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Abstract 
This contribution discu sses the measurem ent of (in-)stability of finite 

horizon production planning when done on a rolling horizon basis. As 
examples we review Strategie capacity expansion planning, tactical master 
production scheduüng, and operational capacitated lot sizing. 

Keywords: Rolling horizon, nervousness, rescheduling, capacity expansion, 
master production scheduling, lot sizing 

1 Introduction 

Flanning methods with a finite horizon are, by definition, tailored to construct 
a plan for T periods. Consider, for instance, capacity expansion planning which 
is a long-term production planning problem. Since the lifetime of a firm is 
supposed to last beyond the planning horizon, capacity expansion planning is 
not a single event. A quick and dirty approach to meet that Situation would be 
to plan for the T periods 1,..., T, to implement that plan, to plan for the next 
T periods T + 1,.. .,2T, afterwards, and so on. This would make long-term 
production planning being a process running a Solution method every T periods. 
Beside the fact that the final state of one production plan defines the initial state 
for the next, these runs would be independent. 

In a real-world Situation, however, this working principle would not be ap-
propriate for several reasons. The capacity demand for instance appears to be 
non-deterministic. A m ore accurate estimate for capacity demand refines early 
forecast as time goes by, and (unexpected) events such as the invention of new 
technologies, process innovations, and competition issues make expansion plans 
obsolete. 

So, what usually happens is that planning overlaps. This is to say that 
starting with a plan for the periods 1,.. ,,T the plan for the first, say AT > 
1, periods is implemented and a new plan is then generated for the periods 
AT + 1,..., AT 4- T which coins the name rolling horizon. In other words, the 
production in the periods AT + 1,.. . ,T is rescheduled. Note, if A T < y some 
periods are revised more than once. 

This point of view reveals the capacity expansion planning problem with T 
periods being a subproblem in a rolling horizon Implementation. While the first 
AT periods of the current plan are implemented, new expansion sizes may differ 
markedly from a former expansion plan in later periods due to rescheduling. This 
phenomenon is known as nervousness [3, 4, 8, 1 1, 12, 38, 48, 58, 61, 65, 67, 68]. 
Since many proeeedings such as financial planning and subcontracting do heavily 
interact with the expansion process and the supply chain management is also 
affected by c apacity expansion, nervous plans cause high transaction costs. It 
is unlikely to find methods which take all relevant aspects into account. Hence, 
the Performance of capacity expansion planning methods should not only be 
evaluated by run-time and objective funetion values for a fixed horizon, but by 
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cost and (in—)stability measures for the Performance on a rolling horizon basis. 
too. This not only holds for the capacity expansion example, but for many other 
production planning problems, too. 

To emphasize the relevance of this work, Section 2 discusses several produc
tion planning problems for which decisions are to be made on a rolling horizon 
basis. These examples ränge from capacity expansion planning which is a Stra
tegie (long-term) decision, to master production scheduling which is a tactical 
(medium-term) decision, to lot sizing which is an operational (short-term) de
cision. In Section 3 we review some more literature for planning in rolling horizon 
implementations. Stability measures are then suggested in Section 4. Section 5 
is devoted to discuss the implications of robust planning to Solution methods. 
Concluding remarks in Section 6 finish the paper. 

2 Some Production Planning Problems 

2.1 Capacity Expansion Planning 

The problem of capacity expansion planning is to acquire extra capacity for a 
facility in order to meet a monotonically growing capacity demand. The finite 
planning horizon (which is typically several years) is subdivided into a number 
of discrete time periods (such as months). Capacity which is acquired before it 
is used ineurs holding costs for carrying excess capacity. Expanding the capacity 
of a facility causes expansion costs. Furthermore, capacity that is available at 
one facility may be converted to be available at another facility. This raises 
conversion costs. 

To give a mathematical programming model for capacity expansion planning 
(CEP), Table 1 defines the decision variables and Table 2 speeifies the Paramet
ers. 

Symbol Definition 
Ijt Excess capacity at facility j at the end of period t. 
qjt Capacity expansion at facility j in period t. 
yjit Capacity conversion from facility j t o facility i in period t . 

