
Böttcher, Jan; Drexl, Andreas; Kolisch, Rainer; Salewski, Frank

Working Paper — Digitized Version

Project scheduling under partially renewable resource
constraints

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 398

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Böttcher, Jan; Drexl, Andreas; Kolisch, Rainer; Salewski, Frank (1996) :
Project scheduling under partially renewable resource constraints, Manuskripte aus den
Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 398, Universität Kiel, Institut für
Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/175391

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/175391
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

No. 398

Project Scheduling Under

Partially Renewable Resource Constraints *

Böttcher/Drexl/Kolisch/Salewski

July 1996

K36 - <4-804
Jan Böttcher, Andreas Drexl, Rainer Kolisch, Frank Salewski

Institut für Betriebswirtschaftslehre, Christian-Albrechts-Universität zu Kiel,

Olshausenstr. 40, D-24098 Kiel

tel & fax +49 (0) 431 /880-1531

e-mail Drexl@bwl.uni-kiel.de, Kolisch@bwl.uni-kiel.de

Salewski@bwl.uni-kiel.de.

URL http: //www. wiso.uni-kiel.de/bwlinstitute/Prod

ftp: / / www. wiso.uni-kiel. de /pub / operat ions-research

* Supported by the Deutsche Forschungsgemeinschaft

mailto:Drexl@bwl.uni-kiel.de
mailto:Salewski@bwl.uni-kiel.de

1

Abstract: We consider a generalization of the classical resource constrained
project scheduling problem. We introduce so-called partially reiiewable
resources by assuming for each resource a capacity on subsets of periods. The
concept of partially renewable resources is a fundamental tool in order to
make e.g. timetabling and shift scheduling aspects amenable to project sched
uling. In addition, partially renewable resources serve to model complicated
labor regulations. Furthermore, they cover traditional renewable and nonre-
newable resource constraints as special cases.

We consider makespan minimization as objective. For the exact Solution
of the problem we employ a basic enumeration scheme. In order to speed up
convergence, we formulate bounds which take into account future resource
consumption of partially renewable resources. Moreover, we generalize the
serial scheduling scheme in order to get fast approximation methods.

A rigorous assessment of the procedures is provided by solving Pro Gen
instances generated under a füll factorial test design. Besides the well-known
problem parameters we employ additionally three parameters which control
the generation of p artially renewable resources.

Keywords: Project scheduling, resource constraints, partially renewable
resources, branch-and-bound algorithm, serial scheduling scheme

1 Background and Motivation

A recurring problem in project management involves the allocation of scarce resources to

activities. In scheduling theory renewable and nonrenewable resources are usually distin-

guished. The usage of renewable resources is limited for every period while nonrenewable

resources are restricted to an overall consumption within the whole planning horizon.

These resource types only allow to formulate capacity constraints for exclusively one or

all of the periods. Partially renewable resources are obtained by assuming for each

resource a capacity on subsets of periods. The concept of partially renewable resources is

a fundamental tool in order to make e.g. timetabling and shift scheduling aspects

amenable to project scheduling. In addition, it serves to model complicated labor

regulations. Furthermore, it Covers traditional renewable and nonrenewable resource

constraints as special cases. While renewable resources are defined on subsets consisting

of exactly one period, nonrenewable resources are subject to the set of all periods of the

planning horizon.

Resource constrained project scheduling has attracted considerable attention

recently, cf. e.g. Biazewicz et al. 1986, Christofides et al. 1987, Bell and Han 1991,

Demeulemeester and Herroelen 1992, 1995, Mingozzi et al. 1994, Leon and Balakrishnan

1995, and Brucker et al. 1996. More specific, the classical resource constrained project

scheduling problem (RCPSP) has been the main subject of concem. We consider a

generalization of the RCPSP, which makes use of partially renewable resources. For

short this generalization is denoted as RCPSP/?r. We consider makespan minimization as

objective. For the exact Solution of the RCPSP/V we employ the basic enumeration

scheme of Talbot and Patterson 1978. In order to speed up convergence, we formulate

2

bounds which take into account future resource consumption of partially renewable

resources. In addition, we generalize the serial scheduling scheme of Kelley 1963. The

methods are evaluated for a set of instances generated with the project generator

Pro Gen, cf. Kolisch et al. 1995.

Example 1: In order to further motivate the RCPSP/TT we consider the case, where

the resource type " st äff" has to be scheduled. Figure 1 depicts that no worker is avai-

lable before period 9 and after period 17, respectively. Moreover, 5 workers are available

during periods 9 to 12 and during periods 14 to 17, respectively. In period 13 all the

workers have their lunch break. Then e.g. no non-preemptable activity with a duration of

at least 3 periods is allowed to Start in period 11.

Figure 1: Availability of Staff (Variant 1)

st äff

periods

More flexibility is offered if each of the workers could have his break either in period 13

or in period 14. In Figure 2 e.g. 3 (2) workers have their lunch break in period 13 (14).

This would now allow to Start an activity with the duration of 3 periods in period 11 if it

requests less than 3 workers per period. Unfortunately, there exist several possibilities to

specify in advance which workers should have their lunch break either in period 13 or in

period 14. Qearly, this is impractical and does not provide the degree of flexibility which

is necessary when we want to schedule a one hour lunch break for each worker either in

period 13 or in period 14 without fixing the period in advance.

Figure 2: Availability of Staff (Variant 2)

staff

10
1 i i i r

15
I I I I I I I periods

20 24

The " Skyline" (cp. Elmaghraby 1977) of resource profiles in both figures illustrates that

the modelling capabilities of renewable resources are not suföcient to tackle more general

and complicated situations. In this paper we show, that the RCPSP/x is able to do this.

The outline of the paper is as follows: In Section 2 we present formal models of the

RCPSP/TT. The modelling capabilities of the RCPSP/7T are illustrated by some examples

3

in Section 3. Section 4 provides exact and heuristic Solution procedures. In Section 5 we

present details of the experimental evaluation. Section 6 gives a summary and an outlook

to future research.

2 Model Formulation

The RCPSP/TT can be stated as follows:

• We consider a Single project which consists of the set J of activities. Let V. define the

set of immediate predecessors of activity j e J. For ease of notation the activities are

topologically ordered, i.e. each predecessor of activity j has a smaller number than j.

Furthermore, activity j= 1 (j = | J |) is defined to be the unique dummy source

(sink).

• Activity j has a non-preemptable duration of d. periods.

• Let T be the set of periods during which the activities must be processed.

Furthermore, t € T denotes a specific period.

• R' denotes the set of partially renewable resources. The activities are interrelated by

resource constraints as follows: In order to be processed, activity j requires k. units

of resource r€R' during every period of its duration d..

• Let P(r,TT) denote the Tr-th subset of periods in which resource r 6 R' is available with

resource capacity For resource r 6 R' in total we have the set II(r) of subsets of

periods P(r,TT), i.e. TT = 1,..., J Tl(r) |.

• The objective of the RCPSP/TT is the minimization of the makespan such that

precedence and resource constraints are met.

We derive earliest and latest finish times EF. and LF., respectively, by traditional

critical path analysis. Let denote E. := {EF.,..., LF.} and Q.t := {t,...,t + d -1}. Now,

based on the decision variables x.t = 1, if activity j is finished in period t (0, otherwise),

the RCPSP/TT can be modelled as follows:

min E t-x, (1)
teE\j\

s.t. S x = 1 (jeJ) (2)
i£E. 3

J
S t-x < I (t-i) X UtJ.h ev.) (3)

<€£, t€E. ' ' ' h]

% ifr S S x < K (rsi',1re{l |n(r)|})(4')
}€J ' t£P(r,x) q£QJIE. K

Jl]

^ G { 0,1} (j£j,UE.) (5)

4

The objective function (1) minimizes the completion time of the umque sink and

thus the makespan of the project. Equations (2) are activity completion constraints.

