility correspondence.

Call to the root node. Call p the immediate-predecessor function. Call

H the collection of information sets.

The remainder of this Section 2 discusses definition (1). Roughly,

the remainder of this Section 2.1 focuses on (1a). Then Section 2.2

focuses on nodes and (1b). Finally Section 2.3 focuses on choices and

(1c). Incidentally, Section 3.1 provides a pair of example preforms.

3Differential games, and the non-discrete games of Alós-Ferrer and Ritzberger
(2005, 2008), are beyond the scope of node-and-choice preforms.

4The modifier “node-and-choice” is redundant after this point in this paper.
However, less abstract kinds of preforms appear in Streufert (2015a, 2015b).



4 2. Preforms

(1a) states that the operator ⊗ is a function from F ⊆ T×C into T .

Accordingly, let the statement t⊗c = t] be equivalent to the statement

(t, c, t]) ∈ ⊗. Call t⊗c the result of the node-and-choice pair (t, c).

(1a) also states that the range of ⊗ is Tr{to}. This determines the

root node to as the only node t that is not in the range of ⊗. Hence T

has no superfluous elements: every node t other than the root node to

is the result of some node-and-choice pair.

(1a) also states that the domain of ⊗ is F ⊆ T×C. Thus

F = { (t, c) | (∃t])(t, c, t])∈⊗ } .(2)

Since F is a subset of T×C, F can be regarded as a (nonempty-valued)

correspondence whose domain is some subset of T and whose range is

some subset of C. Accordingly, let the statement c ∈ F (t) be equiva-

lent to the statement (t, c) ∈ F . Thus by (2), c ∈ F (t) iff t⊗c exists.

Accordingly, F (t) is called the set of choices that are feasible from the

node t.

Now consider the range of F . This set consists of those choices c

that are feasible from some node. By (1c) and the fact that a partition

consists of nonempty sets, each inverse image F−1(c) is nonempty. Thus

the range of F is all of C. Hence C has no superfluous elements: each

choice c is feasible from at least one node.

Finally, note that the domain of F is F−1(C). This set consists of

those nodes with at least one feasible choice. Accordingly, the elements

of F−1(C) are called the decision nodes.5 Note that all the nodes might

be decision nodes (this happens, for example, in an infinitely repeated

stage game).

2.2. Nodes

(1b) defines p as a set. Since ⊗ is a bijection onto Tr{to} by (1a),

p is a function from Tr{to}. Call p(t) the immediate predecessor of

t 6=to, and note that p(to) is undefined. An elementary argument shows

that the range p(Tr{to}) of p equals the set F−1(C) of decision nodes

(Lemma A.1(a)).

5I avoid the term “nonterminal node” because I avoid the term “terminal node”.
I avoid the latter because it is natural to expect that the set of “terminal nodes”
would be in one-to-one correspondence with the set of plays. This does not happen
because the definition of a node-and-choice preform does not provide nodes that
correspond to infinite plays. For more details, see Proposition 2.1(b) below.
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(1b) uses the terminology of Diestel (2010, pages 13–15 and 28). It

requires that (T, p) is a tree with root to in which every edge is oriented

toward the root. This is equivalent to (T, p) being an arborescence

converging to to, in the sense of Tutte (1984, page 127). To be explicit,

(1b) is equivalent to there being a function k:T→N0 such that

k(to) = 0 and (∀t6=to) pk(t)(t) = to .(3)

This requires that to can be reached from any t6=to by iterating p a

finite number of times. Setting k(to) = 0 is not restrictive. Further,

note that k(t) is determined for any t6=to because p(to) is not defined.

Accordingly, call k the stage function and call k(t) the stage of node t.

Define the (strict) precedence relation ≺ on T by

t1 ≺ t2 iff (∃m≥1) t1 = pm(t2) .(4)

Say that t1 (strictly) precedes t2 iff t1≺t2. Equivalently, say that t2

(strictly) succeeds t1. An elementary argument shows that a node has

a successor iff it is a decision node (Lemma A.1(b)).

Define the weak precedence relation 4 on T by

t1 4 t2 iff t1 ≺ t2 or t1 = t2 .(5)

Notice that the term “precedence” without the modifier “weak” refers

to strict precedence. As the notation suggests, ≺ is the asymmetric part

of 4 (Lemma A.2(b)). Further, it easily shown that (T,4) is a partially

ordered set (Lemma A.2(d)). But (1b) makes it a rather special sort

of partially ordered set. In contrast, Alós-Ferrer and Ritzberger (2005,

2008) define games over more general partially ordered sets. They

would use the term “discreteness” to describe a restriction like (1b)

(Alós-Ferrer and Ritzberger (2013, Section 3)).

Finally, let Z be the collection of maximal chains in (T,4), and

call Z ∈ Z a play. Plays can be either finite or infinite. Accordingly,

Z = Zft∪Zinft, where

Zft := { finite maximal chains in (T,4) } and(6a)

Zinft := { infinite maximal chains in (T,4) } .(6b)

For example, a game with a finite number of nodes has no infinite plays.

In contrast, an infinitely repeated stage game has no finite plays. In-

between, an infinite centipede game has some some finite plays and

some infinite plays (Section 3.1’s Πce is a preform for this well-known

game).
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Part (a) of the following proposition shows that each finite play can

be uniquely associated with a non-decision node. It does so by means

of the maximization operator for 4. Meanwhile, part (b) shows that

each infinite play can be uniquely associated with an infinite sequence

of nodes (there is no single node associated with an infinite play). For

this, define the function E from Zinft into TN1 by

E(Z) := (tv)v≥1 ,(7)

where each tv is the unique element t of Z for which k(t) = v. Call E

the enumeration operator.

Proposition 2.1. Suppose (T,C,⊗) satisfies (1a)–(1b) and derive

its F , to, p, k, ≺, 4, Zft, Zinft, and E. Then the following hold.

(a) Zft 3 Z 7→ max Z is a bijection onto TrF−1(C). Its inverse is

{pm(t)|k(t)≥m≥1}∪{t} 7→t ∈ TrF−1(C).

(b) E is a well-defined bijection from Zinft onto

Y := { (tv)v≥1 | to=p(t1) and (∀v≥1) tv=p(tv+1) } .
Its inverse is {to}∪{tv|v≥1} 7→(tv)v≥1 ∈ Y. (Proof A.3.)

2.3. Choices

Section 2.1 called H = {F−1(c)|c} the collection of “information

sets”.6 Here I provide justification for that terminology. In the stan-

dard literature, [a] the collection of information sets partitions the set

of decision nodes, and [b] two nodes in the same information set share

the same set of feasible options. Feature [a] is assured by (1c) itself

since F−1(C) is the set of decision nodes. Feature [b] is assured by (8a)

of Proposition 2.2 below.

Further, (8b) of Proposition 2.2 shows that different information

sets have different choices. Although this imposes a loss of generality

in the mathematical sense, it does not impose a loss of generality in the

modelling sense because one can always introduce more choices until

each information set has its own choices.

Incidentally, (8b) also concerns my decision to use the term “choice”.

In the literature, there is a correlation between [1] assuming something

like (8b) and [2] using the term “choice” rather than another term

6This implicit specification of information sets mimics a similar construction by
Ritzberger (2002, page 97).
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such as “action”. For example, both [1] and [2] are done by von Neu-

mann and Morgenstern (1944, Sections 9 and 10) and Ritzberger (2002,

Section 3.2). In contrast, neither [1] nor [2] is done by Osborne and

Rubinstein (1994, Section 11.1). Accordingly, I use the term “choice”

rather than another term such as “action”.

