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Abstract: We consider a generalization of the classical resource constrained 
project scheduling problem. We introduce so-called partially reiiewable 
resources by assuming for each resource a capacity on subsets of periods. The 
concept of partially renewable resources is a fundamental tool in order to 
make e.g. timetabling and shift scheduling aspects amenable to project sched
uling. In addition, partially renewable resources serve to model complicated 
labor regulations. Furthermore, they cover traditional renewable and nonre-
newable resource constraints as special cases. 

We consider makespan minimization as objective. For the exact Solution 
of the problem we employ a basic enumeration scheme. In order to speed up 
convergence, we formulate bounds which take into account future resource 
consumption of partially renewable resources. Moreover, we generalize the 
serial scheduling scheme in order to get fast approximation methods. 

A rigorous assessment of the procedures is provided by solving Pro Gen 
instances generated under a füll factorial test design. Besides the well-known 
problem parameters we employ additionally three parameters which control 
the generation of p artially renewable resources. 

Keywords: Project scheduling, resource constraints, partially renewable 
resources, branch-and-bound algorithm, serial scheduling scheme 

1 Background and Motivation 

A recurring problem in project management involves the allocation of scarce resources to 

activities. In scheduling theory renewable and nonrenewable resources are usually distin-

guished. The usage of renewable resources is limited for every period while nonrenewable 

resources are restricted to an overall consumption within the whole planning horizon. 

These resource types only allow to formulate capacity constraints for exclusively one or 

all of the periods. Partially renewable resources are obtained by assuming for each 

resource a capacity on subsets of periods. The concept of partially renewable resources is 

a fundamental tool in order to make e.g. timetabling and shift scheduling aspects 

amenable to project scheduling. In addition, it serves to model complicated labor 

regulations. Furthermore, it Covers traditional renewable and nonrenewable resource 

constraints as special cases. While renewable resources are defined on subsets consisting 

of exactly one period, nonrenewable resources are subject to the set of all periods of the 

planning horizon. 

Resource constrained project scheduling has attracted considerable attention 

recently, cf. e.g. Biazewicz et al. 1986, Christofides et al. 1987, Bell and Han 1991, 

Demeulemeester and Herroelen 1992, 1995, Mingozzi et al. 1994, Leon and Balakrishnan 

1995, and Brucker et al. 1996. More specific, the classical resource constrained project 

scheduling problem (RCPSP) has been the main subject of concem. We consider a 

generalization of the RCPSP, which makes use of partially renewable resources. For 

short this generalization is denoted as RCPSP/?r. We consider makespan minimization as 

objective. For the exact Solution of the RCPSP/V we employ the basic enumeration 

scheme of Talbot and Patterson 1978. In order to speed up convergence, we formulate 
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bounds which take into account future resource consumption of partially renewable 

resources. In addition, we generalize the serial scheduling scheme of Kelley 1963. The 

methods are evaluated for a set of instances generated with the project generator 

Pro Gen, cf. Kolisch et al. 1995. 

Example 1: In order to further motivate the RCPSP/TT we consider the case, where 

the resource type " st äff" has to be scheduled. Figure 1 depicts that no worker is avai-

lable before period 9 and after period 17, respectively. Moreover, 5 workers are available 

during periods 9 to 12 and during periods 14 to 17, respectively. In period 13 all the 

workers have their lunch break. Then e.g. no non-preemptable activity with a duration of 

at least 3 periods is allowed to Start in period 11. 

Figure 1: Availability of Staff (Variant 1) 

st äff 

periods 

More flexibility is offered if each of the workers could have his break either in period 13 

or in period 14. In Figure 2 e.g. 3 (2) workers have their lunch break in period 13 (14). 

This would now allow to Start an activity with the duration of 3 periods in period 11 if it 

requests less than 3 workers per period. Unfortunately, there exist several possibilities to 

specify in advance which workers should have their lunch break either in period 13 or in 

period 14. Qearly, this is impractical and does not provide the degree of flexibility which 

is necessary when we want to schedule a one hour lunch break for each worker either in 

period 13 or in period 14 without fixing the period in advance. 

Figure 2: Availability of Staff (Variant 2) 

staff 

10 
1 i i i r 

15 
I I I I I I I periods 

20 24 

The " Skyline" (cp. Elmaghraby 1977) of resource profiles in both figures illustrates that 

the modelling capabilities of renewable resources are not suföcient to tackle more general 

and complicated situations. In this paper we show, that the RCPSP/x is able to do this. 

The outline of the paper is as follows: In Section 2 we present formal models of the 

RCPSP/TT. The modelling capabilities of the RCPSP/7T are illustrated by some examples 
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in Section 3. Section 4 provides exact and heuristic Solution procedures. In Section 5 we 

present details of the experimental evaluation. Section 6 gives a summary and an outlook 

to future research. 

2 Model Formulation 

The RCPSP/TT can be stated as follows: 

• We consider a Single project which consists of the set J of activities. Let V. define the 

set of immediate predecessors of activity j e J. For ease of notation the activities are 

topologically ordered, i.e. each predecessor of activity j has a smaller number than j. 

Furthermore, activity j= 1 (j = | J |) is defined to be the unique dummy source 

(sink). 

• Activity j has a non-preemptable duration of d. periods. 

• Let T be the set of periods during which the activities must be processed. 

Furthermore, t € T denotes a specific period. 

• R' denotes the set of partially renewable resources. The activities are interrelated by 

resource constraints as follows: In order to be processed, activity j requires k. units 

of resource r€R' during every period of its duration d.. 

• Let P(r,TT) denote the Tr-th subset of periods in which resource r 6 R' is available with 

resource capacity For resource r 6 R' in total we have the set II(r) of subsets of 

periods P(r,TT), i.e. TT = 1,..., J Tl(r) |. 

• The objective of the RCPSP/TT is the minimization of the makespan such that 

precedence and resource constraints are met. 

We derive earliest and latest finish times EF. and LF., respectively, by traditional 

critical path analysis. Let denote E. := {EF.,..., LF.} and Q.t := {t,...,t + d -1}. Now, 

based on the decision variables x.t = 1, if activity j is finished in period t (0, otherwise), 

the RCPSP/TT can be modelled as follows: 

min E t-x, (1) 
teE\j\ 

s.t. S x = 1 (jeJ) (2) 
i£E. 3 

J 
S t-x < I (t-i ) X UtJ.h ev.) (3) 

<€£, t€E. ' ' ' h ] 

% ifr S S x < K (rsi',1re{l |n(r)|})(4') 
}€J ' t£P(r,x) q£QJIE. K 

Jl ] 

^ G { 0,1} (j£j,UE.) (5) 
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The objective function (1) minimizes the completion time of the umque sink and 

thus the makespan of the project. Equations (2) are activity completion constraints. 