Constraints (3) take into consideration the precedence relations between each pair of

activities (h,j), where h immediately preceeds j. Finally, constraints (41) limit the total

usage of the (partially renewable) resources to the available amount. Note that Icmeli

and Rom 1994 use the term "partially renewable resource" as well. Within their frame-

work, resources are renewable at time milestones and within time intervals they are

nonrenewable. Clearly, their definition is close to so-called doubly-constrained resources

(cp. e.g. Blazewicz et al. 1986), while ours is not.

Example 1 now serves to illustrate the RCPSP/x. The following parameter instan-

tiations appropriately define the problem under consideration in terms of the RCPSP/vr

and allow to schedule a one our break for each of the five workers without fixing in

advance whether the break is in period 13 or in period 14.

%!) = {! 8,18 24},K^=0;

P(1,2) = {9}, K12=5; P(l,3) ={10}, Ä13 = 5; P(l,4) = {11}, K14 =5;

P(l,5)-{12}, KJ5=5; P(l,6)={15}, KI'6=5; P(1J) = {16}, = 5;

P(l,8)={17}, 5; P(l,9)={13,14};Klg=5.

Figure 3 provides a graphical representation of the availability of the partially

renewable resource staff; the entry m the first column denotes the capacity of the

resource r = staff in the period subset w, T = 1,...,9, while "|" denotes that the period

belongs to

Figure 3: Graphical Representation of the Instance

7T/K ' rr P(r,%)

5 10 15
i i i i i i i i i i i i i i i

20 24
IIIIIIII

1/0 llllllll lllllll
2/5 •

lllllll

3/5 1.
4/5 •
5/5 1
6/5 1
7/5 1
8/5

II
i i l i i i i 1 1 1 1 i i i i

1
9/5 II

i i l i i i i 1 1 1 1 i i i i llllllll
0 5 10 15 20 24

Clearly, a partially renewable resource is a nonrewable one if the period subset

Covers the whole planning horizon. Moreover, the RCPSP/?r is a generalization of the

RCPSP, where we have |n(r)|=|T|, P(r,l) = {1}, P(r,2)={2} ,..., P(r, |II(r)|) =

{| T|} for all r 6 R' as well as for all r 6 R' and TT 6 {1,..., |II(r)|}, respectively.

Clearly, constraints (4') then reduce to the resource constraints (4") of the RCPSP.

5

2 3 =% ^ \ (rea',(ET) (4")
j£J]r qeQ.fE. 3q

The puipose of the following is to classify the complexity of the feasibility problem of

the RCPSP/TT. In fact, even the feasibility problem of the RCPSP with given deadline

| T | is NP-complete. The feasibility problem of the RCPSP can be stated as follows:

Given an instance ofthe RCPSP, i.e. a network, a set of capacity constraints and a

deadline | T | does this problem have a feasible Solution ?

Theorem 1 The feasibility problem ofthe RCPSP is NP-complete in the strong sense.

Proof By restriction to 3-PARTITION. •

Note that the NP-completeness of the feasibility problem in turn implies the NP-

hardness of the corresponding optimization problems (cf. Garey and Johnson 1979).

We finish this section by presenting the RCPSP/TT in a "normalized" form which

allows to drop one of the parameters introduced so far. More precisely, normalized means

that |II(r)| =1 holds for every resource. Starting from the "ordinary" RCPSP/TT

(l)-(3), (4'), (5) we get the normalized RCPSP/TT as follows: Generate one additional

resource r with the availability level K for each period subset TT = 2,..., | II(r) | and define

the resource requirement k.^ for each activity j € J appropriately. These transformations

allow to State the RCPSP/TT as follows:

/
min (1)

s.t. (2), (3), (5), and

E k. E E x < K (reR) (4)
j£J 3t£P(r) qEQ.flB. 3q

ji j

Note we have |II(r)| =1 in the model formulation (l)-(5), therefore |II(r)| is

omitted in comparison to (41). Furthermore, P(r,ir) reduces to P(r) and K to K ,

respectively. Clearly, the reduction of |ü(r)| to 1 is done at the "price" of enlarging the

set of resources from R' to R. It is easy to prove that the ordinary RCPSP/TT and the

normalized RCPSP/TT have the same objective function and the same set of constraints.

Therefore, both model formulations are equivalent.

The process of normalizing the RCPSP/TT is illustrated by the use of an example in

Figure 4. Starting with Ä'={ 1} and II(r)=3 in the ordinary RCPSP/TT we get

R = {1,2,3} in the normalized RCPSP/TT. Note that "|" and denote the period

subsets in both cases while "|" denotes period 3 which is covered by P(r, 1) and P(r,2),

respectively, in the ordinary RCPSP/TT.

6

Figure 4: Normalizing the RCPSP/T

#' = {!}, r=1, |n(r)| =3, P(r,l)={ 1,2,3}, P(r,2)={3,4,5}, P(r,3)={9,10}

\l=\2=2> %,3=1

Ä= {U3}

r = 1, P(r) = {1,2,3}, %. = 2

r = 2, P(r) = {3,4,5}, «, = 2

r = 3, P(r) = {9,10}, = 1

0 5

i i r
5

i r

i r
5

1

•

III! 1 1 1
10

10

"l r i 1
10

10

As a consequence in the following we will solely relate to the formulation (l)-(5),

because then we must not take care of II(r) and P(r,if). Clearly, then it is difficult to

interprete the transformed "resources" in terms of an application.

3 Modelling CapabUities

In order to further demonstrate the modelling capabilities of the RCPSP/7T, we consider

additional examples.

Figure 5: Network ofExample 2

Example 2: Let T: = {1,2,...,11}, J := {1,2,...,5}. Moreover, consider the network

structure given in Figure 5. In addition, let d1: = d2: = : = 2, d^: = 1, d^: = 3,

R: = {1,2,3},P(l): = {1,2,3,4}, ^: = 7,

P(2): = {5,6,7,8}, ^: = 3,

P(3):= {9,10,11}, = 2, and

Kr '• = Kr '= \r = Kr ''= Kr '' = 2 ^ T 6 Wß CO^pUte ^ : = {2,...,5}, ^ : =
{4,...,8}, := {4,...,7}, := {5,...,8}, := {8,...,11}. Figure 6 depictes the Single

feasible schedule. The rectangules represent the activities j, their length indicates the

7

duration d., and the numbers in the rectangules give the per period resource require-

ments k^ (j G J, r e R), respectively.

Figure 6: Gantt- Chart for Example 2

activities

1
2

1

periods
10

Figure 6 leads to the following observations: Each activity j finishes within its

feasible interval E. as required by constraints (2). If activity j has a positive resource

usage k.^ (r 6 Ä) and if it is processed in period subset P(r), then resource r is in fact

consumed by activity j. Activities 1 and 3 are totally, activity 2 is partially processed in

period subset P(l); alltogether they consume = 7. Activities 2 and 5 are partially,

activity 2 is totally processed in period subset P(2); in sum they polish off «2 = 3.

Finally, activity 5 is partially processed in period subset P(3) and consumes K = 2.

Clearly, activity 5 is delayed not because of the precedence constraints, but due to

resource constraints, i.e. the limited availability of resource r = 2 in period subset P(2).

Example 3: Assume we have to plan the daily payment of workers on basis of weekly

budgets for the next four weeks. With each week one resource is associated. Four weeks

with five days each in total give 4*5 =20 periods. Without reproducing all the data of

the instance, then the parameter instantiations

P(l) ={1,...,5}, «1 = 10,

P(2)={6,...,10}, K2 = 10,

P(3)={11,...,15},/C3 = 10,

P(4) = {16,...,20}, K4 = 10,

allow to compute the Gantt-chart depicted in Figure 7.

Figure 7: Daily Payment of Workers, Weekly Budgets

activities

7
6
5
4
3
2
1

i—r
10 15

i—r r
18

periods

8

Example 4: Assume we have to plan the work weeks for an assembly worker for the

next weeks. Moreover assume, that the worker is allowed to work only on eight non-

weekend days (two weekend days) within two consecutive weeks. Without reproducing

all the data of the instance, then the parameter instantiations

P(l) = {1} Kj = 1

m = {2} «2 = i

mn) ={iri) «iri =i

P(|r|+1) ={6,7,13,14} Ä|T|+l = 2

P(|r|+2) = {1 5,8,...,12} K\T\+2 = ^

allow to compute the Gantt-chart depicted in Figure 8. Note that activities 3 and 4 could

be scheduled in other periods while activity 5 cannot Start before period 13 because of the

restriction of at most 2 weekend days.