Proposition 2.2. Suppose that (T,C,⊗) satisfies (1a) and (1c).

Derive F and H. Then the following hold.

(∀t, t′) [(∃H){t, t′}⊆H] ⇒ F (t) = F (t′) and(8a)

(∀t, t′) [(/∃H){t, t′}⊆H] ⇒ F (t)∩F (t′) = ∅ .(8b)

(Proof A.4.)

Finally, define

q := {(t], c)|(∃t)(t, c, t])∈⊗} .(9)

Since ⊗ is a bijection onto Tr{to} by (1a), q is a function from Tr{to}.
Accordingly, call q the previous-choice function,7 and call q(t]) the

choice previous to t].

The definition of q at (9) closely resembles the definition of p at (1b).

This resemblance is not coincidental: Lemma A.5(b) shows that p is

the first component of ⊗−1, and that q is the second component of ⊗−1.
In other words, (p, q) = ⊗−1. This identity is useful in proofs.

In summary, many entities can be derived from a preform Π =

(T,C,⊗). Equations (1) and (9) derive F , to, p, H, and q. The set of

decision nodes is F−1(C). Equations (3)–(7) derive k, ≺, 4, Z, Zft,

Zinft, and E.

3. Morphisms

3.1. Definition

A (preform) morphism α is a quadruple [Π,Π ′, τ, δ] such that

τ :T→T ′ ,(10a)

δ:C→C ′ , and(10b)

{ (τ(t), δ(c), τ(t])) | (t, c, t])∈⊗ } ⊆ ⊗′ ,(10c)

where Π = (T,C,⊗) and Π ′ = (T ′, C ′,⊗′) are preforms.

7This resembles the function α assumed by Mas-Colell, Whinston, and Green
(1995, page 227).
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Proposition 3.1. Suppose that the preform Π = (T,C,⊗) deter-

mines F , to, p, and q, and that the preform Π ′ = (T ′, C ′,⊗′) deter-

mines F ′, p′, and q′. (a) Then, a quadruple [Π,Π ′, τ, δ] is a morphism

iff it satisfies (10a)–(10b) and

(∀(t, c)∈F ) (τ(t), δ(c)) ∈ F ′ and(11a)

(∀(t, c)∈F ) τ(t⊗c) = τ(t)⊗′δ(c) .(11b)

(b) Also, a quadruple [Π,Π ′, τ, δ] is a morphism iff it satisfies (10a)–

(10b) and

(∀t] 6=to) τ(p(t])) = p′(τ(t])) and(12a)

(∀t] 6=to) δ(q(t])) = q′(τ(t])) .(12b)

(Proof B.2.)

Characterization (11) concerns each member of ⊗’s domain. That is,

(11) concerns each feasible node-choice pair (t, c). (11a) requires that

its image is feasible. (11b) requires that the image of its result is the

result of its image.

Meanwhile, characterization (12) concerns each member of⊗’s range.

That is, (12) concerns each non-initial node t]. (12a) requires that the

image of its predecessor is the predecessor of its image. Similarly (12b)

requires that the image of its previous choice is the previous choice of

its image. Incidentally, (12a) is equivalent to t = p(t]) implying τ(t) =

p′(τ(t])), and (12b) is equivalent to c = q(t]) implying δ(c) = q′(τ(t]))

(Lemma B.3).

If two preforms are related by a morphism, there are certain re-

lationships between the items derived from them. Some such results

appear above in (11a), (12a), and (12b). Others appear in the following

proposition.

Proposition 3.2. Suppose [Π,Π ′, τ, δ] is a morphism, where Π =

(T,C,⊗) determines F , to, p, H, k, ≺, 4, Zft, and Zinft, and where

Π ′ = (T ′, C ′,⊗′) determine F ′, t′o, p′, H′, k′, ≺′, 4′, Z ′ft, and Z ′inft.
Then the following hold.

(a) t′o 4′ τ(to).

(b) If t ∈ F−1(C), then τ(t) ∈ (F ′)−1(C ′).

(c) If m≥1 and t1 = pm(t2), then τ(t1) = (p′)m(τ(t2)).

(d) k′(τ(t)) = k(t) + k′(τ(to)).

(e) If t1 ≺ t2, then τ(t1) ≺′ τ(t2).
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(f) If t1 4 t2, then τ(t1) 4′ τ(t2).

(g) If S⊆T is a chain, then τ |S is injective and τ(S) is a chain.8

(h) (∀Z∈Zinft)(∃Z ′∈Z ′inft) τ(Z) ⊆ Z ′.8

(i) (∀Z∈Zft)(∃Z ′∈Z ′ft∪Z ′inft) τ(Z) ⊆ Z ′.8

(j) (∀H)(∃H ′) τ(H) ⊆ H ′.8 (Proof B.4.)

This paragraph considers some examples. Define the “a-or-b” pre-

form Πab by

T ab = {O,A,B} ,
Cab = {a, b} , and

⊗ab = { (O, a,A), (O, b,B) } .
Define the “centipede” preform Πce by

T ce = {1, 2, 3, ...}∪{1̄, 2̄, 3̄, ...} ,
Cce = {1stop, 1go, 2stop, 2go, ...} , and

⊗ce = { (1, 1stop, 1̄), (1, 1go, 2), (2, 2stop, 2̄), (2, 2go, 3), ... } .

There are many morphisms from Πab to Πce. One injective morphism

is [Πab, Πce, τ, δ] where

τ(O) = 2 , τ(A) = 2̄ , τ(B) = 3 ,

δ(a) = 2stop , and δ(b) = 2go .

Note that {(τ(t), δ(c), τ(t]))|(t, c, t])∈⊗ab} = {(2, 2stop, 2̄), (2, 2go, 3)}
⊆ ⊗ce, as required by (10c). Meanwhile, one non-injective morphism

is [Πab, Πce, τ ∗, δ∗] where

τ ∗(O) = 2 , τ ∗(A) = τ ∗(B) = 3 ,

and δ∗(a) = δ∗(b) = 2go .

Note that {(τ ∗(t), δ∗(c), τ ∗(t]))|(t, c, t])∈⊗ab} = {(2, 2go, 3)} ⊆ ⊗ce, as

required by (10c).

3.2. The Category ncPreform

This subsection defines the category ncPreform, which is called the

category of node-and-choice preforms. Let an object be a node-and-

choice preform Π = (T,C,⊗). Let an arrow be a preform morphism

8In Proposition 3.2(g)–(j), and in Proposition 3.3(h)–(j), the symbol τ is over-
loaded. Specifically, if S is a set of nodes in Π, then τ(S) := {τ(t)|t∈S}.
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α = [Π,Π ′, τ, δ]. Let source, target, identity, and composition be

αsrc = [Π,Π ′, τ, δ]src = Π ,

αtrg = [Π,Π ′, τ, δ]trg = Π ′ ,

idΠ = [Π,Π, idSet
T , idSet

C ] , and

α′◦α = [Π ′, Π ′′, τ ′, δ′]◦[Π,Π ′, τ, δ] = [Π,Π ′′, τ ′◦τ, δ′◦δ] ,

where idSet is the identity in Set.

Theorem 1. ncPreform is a category. (Proof B.5.)