Constraints (3) take into consideration the precedence relations between each pair of 

activities (h,j), where h immediately preceeds j. Finally, constraints (41) limit the total 

usage of the (partially renewable) resources to the available amount. Note that Icmeli 

and Rom 1994 use the term "partially renewable resource" as well. Within their frame-

work, resources are renewable at time milestones and within time intervals they are 

nonrenewable. Clearly, their definition is close to so-called doubly-constrained resources 

(cp. e.g. Blazewicz et al. 1986), while ours is not. 

Example 1 now serves to illustrate the RCPSP/x. The following parameter instan-

tiations appropriately define the problem under consideration in terms of the RCPSP/vr 

and allow to schedule a one our break for each of the five workers without fixing in 

advance whether the break is in period 13 or in period 14. 

%!) = {! 8,18 24},K^=0; 

P( 1,2) = {9}, K12=5; P(l,3) ={10}, Ä13 = 5; P(l,4) = {11}, K14 =5; 

P(l,5)-{12}, KJ5=5; P(l,6)={15}, KI'6=5; P(1J) = {16}, = 5; 

P(l,8)={17}, 5; P(l,9)={13,14};Klg=5. 

Figure 3 provides a graphical representation of the availability of the partially 

renewable resource staff; the entry m the first column denotes the capacity of the 

resource r = staff in the period subset w, T = 1,...,9, while "|" denotes that the period 

belongs to 

Figure 3: Graphical Representation of the Instance 

7T/K ' rr P(r,%) 

5 10 15 
i i i i i i i i i i i i i i i 

20 24 
IIIIIIII 

1/0 llllllll lllllll 
2/5 • 

lllllll 

3/5 1. 
4/5 • 
5/5 1 
6/5 1 
7/5 1 
8/5 

II 
i i l i i i i 1 1 1 1 i i i i 

1 
9/5 II 

i i l i i i i 1 1 1 1 i i i i llllllll 
0 5 10 15 20 24 

Clearly, a partially renewable resource is a nonrewable one if the period subset 

Covers the whole planning horizon. Moreover, the RCPSP/?r is a generalization of the 

RCPSP, where we have |n(r)|=|T|, P(r,l) = {1}, P(r,2)={2} ,..., P(r, |II(r)|) = 

{| T|} for all r 6 R' as well as for all r 6 R' and TT 6 {1,..., |II(r)|}, respectively. 

Clearly, constraints (4') then reduce to the resource constraints (4") of the RCPSP. 
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2 3 =% ^ \ (rea',(ET) (4") 
j£J ]r qeQ.fE. 3q 

The puipose of the following is to classify the complexity of the feasibility problem of 

the RCPSP/TT. In fact, even the feasibility problem of the RCPSP with given deadline 

| T | is NP-complete. The feasibility problem of the RCPSP can be stated as follows: 

Given an instance ofthe RCPSP, i.e. a network, a set of capacity constraints and a 

deadline | T | does this problem have a feasible Solution ? 

Theorem 1 The feasibility problem ofthe RCPSP is NP-complete in the strong sense. 

Proof By restriction to 3-PARTITION. • 

Note that the NP-completeness of the feasibility problem in turn implies the NP-

hardness of the corresponding optimization problems (cf. Garey and Johnson 1979). 

We finish this section by presenting the RCPSP/TT in a "normalized" form which 

allows to drop one of the parameters introduced so far. More precisely, normalized means 

that |II(r)| =1 holds for every resource. Starting from the "ordinary" RCPSP/TT 

(l)-(3), (4'), (5) we get the normalized RCPSP/TT as follows: Generate one additional 

resource r with the availability level K for each period subset TT = 2,..., | II(r) | and define 

the resource requirement k.^ for each activity j € J appropriately. These transformations 

allow to State the RCPSP/TT as follows: 

/ 
min (1) 

s.t. (2), (3), (5), and 

E k. E E x < K (reR) (4) 
j£J 3t£P(r) qEQ.flB. 3q 

ji j 

Note we have |II(r)| =1 in the model formulation (l)-(5), therefore |II(r)| is 

omitted in comparison to (41). Furthermore, P(r,ir) reduces to P(r) and K to K , 

respectively. Clearly, the reduction of |ü(r)| to 1 is done at the "price" of enlarging the 

set of resources from R' to R. It is easy to prove that the ordinary RCPSP/TT and the 

normalized RCPSP/TT have the same objective function and the same set of constraints. 

Therefore, both model formulations are equivalent. 

The process of normalizing the RCPSP/TT is illustrated by the use of an example in 

Figure 4. Starting with Ä'={ 1} and II(r)=3 in the ordinary RCPSP/TT we get 

R = {1,2,3} in the normalized RCPSP/TT. Note that "|" and denote the period 

subsets in both cases while "|" denotes period 3 which is covered by P(r, 1) and P(r,2), 

respectively, in the ordinary RCPSP/TT. 
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Figure 4: Normalizing the RCPSP/T 

#' = {!}, r=1, |n(r)| =3, P(r,l)={ 1,2,3}, P(r,2)={3,4,5}, P(r,3)={9,10} 

\l=\2=2> %,3=1 

Ä= {U3} 

r = 1, P(r) = {1,2,3}, %. = 2 

r = 2, P(r) = {3,4,5}, «, = 2 

r = 3, P(r) = {9,10}, = 1 

0 5 

i i r 
5 

i r 

i r 
5 

1
 

•
 

III! 1 1 1 
10 

10 

"l r i 1 
10 

10 

As a consequence in the following we will solely relate to the formulation (l)-(5), 

because then we must not take care of II(r) and P(r,if). Clearly, then it is difficult to 

interprete the transformed "resources" in terms of an application. 

3 Modelling CapabUities 

In order to further demonstrate the modelling capabilities of the RCPSP/7T, we consider 

additional examples. 

Figure 5: Network ofExample 2 

Example 2: Let T: = {1,2,...,11}, J := {1,2,...,5}. Moreover, consider the network 

structure given in Figure 5. In addition, let d1: = d2: = : = 2, d^: = 1, d^: = 3, 

R: = {1,2,3},P(l): = {1,2,3,4}, ^: = 7, 

P(2): = {5,6,7,8}, ^: = 3, 

P(3):= {9,10,11}, = 2, and 

Kr '• = Kr '= \r = Kr ''= Kr '' = 2 ^ T 6 Wß CO^pUte ^ : = {2,...,5}, ^ : = 
{4,...,8}, := {4,...,7}, := {5,...,8}, := {8,...,11}. Figure 6 depictes the Single 

feasible schedule. The rectangules represent the activities j, their length indicates the 
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duration d., and the numbers in the rectangules give the per period resource require-

ments k^ (j G J, r e R), respectively. 