Figure 8: Work Weekends for Assembly Worker

activities

12 14
1 1 periods

18

We finish this section by presenting part of an instance which (i) illustrates special

cases covered by different constellations of period subsets P(r) and which (ii) shows the

impact of these subsets on the feasible Start times of activity j = 1. The instance is

characterized as follows: T = {!,...,10}, activity j with d. = 3, = {3,...,10} and k.^ = 1.

Case 1: Period subsets P(r) are disjoint and cover the set of periods completely; more

specific we have period subsets and resource availabilities as follows:

P(l)= {1,2,3}, ^=2

P(2) = {4,5,6}, «2=2

P(3)= {7,8,9,10}, «3 = 1

Case 1 is illustrated in Figure 9. The last three rows provide the consumptions of each

of the three resources if activity j starts in the corresponding period. Feasible Start times

are marked with boxes. E.g., if activity j starts in period 2 then it uses 2 units of resource

1 (periods 2 and 3) and 1 unit of resource 2 (period 4).

9

Figure 9: Illustration of Case 1

mmmm
1 1 i i i i i

T T
feasible Start times for activity j

10

i 3 2 1 0 0 0 0 0 of 2

2 0 1 2 3 2 1 0 0 of 2

3 0 0 0 0 1 2 3 3 of 1

Case 2: Period subsets P(r) are not disjoint and we have periods without resource

constraints; more specific we have period subsets and resource availabilities as follows:

f(l)= {1,2,3}, «1=2

P(2) ={3,4,5}, «2=2

P(3)={9,10}, ^ = 1

Case 2 is illustrated in Figure 10. Note that none of the resources is consumed if

processing of activity j starts in period 6.

Figure 10: Illustration of Case 2

1

•

1 1 1 1 l 1 1
10

1 3 2 1 0 0 0 0 0 of 2

2 1 2 3 2 10 0 0 of 2

3 0 0 0 0 0 0 1 2 of 1

Figure 11: Illustration of Case 3

1 3 2 1 0 0

2 0 0 0 1 2

3

1

of 2

of 2

10

Case 3: Some period subsets P(r) contain more than one interval; more specific we

have period subsets and resource availabilities as follows (cf. the cases illustrated in

Figure 11):

P(l)= {1,2,3,8,9,10}, «j =2

f(2)= {6,7,8}, ^=2

4 Solution Procedures

In the literature there is no tailored method available for the Solution of the RCPSP/7T.

For the development of special algorithms we Start off with methods known for the

RCPSP.

Optimal procedures are dynamic programming (cf. e.g. Davis and Heidorn 1971),

zero-one programming (cf. e.g. Pritsker et al. 1969, Patterson and Roth 1976), as well as

a variety of branch-and-bound-based implicit enumeration methods (cf. Stinson et al.

1978, Talbot and Patterson 1978, Radermacher 1985/86, Christofides et al. 1987, Bell

and Park 1990, Carlier and Latapie 1991, Demeulemeester and Herroelen 1992, 1995,

Mingozzi et al. 1994, Brucker et al. 1996). Note that currently the branch-and-bound-

approach of Demeulemeester and Herroelen 1995 is the most powerful optimal procedure

available.

Heuristic procedures for the RCPSP basically involve five different Solution

methodologies: Single- and multi-pass priority rule based scheduling, truncated branch-

and-bound-procedures (cf. Alvarez-Valdes and Tamarit 1989), integer programming

based heuristics (cf. Oguz and Bala 1994), disjunctive arc concepts (cf. Alvarez-Valdes

and Tamarit 1989, Bell and Han 1991), and local search techniques (cf. Sampson and

Weiss 1993, Leon and Balakrishnan 1995).

Although belonging to the oldest Solution methodology to solve the RCPSP, priority

rule based scheduling is still the most important (heuristic) Solution technique. This is

due to several reasons: The method is intuitive and easy to use which makes it highly

suitable to be employed within commercial packages; the method is fast in terms of the

computational effort. Finally, multi-pass implementations of the method show the best

results obtainable by heuristics for the RCPSP today (cf. Kolisch and Drexl 1996).

4.1 Exact Branch-and-Bound-Algorithm

Unfortunately, the powerful branch-and-bound-algorithm of Demeulemeester and

Herroelen 1995 is not capable to handle problems with partially renewable resources. The

same is true for almost all the exact procedures mentioned above. The only exception is

the algorithm of Talbot and Patterson 1978. Therefore we implemented the basic branch-

and-bound-procedure of Talbot and Patterson 1978 in order to solve the RCPSP/?r. The

network cuts which are not applicable in the presence of partially renewable resources

11

have been dropped. To speed up convergence of the algorithm we added newly developed

bounding rules.

The basic working principle of the algorithm may be described as follows: It is a

depth-first-search branch-and-bound-algorithm. The depth of the search tree equals the

number of activities. In each stage, one precedence- and resource-feasible activity j

(beginning with the unique Start activity) is added to the partial schedule at the earliest

convenient Start time t.e { ES.,..., LS.} where ES. and LS. define the critical path based
3 1 3 3J 3 3 r

earliest and latest Start time, respectively. Backtracking occurs if (i) there is no augmen-

tation of the partial schedule under consideration which does not violate resource-

constraints or if (ii) the partial schedule exceeds the upper bound T on the project's

makespan. In case of backtracking the current Start time of the activity scheduled in the

ancestral node of the search tree is augmented by one period. Clearly, we Start with

T: = T and update T when a complete schedule has been constructed with a makespan

less than T. The algorithm terminales when backtracking to stage 0 occurs.

Clearly, the computational effort which has to be undertaken by this basic scheme is

about that of complete enumeration of the set of feasible schedules. Therefore, we want

to speed-up convergence by properly designing feasibility bounds, which take care of the

partially renewable resources. As the name suggests, feasibility bound does not mean to

compute lower bounds for the objective function value, but to calculate lower bounds for

the resource consumption of the activities not yet scheduled.

For the description of the bounds we need some definitions. Let denote W.: =

{ ES., ,..., LS.} the (maximal) time window which takes care of the precedence con

straints and the upper bound for the makespan. Let n € J and S : = t.) | % = 1,

where i denotes the level of the branch-and-bound tree, j. is the activity scheduled on

level i and t. e Wi denotes the Start time assignment of activity j. for 1 <i<n. Then S is

called (partial) schedule itn-\J\ (n<\J |). Now,

SCjrt k.T\Q.taP(T)\

denotes (single) activity j consumption of resource r if j starts in period t. Then

we define

TC(S) := S SC. .
' . , j.rt. i=l i i

as total consumption of resource r w.r.t. the (partial) schedule S. Accordingly,

«;(5) := Kr-TC(S)

defines the left-over capacity of resource r. Then a feasible (partial) schedule S is

defined as follows:

th + dh - lj 0 e J> J he

12

%;(,?) >o (rea)

Clearly, a feasible schedule S is a Solution iff n=\J\. S* = {(i,

i = l,...,n} is called an extension of S =) i = l,...,h} if 1 <h <n. l'

Now, for t G W.
3

MC.. := min { SC. \t <T <LS.}
jrt L jrr ' ~ ~ jJ

denotes minimum activity j consumption of resource r if j starts not earlier than

period t. For MC.^ an important property holds.

Property 1 For each activity j and each resource r the sequence

(MCjr(ES.)' MCjr(ES.+1MCjr(LS'.))

is monotonicaüy increasing.

Proof For | W. | = 1 the proof is trivial. Therefore we consider the case | W. | >1

and t e { ES.,..., LS.-l}. Then

= ^{SC^UUriLS.} >

vii{SCjrt, min { SCjrr \ t+l<r<LS.}} = i = MCjH.