Table 1: Decision Variables for CEP 

j T J 
min^^(sjt(gj-t) + ^ <%;*(%*)) (1) 

j=i t=i j-i 

subject to 
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Symbol Definition 
Cjit Conversion cost function for Converting capacity at facility j to 

capacity at facility i in period t. 
djt Increment of demand for capacity at facility j in period t. 
hjt Non-negative holding cost function for having 

excess capacity at facility j at the end of period t. 
IjO Initial capacity at facility j. 
J Number of facilities. 
Sjt Non-negative expansion cost function at facility j in period t. 
T Number of periods. 

Table 2: Parameters for CEP 

J J • -j r 
Ijt = Ij(t-1) +qjt + ̂ Vijt-^2yjit ~ djt ^ 

tsl isl 

<3' 

»<**° i=V-'''.TJ <4> 

The objective (1) is to minimize the sum of expansion, holding and conversion 
costs. Equations (2) are the inventory balances. At the end of a period t the 
capacity at facility j is what was there at the end of period t — 1 plus the capacity 
expansion at facility j in period t plus what is converted to facility j minus what 
is converted from facility j. (3) and (4) are simple non-negativity conditions. 

Since the expansion, holding and conversion cost functions are usually as-
sumed to be non-linear, the resulting model is not easy to solve. The above 
model formulation is discussed in [52]. For a variety of related models and 
methods we refer t o [27, 32, 33, 35, 40, 54, 55, 56, 57, 69, 70]. 

2.2 Master Production Scheduling 

The problem of master production scheduling is to schedule item families for 
production in order to meet some externa! demand without backlogs and stock-
outs. The finite planning horizon (which is typically less than two years) is 
subdivided into a number of discrete time periods (such as weeks or months). 
Item families share common resources, e.g. production units. The aggregated 
capacity of a production unit may vary over time. Producing one unit of an 
item family requires a family-specific amount of the available capacity. The 
capacity of a production unit may be exceeded by using a limited amount of 
overtime which incurs extra costs. Items which are produced in a period to meet 
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some future demand must be stored in inventory and thus causes family—specific 
holding costs. 

To give a mathematical programmmg model for master production scheduling 
(MPS), Table 3 defines the decision variables. Likewise, Table 4 provides the 
Parameters. 

Symbol Definition 
Ijt Inventory for item family j at the end of period t. 
Omt Overtime in production unit m in period t . 
qjt Production quantity for item family j in period t. 

Table 3: Decision Variables for MPS 

Symbol Definition 
Cmt Available capacity of the production unit m in period t. 
djt External demand for item family j in period t. 
hj Non-negative holding cost function for item family j. 
Ij 0 Initial inventory for item family j. 
J Number of item families. 
M Number of production units. 
Omt Non-negative overtime cost function for production unit m 

in period t. 
rymax wmt Upper bound for the overtime in production unit m in period t. 
Pjrn Capacity needs in production unit m for producing one unit 

of item family j. 
T Number of periods. 

Table 4: Parameters for MPS 

J T M T 

j—l t = l 771 = 1 t = l 
subject to 

Ijt = Ij(t—l) + Ijt ~ djt 

J 
^ ^ PjmQj t ^ C'mt "f " Omt 
j = 1 

(5) 

j — 1 j..., J 
t = 1,...,T 

m = 1,..., M 
t = 1,..., T 

(6) 

(7) 
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D <~ D max m — Umt < Umt t - 1 T ' ^ 

The objective (5) is to minimize the sum of holding and overtime costs. 
Equations (6) are the inventory balances. At the end of a period t we have in 
inventory what was in there at the end of period t — 1 plus what is produced 
minus external demand. Capacity constraints are formulated in (7). The amount 
of overtime is limited by (8). (9) and (10) a re simple non-negativity conditions. 

Usually, the holding cost and the overtime cost functions are assumed to be 
linear functions. The model formulation is then a linear program and is thus 
considered to be easy to solve without considering a rolling horizon. Models and 
methods for master production scheduling are discussed in [1, 34, 50, 74]. 