Figure 6: Gantt- Chart for Example 2 

activities 

1 
2 

1 

periods 
10 

Figure 6 leads to the following observations: Each activity j finishes within its 

feasible interval E. as required by constraints (2). If activity j has a positive resource 

usage k.^ (r 6 Ä) and if it is processed in period subset P(r), then resource r is in fact 

consumed by activity j. Activities 1 and 3 are totally, activity 2 is partially processed in 

period subset P(l); alltogether they consume = 7. Activities 2 and 5 are partially, 

activity 2 is totally processed in period subset P(2); in sum they polish off «2 = 3. 

Finally, activity 5 is partially processed in period subset P(3) and consumes K = 2. 

Clearly, activity 5 is delayed not because of the precedence constraints, but due to 

resource constraints, i.e. the limited availability of resource r = 2 in period subset P(2). 

Example 3: Assume we have to plan the daily payment of workers on basis of weekly 

budgets for the next four weeks. With each week one resource is associated. Four weeks 

with five days each in total give 4*5 =20 periods. Without reproducing all the data of 

the instance, then the parameter instantiations 

P(l) ={1,...,5}, «1 = 10, 

P(2)={6,...,10}, K2 = 10, 

P(3)={11,...,15},/C3 = 10, 

P(4) = {16,...,20}, K4 = 10, 

allow to compute the Gantt-chart depicted in Figure 7. 

Figure 7: Daily Payment of Workers, Weekly Budgets 

activities 

7 
6 
5 
4 
3 
2 
1 

i—r 
10 15 

i—r r 
18 

periods 
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Example 4: Assume we have to plan the work weeks for an assembly worker for the 

next weeks. Moreover assume, that the worker is allowed to work only on eight non-

weekend days (two weekend days) within two consecutive weeks. Without reproducing 

all the data of the instance, then the parameter instantiations 

P(l) = {1} Kj = 1 

m = {2} «2 = i 

mn) ={iri) «iri =i 

P(|r|+1) ={6,7,13,14} Ä|T|+l = 2 

P(|r|+2) = {1 5,8,...,12} K\T\+2 = ^ 

allow to compute the Gantt-chart depicted in Figure 8. Note that activities 3 and 4 could 

be scheduled in other periods while activity 5 cannot Start before period 13 because of the 

restriction of at most 2 weekend days. 

Figure 8: Work Weekends for Assembly Worker 

activities 

12 14 
1 1 periods 

18 

We finish this section by presenting part of an instance which (i) illustrates special 

cases covered by different constellations of period subsets P(r) and which (ii) shows the 

impact of these subsets on the feasible Start times of activity j = 1. The instance is 

characterized as follows: T = {!,...,10}, activity j with d. = 3, = {3,...,10} and k.^ = 1. 

Case 1: Period subsets P(r) are disjoint and cover the set of periods completely; more 

specific we have period subsets and resource availabilities as follows: 

P(l)= {1,2,3}, ^=2 

P(2) = {4,5,6}, «2=2 

P(3)= {7,8,9,10}, «3 = 1 

Case 1 is illustrated in Figure 9. The last three rows provide the consumptions of each 

of the three resources if activity j starts in the corresponding period. Feasible Start times 

are marked with boxes. E.g., if activity j starts in period 2 then it uses 2 units of resource 

1 (periods 2 and 3) and 1 unit of resource 2 (period 4). 
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Figure 9: Illustration of Case 1 

mmmm 
1 1 i i i i i 

T T 
feasible Start times for activity j 

10 

i 3 2 1 0 0 0 0 0 of 2 

2 0 1 2 3 2 1 0 0 of 2 

3 0 0 0 0 1 2 3 3 of 1 

Case 2: Period subsets P(r) are not disjoint and we have periods without resource 

constraints; more specific we have period subsets and resource availabilities as follows: 

f(l)= {1,2,3}, «1=2 

P( 2) ={3,4,5}, «2=2 

P(3)={9,10}, ^ = 1 

Case 2 is illustrated in Figure 10. Note that none of the resources is consumed if 

processing of activity j starts in period 6. 

Figure 10: Illustration of Case 2 

1
 

•
 

1 1 1 1 l 1 1 
10 

1 3 2 1 0 0 0 0 0 of 2 

2 1 2 3 2 10 0 0 of 2 

3 0 0 0 0 0 0 1 2 of 1 

Figure 11: Illustration of Case 3 

1 3 2 1 0 0 
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3 

1 

of 2 
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Case 3: Some period subsets P(r) contain more than one interval; more specific we 

have period subsets and resource availabilities as follows (cf. the cases illustrated in 

Figure 11): 

P(l)= {1,2,3,8,9,10}, «j =2 

f(2)= {6,7,8}, ^=2 

4 Solution Procedures 

In the literature there is no tailored method available for the Solution of the RCPSP/7T. 

For the development of special algorithms we Start off with methods known for the 

RCPSP. 

Optimal procedures are dynamic programming (cf. e.g. Davis and Heidorn 1971), 

zero-one programming (cf. e.g. Pritsker et al. 1969, Patterson and Roth 1976), as well as 

a variety of branch-and-bound-based implicit enumeration methods (cf. Stinson et al. 

1978, Talbot and Patterson 1978, Radermacher 1985/86, Christofides et al. 1987, Bell 

and Park 1990, Carlier and Latapie 1991, Demeulemeester and Herroelen 1992, 1995, 

Mingozzi et al. 1994, Brucker et al. 1996). Note that currently the branch-and-bound-

approach of Demeulemeester and Herroelen 1995 is the most powerful optimal procedure 

available. 

Heuristic procedures for the RCPSP basically involve five different Solution 

methodologies: Single- and multi-pass priority rule based scheduling, truncated branch-

and-bound-procedures (cf. Alvarez-Valdes and Tamarit 1989), integer programming 

based heuristics (cf. Oguz and Bala 1994), disjunctive arc concepts (cf. Alvarez-Valdes 

and Tamarit 1989, Bell and Han 1991), and local search techniques (cf. Sampson and 

Weiss 1993, Leon and Balakrishnan 1995). 

Although belonging to the oldest Solution methodology to solve the RCPSP, priority 

rule based scheduling is still the most important (heuristic) Solution technique. This is 

due to several reasons: The method is intuitive and easy to use which makes it highly 

suitable to be employed within commercial packages; the method is fast in terms of the 

computational effort. Finally, multi-pass implementations of the method show the best 

results obtainable by heuristics for the RCPSP today (cf. Kolisch and Drexl 1996). 

4.1 Exact Branch-and-Bound-Algorithm 

Unfortunately, the powerful branch-and-bound-algorithm of Demeulemeester and 

Herroelen 1995 is not capable to handle problems with partially renewable resources. The 

same is true for almost all the exact procedures mentioned above. The only exception is 

the algorithm of Talbot and Patterson 1978. Therefore we implemented the basic branch-

and-bound-procedure of Talbot and Patterson 1978 in order to solve the RCPSP/?r. The 

network cuts which are not applicable in the presence of partially renewable resources 
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have been dropped. To speed up convergence of the algorithm we added newly developed 

bounding rules. 