3.3. Isomorphisms in ncPreform

Theorem 2. Suppose that α = [Π,Π ′, τ, δ] is a morphism. Then

α is an isomorphism iff τ and δ are bijections. Further, if α is an

isomorphism, then α−1 = [Π ′, Π, τ−1, δ−1]. (Proof B.6.)

Proposition 3.3. Suppose [Π,Π ′, τ, δ] is an isomorphism, where

Π = (T,C,⊗) determines F , to, p, q, H, k, ≺, 4, Zft, Zinft, and E,

and where Π ′ = (T ′, C ′,⊗′) determines F ′, t′o, p′, q′, H′, k′, ≺′, 4′,
Z ′ft, Z ′inft, and E ′. Then the following hold.

(a) (τ, δ, τ)|⊗ is a bijection from ⊗ onto ⊗′.
(b) (τ, δ)|F is a bijection from F onto F ′.

(c) τ |F−1(C) is a bijection from F−1(C) onto (F ′)−1(C ′).

(d) (τ, τ)|p is a bijection from p onto p′.

(e) (τ, δ)|q is a bijection from q onto q′.

(f) (τ, τ)|≺ is a bijection from ≺ onto ≺′.
(g) (τ, τ)|4 is a bijection from 4 onto 4′.
(h) τ |H is a bijection from H onto H′.8
(i) τ |Zft

is a bijection from Zft onto Z ′ft.8
(j) τ |Zinft

is a bijection from Zinft onto Z ′inft.8
(k) τ(to) = t′o.

(l) k′(τ(t)) = k(t).

(m) (∀Z∈Zinft)(∀v≥1) τ(E[Z]v) = E ′[τ(Z)]v. (Proof B.9.)

Some pairs of preforms are uniquely isomorphic in the sense that

there is exactly one pair of isomorphisms between them. For example,

define the “Roman centipede” preform ΠR by
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TR = {i, ii, iii, ...}∪{̄i, īi, īii, ...} ,
CR = {i:finio, i:procedo, ii:finio, ii:procedo, ...} , and

⊗R = { (i, i:finio, ī), (i, i:procedo, ii), (ii, ii:finio, īi), (ii, ii:procedo, iii), ... } .

It can be shown that this preform is uniquely isomorphic to the preform

Πce defined in Section 3.1. Essentially, there are exactly two nodes at

each nonzero stage, and exactly one of these two is a decision node.

Hence parts (c) and (l) of Proposition 3.3 determine τ . Then τ and

(10c) determine δ.

In contrast, other pairs of preforms are isomorphic but not uniquely

isomorphic. For example, define the “x-or-y” preform Πxy by

T xy = {O,X,Y} ,
Cxy = {x, y} , and

⊗xy = { (O, x,X), (O, y,Y) } .

There are two distinct isomorphisms from Πxy to the preform Πab de-

fined in Section 3.1. One is [Πxy, Πab, τ, δ] in which τ = {(X,A), (Y,B)}
and δ = {(x, a), (y, b)}. Another is [Πxy, Πab, τ ∗, δ∗] in which τ ∗ =

{(X,B), (Y,A)} and δ = {(x, b), (y, a)}.

Appendix A. For Preforms

Lemma A.1. Suppose that (T,C,⊗) satisfies (1a) and derive its F

and to. (a) Then, F−1(C) = p(Tr{to}), where p is defined as in (1b).

(b) Also, F−1(C) = {t1|(∃t2)t1≺t2}, where ≺ is defined by (4).

Proof. (a). I argue

F−1(C) = { t | (∃c) (t, c)∈F }
= { t | (∃c)(∃t]) (t, c, t])∈⊗ }
= { t | (∃t]) t=p(t]) }
= p(Tr{to}) ,

where the first equality is a rearrangement, the second follows from

(1a), the third follows from the definition of p, and the fourth holds

because the domain of p is Tr{to}.
(b). By part (a), it suffices to prove

p(Tr{to}) = { t1 | (∃t2) t1≺t2 } .
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To prove the ⊆ direction, suppose there exists t] such that t = p(t]).

Then t ≺ t] by the definition of ≺. Conversely, suppose t1 ≺ t2. Then

by the definition of ≺, there exists m≥1 such that t1 = pm(t2). If m

equals 1, t1 = p(t2) (and t2 ∈ Tr{to} because this set is the domain of

p). Otherwise, t1 = p(pm−1(t2)) (and pm−1(t2) ∈ Tr{to} because this

set is the domain of p). 2

Lemma A.2. Suppose (T, p) is a tree oriented toward to, and derive

k, ≺, 4, Zft, and Zinft by (3)–(6). Then the following hold.

(a) t1 ≺ t2 iff both k(t1) < k(t2) and t1 = pk(t
2)−k(t1)(t2).

(b) ≺ is the asymmetric part of ≺.

(c) t1 4 t2 iff both k(t1) ≤ k(t2) and t1 = pk(t
2)−k(t1)(t2), where p0 is

the identity function.

(d) (T,4) is a partially ordered set.

(e) If S⊆T is a chain, S∪{pm(t)|t∈S, k(t)≥m≥1} is a chain.

(f) If S⊆T is an infinite chain, S∪{pm(t)|t∈S, k(t)≥m≥1} ∈ Zinft.

(g) If S⊆T is a chain, there exists Z ∈ Zft∪Zinft such that S ⊆ Z.

(h) If t ∈ Z ∈ Zft∪Zinft and k(t)≥m≥1, then pm(t) ∈ Z.

Proof. (a). The reverse direction follows immediately from the def-

inition of ≺. To see the forward direction, suppose t1 ≺ t2. Then

by the definition of ≺, there exists an m ≥ 1 such that t1 = pm(t2).

Meanwhile by the definition of k(t1), I have to = pk(t
1)(t1). Combining

these two yields to = pk(t
1)(t1) = pk(t

1)(pm(t2)) = pk(t
1)+m(t2). Thus

k(t2) = k(t1)+m by the definition of k(t2). So m = k(t2)−k(t1). This

and the definition ofm imply both k(t2) > k(t1) and t1 = pk(t
2)−k(t1)(t2).

(b). By the definition of 4, it suffices to prove that ≺ is asymmetric.

This relation is asymmetric because if both t1 ≺ t2 and t2 ≺ t1 held,

part (a) would imply both k(t1) < k(t2) and k(t2) < k(t1).

(c). By using the definition of 4 for the first equivalence, and by

using part (a) for the second equivalence,

t14t2

⇔ t1≺t2 or t1=t2

⇔ [ k(t1)<k(t2) and t1=pk(t
2)−k(t1)(t2) ] or

[ k(t1)=k(t2) and t1=pk(t
2)−k(t1)(t2) ]

⇔ k(t1)≤k(t2) and t1=pk(t
2)−k(t1)(t2) .



Appendix A. For preforms 13

(d). Reflexivity holds by the definition of 4. Transitivity holds by

[1] the definition of 4 and [2] the transitivity of ≺, which follows im-

mediately from its definition. To show antisymmetry, suppose t1 4 t2

and t2 4 t1. Then by two applications of part (c), k(t1) = k(t2). Thus

by t1 4 t2 and part (c) again, t1 = p0(t2) = t2.

(e). Let p0 be the identity function, so that

S∪{pm(t)|t∈S, k(t)≥m≥1} = {pm(t)|t∈S, k(t)≥m≥0} .