2.3 Lot Sizing 

The problem of lot sizing is that several items are to be produced in order to 
meet some known (or estimated) dynamic demand without backlogs and stock-
outs. The finite planning horizon (which is typically less than six months) is 
subdivided into a number of d iscrete time periods (such as hours, shifts, days, 
or weeks). Furthermore, items share a common machine. The scarce capacity of 
that machine may vary over time. Producing one item requires an item-specific 
amount of the available capacity. Items which are produced in a period to meet 
some future demand must be stored in inventory and thus cause item-specific 
holding costs. Production can only take place if a proper State is set up. Setting 
the machine up for producing a particular item incurs item-specific setup costs 
Setup times are to be considered, too. 

To give a mathematical programming model for the capacitated lot sizing 
problem (CLSP), Table 5 defines the decision variables. Likewise, the parameters 
are explained in Table 6. 

Symbol Definition 
Ijt Inventory for item j a t the end of period t. 
qjt Production quantity for item j in period t. 
Xjt Binary variable which indicates whether a setup for 

item j occurs in period t (xjt = 1) or not (xjt = 0). 

Table 5: Decision Variables for the CLSP 
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Symbol Definition 
Ct Available capacity of the machine in period t. 
djt External demand for item j in period t. 
hj Non-negative holding cost function for item j. 
Ijo Initial inventory for item j. 
J Number of items. 
Pj Capacity needs for producing one unit of item j. 
scj Non-negative setup cost function for item j. 
stj Non-negative setup time for item j. 
T Number of periods.  

Table 6: Parameters for the CLSP 

j T 
min^Y^scjOW + hj(Ijt)) (H) 

j=it=1 
subject to 

Ijt = Ij(t-i) + qjt ~ djt j _ i ' ' " 'y (12) 

< = i,r (13) 
j 

+ stjXjt) <Ct t=l,...,T (14) 

(16) 

The objective (11) is to minimize the sum of setup and holding costs. Equa-
tions (12) are the inventory balances. At the end of a period t we have in 
inventory what was in there at the end of period t — 1 plus what is produced 
minus external demand. Due to (13) production can only take place if there is a 
proper setup state. Capacity constraints are formulated in (14). (15) dehne the 
binary-valued setup state variables, while (16) are simple non-negativity con-
ditions. For letting inventory variables Ijt be non-negative backlogging cannot 
occur. 

Usually, the setup and the holding cost functions are assumed to be lin
ear functions which makes the model become amenable to mixed-integer pro-
gramming methods. There is a huge amount of literature dealing with capacit-

6 



ated lot sizing. A comprehensive review is doomed to failure. We refer to 
[23, 26, 46, 68] for some state-of-the-art references based on the CLSP. A 
variety of other capacitated lot sizing models and methods can be found in 
[14, 24, 30, 31, 36, 37, 41, 42, 43, 44, 45, 64]. 

For the sake of simplicity, we use the terminology of lot sizing in subsequent 
sections. For example, the terms production quantity and lot size must be 
changed to expansion size for the capacity expansion problem, the term item 
stände for item family in the context of m aster production scheduling and for 
facility in the context of capacity expansion. 

3 Literature Review 

The question of how t o measure the Performance of a planning method when 
applied on a rolling horizon basis is discussed and studied by several authors. 
There are two main streams. Some authors consider cost oriented measures 
while others suggest stability oriented Performance measures. If computational 
studies are done, a plan is generated for the periods 1,.. .,T,... ,T where T is 
a parameter of the test-bed. Note, this is an approximation, because the result 
for T —> oo would be of i nterest. 

In [2] th e ratio of t he objective function value of the implemented plan to 
the optimum objective function value of the overall problem for the periods 
1,..., T,..., T is considered. This value is greater than or equal to one where 
a value close to one is desired. Comparing several methods when applied on a 
rolling horizon basis can be done as in [21] where different methods are applied 
to the same instances and the objective function values of the implemented plans 
are compared. 