As a consequence we have > MC.^ for t e{ES.,..., LSrl} which

completes the proof. •

Property 1 shows that the minimum resource consumption of activity j does

not decrease if the time window of activity j is diminished.

Let U. denote the set of all (direct and indirect) successors of activity j and

LP.h the length of the longest path from the Start of activity j to the Start of

activity h. Then

MC'>':= kiu '+LPj^
j

defines the minimum consumption of resource r by the successors of activity j

induced by its Start in period t. For MCI. an important property holds, too. jrt

Property 2 For each activity j and each resource r the sequence

(MCIjrfES.)' MCIjr(ES.+1MCIjr(LS.p

is monotonicaüy increasing.

Proof For h e U. and t t{ESh,...,LSh-l}

max { ESh, t + LP.h} < max { ESh, t+1 + LP' ^} holds.

13

Because of property 1

MChr(max{ESh, t + LP'£) - MChr{mzx{ESh, < +1 + IP })

also holds. Therefore, we have

MC'irt = äu^Ch<^ESri+LPi^ "

and the proof is complete. •

The computation of SC.^, MC.^ and MCI.H is illustrated in the Appendix by

the use of an example.

Let denote

TCI(S) := TC(S) + MCI. 4
r\ / r\ / ^ Tt n n

the minimal total induced consumption of resource r w.r.t. the (partial) schedule

S- '•= | i = 1,.Accordingly,

sr(j) Kr-TCIr(S)

defines the maximal left-over capacity of resource r. Now we can State

Theorem 2 (Feasibility Bound 1)

Let S = {(i,ji,t.)\i = l,...,n} and r GÄ. Ifü (S) < 0, then every completion of

the partial schedule S violates the resource constraints and hence backtracking

occurs.

Proof Obvious. •

Feasibility Bound 2 dynamically generates conditions where each condition is related

to a particular activity. A condition has to be fulfilled before the related activity can be

feasible scheduled. If S is a partial schedule that does not schedule activity j and which

does not fulfill the condition related to activity j then it is not possible to extend S into a

feasible Solution.

Although this informal description does not clarify any detail, we refrain, however,

from the tedious task of citing technical details, due to several reasons: (i) An in-depth

description is very lengthy and would neccessitate to introduce a couple of additional

definitions, symbols, corollaries and theorems. (ii) In comparison with the basic Version

the feasibility bound 1 already provides a considerable speed boast (cp. Section 5.3). (iii)

The technical details can be found in Böttcher 1995 on our ftp-site. (iv) Last but not

least, also in the presence of the feasibility bound 2 even medium-sized instances remain

untractable, and therefore our primary concern now is on the description and evaluation

of fast and reliable heuristics.

14

4.2 Greedy Randomized Adaptive Search Procedures

The only line of attack for tackling practical problem sizes comprising hundreds of

activities is provided by approximation methods. Deterministic greedy priority rule-

based methods have been widely adopted in scheduling (cp. the surveys in Haupt 1989,

Panwalkar and Iskander 1977). Partial schedules are extended, Start ing with the empty

set of scheduled activities, i.e. the intialization x. : = 0 for all the decision variables.

These methods are commonly used when scheduling large problem instances and they

yield only one Solution for an instance, even if applied several times. Having in mind that

this Solution may be arbitrarily bad or even infeasible, determinism seems to be a major

deficiency of such methods. Semi-greedy (cp. Hart and Shogan 1987), greedy randomized

(cp. Laguna et al. 1994), or regret-based biased random sampling methods (cp. Drexl

1991, Kolisch 1995, Kolisch and Drexl 1996) try to overcome the shortComing of deter

minism by performing the selection process randomly, but according to probabilities

which are proportional to priority values. In this way, in each Step every schedulable

activity may be chosen, though those with higher probabilities will have a greater chance

of being selected. Due to their nondeterminism, repeated application of randomized

methods will produce a set of solutions rather than one sole Solution. Usually some of

these solutions will be better than the one found with the deterministic version of the

same method. Moreover, no tiebreaker needs to be specified for randomized methods,

since ties cannot occur.

Generally, common priority rule-based methods for (project) scheduling are

distinguished to be serial or parallel (cp. the early work of Kelley 1963 and the recent

improvements obtained by Kolisch 1996 a). While the former schedule one of the

precedence-feasible activities as early as possible w.r.t. resource constraints, the latter

proceed chronologically over all periods of the planning horizon trying to schedule in each

period as many activities as possible. Though the basic principle of both methods is

simple and intuitive, some specific details have to be designed appropriately in order to

get reliable and fast methods for the problem class under consideration.

We modified the serial scheduling scheme for solving the RCPSP/V. It consists of at

most | J| stages. In each stage one activity is selected and assigned a start time, i.e.

added to the current partial schedule S : = {(i, j., t.) j i = 1,...,%}. Then

ES.(S): = max {th + dh | h e V.}

denotes the earliest Start time of activity j > n, adapted w.r.t. S. Accordingly,

W.(S) := {BS.(S),ES.(S) + 1,,LS.)

denotes the (adapted) time window of activity j.

15

Two disjoint sets C and D are computed in each stage. In the complete set C are the

activities which have already been scheduled and thus belong to the partial schedule S.

Recall SC. K°(S) and MCI., as defined in Subsection 4.1. JTV rK ' jrt
Then

(W) I 0^) A (VAEy.:A€C) A A (Vr6Ä:^(f)>^ + MC7^)}

defines the decision set, i.e. the activity-period combinations (j,t) which are feasible

w.r.t. the current partial schedule S.

In each stage one activity-period combination (j, t) from the decision set is selected

with a priority rule Afterwards, the selected activity j is removed from the decision

set (together with all activity-period combinations (j, t) of activity j and those

activity-period combinations (i, r) which now are infeasible) and put into the complete

set. This, in tum, may place a number of activity-period combinations into the decision

set, since all their predecessors are now completed. The algorithm terminales either if

D = 0 or if no feasible activity-period combination (j, t) exists for activity j with j{C

and VXC. If C= J then | J\ stages have been performed and a feasible Solution has been

computed. A formal description of the serial scheduling scheme is given in Table 1. Note

that as tie breaker in the (j*, <*) selection step the activity and/or period number is

chosen.

Table 1: Serial Scheduling Scheme

Initialization
C: = <j>, S: = (j>, K°(S) ' = nr (r 6 R)

Execution

compute D

while D ± (j) do

{

(f, t*) e {0', t) | ujt = inf { U).T | (%, r) 6 D}}

update C, S, K°(S), and D

}

If C=J then feasible Solution found

The way the serial method has been described so far is termed as single-pass

approach, i.e. one Single pass and one priority rule are employed to derive one (feasible)

Solution. Contrary, multi-pass procedures perform Z Single passes in order to generale a

sample of at most Z unique (feasible) solutions, where the best one is chosen. Basically,

two different kinds of multi-pass methods can be distinguished: The multi-priority rule

approach (cf. Boctor 1990, Li and Willis 1992) employs one scheduling scheme and

16

different priority rules while sampling (cf. Wiest 1964, Cooper 1976, and Alvarez-Valdes

and Tamarit 1989) makes use of one scheduling scheme and one priority rule. Different

schedules are obtained by biasing the selection of the priority rule through a random

device. The use of a random device can be interpreted as a mapping

* : [0,1] (6)

which assigns to each activity-period combination in the decision set D a probability ip

of being selected. Three different methods can be distinguished: (i) Random sampling

assigns each activity in the decision set the same probability. (ii) Biased random

sampling biases the probabilities dependent on the priority values of the activities to

favour those activities which seem to be a more sensible choice. (iii) A special case of

biased random sampling is the utilization of regret measures for determining the selection

probabilities. It has been introduced by Drexl 1991 and Drexl and Grunewald 1993 and is

referred to as regret based biased random sampling. The three different randomization

schemes have been compared in Kolisch and Drexl 1996 when solving the RCPSP and it

has been shown that the last one clearly is superior in terms of the Solution quality.