Then consider pm
1
(t1) and pm

2
(t2) such that {t1, t2}∈S, k(t1)≥m1≥0,

and k(t2)≥m2≥0. Since S is a chain, assume without loss of gen-

erality that t1 4 t2. Thus by part (c), there is an m≥0 such that

t1 = pm(t2). If m1+m > m2, pm
1
(t1) = pm

1+m(t2) ≺ pm
2
(t2). If

m1+m = m2, pm
1
(t1) = pm

1+m(t2) = pm
2
(t2). If m1+m < m2,

pm
1
(t1) = pm

1+m(t2) � pm
2
(t2).

(f). Suppose S is an infinite chain. Since S is a chain and since minS

exists, I may number the elements of S so that minS = t1 ≺ t2 ≺ t3 ... .

Thus by part (a), (∀n≥1) k(tn) < k(tn+1). Hence (∀n≥1) k(tn) ≥ n−1.

Now consider S̄ := S∪{pm(t)|t∈S, k(t)≥m≥1}. By part (e), S̄ is

a chain. Further, it is infinite because S is infinite. Thus it remains

to be shown that S̄ is maximal. Accordingly, suppose that it were not

maximal. Then there would be some t′ /∈ S̄ such that S̄∪{t′} is a chain.

This paragraph shows that (∀n≥1) k(t′) ≥ n. Take any n≥1. Since

t′ /∈ S̄, and since tn and all its predecessors are in S̄, it must be that

t′ � tn. Thus by part (a), k(t′) > k(tn). Thus, since k(tn) ≥ n−1 by

the second-previous paragraph, k(t′) ≥ n.

By the previous paragraph, k(t′) /∈ N0. This contradicts the defini-

tion of k.

(g). Suppose S is a chain. On the one hand, suppose S is infinite.

Then part (f) shows that it is a subset of a member of Zinft. On the

other hand, suppose S is finite. Then maxS exists, and two cases

arise. These cases are defined in the first sentences of the next two

paragraphs.

[1] Suppose that [a] maxS does not have a successor or [b] maxS

has a successor that does not have a successor. In either [a] or [b], let

t∗ denote the node without a successor. Then S∪{t∗} is a chain. Thus

by part (e), S̄ = (S∪{t∗})∪{pm(t)|t∈S∪{t∗}, k(t)≥m≥1} is a chain. If

S̄ were not maximal, there would be some t′ /∈ S̄ such that S̄∪{t′} is
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a chain. Since S̄ contains all the predecessors of t∗, it must be that

t′ � t∗. But this contradicts the assumption that t∗ does not have a

successor.

[2] Suppose that maxS has a successor and that every successor of

maxS has a successor. Then define S1 by S1 = S∪{t1} where t1 is

some successor of maxS. Then, for every n≥2, define Sn = Sn−1∪{t2}
where tn is some successor of tn−1. Then ∪n≥1Sn is an infinite chain.

Thus part (f) shows that it is a subset of a member of Zinft.

(h). Suppose t ∈ Z ∈ Zft∪Zinft and k(t)≥m≥1. I argue

pm(t) ∈ Z∪{pm′(t′)|t′∈Z, k(t′)≥m′≥1} ⊆ Z .

The set membership holds because t ∈ Z and k(t)≥m≥1. The set

inclusion holds because [1] Z∪{pm′(t′)|t′∈Z, k(t′)≥m′≥1} is a chain by

part (e) and [2] Z is maximal by Z ∈ Zft∪Zinft. 2

Proof A.3 (for Proposition 2.1). (a). I must show that

Zft 3 Z 7→ maxZ(13)

is a bijection onto TrF−1(C), and that its inverse is

{pm(t)|k(t)≥m≥1}∪{t} 7→t ∈ TrF−1(C) .(14)

These results follow from the next two paragraphs.

This paragraph argues that the function (13) followed by the function

(14) is the identity function on Zft. Accordingly, take any Z ∈ Zft. The

remainder of this paragraph argues

Z 7→ maxZ 7→(15)

{ pm(maxZ) | k(maxZ)≥m≥1 }∪{ maxZ } = Z ,

where the two arrows apply the functions (13) and (14), respectively.

By inspection, the first arrow applies the function (13). Before applying

the function (14), it must be shown that maxZ exists and is an element

of TrF−1(C). First, maxZ exists and is an element of T because

Z ⊆ T is a finite chain. Second, maxZ is not an element of F−1(C),

for if it were, [1] it would have a successor by Lemma A.1(b), thus [2] Z

would not be a maximal chain, and thus [3] Z /∈ Zft in contradiction to

the definition of Z. Accordingly, the second arrow in (15) applies the

function (14) at t = maxZ. To continue, the ⊆ direction of the equality

in (15) holds by Lemma A.2(h) applied at t = maxZ. To see the ⊇
direction, take any t ∈ Z. Because Z is a chain that contains maxZ,
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either t 4 maxZ or maxZ ≺ t. The former implies that t is in the

left-hand side. The latter contradicts the definition of the maximum

operator.

This paragraph argues that the function (14) followed by the func-

tion (13) is the identity function on TrF−1(C). Accordingly, take any

t ∈ TrF−1(C). The remainder of this paragraph argues

t 7→ {pm(t)|k(t)≥m≥1}∪{t} 7→(16)

max{pm(t)|k(t)≥m≥1}∪{t} = t ,

where the two arrows apply the function (14) and (13), respectively. By

inspection, the first arrow applies the function (14). Before applying

the function (13), it must be shown that S := {pm(t)|k(t)≥m≥1}∪{t}
is an element of Zft. Since S is a finite chain by inspection, I only need

to show that S is maximal. Accordingly, suppose there were a t′ /∈ S
such that S∪{t′} was a chain. Because t ∈ S and S∪{t′} is a chain,

either t′ 4 t or t ≺ t′. The first case is impossible for it would imply

that t′ ∈ S, in contradiction to the definition of t′. The second case

would imply [1] that t has a successor, and thus [2] that t ∈ F−1(C) by

Lemma A.1(b). This would contradict the definition of t. Accordingly,

the second arrow in (16) applies the function (13) at Z = S. The

equality is immediate.

(b). This paragraph shows that E is a well-defined function from

Zinft into TN1 . Accordingly, take any Z ∈ Zinft. It must be shown that

(∀v≥1)(∃!t∈Z) k(t) = v .

Take any v ≥ 1. First, consider uniqueness. It must be shown that

there are not two nodes in Z at stage v. This holds because distinct

nodes in a chain have different stages by Lemma A.2(a). Second, con-

sider existence. Let S := {t′∈Z|k(t′)≤v}. Since distinct nodes in a

chain have different stages by Lemma A.2(a), S is finite. Thus, since Z

is infinite, there is some t∗ ∈ Z such that k(t∗) > v. Let t = pk(t
∗)−v(t∗).

Note t ∈ Z by Lemma A.2(h) at its t equal to t∗ and its m equal to

k(t∗)−v. Further note that

to = pk(t
∗)(t∗) = pv(pk(t

∗)−v(t∗)) = pv(t) ,

where the first equality holds by the definition of k(t∗), the second is

a rearrangement, and the thirds holds by the definition of t. Thus

k(t) = v by the definition of k(t).
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This paragraph shows that E maps from Zinft into Y ⊆ TN1 . Accord-

ingly, take any Z ∈ Zinft. By the previous paragraph, I may let E(Z) =

(tv)v≥1. It must be shown that to = p(t1) and that (∀v≥1) tv = p(tv+1).