The basic working principle of the algorithm may be described as follows: It is a 

depth-first-search branch-and-bound-algorithm. The depth of the search tree equals the 

number of activities. In each stage, one precedence- and resource-feasible activity j 

(beginning with the unique Start activity) is added to the partial schedule at the earliest 

convenient Start time t.e { ES.,..., LS.} where ES. and LS. define the critical path based 
3 1 3 3J 3 3 r 

earliest and latest Start time, respectively. Backtracking occurs if (i) there is no augmen-

tation of the partial schedule under consideration which does not violate resource-

constraints or if (ii) the partial schedule exceeds the upper bound T on the project's 

makespan. In case of backtracking the current Start time of the activity scheduled in the 

ancestral node of the search tree is augmented by one period. Clearly, we Start with 

T: = T and update T when a complete schedule has been constructed with a makespan 

less than T. The algorithm terminales when backtracking to stage 0 occurs. 

Clearly, the computational effort which has to be undertaken by this basic scheme is 

about that of complete enumeration of the set of feasible schedules. Therefore, we want 

to speed-up convergence by properly designing feasibility bounds, which take care of the 

partially renewable resources. As the name suggests, feasibility bound does not mean to 

compute lower bounds for the objective function value, but to calculate lower bounds for 

the resource consumption of the activities not yet scheduled. 

For the description of the bounds we need some definitions. Let denote W.: = 

{ ES., ,..., LS.} the (maximal) time window which takes care of the precedence con

straints and the upper bound for the makespan. Let n € J and S : = t.) | % = 1, 

where i denotes the level of the branch-and-bound tree, j. is the activity scheduled on 

level i and t. e Wi denotes the Start time assignment of activity j. for 1 <i<n. Then S is 

called (partial) schedule itn-\J\ (n<\J |). Now, 

SCjrt k.T\Q.taP(T)\ 

denotes (single) activity j consumption of resource r if j starts in period t. Then 

we define 

TC(S) := S SC. . 
' . , j.rt. i=l i i 

as total consumption of resource r w.r.t. the (partial) schedule S. Accordingly, 

«;(5) := Kr-TC(S) 

defines the left-over capacity of resource r. Then a feasible (partial) schedule S is 

defined as follows: 

th + dh - lj 0 e J> J he 
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%;(,?) >o (rea) 

Clearly, a feasible schedule S is a Solution iff n=\J\. S* = {(i, 

i = l,...,n} is called an extension of S = ) i = l,...,h} if 1 <h <n. l' 

Now, for t G W. 
3 

MC.. := min { SC. \t <T <LS.} 
jrt L jrr ' ~ ~ jJ 

denotes minimum activity j consumption of resource r if j starts not earlier than 

period t. For MC.^ an important property holds. 

Property 1 For each activity j and each resource r the sequence 

(MCjr(ES.)' MCjr(ES.+1MCjr(LS'.)) 

is monotonicaüy increasing. 

Proof For | W. | = 1 the proof is trivial. Therefore we consider the case | W. | >1 

and t e { ES.,..., LS.-l}. Then 

= ^{SC^UUriLS.} > 

vii{SCjrt, min { SCjrr \ t+l<r<LS.}} = i = MCjH. 

As a consequence we have > MC.^ for t e{ES.,..., LSrl} which 

completes the proof. • 

Property 1 shows that the minimum resource consumption of activity j does 

not decrease if the time window of activity j is diminished. 

Let U. denote the set of all (direct and indirect) successors of activity j and 

LP.h the length of the longest path from the Start of activity j to the Start of 

activity h. Then 

MC'>':= kiu '+LPj^ 
j 

defines the minimum consumption of resource r by the successors of activity j 

induced by its Start in period t. For MCI. an important property holds, too. jrt 

Property 2 For each activity j and each resource r the sequence 

(MCIjrfES.)' MCIjr(ES.+1MCIjr(LS.p 

is monotonicaüy increasing. 

Proof For h e U. and t t{ESh,...,LSh-l} 

max { ESh, t + LP.h} < max { ESh, t+1 + LP' ^} holds. 
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Because of property 1 

MChr(max{ESh, t + LP'£) - MChr{mzx{ESh, < +1 + IP }) 

also holds. Therefore, we have 

MC'irt = äu^Ch<^ESri+LPi^ " 

and the proof is complete. • 

The computation of SC.^, MC.^ and MCI.H is illustrated in the Appendix by 

the use of an example. 

Let denote 

TCI(S) := TC(S) + MCI. 4 
r\ / r\ / ^ Tt n n 

the minimal total induced consumption of resource r w.r.t. the (partial) schedule 

S- '•= | i = 1,.Accordingly, 

sr(j) Kr-TCIr(S) 

defines the maximal left-over capacity of resource r. Now we can State 

Theorem 2 (Feasibility Bound 1) 

Let S = {(i,ji,t.)\i = l,...,n} and r GÄ. Ifü (S) < 0, then every completion of 

the partial schedule S violates the resource constraints and hence backtracking 

occurs. 

Proof Obvious. • 

Feasibility Bound 2 dynamically generates conditions where each condition is related 

to a particular activity. A condition has to be fulfilled before the related activity can be 

feasible scheduled. If S is a partial schedule that does not schedule activity j and which 

does not fulfill the condition related to activity j then it is not possible to extend S into a 

feasible Solution. 

Although this informal description does not clarify any detail, we refrain, however, 

from the tedious task of citing technical details, due to several reasons: (i) An in-depth 

description is very lengthy and would neccessitate to introduce a couple of additional 

definitions, symbols, corollaries and theorems. (ii) In comparison with the basic Version 

the feasibility bound 1 already provides a considerable speed boast (cp. Section 5.3). (iii) 

The technical details can be found in Böttcher 1995 on our ftp-site. (iv) Last but not 

least, also in the presence of the feasibility bound 2 even medium-sized instances remain 

untractable, and therefore our primary concern now is on the description and evaluation 

of fast and reliable heuristics. 
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4.2 Greedy Randomized Adaptive Search Procedures 

The only line of attack for tackling practical problem sizes comprising hundreds of 

activities is provided by approximation methods. Deterministic greedy priority rule-

based methods have been widely adopted in scheduling (cp. the surveys in Haupt 1989, 

Panwalkar and Iskander 1977). Partial schedules are extended, Start ing with the empty 

set of scheduled activities, i.e. the intialization x. : = 0 for all the decision variables. 