Let a priority rule be defined by the mapping

u: (j, t) e£)-»IR>0 (7)

which assigns to each activity-period combination (j, t) in the decision set D a priority

value ÜJ and an objective 0 stating whether the activity-period combination of the

decision set with the minimal (0 = min) or maximal (0 = max) priority value is selected.

Then, the regret compares the priority value of activity-period combination (j, t) with

the worst consequence in the decision set as follows:

pfi : =

max {uir | (i,r) e D] - , if O = min

u.t - min {uiT | (i,r) eD}, if 0 = max

0,0 ED (8)

Therewith, the parameterized probability mapping arises to:

; 3 (i,r)€D

Adding the constant " 1" to the regret value p assures that the selection probability

for each activity-period combination (j, t) in the decision set D will be greater zero

and thus every schedule S := {(i,j.,t) | % = 1,..., | J| } may be generated. By choice of

the parameter a, the amount of bias can be controlled. Associated with an arbitrarily

large a will be no bias and thus deterministic selection on the basis of the employed

priority rule (with random selection as a tie breaker), while an a of 0 will give way for

random activity selection.

17

We have implemented the serial scheduling scheme as a multi-pass version. Thus, in

Table 1 the activity-period combination (j*, t*) is chosen from D with selection probabi-

lities p. computed according to a priority rule UJ. Following the lines of Kolisch and

Drexl 1996 the control parameter a has been set for pass number z = as follows:

Pass z = 1: a = oo
Passes z = 2 to z = 5: a = 3
Passes z - 6 to z = 10: a = 2
Passes z = 11 to z = Z: a = 1

Clearly, when Z passes are performed the upper bound T is updated whenever an

improved makespan has been found.

We employed several priority rules (a survey of advanced priority rules for solving

the RCPSP is given in Kolisch 1996b). Some of them are well-known from literature

others are newly developed ones.

MINEFT, MENLFT, MINSLK, MTSUCC

First, we implemented the well-known priority rules MINEFT (minimum earliest

finishing time), MINLFT (minimum latest finkhing time), MINSLK (minimum slack),

and MTSUCC (most total successors), respectivly.

MAXSRU, MINSRU

Second, we implemented two static priority rules. Let denote

SRU. := £ k. (jtJ)
3 rZR "

the maximum static resource usage of activity j. In the case of 0 = max := SRU.

defines the maximum static resource usage priority rule for (j,t)eD, denoted as

MAXSRU. Accordingly, the minimum static resource usage priority rule, denoted as

MINSRU, is defined in the case of 0 = min.

Unfortunately, the rules MAXSRU and MINSRU have the disadvantage, that k.r

does not take care of the resource usage which depends on the starting times of jobs j of

the partial schedule (cf. cases 1 to 3 in Section 3 also).

MAXTRU, MINTRU, MAXRRU, MINRRU

Now four new but still static priority rules will be defined. Recall 5C._, and MCT._, as jrt jrt
defined in Subsection 4.1. Let denote

TRU.t: = S (SC.H + Mcy ü, t) e D

the Start time dependent lower bound of the total resource usage. In the case of 0 = max

u := TRU defines the maximum Start time dependent total resource usage priority

18

rule, denoted as MAXTRU. Accordingly, the minimum Start time dependent total

resource usage priority rule, denoted as MINTRU, is defined in the case of 0 = min.

The rules MAXTRU and MINTRU have the drawback that resource usages are not

related to the available resource capacity.

Let denote

RRU := E (SC.+MCI.,)/K (j,t)tD]t rER Jrt jrt" r '

K >0 T
the relative resource usage. In the case of 0 = max u.t := RRU.t defines the maximum

relative resource usage priority rule, denoted as MAXRRU. Accordingly, the minimum

relative resource usage priority rule, denoted as MINRRU, is defined in the case of

O = min.

MAXDRRU, MINDRRU, MAXTRC, MINTRC

Note for a given partial schedule S the overall available resource capacity « does not

properly reflect the capacity which is still available. Recall K°(S) to be the left-over

capacity of resource r which regards the current partial schedule S. Accordingly,

DRRVß:= E (SCjrt + MCI^ / ^S) (j.QeD

K«(S) >0

defines the dynamic relative resource usage. In the case of 0 = max w := DRRU.
jt jt

defines the maximum relative resource usage priority rule, denoted as MAXDRRU.

Accordingly, the minimum relative resource usage priority rule, denoted as MINDRRU,

is defined in the case of 0 - min.

Finally, let denote

TRC.f := E <*»(Ä) - SCjrt - MCL)

an upper bound of the total remaining capacity. In the case of 0 = max := TRC-t

defines the maximum total remaining capacity priority rule, denoted as MAXTRC.

Accordingly, the minimum total remaining capacity priority rule, denoted as MINTRC,

is defined in the case of O - min.

S Experimental Evaluation

First, we will describe an advanced generator for the parametric characterization of

instances. Second, we want to elaborate the problem parameters which make an instance

"hard" or "easy". Third, the average speed-up obtained by the feasibility bounds shall

be described. Fourth, the serial scheduling method will be analyzed.

All algorithms have been coded in C and implemented on an IBM RS 6000 41T

Workstation under the AIX 3.2.5 operating system.

19

5.1 Generation of Instances

Generally, two possible approaches can be found adopted in literature when having to

come up with test instances. First, practical cases. Their strength is their high practical

relevance while the obvious drawback is the absence of any systematical structure to

infer any general properties. Thus, even if an algorithm performs well on some practical

instances, it is not guaranteed that it will continue to do so on other instances. Second,

artificial instances. Since they are generated randomly according to predefined

specifications, their plus lies in the fact that Atting them to certain requirements such as

given probability distributions poses no problem. However, they may reflect situations

with little or no resemblance to any problem setting of practical interest. Hence, an

algorithm performing well on several such artificial instances may or may not perform

satisfactorily in practice.

In this research, we decided to Start with the ProGen-code which has (among others)

been designed for generating instances of the RCPSP variety. More specific, the problem

Parameters NC, RF and DF are the same as in Pro Gen (for details cf. Kolisch et al.

1995), RS has been modified in contrast to ProGen while the parameters CF and PF are

entirely new.

• The network complexity NC>0 defines the ratio of non-redundant precedence

relations to the number of activities.

• The resource factor RFe [0,1] reflects the density of the matrix (k^). For RF = 0

no activity has a resource usage, while for RF = 1 each activity (despite the dummy

source and dummy sink) uses every resource.

• The duedate factor DF e [0,1] determines the horizon T as follows: T : =

ROUND[E5| j.(1 -DF) + DF • . Note that DF = 0 forces the project to be

finished as early as possible (i.e. to Start activity | J\ in period BS^ ^|), while for

DF = 1 the horizon is long enough to schedule "one activity after the other".

Unfortunately, for the RCPSP/TT this does not ensure the existence of a feasible

Solution.

• The resource strength RS e [0,1] measures the degree of resource-constrainedness.

Let denote Kmin := E., ,min {SC.. \ t e W.}, := g max {SC., | t e W.}, r jtJ 1 jrt 1 jJ r jEJ 1 jrt' jJ

then K : = ROUND[^(l-RS) + /fmax.RS] defines the available capacity of

resource r. Clearly, only for the RCPSP RS = 0 defines the lowest resource feasible

level, while for RS = 1 no resource might become scarce in any schedule.

Unfortunately, for the RCPSP/TT there is no guarantee for resource feasibility.

• The subsets cardinality factor CF e [0,1] determines the cardinality M of the period

subsets as follows: U := ROUND(l- CF+ T- CF). Clearly, CF = 0 implies that all

period subsets have cardinality one (i.e. only renewable resources are generated),

20

while for CF = 1 they cover the whole planning horizon (i.e. only nonrenewable

resources are generated).

The subset of period partition factor PF e [0,1] determines the number of intervals

I (i.e. subsequent periods) of the period subsets as follows: /: = ROUND

(l-PF + min{M, T-M+1} • PF). Note that PF - 0 implies that /equals one, while

for PF = 1 we get the maximum possible I (given T and M).