A measure for instability is presented in [7] where AT = 1 is assumed. 
Instability is expressed as the number of lots in the first period which are to be 
produced after a rescheduling Operation but which were not scheduled before. 
Changes in the size of the lots are not considered. This measure is extended 
in [39] where those lots are counted as well which are not scheduled any more 
but which were before. Also, a measure which computes the changes of lot sizes 
in the first period is introduced. In both cases, a value close to zero indicates 
little changes. In [66] i t is argued that focusing on the first period only and 
disregarding changes in the size of the lots is inappropriate. Thus, a measure is 
proposed which takes lot size changes in all periods into account. 

Some other work is devoted to find out in what situations an extension of 
the planning horizon does not affect the plan in early periods [66]. In some 
cases, a so-called decision horizon T <T can be determined. For example, see 
[5, 6, 9, 16, 17, 25, 28, 29, 47, 49, 53, 59, 73]. This means that an optimum 
Solution for every instance with more than T periods can be found such that the 
optimum Solution for the subproblem consisting of periods 1,... ,T is a part of 
the overall optimum Solution. In such a case, AT = f should be chosen. 
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The impact of the choice of T on the Performance of methods for the Wagner-
Whitin problem in a rolling horizon Implementation is studied in [2, 10, 13, 15, 
60, 63]. Surprisingly, choosing large values for T is not the best choice as one 
could have expected. A signißcant effect of forecast errors for demand on the 
Performance is proven in [21, 2 0, 71]. Error bounds for implementing the plan 
in the first AT periods without having any Information beyond period T are 
discussed in [18, 22, 28, 51]. 

Nervousness in the context of machine scheduling is discussed in [19, 72]. 

4 Stability Measures 

To measure the Performance of a production planning method when used with 
a rolling planning horizon, assume that a T-period subproblem is solved n > 0 
times. As a result we get a production plan for the periods 1,..., T,..., T = 
(n — 1) AT + T. Following the lines above, in each run i = 1,..., n — 1 the plan 
for the periods (i — 1)AT + 1,..., 2AT is implemented while the plan for the 
periods iAT + 1,..., (i — 1)AT + T is of a preliminary nature. Let 

T-AT 
ij%) d~ 0*9j(t+iAT) (l?) 

«=l 

for i = 1,... ,n — 1 denote the weighted production quantities for item j = 
1,..., J that are temporarily scheduled and let 

T-AT 
..(,) dg ^2 Cjt9j(t+(i-l)AT) (18) 

t=i 

for i = 2,..., n be the weighted production quantities for item j ~ 1,..., J after 
rescheduling in those periods which overlap. Note, the variables qjt are defined 
for t = 1,..., T in preceding sections. It should be clear that when solving the 
i-th subproblem we have period indices t = (i— 1)AT + 1,..., (i — 1)AT + T and 
that without loss of g enerality a simple index transformation enables us to use 
the presented models as they are. The item-specific weights Qt for j = 1,..., J 
and t = 1,... ,T — AT should be positive and non-increasing over time to take 
into account that changing the schedule in periods close to the planning horizon 
is not as bad as changing the schedule in periods close ahead. For example, one 
may use 

(19) 

for j = 1 and t = 1,..., T — AT which is item-independent and thus 
expresses that we have no preference to keep the schedule for some items more 
stable than the schedule for some others. Changes of a production plan due 
to rescheduling should be considered in relation to the total quantity that is 
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scheduled. Hence, a stability measure for generating the production plan of item 
j = 1,..., J can be defined as the maximum instability 

( I " (J*J -(% — !) | ^ 
smj1"1 max < ^ | i = 2,..., n i (20) 

3 rr.c.v/A'W ' 

or the mean stability 

max{?j ,1} 

-s V 1 H0 1 /Ol) 
- "-1& max{gW,l} ' ^ 

Values close to zero indicate a high stability in both cases. Since we face a 
multi-item problem, we wish to have a stability measure SM for the generation of 
an overall plan. Some possibilities are the maximum of the maximum instabilities 

| j = 1,...,(22) 

the mean of the maximum instabilities 

(M) 
i=i 

the maximum of the mean stabilities 

.MC«" max{sm-"" | ; = 1,..., J}, (24) 

or the mean of the mean stabilities 
j 

(25) 
j=1 

In all cases, a value close to zero indicates good Performance. A relation 
between these four Performance measures is established by the following two 
inequalities: 