These methods are commonly used when scheduling large problem instances and they 

yield only one Solution for an instance, even if applied several times. Having in mind that 

this Solution may be arbitrarily bad or even infeasible, determinism seems to be a major 

deficiency of such methods. Semi-greedy (cp. Hart and Shogan 1987), greedy randomized 

(cp. Laguna et al. 1994), or regret-based biased random sampling methods (cp. Drexl 

1991, Kolisch 1995, Kolisch and Drexl 1996) try to overcome the shortComing of deter

minism by performing the selection process randomly, but according to probabilities 

which are proportional to priority values. In this way, in each Step every schedulable 

activity may be chosen, though those with higher probabilities will have a greater chance 

of being selected. Due to their nondeterminism, repeated application of randomized 

methods will produce a set of solutions rather than one sole Solution. Usually some of 

these solutions will be better than the one found with the deterministic version of the 

same method. Moreover, no tiebreaker needs to be specified for randomized methods, 

since ties cannot occur. 

Generally, common priority rule-based methods for (project) scheduling are 

distinguished to be serial or parallel (cp. the early work of Kelley 1963 and the recent 

improvements obtained by Kolisch 1996 a). While the former schedule one of the 

precedence-feasible activities as early as possible w.r.t. resource constraints, the latter 

proceed chronologically over all periods of the planning horizon trying to schedule in each 

period as many activities as possible. Though the basic principle of both methods is 

simple and intuitive, some specific details have to be designed appropriately in order to 

get reliable and fast methods for the problem class under consideration. 

We modified the serial scheduling scheme for solving the RCPSP/V. It consists of at 

most | J| stages. In each stage one activity is selected and assigned a start time, i.e. 

added to the current partial schedule S : = {(i, j., t.) j i = 1,...,%}. Then 

ES.(S): = max {th + dh | h e V.} 

denotes the earliest Start time of activity j > n, adapted w.r.t. S. Accordingly, 

W.(S) := {BS.(S),ES.(S) + 1,,LS.) 

denotes the (adapted) time window of activity j. 
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Two disjoint sets C and D are computed in each stage. In the complete set C are the 

activities which have already been scheduled and thus belong to the partial schedule S. 

Recall SC. K°(S) and MCI., as defined in Subsection 4.1. JTV rK ' jrt 
Then 

(W) I 0^) A (VAEy.:A€C) A A (Vr6Ä:^(f)>^ + MC7^)} 

defines the decision set, i.e. the activity-period combinations (j,t) which are feasible 

w.r.t. the current partial schedule S. 

In each stage one activity-period combination (j, t) from the decision set is selected 

with a priority rule Afterwards, the selected activity j is removed from the decision 

set (together with all activity-period combinations (j, t) of activity j and those 

activity-period combinations (i, r) which now are infeasible) and put into the complete 

set. This, in tum, may place a number of activity-period combinations into the decision 

set, since all their predecessors are now completed. The algorithm terminales either if 

D = 0 or if no feasible activity-period combination (j, t) exists for activity j with j{C 

and VXC. If C= J then | J\ stages have been performed and a feasible Solution has been 

computed. A formal description of the serial scheduling scheme is given in Table 1. Note 

that as tie breaker in the (j*, <*) selection step the activity and/or period number is 

chosen. 

Table 1: Serial Scheduling Scheme 

Initialization 
C: = <j>, S: = (j>, K°(S) ' = nr (r 6 R) 

Execution 

compute D 

while D ± (j) do 

{ 

(f, t*) e {0', t) | ujt = inf { U).T | (%, r) 6 D}} 

update C, S, K°(S), and D 

} 

If C=J then feasible Solution found 

The way the serial method has been described so far is termed as single-pass 

approach, i.e. one Single pass and one priority rule are employed to derive one (feasible) 

Solution. Contrary, multi-pass procedures perform Z Single passes in order to generale a 

sample of at most Z unique (feasible) solutions, where the best one is chosen. Basically, 

two different kinds of multi-pass methods can be distinguished: The multi-priority rule 

approach (cf. Boctor 1990, Li and Willis 1992) employs one scheduling scheme and 
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different priority rules while sampling (cf. Wiest 1964, Cooper 1976, and Alvarez-Valdes 

and Tamarit 1989) makes use of one scheduling scheme and one priority rule. Different 

schedules are obtained by biasing the selection of the priority rule through a random 

device. The use of a random device can be interpreted as a mapping 

* : [0,1] (6) 

which assigns to each activity-period combination in the decision set D a probability ip 

of being selected. Three different methods can be distinguished: (i) Random sampling 

assigns each activity in the decision set the same probability. (ii) Biased random 

sampling biases the probabilities dependent on the priority values of the activities to 

favour those activities which seem to be a more sensible choice. (iii) A special case of 

biased random sampling is the utilization of regret measures for determining the selection 

probabilities. It has been introduced by Drexl 1991 and Drexl and Grunewald 1993 and is 

referred to as regret based biased random sampling. The three different randomization 

schemes have been compared in Kolisch and Drexl 1996 when solving the RCPSP and it 

has been shown that the last one clearly is superior in terms of the Solution quality. 

Let a priority rule be defined by the mapping 

u: (j, t) e£)-»IR>0 (7) 

which assigns to each activity-period combination (j, t) in the decision set D a priority 

value ÜJ and an objective 0 stating whether the activity-period combination of the 

decision set with the minimal (0 = min) or maximal (0 = max) priority value is selected. 

Then, the regret compares the priority value of activity-period combination (j, t) with 

the worst consequence in the decision set as follows: 

pfi : = 

max {uir | (i,r) e D] - , if O = min 

u.t - min {uiT | (i,r) eD}, if 0 = max 

0,0 ED (8) 

Therewith, the parameterized probability mapping arises to: 

; 3 (i,r)€D 

Adding the constant " 1" to the regret value p assures that the selection probability 

for each activity-period combination (j, t) in the decision set D will be greater zero 

and thus every schedule S := {(i,j.,t) | % = 1,..., | J| } may be generated. By choice of 

the parameter a, the amount of bias can be controlled. Associated with an arbitrarily 

large a will be no bias and thus deterministic selection on the basis of the employed 

priority rule (with random selection as a tie breaker), while an a of 0 will give way for 

random activity selection. 
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We have implemented the serial scheduling scheme as a multi-pass version. Thus, in 

Table 1 the activity-period combination (j*, t*) is chosen from D with selection probabi-

lities p. computed according to a priority rule UJ. Following the lines of Kolisch and 

Drexl 1996 the control parameter a has been set for pass number z = as follows: 

Pass z = 1: a = oo 
Passes z = 2 to z = 5: a = 3 
Passes z - 6 to z = 10: a = 2 
Passes z = 11 to z = Z: a = 1 

Clearly, when Z passes are performed the upper bound T is updated whenever an 

improved makespan has been found. 