Since k(t1) = 1 by the definition of E, p(t1) = to by the definition of

k. Next take any v ≥ 1. By the definition of E, [1] {tv, tv+1} ⊆ Z,

[2] k(tv) = v, and [3] k(tv+1) = v+1. By [1], tv ≺ tv+1 or tv+1 4 tv.

Thus tv ≺ tv+1 because the alternative is impossible by [2], [3], and

Lemma A.2(c). Finally, tv ≺ tv+1 implies tv = p(tv+1) by [2], [3], and

Lemma A.2(a).

The next two paragraphs prove that E is a bijection from Zinft onto

Y , and that its inverse is

{to}∪{tv|v≥1} 7→(tv)v≥1 ∈ Y .(17)

This paragraph argues that E followed by the function (17) is the

identity function on Zinft. Accordingly, take any Z ∈ Zinft. I argue

Z 7→ E(Z) 7→
{to}∪{E(Z)v|v≥1} = Z ,

where the arrows apply the functions E and (17), respectively. The first

arrow applies E by inspection. The second arrow applies (17) because

E(Z) ∈ Y by the second-previous paragraph. To see the ⊆ direction

of the equality, take any t ∈ {to}∪{E(Z)v|v≥1}. If t = to, then t ∈ Z
because to belongs to every maximal chain and Z is a maximal chain.

If t = E(Z)v from some v ≥ 1, then t ∈ Z by the definition of E. To

see the ⊇ direction of the equality, take any t ∈ Z. If k(t) = 0, then

t = to. If k(t) ≥ 1, then t = E(Z)k(t) by the definition of E.

This paragraph argues that the function (17) followed by E is the

identity function on Y . Accordingly, take any (tv)v≥1 ∈ Y . I argue

(tv)v≥1 7→ {to}∪{tv|v≥1} 7→
E( {to}∪{tv|v≥1} ) = (tv)v≥1 ,

where the arrows apply the functions (17) and E, respectively. The

first arrow applies (17) by inspection. Before applying E, it must be

shown that S := {to}∪{tv|v≥1} belongs to Zinft. In other words, it

must be shown that S is an infinite maximal chain. The definitions of

(tv)v≥1 and Y assure that S is a chain and that S contains a node of

every stage. This easily implies that S is infinite. It also implies that

S is maximal because distinct nodes in a chain have different stages by
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Lemma A.2(a). Hence S belongs to Zinft and the second arrow applies

E. The equality follows from the fact that (∀v≥1) k(tv) = v by the

definitions of (tv)v≥1 and Y . 2

Proof A.4 (for Proposition 2.2). To show the contrapositive of (8a),

suppose F (t) 6= F (t′). Without loss of generality, suppose ĉ ∈ F (t) but

ĉ /∈ F (t′). Let Ĥ = F−1(ĉ) and note that t ∈ Ĥ but t′ /∈ Ĥ. Thus,

since H = {F−1(c)|c} is a partition by (1c), there cannot be an H that

contains both t and t′.

To show the contrapositive of (8b), suppose that F (t)∩F (t′) 6= ∅.

Then there is c such that c ∈ F (t) and c ∈ F (t′). Hence both t and t′

belong to H := F−1(c). 2

Lemma A.5. Suppose (T,C,⊗) satisfies (1a), derive p by (1b), and

derive q by (9). Then the following hold.

(a) ⊗ = { (p(t]), q(t]), t]) | t] 6=to }.
(b) ⊗−1 = (p, q).

Proof. (a) To show the ⊆ direction, take any (t, c, t]) ∈ ⊗. Then

[1] t] 6= to by (1a), [2] t = p(t]) by the definition of p, and [3] c =

q(t]) by the definition of q. Conclusions [2] and [3] imply (t, c, t]) =

(p(t]), q(t]), t]). Thus conclusion [1] implies that (t, c, t]) belongs to

{ (p(t]), q(t]), t])) | t] 6=to }.
To show the ⊇ direction, take any t] 6= to. Then by (1a) there exists

(t, c) such that (t, c, t]) ∈ ⊗. By the definition of p, t = p(t]). By

the definition of q, c = q(t]). Therefore by the last three sentences,

(p(t), q(t), t]) ∈ ⊗.

(b). Part (a) suffices because (1a) assumes that ⊗ is a bijection when

viewed as a function from the first two components of its constituent

triples to the third component of its constituent triples. 2

Appendix B. For Morphisms

Lemma B.1. Suppose that the preform Π = (T,C,⊗) determines

F , t, p, and q, and that the preform Π ′ = (T ′, C ′,⊗′) determines F ′,

t′o, p′, and q′. Further suppose that τ :T→T ′ and δ:C→C ′. Then the

following three conditions are equivalent.

{ (τ(t), δ(c), τ(t])) | (t, c, t])∈⊗ } ⊆ ⊗′ .(a)
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(∀(t, c)∈F ) (τ(t), δ(c)) ∈ F ′ and

(∀(t, c)∈F ) τ(t⊗c) = τ(t)⊗′δ(c) .
(b)

(∀t] 6=to) τ(p(t])) = p′(τ(t])) and

(∀t] 6=to) δ(q(t])) = q′(τ(t])) .
(c)

Proof. (a)⇒(b). Assume (a). To show the first half of (b), I argue

F ′ = { (t′, c′) | (∃t′]) (t′, c′, t′])∈⊗′ }
⊇ { (t′, c′) | (∃t′])(∃(t, c, t])∈⊗) (t′, c′, t′])=(τ(t), δ(c), τ(t])) }
= { (t′, c′) | (∃(t, c, t])∈⊗) (t′, c′)=(τ(t), δ(c)) }
= { (τ(t), δ(c)) | (∃t]) (t, c, t])∈⊗ }
= { (τ(t), δ(c)) | (t, c)∈F } .

The first equality holds by the definition of F ′, and the set inclu-

sion holds by (a). The second and third equalities are rearrange-

ments, and the fourth holds by the definition of F . To see the second

half of (b), take any (t, c) ∈ F . Then (t, c, t⊗c) ∈ ⊗. Thus by (a),

(τ(t), δ(c), τ(t⊗c)) ∈ ⊗′. Thus τ(t)⊗′δ(c) = τ(t⊗c).
(a)⇐(b). Assume (b). Take any (t, c, t]) ∈ ⊗. Then (t, c) ∈ F by

the definition of F . Thus by (b), τ(t)⊗′δ(c) = τ(t⊗c). Thus since

t⊗c = t] by the definition of (t, c, t]), I have τ(t)⊗′δ(c) = τ(t]). Thus

(τ(t), δ(c), τ(t])) ∈ ⊗′.
(a)⇒(c). Assume (a). Take any t] 6= to. Then by Lemma A.5(a),

(p(t]), q(t]), t]) ∈ ⊗. Thus by (a),

( τ(p(t])), δ(q(t])), τ(t]) ) ∈ ⊗′ .

This implies τ(p(t])) = p′(τ(t])) by the definition of p′. Further, it

implies δ(q(t])) = q′(τ(t])) by the definition of q′.

(a)⇐(c). Assume (c). To begin, I argue

(∀t6=to) τ(t) 6= t′o .(18)

Take any t 6= to. By the first half of (c), τ(t) is in the domain of p′.