SM— <5AC% (26) 
(27) 

Note, these Performance measures are instability measures. Hence, if we 
would choose AT = T, we would have no instability at all. There seems to be a 
trade-off between the stability of a plan and its cost Performance in an ex post 
analysis. Hence, a cost oriented measure which compares the total costs of t he 
implemented plan with (a lower bound of) the costs of an optimum overall plan 
that is generated under the assumption that all data for the periods 1,..., T are 
known in advance should be considered, too. Choosing a value AT that is used 
for planning is thus a bi-criteria optimization problem. 
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5 Implications to Planning Methods 

The question that arises is how to take the stability of a plan into account when 
solving a production planning problem. Let i > 2 be the number of the run that 
is performed and 

(28) 

max{gj 1} 

be an item-specific instability measure that is derived from (20) and (21), re-
spectively, taking into account what run i can affect. Furthermore, let SM(i) € 
{SMmax (i), SMmean (i)} be the overall (in-)stability measure under concern 
where 

SMmax{i) =' max{smj{i) | j = 1,..J), (29) 

and , J 
27W—(i) ^ y^]«mj(«), (30) 

3-1 
are measures derived from (22) through (25) by taking only into account again 
what run i can affect. 

A first idea is to add a constraint of the form 

SM(i) <f (31) 

to the model where e is a user-defined parameter representing the maximum 
acceptable instability. This, however, is a non-linear constraint which makes 
mathematical programming approaches hard to implement. Using common sense 
heuristics will thus be a good piece of advice in such cases. 

A p robably better idea is to give up the idea of additional constraints and to 
consider a modified objective function. Let Z denote the objective function of 
the production planning problem. An idea would be to minimize either 

Z • SM{i) (32) 

or 
Z + a-SM{i) (33) 

where a > 0 is defined by the user for scaling and for weighting the stability 
criterion with respect to the (former) objective function value. 

A th ird idea is to consider two objectives: Minimizing the objective function 
value and minimizing the instability. Methods for multi-criteria decision making 
[62], among them interactive procedures, are then applicable. Perhaps, this is 
the best idea, because existing heuristics could be used as submodules. 

Finally, we will give a little discussion under which conditions robust schedul
ing is expected to work well. 
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Production planning usually has to take capacity limits into account. This is 
so for the master production scheduling and the lot sizing example given in earlier 
sections. Extended models of capacity expansion planning may also consider 
upper bounds for expansion sizes. If capacities are scarce, we d o expect that 
finding a robust plan is easier than in uncapacitated cases, because the degree 
of freedom for rescheduling is smaller. This may turn out to be false, if even 
finding a feasible plan is a non-trivial task. This, for instance, is the case for 
lot sizing with positive setup times. 

The examples that we considered in Section 2 could be classified as grouping 
problems, because there is a trade-off between grouping demands together versus 
fulfilling each demand separately. Thus, the ratio of the cost savings that are 
gained by grouping and the costs that are caused by grouping are important 
Parameter settings. For lot sizing, for example, this is the ratio of s etup and 
holding costs per item. It is expected that a high ratio is positively correlated 
with instability, because a low ra tio tends to give production plans which are 
quite similar to the demand matrix. 

6 Conclusion 

We have discussed stability measures for dynamic production planning with 
rolling schedules. As examples we have given the long-term capacity expansion 
planning problem, the medium-term master production scheduling problem, and 
the short-term capacitated lot sizing problem. The (in-)stability measures that 
we propose take changes in all those periods into account which are rescheduled. 
The amount of change is also considered. Future work should put an emphasis 
on the development of methods including rescheduling for finding robust plans. 
A first step towards this goal is to figure out which problem parameter settings 
cause high instability. 
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