We employed several priority rules (a survey of advanced priority rules for solving 

the RCPSP is given in Kolisch 1996b). Some of them are well-known from literature 

others are newly developed ones. 

MINEFT, MENLFT, MINSLK, MTSUCC 

First, we implemented the well-known priority rules MINEFT (minimum earliest 

finishing time), MINLFT (minimum latest finkhing time), MINSLK (minimum slack), 

and MTSUCC (most total successors), respectivly. 

MAXSRU, MINSRU 

Second, we implemented two static priority rules. Let denote 

SRU. := £ k. (jtJ) 
3 rZR " 

the maximum static resource usage of activity j. In the case of 0 = max := SRU. 

defines the maximum static resource usage priority rule for (j,t)eD, denoted as 

MAXSRU. Accordingly, the minimum static resource usage priority rule, denoted as 

MINSRU, is defined in the case of 0 = min. 

Unfortunately, the rules MAXSRU and MINSRU have the disadvantage, that k.r 

does not take care of the resource usage which depends on the starting times of jobs j of 

the partial schedule (cf. cases 1 to 3 in Section 3 also). 

MAXTRU, MINTRU, MAXRRU, MINRRU 

Now four new but still static priority rules will be defined. Recall 5C._, and MCT._, as jrt jrt 
defined in Subsection 4.1. Let denote 

TRU.t: = S (SC.H + Mcy ü, t) e D 

the Start time dependent lower bound of the total resource usage. In the case of 0 = max 

u := TRU defines the maximum Start time dependent total resource usage priority 
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rule, denoted as MAXTRU. Accordingly, the minimum Start time dependent total 

resource usage priority rule, denoted as MINTRU, is defined in the case of 0 = min. 

The rules MAXTRU and MINTRU have the drawback that resource usages are not 

related to the available resource capacity. 

Let denote 

RRU := E (SC.+MCI.,)/K (j,t)tD ]t rER Jrt jrt" r ' 

K >0 T 
the relative resource usage. In the case of 0 = max u.t := RRU.t defines the maximum 

relative resource usage priority rule, denoted as MAXRRU. Accordingly, the minimum 

relative resource usage priority rule, denoted as MINRRU, is defined in the case of 

O = min. 

MAXDRRU, MINDRRU, MAXTRC, MINTRC 

Note for a given partial schedule S the overall available resource capacity « does not 

properly reflect the capacity which is still available. Recall K°(S) to be the left-over 

capacity of resource r which regards the current partial schedule S. Accordingly, 

DRRVß:= E (SCjrt + MCI^ / ^S) (j.QeD 

K«(S) >0 

defines the dynamic relative resource usage. In the case of 0 = max w := DRRU. 
jt jt 

defines the maximum relative resource usage priority rule, denoted as MAXDRRU. 

Accordingly, the minimum relative resource usage priority rule, denoted as MINDRRU, 

is defined in the case of 0 - min. 

Finally, let denote 

TRC.f := E <*»(Ä) - SCjrt - MCL) 

an upper bound of the total remaining capacity. In the case of 0 = max := TRC-t 

defines the maximum total remaining capacity priority rule, denoted as MAXTRC. 

Accordingly, the minimum total remaining capacity priority rule, denoted as MINTRC, 

is defined in the case of O - min. 

S Experimental Evaluation 

First, we will describe an advanced generator for the parametric characterization of 

instances. Second, we want to elaborate the problem parameters which make an instance 

"hard" or "easy". Third, the average speed-up obtained by the feasibility bounds shall 

be described. Fourth, the serial scheduling method will be analyzed. 

All algorithms have been coded in C and implemented on an IBM RS 6000 41T 

Workstation under the AIX 3.2.5 operating system. 
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5.1 Generation of Instances 

Generally, two possible approaches can be found adopted in literature when having to 

come up with test instances. First, practical cases. Their strength is their high practical 

relevance while the obvious drawback is the absence of any systematical structure to 

infer any general properties. Thus, even if an algorithm performs well on some practical 

instances, it is not guaranteed that it will continue to do so on other instances. Second, 

artificial instances. Since they are generated randomly according to predefined 

specifications, their plus lies in the fact that Atting them to certain requirements such as 

given probability distributions poses no problem. However, they may reflect situations 

with little or no resemblance to any problem setting of practical interest. Hence, an 

algorithm performing well on several such artificial instances may or may not perform 

satisfactorily in practice. 

In this research, we decided to Start with the ProGen-code which has (among others) 

been designed for generating instances of the RCPSP variety. More specific, the problem 

Parameters NC, RF and DF are the same as in Pro Gen (for details cf. Kolisch et al. 

1995), RS has been modified in contrast to ProGen while the parameters CF and PF are 

entirely new. 

• The network complexity NC>0 defines the ratio of non-redundant precedence 

relations to the number of activities. 

• The resource factor RFe [0,1] reflects the density of the matrix (k^). For RF = 0 

no activity has a resource usage, while for RF = 1 each activity (despite the dummy 

source and dummy sink) uses every resource. 

• The duedate factor DF e [0,1] determines the horizon T as follows: T : = 

ROUND[E5| j.(1 -DF) + DF • . Note that DF = 0 forces the project to be 

finished as early as possible (i.e. to Start activity | J\ in period BS^ ^|), while for 

DF = 1 the horizon is long enough to schedule "one activity after the other". 

Unfortunately, for the RCPSP/TT this does not ensure the existence of a feasible 

Solution. 

• The resource strength RS e [0,1] measures the degree of resource-constrainedness. 

Let denote Kmin := E., ,min {SC.. \ t e W.}, := g max {SC., | t e W.}, r jtJ 1 jrt 1 jJ r jEJ 1 jrt' jJ 

then K : = ROUND[^(l-RS) + /fmax.RS] defines the available capacity of 

resource r. Clearly, only for the RCPSP RS = 0 defines the lowest resource feasible 

level, while for RS = 1 no resource might become scarce in any schedule. 

Unfortunately, for the RCPSP/TT there is no guarantee for resource feasibility. 

• The subsets cardinality factor CF e [0,1] determines the cardinality M of the period 

subsets as follows: U := ROUND(l- CF+ T- CF). Clearly, CF = 0 implies that all 

period subsets have cardinality one (i.e. only renewable resources are generated), 
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while for CF = 1 they cover the whole planning horizon (i.e. only nonrenewable 

resources are generated). 

# The subset of period partition factor PF e [0,1] determines the number of intervals 

I (i.e. subsequent periods) of the period subsets as follows: /: = ROUND 

(l-PF + min{M, T-M+1} • PF). Note that PF - 0 implies that /equals one, while 

for PF = 1 we get the maximum possible I (given T and M). 