Thus, since the domain of p′ is T ′r{t′o}, τ(t) 6= t′o. Then, I argue

⊗′ = { ( p′(t′]), q′(t′]), t′] ) | t′] 6=t′o }
⊇ { ( p′(τ(t])), q′(τ(t])), τ(t]) ) | τ(t]) 6=t′o }
⊇ { ( p′(τ(t])), q′(τ(t])), τ(t]) ) | t] 6=to }



Appendix B. For Morphisms 19

= { ( τ(p(t])), τ(q(t])), τ(t]) ) | t] 6=to }
= { (τ(t), δ(c), τ(t])) | t=p(t]), c=q(t]), t] 6=to }
= { (τ(t), δ(c), τ(t])) | (t, c, t])∈⊗ }

The first equality holds by Lemma A.5(a) for Π ′. The first set in-

clusion holds by the assumption that τ :T→T ′. The second set inclu-

sion holds by (18). The second equality holds by both halves of (c).

The third equality is a rearrangement. The fourth equality holds by

Lemma A.5(a) for Π. 2

Proof B.2 (for Proposition 3.1). I argue

[Π,Π ′, τ, δ] is a morphism

⇔ [Π,Π ′, τ, δ] satisfies (10a)–(10b) and (10c)

⇔ [Π,Π ′, τ, δ] satisfies (10a)–(10b) and (11)

⇔ [Π,Π ′, τ, δ] satisfies (10a)–(10b) and (12) .

The first equivalence is the definition of a morphism. The next two

equivalences follow from Lemma B.1. 2

Lemma B.3. Suppose the preform Π = (T,C,⊗) determines p and

q, and the preform Π ′ = (T ′, C ′,⊗′) determines p′ and q′. Further

suppose τ :T→T ′ and δ:C→C ′. (a) Then, (12a) is equivalent to

{ (τ(t]), τ(t)) | (t], t)∈p } ⊆ p′ .

(b) Also, (12b) is equivalent to

{ (τ(t]), δ(c) | (t], c)∈q } ⊆ q′ .

Proof. (a). I argue

(∀t] 6=to) τ(p(t])) = p′(τ(t]))

⇔ { (τ(t]), τ(p(t])) | t] 6=to } ⊆ p′

⇔ { (τ(t]), τ(t)) | t=p(t]), t] 6=to } ⊆ p′

⇔ { (τ(t]), τ(t)) | (t], t)∈p } ⊆ p′ .

The first two equivalences are rearrangements. The last holds because

the domain of p is Tr{to}.
(b). I argue

(∀t] 6=to) δ(q(t])) = q′(τ(t]))

⇔ { (τ(t]), δ(q(t])) | t] 6=to } ⊆ q′
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⇔ { (τ(t]), δ(c)) | c=q(t]), t] 6=to } ⊆ q′

⇔ { (τ(t]), δ(c)) | (t], c)∈q } ⊆ q′ .

The first two equivalences are rearrangements. The last holds because

the domain of q is Tr{to}. 2

Proof B.4 (for Proposition 3.2). (a). This is trivial. It holds be-

cause τ(to) ∈ T ′ and because (∀t′) t′o 4′ t′.
(b). Suppose t ∈ F−1(C). Then by Lemma A.1(a) for Π, there exists

a t] such that t = p(t]). Thus by Proposition 3.1(b) and Lemma B.3(a),

τ(t) = p′(τ(t])). Thus by Lemma A.1(a) for Π ′, τ(t) ∈ (F ′)−1(C ′).

(c). Suppose m≥1 and t1 = pm(t2).

This paragraph shows by induction on i≥1 that

(∀m≥i≥1) τ(pi(t2)) = (p′)i(τ(t2)) .(20)

The initial step (i=1) holds by (12a) of Proposition 3.1, applied at

t] = t2 (note t2 6=to because pm(t2) exists and m≥1). To show the

inductive step (m≥i>1), I argue

τ ◦ pi(t2) = τ ◦ p ◦ pi−1(t2)
= p′ ◦ τ ◦ pi−1(t2)
= p′ ◦ (p′)i−1 ◦ τ(t2)

= (p′)i ◦ τ(t2) .

The first equality is a rearrangement. The second equation holds by

(12a) of Proposition 3.1, applied at t] = pi−1(t2) (note pi−1(t2)6=to
because pm(t2) exists and m≥i). The third equation holds by the in-

ductive hypothesis, and the fourth is a rearrangement.

Finally, I argue

τ(t1) = τ(pm(t2)) = (p′)m(τ(t2)) .

The first equality holds by the assumption t1 = pm(t2), the second

holds by (20) at i=m.

(d). By the definition of k′(τ(t)), it suffices to show

t′o = (p′)k
′(τ(to))[τ(to)]

= (p′)k
′(τ(to))[(p′)k(t)(τ(t))]

= (p′)k(t)+k
′(τ(to))(τ(t)) .
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The first equality follows from the definition of k′(τ(to)). To see the

second equality, note to = pk(t)(t) by the definition of k(t). Hence

τ(to) = (p′)k(t)(τ(t)) by part (c). The final equality is a rearrangement.

(e). Suppose t1 ≺ t2. Then by the definition of ≺, there exists m≥1

such that t1 = pm(t2). Thus by part (c), τ(t1) = (p′)m(τ(t2)). Thus by

the definition of ≺′, τ(t1) ≺′ τ(t2).

(f). Suppose t1 4 t2. Then by the definition of 4, either t1 = t2 or

t1 ≺ t2. In the case of equality, τ(t1) = τ(t2). In the case of precedence,

part (e) implies τ(t1) ≺ τ(t2). Thus in either case, τ(t1) 4 τ(t2).

(g). Suppose S ⊆ T is a chain.

To show that τ |S is injective, suppose t1 and t2 are distinct members

of S. Since S is a chain, t1 ≺ t2 without loss of generality. Hence

τ(t1) ≺′ τ(t2) by part (e). Hence τ(t1) and τ(t2) are distinct.

To show that τ(S) is a chain, take any distinct t′1 and t′2 in τ(S).

Since both are in τ(S), there exist distinct t1 and t2 in S such that

τ(t1) = t′1 and τ(t2) = t′2. Thus since S is a chain, t1 ≺ t2 without

loss of generality. Hence τ(t1) ≺′ τ(t2) by part (e). Hence t′1 ≺′ t′2 by

the definition of t1 and t2.

(h). Take any Z ∈ Zinft. Since Z is an infinite chain in T , part (g) im-

plies that τ(Z) is an infinite chain in T ′. Thus by Lemma A.2(f) applied

to (T ′, p′) at S ′ = τ(Z), there exists Z ′ ∈ Z ′inft such that τ(Z) ⊆ Z ′.

(i). Take any Z ∈ Zft. Since Z is a chain in T , part (g) implies that

τ(Z) is a chain in T ′. Thus by Lemma A.2(g) applied to (T ′, p′) at

S ′ = τ(Z), there exists Z ′ ∈ Z ′ft∪Z ′inft such that τ(Z) ⊆ Z ′.

(j). Take any H. By (1c) for Π, there exists c such that H = F−1(c).

Let H ′ = (F ′)−1(δ(c)). Note H ′ ∈ H′ by (1c) for Π ′. Thus it suffices

to argue

τ(H) = { τ(t) | t∈H }
= { t′ | (∃t) t′=τ(t) and t∈H }
= { t′ | (∃t) t′=τ(t) and t∈F−1(c) }
= { t′ | (∃t) t′=τ(t) and (t, c)∈F }
⊆ { t′ | (∃t) t′=τ(t) and (τ(t), δ(c))∈F ′ }
= { t′ | (∃t) t′=τ(t) and (t′, δ(c))∈F ′ }
⊆ { t′ | (t′, δ(c))∈F ′ }
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= (F ′)−1(δ(c))

= H ′ .