Table 2 gives a summary of the variable problem parameter levels. In order to

generale the test instances we used a füll factorial design where we fixed the number of

non-dummy activities to 10, i.e. | J | =12, and the number of normalized partially

renewable resources to 30, i.e. | R | =30. The duration of non-dummy activities and the

level of a positive resource requirement were randomly drawn from the uniform

distribution [1,10]. All other problem parameters were set as documented in Kolisch et

al. 1995.

We generated 10 instances for each combination of NC, RF, RS, DF, CF, and PF

which gave a total of 2*3*3*2*3x2 = 216 benchmark instances. All instances used in the

computational study are available from the authors upon request.

Table 2: Levels of Variable Problem Parameters

Parameter Levels

NC {1.5,2.0}
RF {0.1,0.5,0.9}
RS {0.25,0.5,0.75}
DF {0.3,0.6}
CF {0.2,0.5,0.8}
PF {0.0,0.5}

5.2 What Makes Instances "Haid" or "Easy"

While clearly all problem instances covered by the RCPSP/x belong to the class of

NP-hard ones (cf. Theorem 1), the computational tractability of a specific instance

depends on the problem parameters introduced above. In this subsection we report the

computational results which have been achieved with the basic version (BV) of the exact

algorithm without any bounding rules, because then the impact of the problem para

meters becomes more obvious.

Solving all 2,160 instances with BV we needed an average CPU-time of 4.264 seconds

where 27,963 leaves were generated on the average. For the present we will not distin-

guish between feasible and infeasible instances. Later we will come back to this aspect in

detail.

21

Table 3 shows the impact of each parameter on the tractability. We report both the

number of generated leaves (# of leaves) and the CPU-time required to solve an instance

to optimality or to show that no feasible Solution exists. PAR denotes the parameter

under consideration, VAL the value of the parameter, AVE the average over all

instances, and STD the Standard deviation, respectively. SIG denotes the ANOVA-

based error of rejecting the hypothesis " PAR does not have a significant impact on the

computational effort of the algorithm". SIG < 0.05 indicates that PAR influences AVE.

The following observations can be made: PF and MC have no significant effect on

the tractability. Contrary to the RCPSP (cf. Kolisch et al. 1995) increasing NC seems to

decrease the tractability. All other parameters do have a high impact on the tractability.

Table 3: Impact of Parameters on Tractability

of leaves CPU-time in sec
PAR VAL AVE STD SIG AVE STD SIG

NC 1.5 22,265 153,651 0.161 3.462 20.332 0.164
2.0 33,661 218,166 5.067 31.974

RF 0.1 3,858 26,125 0.0 0.818 4.268 0.0
0.5 16,879 147,076 2.520 17.328
0.9 63,152 287,569 9.455 42.380

RS 0.25 3,063 24,959 0.0 0.611 3.157 0.0
0.5 33,818 167,662 5.448 27.428
0.75 47,008 277,853 6.735 37.059

DF 0.3 2,724 12,918 0.0 0.629 2.110 0.0
0.6 53,203 264,250 7.900 37.498

CF 0.2 2,461 20,612 0.0 0.621 3.090 0.0
0.5 22,879 155,176 3.894 25.756
0.8 58,549 284,317 8.279 38.131

PF 0.0 27,594 182,555 0.928 4.115 25.346 0.796
0.5 28,332 194,791 4.413 28.187

Table 4-' Level of Significance for Interactions of Two Parameters

RF RS DF CF PF

NC 0.117 0.546 0.209 0.488 0.526

RF 0.000 0.000 0.000 0.205

RS 0.000 0.000 0.517

DF 0.000 0.844

CF 0.876

22

Table 4 shows the mutual interactions of two parameters as an outcome of multiple

variance analysis in terms of SIG, the level of significance. More precisely, SIG denotes

the multiple ANOVA-based error of rejecting the hypothesis "Both parameters do not

effect each other with respect to the tractability". It can be seen that the three

parameters RF, RS and DF show a significant interaction while the interactions of all

other parameter pairs are not significant.

5.3 Evaluation of the Feasibility Bounds

In this subsection we report the speed-up of the basic version (BV) of the algorithm

obtained by the use of the feasibility bounds described in Section 4.1. In the sequel FB1,

FB2 and FB1&2 denotes the version which utilizes the feasibility bound 1, the

feasibility bound 2 and the feasibility bounds 1 and 2, respectively.

Tables 5 to 7 provides average comparative results. FAC denotes the speed-up

factor. Table 5 presents the results for all the instances, i.e. based on the set of 2,160

Problems introduced in Subsection 5.1. Table 6 reports averages over the subset of the 40

instances where the speed-up was highest. Table 7 shows averages over the subset of the

40 instances which turned out to be " very hard" for BV in terms of the number of leaves

generated in the search tree. Clearly, FB 1&2 is more efficient than FB 1 with respect to

the number of backtracking steps needed in order to solve an instance. Unfortunately,

the effort to check the assumptions of the more elaborate method FB1&2 is very high.

Therefore, FB1&2 does not outperform FBI that much in terms of the CPU-time

required.

Table 5: Averages over all Instances

of leaves
AVE STD FAC

CPU-time in sec
AVE STD FAC

BV 27,963 188,729 1.0 4.3 26.8 1.0

FBI 4,441 50,873 6.3 1.0 8.1 4.3

FB2 3,470 35,144 8.1 1.9 16.1 2.3

FB1&2 580 6,696 48.1 0.7 5.5 6.0

As expected, the tractability of instances by the different versions depends on the

problem parameters as well; details can be found in Böttcher 1995.

23

Table 6: Averages over 40 Instances with Highest Speed-up

of leaves
AVE STD FAC

CPU-time in sec
AVE STD FAC

BV

FBI

FB2

FB1&2

157,489 235,251 1.0

5,840 18,293 27.0

4,743 10,372 33.2

124 336 1267.0

22.3 35.8 1.0

1.2 3.2 18.3

2.5 4.9 8.9

0.5 0.3 47.1

Table 1: Averages over 40 Very Hard Instances

of leaves
AVE STD FAC

CPU-time in sec
AVE STD FAC

BV

FBI

FB2

FB1&2

556,981 863,217 1.0

123,825 314,838 4.5

66,360 151,350 8.4

15,243 39,745 36.5

77.9 119.8 1.0

20.1 49.6 3.9

31.2 68.3 2.5

12.9 33.3 6.1

So far, we did not differentiate between instances with and without feasible

solutions. In the following 'feasible instances' will be of primary concern, due to several

reasons: (i) Practical examples, though not available to the authors so far, are supposed

to be feasible. (ii) To solve 'infeasible instances' is on the average more time consuming

than solving 'feasible instances'. (iii) Last but not least, it does not make any sense

trying to solve ' infeasible instances' by the use of greedy heuristics.

The instance generator has not been designed in order to provide 'feasible

instances'. Therefore we counted the 'feasible instances' within each of the 216

parameter cells collected in Table 2. Then we excluded the cells for which less than six of

the instances did not have a feasible Solution. This way we restricted the generator ex

post to provide ' feasible instances' with a high probability. Table 8 gives a summary of

the restricted variable problem parameter levels. Note that we have NC = 2.0 and

DF = 0.6 in all the 25 cells identified in Table 8.

24

Table 8: Restricted Levels of Variable Problem Parameters

Cell PF CF RS RF

1 .0 .2 .5 .1
2 .0 .2 .5 .5
3 .0 .2 .5 .9
4 .0 .2 .75 .1
5 .0 .2 .75 .5
6 .0 .2 .75 .9
7 .0 .5 .75 .9
8 .0 .8 .25 .1
9 .0 .8 .25 .9

10 .0 .8 .5 .1
11 .0 .8 .5 .5
12 .0 .8 .5 .9
13 .0 .8 .75 .1
14 .0 .8 .75 .5
15 .0 .8 .75 .9
16 .5 .2 .5 .1
17 .5 .2 .5 .5
18 .5 .2 .5 .9
19 .5 .2 .75 .1
20 .5 .2 .75 .5
21 .5 .2 .75 .9
22 .5 .5 .75 .1
23 .5 .5 .75 .5
24 .5 .5 .75 .9
25 .5 .8 .75 .9

We generated four sets of instances with 15, 20, 30 and 60 non-dummy activities,

respectively, where the instances of each set were generated according to the 25

parameter cells of Table 8. The number of normalized resources was set to 30. For each

of the 4 problem sizes and each of the 25 cells 10 instances were generated. A summary of

the results obtained with the algorithm FB 1 &2 can be given as follows:

• Within a time limit of 5 CPU minutes all but 10 of the 250 instances having 15

activities could be solved to optimality. For the 250 instances with 20 activities this

number is 21.