Table 2 gives a summary of the variable problem parameter levels. In order to 

generale the test instances we used a füll factorial design where we fixed the number of 

non-dummy activities to 10, i.e. | J | =12, and the number of normalized partially 

renewable resources to 30, i.e. | R | =30. The duration of non-dummy activities and the 

level of a positive resource requirement were randomly drawn from the uniform 

distribution [1,10]. All other problem parameters were set as documented in Kolisch et 

al. 1995. 

We generated 10 instances for each combination of NC, RF, RS, DF, CF, and PF 

which gave a total of 2*3*3*2*3x2 = 216 benchmark instances. All instances used in the 

computational study are available from the authors upon request. 

Table 2: Levels of Variable Problem Parameters 

Parameter Levels 

NC {1.5,2.0} 
RF {0.1,0.5,0.9} 
RS {0.25,0.5,0.75} 
DF {0.3,0.6} 
CF {0.2,0.5,0.8} 
PF {0.0,0.5} 

5.2 What Makes Instances "Haid" or "Easy" 

While clearly all problem instances covered by the RCPSP/x belong to the class of 

NP-hard ones (cf. Theorem 1), the computational tractability of a specific instance 

depends on the problem parameters introduced above. In this subsection we report the 

computational results which have been achieved with the basic version (BV) of the exact 

algorithm without any bounding rules, because then the impact of the problem para

meters becomes more obvious. 

Solving all 2,160 instances with BV we needed an average CPU-time of 4.264 seconds 

where 27,963 leaves were generated on the average. For the present we will not distin-

guish between feasible and infeasible instances. Later we will come back to this aspect in 

detail. 
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Table 3 shows the impact of each parameter on the tractability. We report both the 

number of generated leaves (# of leaves) and the CPU-time required to solve an instance 

to optimality or to show that no feasible Solution exists. PAR denotes the parameter 

under consideration, VAL the value of the parameter, AVE the average over all 

instances, and STD the Standard deviation, respectively. SIG denotes the ANOVA-

based error of rejecting the hypothesis " PAR does not have a significant impact on the 

computational effort of the algorithm". SIG < 0.05 indicates that PAR influences AVE. 

The following observations can be made: PF and MC have no significant effect on 

the tractability. Contrary to the RCPSP (cf. Kolisch et al. 1995) increasing NC seems to 

decrease the tractability. All other parameters do have a high impact on the tractability. 

Table 3: Impact of Parameters on Tractability 

# of leaves CPU-time in sec 
PAR VAL AVE STD SIG AVE STD SIG 

NC 1.5 22,265 153,651 0.161 3.462 20.332 0.164 
2.0 33,661 218,166 5.067 31.974 

RF 0.1 3,858 26,125 0.0 0.818 4.268 0.0 
0.5 16,879 147,076 2.520 17.328 
0.9 63,152 287,569 9.455 42.380 

RS 0.25 3,063 24,959 0.0 0.611 3.157 0.0 
0.5 33,818 167,662 5.448 27.428 
0.75 47,008 277,853 6.735 37.059 

DF 0.3 2,724 12,918 0.0 0.629 2.110 0.0 
0.6 53,203 264,250 7.900 37.498 

CF 0.2 2,461 20,612 0.0 0.621 3.090 0.0 
0.5 22,879 155,176 3.894 25.756 
0.8 58,549 284,317 8.279 38.131 

PF 0.0 27,594 182,555 0.928 4.115 25.346 0.796 
0.5 28,332 194,791 4.413 28.187 

Table 4-' Level of Significance for Interactions of Two Parameters 

RF RS DF CF PF 

NC 0.117 0.546 0.209 0.488 0.526 

RF 0.000 0.000 0.000 0.205 

RS 0.000 0.000 0.517 

DF 0.000 0.844 

CF 0.876 
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Table 4 shows the mutual interactions of two parameters as an outcome of multiple 

variance analysis in terms of SIG, the level of significance. More precisely, SIG denotes 

the multiple ANOVA-based error of rejecting the hypothesis "Both parameters do not 

effect each other with respect to the tractability". It can be seen that the three 

parameters RF, RS and DF show a significant interaction while the interactions of all 

other parameter pairs are not significant. 

5.3 Evaluation of the Feasibility Bounds 

In this subsection we report the speed-up of the basic version (BV) of the algorithm 

obtained by the use of the feasibility bounds described in Section 4.1. In the sequel FB1, 

FB2 and FB1&2 denotes the version which utilizes the feasibility bound 1, the 

feasibility bound 2 and the feasibility bounds 1 and 2, respectively. 

Tables 5 to 7 provides average comparative results. FAC denotes the speed-up 

factor. Table 5 presents the results for all the instances, i.e. based on the set of 2,160 

Problems introduced in Subsection 5.1. Table 6 reports averages over the subset of the 40 

instances where the speed-up was highest. Table 7 shows averages over the subset of the 

40 instances which turned out to be " very hard" for BV in terms of the number of leaves 

generated in the search tree. Clearly, FB 1&2 is more efficient than FB 1 with respect to 

the number of backtracking steps needed in order to solve an instance. Unfortunately, 

the effort to check the assumptions of the more elaborate method FB1&2 is very high. 

Therefore, FB1&2 does not outperform FBI that much in terms of the CPU-time 

required. 

Table 5: Averages over all Instances 

# of leaves 
AVE STD FAC 

CPU-time in sec 
AVE STD FAC 

BV 27,963 188,729 1.0 4.3 26.8 1.0 

FBI 4,441 50,873 6.3 1.0 8.1 4.3 

FB2 3,470 35,144 8.1 1.9 16.1 2.3 

FB1&2 580 6,696 48.1 0.7 5.5 6.0 

As expected, the tractability of instances by the different versions depends on the 

problem parameters as well; details can be found in Böttcher 1995. 
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Table 6: Averages over 40 Instances with Highest Speed-up 

# of leaves 
AVE STD FAC 

CPU-time in sec 
AVE STD FAC 

BV 

FBI 

FB2 

FB1&2 

157,489 235,251 1.0 

5,840 18,293 27.0 

4,743 10,372 33.2 

124 336 1267.0 

22.3 35.8 1.0 

1.2 3.2 18.3 

2.5 4.9 8.9 

0.5 0.3 47.1 

Table 1: Averages over 40 Very Hard Instances 

# of leaves 
AVE STD FAC 

CPU-time in sec 
AVE STD FAC 

BV 

FBI 

FB2 

FB1&2 

556,981 863,217 1.0 

123,825 314,838 4.5 

66,360 151,350 8.4 

15,243 39,745 36.5 

77.9 119.8 1.0 

20.1 49.6 3.9 

31.2 68.3 2.5 

12.9 33.3 6.1 

So far, we did not differentiate between instances with and without feasible 

solutions. In the following 'feasible instances' will be of primary concern, due to several 

reasons: (i) Practical examples, though not available to the authors so far, are supposed 

to be feasible. (ii) To solve 'infeasible instances' is on the average more time consuming 

than solving 'feasible instances'. (iii) Last but not least, it does not make any sense 

trying to solve ' infeasible instances' by the use of greedy heuristics. 