The first and second equalities are rearrangements, the third follows

from the definition of c, and the fourth is a rearrangement. The first

inclusion follows from (11a) of Proposition 3.1(a). The fifth equality is

a rearrangement. The second inclusion follows from τ(T ) ⊆ T ′, which

follows from (10a). The sixth equality is a rearrangement, and the final

equality follows from the definition of H ′. 2

Proof B.5 (for Theorem 1). This paragraph notes that, for every

preform Π = (T,C,⊗), the quadruple [Π,Π, idSet
T , idSet

C ] is a morphism.

By inspection idSet
T satisfies (10a) and idSet

C satisfies (10b). Further,

(10c) holds with equality.

This paragraph shows that, if α=[Π,Π ′, τ, δ] and α′=[Π ′, Π ′′, τ ′, δ′]

are morphisms, then [Π,Π ′′, τ ′◦τ, δ′◦δ] is a morphism. Accordingly,

take any such α and α′. Let Π = (T,C,⊗), Π ′ = (T ′, C ′,⊗′), and Π ′′ =

(T ′′, C ′′,⊗′′). Note that τ :T→T ′ by (10a) for α, and that τ ′:T ′→T ′′ by

(10a) for α′. Hence τ ′◦τ :T→T ′′, which is (10a) for α′◦α. A parallel

argument shows δ′◦δ:C→C ′′, which is (10b) for α′◦α. Finally, to show

that (10c) holds for α′◦α, I argue

{ (τ ′◦τ(t), δ′◦δ(c), τ ′◦τ(t])) | (t, c, t])∈⊗ }
= { (τ ′(t′), δ′(c′), τ ′(t′])) | (t′, c′, t′])∈{(τ(t), δ(c), τ(t]))|(t, c, t])∈⊗} }
⊆ { (τ ′(t′), δ′(c′), τ ′(t′])) | (t′, c′, t′])∈⊗′ }
⊆ ⊗′′ .

The equality is a rearrangement. The first inclusion holds by (10c) for

α, and the second inclusion holds by (10c) for α′.

The first paragraph of this proof shows that the identity arrow idΠ
is well-defined for any preform Π. The second paragraph shows that

the composition α′◦α is well-defined for any arrows α and α′. The unit

and associative laws are immediate. Thus ncPreform is a category

(e.g. Awodey (2010, Section 1.3)). 2

Proof B.6 (for Theorem 2). Throughout this proof, assume that

α = [Π,Π ′, τ, δ] is a morphism, where Π = (T,C,⊗) and where Π ′ =

(T ′, C ′,⊗′).
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In this paragraph, suppose that α = [Π,Π ′, τ, δ] is an isomorphism,

and let α−1 = [Π∗, Π∗∗, τ ∗, δ∗] be its inverse. Then

[Π∗, Π∗∗, τ ∗, δ∗]◦[Π,Π ′, τ, δ] = idΠ = [Π,Π, idSet
T , idSet

C ] and(21a)

[Π,Π ′, τ, δ]◦[Π∗, Π∗∗, τ ∗, δ∗] = idΠ′ = [Π ′, Π ′, idSet
T ′ , id

Set
C′ ] ,(21b)

where the first equality in both lines follows from the definition of α−1,

and the second equality in both lines follows from the definition of id.

The well definition of ◦ in (21a) implies

Π∗ = Π ′ .(22)

The well definition of ◦ in (21b) implies

Π∗∗ = Π .(23)

The third component of (21a) implies that τ ∗◦τ = idSet
T . The third

component of (21b) implies that τ◦τ ∗ = idSet
T ′ . The last two sentences

imply that τ is a bijection from T onto T ′ and that

τ ∗ = τ−1 .(24)

Similarly, the fourth components of (21a) and (21b) imply that δ is a

bijection from C onto C ′ and that

δ∗ = δ−1 .(25)

The previous two sentences have shown that τ and δ are bijections.

Further,

α−1 = [Π∗, Π∗∗, τ ∗, δ∗] = [Π ′, Π, τ−1, δ−1] ,

where the first equality follows from the definition of α−1 in the first

sentence of this paragraph, and where the second equality follows from

(22)–(25).

It remains to prove the reverse direction of the theorem’s second

sentence. Accordingly, suppose that τ and δ are bijections. Define

α∗ = [Π ′, Π, τ−1, δ−1]. Then

α∗◦α = [Π ′, Π, τ−1, δ−1]◦[Π,Π ′, τ, δ] = [Π,Π, idSet
T , idSet

C ] = idΠ and

α◦α∗ = [Π,Π ′, τ, δ]◦[Π ′, Π, τ−1, δ−1] = [Π ′, Π ′, idSet
T ′ , id

Set
C′ ] = idΠ′ .

Thus α is an isomorphism. 2

Lemma B.7. Suppose [Π,Π ′, τ, δ] is an isomorphism, where Π =

(T,C,⊗) determines F , p, q, ≺, and 4, and where Π ′ = (T ′, C ′,⊗′)
determines F ′, p′, q′, ≺′, and 4′. Then the following hold.
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(a) (τ, δ, τ)|⊗ is a bijection from ⊗ onto ⊗′.
(b) (τ, δ)|F is a bijection from F onto F ′.

(c) τ |F−1(C) is a bijection from F−1(C) onto (F ′)−1(C).

(d) (τ, τ)|p is a bijection from p onto p′.

(e) (τ, δ)|q is a bijection from q onto q′.

(f) (τ, τ)|≺ is a bijection from ≺ onto ≺′.
(g) (τ, τ)|4 is a bijection from 4 onto 4′.

Proof. Theorem 2 implies

τ is a bijection from T onto T ′ ,(26a)

δ is a bijection from C onto C ′ , and(26b)

α−1 = [Π ′, Π, τ−1, δ−1] .(26c)

(a). By (10c) for α, (τ, δ, τ)|⊗ is a well-defined function from ⊗ into

⊗′. It is injective by (26a)–(26b). To show it is surjective, take any

(t′, c′, t′]) ∈ ⊗′. By (26c), and by (10c) for α−1,

(τ−1(t′), δ−1(c′), τ−1(t′])) ∈ ⊗ .

Thus (τ, δ, τ)(τ−1(t′), δ−1(c′), τ−1(t′])) = (t′, c′, t′]) is in the range of

(τ, δ, τ)|⊗.

(b). By (11a) of Proposition 3.1(a) for α, (τ, δ)|F is a well-defined

function from F into F ′. It is injective by (26a)–(26b). To show it is

surjective, take any (t′, c′) ∈ F ′. By (26c), and by (11a) of Proposi-

tion 3.1(a) for α−1,

(τ−1(t′), δ−1(c′)) ∈ F .

Thus (τ, δ)(τ−1(t′), δ−1(c′)) = (t′, c′) is in the range of (τ, δ)|F .

(c). Proposition 3.2(b) for α implies τ |F−1(C) is a well-defined func-

tion from F−1(C) into (F ′)−1(C ′). It is injective by (26a). To show it is

surjective, take any t′ ∈ (F ′)−1(C ′). Proposition 3.2(b) for α−1 implies

τ−1(t′) ∈ F−1(C). Thus τ(τ−1(t′)) = t′ is in the range of τ |F−1(C).