• For the 250 instances with 30 activities we were unable to find a feasible Solution

within a time limit of 5 CPU minutes for 19 instances. Additional 14 instances could

not be solved to optimality within 5 minutes. Thus in total for 33 instances the

algorithm terminaled prematurely within this problem class.

• Conceraing the 250 instances with 60 activities for 21 instances a time-out occurred

after 5 CPU minutes. For 10 of these 21 instances no feasible Solution could be

found.

25

• Within the 30 and 60 non-dummy activity classes of problem sizes a time-out occurs

only for instances belonging to the parameter cells 8, 9, 12, and 25, respectively. The

instances for which no feasible Solution could be found before reaching the time limit

are primarily located in cell 25.

5.4 Evaluation of the Priority Rule Based Serial Scheduling Method

Recall that u denotes a priority rule while Z denotes the sample size. First we conducted

some experiments in order to evaluate the priority rules presented in Subsection 4.2. In

the first experiment we employed the instance set with 20 non-dummy activities used

above.

Table 9: Comparison of the Priority Rules (| J | = 22)

priority
rule u)

UNSOLVED
z=io ioa,000

MINEFT 51 50 41
MINLFT 40 36 33
MINSLK 49 47 42
MTSUCC 45 40 39
MAXSRU 56 54 54
MINSRU 62 55 47
MAXTRU 105 70 56
MINTRU 37 36 35
MAXRRU 104 66 54
MINRRU 38 37 36
MAXDRRU 104 67 52
MINDRRU 34 33 32
MAXTRC 37 37 35
MINTRC 100 68 54

Table 9 provides the results. In columns 2 to 4 we find the number of instances for

which no feasible Solution has been found (denoted as UNSOLVED) after Z = 10, 100,

and 1,000 passes, respectively.

The results of Table 9 indicate that the rules MAXSRU, MINSRU, MAXTRU,

MAXRRU, MAXDRRU and MINTRC are inferior w.r.t. the ability to derive feasible

solutions. Therefore we decided to further evaluate the eight rules MINEFT, MINLFT,

MINSLK, MTSUCC, MAXTRC, MINTRU, MINRRU and MINDRRU for larger

instance sets comprising 30 and 60 non-dummy activities, respectively.

In order to evaluate the Solution quality obtained with the priority rules we only

considered for the 250 instances with 30 activities those 217 (14) instances for which the

exact algorithm was able to prove the optimal Solution (identify at least one feasible

Solution) within the imposed time limit. Table 10 provides the average percentage

deviations of the objective function value computed with the serial algorithm (within Z

passes) from the objective function value computed by the exact algorithm.

26

Table 10: Evaluation of Priority Rules for Larger Instances (| J| =32)

priority 217 instances 14 instances 250 instances
rule u) 2=10 100 1,000 2=10 100 1,000 CPU (2=1,000)

MINEFT 12.23 9.17 6.38 134.74 133.10 100.40 10.6
MINLFT 1.63 0.81 0.81 7.87 7.87 6.50 8.8
MINSLK 8.70 7.53 6.50 75.13 74.83 40.25 11.3
MTSUCC 4.71 3.31 2.77 55.52 40.06 39.86 11.0
MAXTRC 49.48 9.41 5.26 4.93 3.84 1.63 27.2
MINTRU 49.48 10.01 5.60 4.71 3.95 1.63 19.6
MINRRU 50.15 10.38 5.93 5.04 3.73 1.73 22.3
MINDRRU 50.15 10.38 6.04 5.37 3.73 1.52 32.5

The results can be interpreted as follows: The "classical" rules MINEFT, MINLFT,

MINSLK, and MTSUCC perform better on the subset of the "easy" 217 instances while

the new rules MINTRU, MINRRU, MINDRRU, and MAXTRC do a better job on the

"hard" 14 ones, respectively. This is especially evident for a small number of passes 2. In

summary the rule MINLFT seems to be the most promising candidate.

In order to evaluate the run time Performance of the different priority rules, the

average CPU times for solving all the 250 instances under investigation in sec for 1,000

passes are reproduced in Table 10, too.

Table 11 provides the results for the 229 (11) instances with 60 non-dummy activi

ties for which the exact algorithm was able to prove the optimal Solution (identify at

least one feasible Solution). We restricted the umber of passes Z to at most 100 because

of the increasing computational effort. Average CPU times for solving all the 250

instances under concem in sec for Z= 100 passes are reproduced also.

The results already obtained on the 30 activity set are maintained, i.e. the rule

MINLFT performs best over the "easy" 229 instances while the rules MINEFT and

MINSLK are inferior for the "hard" 11 instances. In summary the rule MINLFT gives

reasonable good results for both "easy" and "hard" instances.

Table 11: Evaluation of Priority Rules for Larger Instances (| J| =62)

priority
rule ÜJ

229 instances
2=10 100

11 instances
2=10 100

250 instances
CPU (2=100)

MINEFT 8.11 7.87 41.84 41.84 5.8
MINLFT 1.63 1.52 0.70 0.70 5.9
MINSLK 5.49 5.26 41.64 41.64 6.1
MTSUCC 2.67 2.46 1.83 1.83 6.8
MAXTRC 58.73 17.51 4.17 4.17 28.2
MINTRU 58.73 17.65 4.17 4.17 20.6
MINRRU 58.73 17.51 4.17 4.06 21.9
MINDRRU 58.73 17.51 4.17 4.17 32.8

27

6 Summary and Future Work

In this paper we consider a generalization of the classical resource constrained project

scheduling problem. So-called partially renewable resources are introduced by assuming

for each resource a capacity on subsets of periods. The concept of partially renewable

resources is a fundamental tool in order to make e.g. timetabling and shift scheduling

aspects amenable to project scheduling. Furthermore, they cover traditional renewable

and nonrenewable resource constraints as special cases. We consider makespan minimi

zation as objective. For the exact Solution of the problem we employ a basic enumeration

scheme. We formulate bounds which take into account future resource consumption of

partially renewable resources in order to speed up convergence. Moreover, we generalize

the serial scheduling scheme in order to get fast approximation methods. A rigorous

assessment of the procedures is provided by solving ProGen instances generated under a

füll factorial test design. Besides the well-known problem parameters we employ addi-

tionally three parameters which control the generation of partially renewable resources.

Future work should concentrate on the development of additional bounding rules in

order to speed-up convergence of the exact algorithm. In addition, fast and reliable local

search methods have to be developed for solving the RCPSP/?r to suboptimality.

Appendix: Computation of SC.^, and MCI.^ for example 2

SC,

SC
2,1,«

SC
2,2, «

2,3 ,«

sc.

SC.
3,1,<

sc.
3,2,*

3,3,«

SC

sc.
4,1,«

ac
4,2,«

4,3,«

SC,

sc.
5,1,«

sc.
5,2,«

5,3,«

start time t 0 1 2 3 4 5 6 7 8 Table A.l: SC.. jrt

^1,U

^1,3,

2 2 2 1

0 0 0 1

0 0 0 0

2 10 0 0

0 12 2 2

0 0 0 0 0

4 2 0 0

0 2 4 4

0 0 0 0

0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0

3 2 1 0

0 1 2 3

28

Start time t

MC,

MC;
1.1,<

MC,
1>2,i

1,3,*

MC,

MC,
2,1,*

2,2,*
MC, 2,3,*

MC.

MC.
3,1,*

MC.
3,2,*

3,3,*

MC.

MC
4,1,*

MC
4,2,*

4,3,*

0 1

1111

0 0 0 1

0 0 0 0

0 0 0 0 0

0 12 2 2

0 0 0 0 0

0 0 0 0

0 2 4 4

0 0 0 0

0 0 0 0

1111

0 0 0 0

MCM,< 0 0 0 0

0 0 0 0

MC5,3,« 0 1 2 3

Start time t 0 1 2 3 4 5 6 7 8

MCV,< 0 0 0 0

^1,2,« 1 4 7 7

l

CA?
 0 1 2 3

MCT2,1,<
*«2,2,,

0 0 0 0 0 MCT2,1,<
*«2,2,, 0 0 0 0 0

MCT2,3,< 0 0 1 2 3

^3,1,« 0 0 0 0

MCIZ,2,t 1 1 1 1

^3,3,* 0 1 2 3

^4,1,*
0 0 0 0

^4,2,*
0 0 0 0

^4,3,*
0 1 2 3

^5,1,* 0 0 0 0

^5,2,* 0 0 0 0

^5,3,* 0 0 0 0

Table A.2: MC. jrt

Table A.S: MCI. . jrt

29

References

Alvarez-Valdes, R. and J.M. Tamarit (1989): "Heuristic algorithms for resource-
constrained project scheduling: A review and an empirical analysis", in: Slowinski,
R. and J. Wgglarz (eds.): Advances in project scheduling, Elsevier, Amsterdam, pp.
113-134.

Bell, C.E. and J. Han (1991): "A new heuristic Solution method in resource-constrained
project scheduling", Naval Research Logistics, Vol. 38, pp. 315-331.

Bell, C.E. and K. Park (1990): "Solving resource-constrained project scheduling problems
by A* search", Naval Research Logistics, Vol. 37, pp. 61-84.

Biazewicz, J.; W. Cellary; R. Slowinski and J. Weglarz (1986): Scheduling under resource
constraints - deterministic models, Baltzer, Basel (Annais of Operations Research,
Vol. 7).

Boctor, F.F. (1990): "Some efficient multi-heuristic procedures for resource-constrained
project scheduling", European J. of Operational Research, Vol. 49, pp. 3-13.

Böttcher, J. (1995): "Projektplanung: ein exakter Algorithmus zur Lösung des Problems
mit partiell erneuerbaren Ressourcen", Master Thesis, University Kiel (in German).

Brucker, P.; A. Schoo and O. Thiele (1996): " A brauch and bound algorithm for the
resource-constrained project scheduling problem", Working Paper, University
Osnabrück.

Carlier, J. and B. Latapie (1991): "Une methode arborescente pour resoudre les
problemes cumulatifs", Recherche Operationneüe, Vol. 25, pp. 311-340.

Christofides, N.; R. Alvarez-Valdes and J.M. Tamarit (1987): "Project scheduling with
resource constraints: A branch and bound approach", European J. of Operational
Research, Vol. 29, pp. 262-273.

Cooper, D.F. (1976): "Heuristics for scheduling resource-constrained projects: An
experimental investigation", Management Science, Vol. 22, pp. 1186-1194.

Davis, E.W. and G.E. Heidorn (1971): "An algorithm for optimal project scheduling
under multiple resource constraints", Management Science, Vol. 17, pp. 803-816.

Demeulemeester, E. and W. Herroelen (1992): "A branch-and-bound procedure for the
multiple resource-constrained project scheduling problem", Management Science,
Vol. 38, pp. 1803-1818.

Demeulemeester, E. and W. Herroelen (1995): "New benchmark results for the resource-
constrained project scheduling problem", Working Paper, Katholieke Universiteit
Leuven.

Drexl, A. (1991): "Scheduling of project networks by job assignment", Management
Science, Vol. 37, pp. 1590-1602.

Drexl, A. and J. Grünewald (1993): "Nonpreemptive multi-mode resource-constrained
project scheduling", IIE Transactions, Vol. 25/5, pp. 74-81.

Elmaghraby, S.E. (1977): Activity networks - Project planning and control by network
models, Wiley, New York.

Garey, M.R. and D.S. Johnson (1979): Computers and intractability - A guide to the
theory of NP-completeness. Freeman, San Francisco.

Hart, J.P. and A.W. Shogan (1987): "Semi-greedy heuristics: an empirical study",
Operations Research Letters, Vol. 6, pp. 107-114.

Haupt, R. (1989): "A survey of priority rule-based scheduling", OR Spektrum, Vol. 11,
pp. 3-16.

30

Icmeli, O. and W.O. Rom (1994): "Solving the resource constrained project scheduling
problem with Optimization Subroutine Library", Working Paper, Cleveland State
University.

Kelley, J.E.Jr. (1963): "The critical-path method: resources planning and scheduling",
in: Muth, J.F. and G.L. Thompson (eds.): Industrial scheduling, Prentice-Hall, New
Jersey, pp. 347-365.

Kolisch, R. (1995): Project scheduling under resource constraints - Efficient heuristics
for several problem classes, Physica, Heidelberg.

Kolisch, R. (1996a): "Serial and parallel resource-constrained project scheduling methods
revisited: theory and computation", European J. of Operational Research, Vol. 90,
pp. 320-333.

Kolisch, R. (1996b): "Efficient priority rules for the resource-constrained project
scheduling problem", J. of Operations Management (to appear).

Kolisch, R. and A. Drexl (1996): "Adaptive search for solving hard project scheduling
Problems", Naval Research Logistics, Vol. 43, pp. 23-40.

Kolisch, R.; A. Sprecher and A. Drexl (1995): " Characterization and generation of a
general class of resource-constrained project scheduling problems", Management
Science, Vol. 41, pp. 1693-1703.

Laguna, M.; T.A. Feo and H.C. Elrod (1994): "A greedy randomized adaptive search
procedure for the two-partition problem", Operations Research, Vol. 42, pp.
677-687.

Leon, V.J. and R. Balakrishnan (1995): "Strength and adaptability of problem-space
based neighborhoods for resource constrained scheduling", OR Spektrum, Vol. 17,
pp. 173-182.

Li, R.K.-Y. and J. Willis (1992): "An iterative scheduling technique for resource-
constrained project scheduling", European J. of Operational Research, Vol. 56, pp.
370-379.

Mingozzi, A.; V. Maniezzo; S. Ricciardelli and L. Bianco (1994): "An exact algorithm for
project scheduling with resource constraints based on a new mathematical
formulation", Working Paper, University of Bologna.

Panwalkar, S.S. and W. Iskander (1977): "A survey of scheduling rules", Operations
Research, Vol. 25, pp. 45-61.

Oguz, O. and H. Bala (1994): "A comparative study of computational procedures for the
resource constrained project scheduling problem", European J. of Operational
Research, Vol. 72, pp. 406-416.

Patterson, J.H. and G.W. Roth (1976): "Scheduling a project under multiple resource
constraints: a zero-one programming approach", AHE Transactions, Vol. 8, pp.
449-455.

Pritsker, A.A.B.; L.J. Watters and P.M. Wolfe (1969): "Multiproject scheduling with
limited resources: a zero-one programming approach", Management Science, Vol. 16,
pp. 93-107.

Radermacher, F.J. (1985/86): "Scheduling of project networks", Annais of Operations
Research, Vol. 4, pp. 227-252.

Sampson, S.E. and E.N. Weiss (1993): "Local search techniques for the generalized
resource constrained project scheduling problem", Naval Research Logistics, Vol. 40,
pp. 365-375.

Stinson, J.P.; E.W. Davis and B.M. Khumawala (1978): "Multiple resource-constrained
scheduling using branch and bound", AHE Transactions, Vol. 10, pp. 252-259.

31

Talbot, F.B. and J.H. Patterson (1978): "An efficient integer programming algorithm
with network cuts for solving resource-constrained project scheduling problems",
Management Science, Vol. 24, pp. 1163-1174.

Wiest, J.D. (1964): "Some properties of schedules for large projects with limited
resources", Operations Research, Vol. 12, pp. 395-418.