(d). By Proposition 3.1(b) for α, (12a) holds. Thus by Lemma B.3(a)

for α, (τ, τ)|p is a well-defined function from p into p′. It is injective

by (26a). To show it is surjective, take any (t′], t′) ∈ p′. By (26c),

and by Proposition 3.1(b) for α−1, I have (12a) for α−1. Thus by

Lemma B.3(a) for α−1, (τ−1, τ−1)|p′ is a well-defined function from p′
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into p.9 Applying this at the (t′], t′) defined three sentences ago yields

(τ−1(t′]), τ−1(t′)) ∈ p .

Thus (τ, τ)(τ−1(t′]), τ−1(t′)) = (t′], t′) is in the range of (τ, τ)|p.
(e). By Proposition 3.1(b) for α, (12b) holds. Thus by Lemma B.3(b)

for α, (τ, δ)|q is a well-defined function from q into q′. It is injective

by (26a)–(26b). To show it is surjective, take any (t′], c′) ∈ q′. By

(26c), and by Proposition 3.1(b) for α−1, I have (12b) for α−1. Thus

by Lemma B.3(b) for α−1, (τ−1, δ−1)|q′ is a well-defined function from

q′ into q.10 Applying this at the (t′], c′) defined three sentences ago

yields

(τ−1(t′]), δ−1(c′)) ∈ q .

Thus (τ, δ)(τ−1(t′]), δ−1(c′)) = (t′], c′) is in the range of (τ, δ)|q.
(f). Proposition 3.2(e) implies that (τ, τ)|≺ is a well-defined function

from ≺ into ≺′. It is injective by (26a). To show it is surjective, take

any (t′1, t′2) ∈ ≺′. By (26c), and by Proposition 3.2(e) for α−1,

(τ−1(t′1), τ−1(t′2)) ∈ ≺ .

Thus (τ, τ)(τ−1(t′1), τ−1(t′2)) = (t′1, t′2) is in the range of (τ, τ)|≺.

(g). This proof is similar to that of the previous part. Merely replace

≺ with 4, and replace Proposition 3.2(e) with Proposition 3.2(f). 2

Lemma B.8. Suppose [Π,Π ′, τ, δ] is an isomorphism, where Π =

(T,C,⊗) determines H and Z = Zft∪Zinft, and where Π ′ = (T,C,⊗)

determines H′ and Z ′ = Z ′ft∪Z ′inft. Then the following hold.

(a) (∀H∈H) τ(H) ∈ H′.
(b) (∀Z∈Z) τ(Z) ∈ Z ′.

Proof. By Theorem 2, τ is a bijection from T onto T ′, δ is a bijection

from C onto C ′, and α−1 = [Π ′, Π, τ−1, δ−1]. These facts will sometimes

be used implicitly. Also, let Π determine F , and Π ′ determine F ′.

9The previous two sentences resemble the paragraph’s first two sentences. To

be explicit, (12a) for α−1 is (∀t′]∗ 6=t′o) τ−1(p′(t′]∗ )) = p(τ−1(t′]∗ )). Lemma B.3(a) for

α−1 shows this is equivalent to {(τ−1(t′]∗ ), τ−1(t′∗))|(t
′]
∗ , t
′
∗)∈p′} ⊆ p.

10The previous two sentences resemble the paragraph’s first two sentences. To

be explicit, (12b) for α−1 is (∀t′]∗ 6=t′o) δ−1(q′(t′]∗ )) = q(τ−1(t′]∗ )). Lemma B.3(b) for

α−1 shows this is equivalent to {(τ−1(t′]∗ ), δ−1(c′∗))|(t
′]
∗ , c
′
∗)∈q′} ⊆ q.
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(a). Take any H. By the definition of H, there exists c such that

H = F−1(c). Note that

H = F−1(c)(27)

= { t | (t, c)∈F }
= { t | (∃(t′, c′)∈F ′) t=τ−1(t′), c=δ−1(c′) }
= { t | (∃t′) (t′, δ(c))∈F ′, t=τ−1(t′) }
= { τ−1(t′) | (t′, δ(c))∈F ′ }
= { τ−1(t′) | t′ ∈ (F ′)−1(δ(c)) }
= τ−1( (F ′)−1(δ(c)) ) ,

where the first equation holds by the definition of c, the third equation

holds by Lemma B.7(b), and the remaining equations are rearrange-

ments. Because τ is a bijection, (27) implies τ(H) = (F ′)−1(δ(c)).

Thus τ(H) ∈ H′ by the definition of H′.
(b). Take any Z. Then by Proposition 3.2(g) applied to α at S = Z,

τ(Z) is a chain. Hence it remains to be shown that τ(Z) is maxi-

mal. Suppose not. Then there is t′ /∈ τ(Z) such that τ(Z)∪{t′} is

a chain. By Proposition 3.2(g) applied to α−1 at S ′ = τ(Z)∪{t′},
τ−1(τ(Z)∪{t′}) = Z∪{τ−1(t′)} is a chain. Note τ−1(t′) /∈ Z because τ

is a bijection and because t′ /∈ τ(Z). This contradicts the maximality

of Z. 2

Proof B.9 (for Proposition 3.3). Parts (a) and (g) follow from

Lemma B.7. Before proving the remainder, note Theorem 2 implies

that τ is a bijection from T onto T ′, that δ is a bijection from C onto

C ′, and that α−1 = [Π ′, Π, τ−1, δ−1]. These facts will sometimes be

used implicitly.

(h). Lemma B.8(a) implies that τ |H is a well-defined function from

H into H′. It is injective because τ is injective. To show that it

is surjective, take any H ′ ∈ H′. By Lemma B.8(a) applied to α−1,

τ−1(H ′) ∈ H. Thus τ(τ−1(H ′)) = H ′ is in the range of τ |H.

(i)–(j). Let Z = Zft∪Zinft and Z ′ = Z ′ft∪Z ′inft. Since τ is a bijection,

the cardinality of S equals the cardinality of τ(S) for any set S ⊆ T .

Thus it suffices for both parts (i) and (j) to show that τ |Z is a bijection

from Z onto Z ′.
Lemma B.8(b) implies that τ |Z is a well-defined function from Z into

Z ′. It is injective because τ is injective. To show that it is surjective,
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take any Z ′ ∈ Z ′. By Lemma B.8(b) applied to α−1, τ−1(Z ′) ∈ Z.

Thus τ(τ−1(Z ′)) = Z ′ is in the range of τ |Z .

(k). Since to weakly precedes all nodes in T , to 4 τ−1(t′o). Thus by

part (g), τ(to) 4′ t′o. Meanwhile, since t′o weakly precedes all nodes in

T ′, t′o 4′ τ(to). The last two sentences imply τ(to) = t′o because 4′ is

antisymmetric (Lemma A.2(d) for (T ′, p′)).

(l). By part (k) and by the definition of k′(t′o), k′(τ(to)) = k′(t′o) = 0.

Thus by Proposition 3.2(d), k′(τ(t)) = k(t) + k′(τ(to)) = k(t).

(m). Take any Z ∈ Zinft. The expression E ′[τ(Z)] is well-defined

because τ(Z) ∈ Z ′inft by part (j). Now take any v≥1. By the definition

of E, E[Z]v is a stage-v member of Z. Thus by part (l), τ(E[Z]v) is a

stage-v member of τ(Z). Thus by the definition of E ′, τ(E[Z]v) equals

E ′[τ(Z)]v. 2
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