The instance generator has not been designed in order to provide 'feasible 

instances'. Therefore we counted the 'feasible instances' within each of the 216 

parameter cells collected in Table 2. Then we excluded the cells for which less than six of 

the instances did not have a feasible Solution. This way we restricted the generator ex 

post to provide ' feasible instances' with a high probability. Table 8 gives a summary of 

the restricted variable problem parameter levels. Note that we have NC = 2.0 and 

DF = 0.6 in all the 25 cells identified in Table 8. 
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Table 8: Restricted Levels of Variable Problem Parameters 

Cell PF CF RS RF 

1 .0 .2 .5 .1 
2 .0 .2 .5 .5 
3 .0 .2 .5 .9 
4 .0 .2 .75 .1 
5 .0 .2 .75 .5 
6 .0 .2 .75 .9 
7 .0 .5 .75 .9 
8 .0 .8 .25 .1 
9 .0 .8 .25 .9 

10 .0 .8 .5 .1 
11 .0 .8 .5 .5 
12 .0 .8 .5 .9 
13 .0 .8 .75 .1 
14 .0 .8 .75 .5 
15 .0 .8 .75 .9 
16 .5 .2 .5 .1 
17 .5 .2 .5 .5 
18 .5 .2 .5 .9 
19 .5 .2 .75 .1 
20 .5 .2 .75 .5 
21 .5 .2 .75 .9 
22 .5 .5 .75 .1 
23 .5 .5 .75 .5 
24 .5 .5 .75 .9 
25 .5 .8 .75 .9 

We generated four sets of instances with 15, 20, 30 and 60 non-dummy activities, 

respectively, where the instances of each set were generated according to the 25 

parameter cells of Table 8. The number of normalized resources was set to 30. For each 

of the 4 problem sizes and each of the 25 cells 10 instances were generated. A summary of 

the results obtained with the algorithm FB 1 &2 can be given as follows: 

• Within a time limit of 5 CPU minutes all but 10 of the 250 instances having 15 

activities could be solved to optimality. For the 250 instances with 20 activities this 

number is 21. 

• For the 250 instances with 30 activities we were unable to find a feasible Solution 

within a time limit of 5 CPU minutes for 19 instances. Additional 14 instances could 

not be solved to optimality within 5 minutes. Thus in total for 33 instances the 

algorithm terminaled prematurely within this problem class. 

• Conceraing the 250 instances with 60 activities for 21 instances a time-out occurred 

after 5 CPU minutes. For 10 of these 21 instances no feasible Solution could be 

found. 
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• Within the 30 and 60 non-dummy activity classes of problem sizes a time-out occurs 

only for instances belonging to the parameter cells 8, 9, 12, and 25, respectively. The 

instances for which no feasible Solution could be found before reaching the time limit 

are primarily located in cell 25. 

5.4 Evaluation of the Priority Rule Based Serial Scheduling Method 

Recall that u denotes a priority rule while Z denotes the sample size. First we conducted 

some experiments in order to evaluate the priority rules presented in Subsection 4.2. In 

the first experiment we employed the instance set with 20 non-dummy activities used 

above. 

Table 9: Comparison of the Priority Rules (| J | = 22) 

priority 
rule u) 

UNSOLVED 
z=io ioa,000 

MINEFT 51 50 41 
MINLFT 40 36 33 
MINSLK 49 47 42 
MTSUCC 45 40 39 
MAXSRU 56 54 54 
MINSRU 62 55 47 
MAXTRU 105 70 56 
MINTRU 37 36 35 
MAXRRU 104 66 54 
MINRRU 38 37 36 
MAXDRRU 104 67 52 
MINDRRU 34 33 32 
MAXTRC 37 37 35 
MINTRC 100 68 54 

Table 9 provides the results. In columns 2 to 4 we find the number of instances for 

which no feasible Solution has been found (denoted as UNSOLVED) after Z = 10, 100, 

and 1,000 passes, respectively. 

The results of Table 9 indicate that the rules MAXSRU, MINSRU, MAXTRU, 

MAXRRU, MAXDRRU and MINTRC are inferior w.r.t. the ability to derive feasible 

solutions. Therefore we decided to further evaluate the eight rules MINEFT, MINLFT, 

MINSLK, MTSUCC, MAXTRC, MINTRU, MINRRU and MINDRRU for larger 

instance sets comprising 30 and 60 non-dummy activities, respectively. 

In order to evaluate the Solution quality obtained with the priority rules we only 

considered for the 250 instances with 30 activities those 217 (14) instances for which the 

exact algorithm was able to prove the optimal Solution (identify at least one feasible 

Solution) within the imposed time limit. Table 10 provides the average percentage 

deviations of the objective function value computed with the serial algorithm (within Z 

passes) from the objective function value computed by the exact algorithm. 
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Table 10: Evaluation of Priority Rules for Larger Instances (| J| =32) 

priority 217 instances 14 instances 250 instances 
rule u) 2=10 100 1,000 2=10 100 1,000 CPU (2=1,000) 

MINEFT 12.23 9.17 6.38 134.74 133.10 100.40 10.6 
MINLFT 1.63 0.81 0.81 7.87 7.87 6.50 8.8 
MINSLK 8.70 7.53 6.50 75.13 74.83 40.25 11.3 
MTSUCC 4.71 3.31 2.77 55.52 40.06 39.86 11.0 
MAXTRC 49.48 9.41 5.26 4.93 3.84 1.63 27.2 
MINTRU 49.48 10.01 5.60 4.71 3.95 1.63 19.6 
MINRRU 50.15 10.38 5.93 5.04 3.73 1.73 22.3 
MINDRRU 50.15 10.38 6.04 5.37 3.73 1.52 32.5 

The results can be interpreted as follows: The "classical" rules MINEFT, MINLFT, 

MINSLK, and MTSUCC perform better on the subset of the "easy" 217 instances while 

the new rules MINTRU, MINRRU, MINDRRU, and MAXTRC do a better job on the 

"hard" 14 ones, respectively. This is especially evident for a small number of passes 2. In 

summary the rule MINLFT seems to be the most promising candidate. 

In order to evaluate the run time Performance of the different priority rules, the 

average CPU times for solving all the 250 instances under investigation in sec for 1,000 

passes are reproduced in Table 10, too. 

Table 11 provides the results for the 229 (11) instances with 60 non-dummy activi

ties for which the exact algorithm was able to prove the optimal Solution (identify at 

least one feasible Solution). We restricted the umber of passes Z to at most 100 because 

of the increasing computational effort. Average CPU times for solving all the 250 

instances under concem in sec for Z= 100 passes are reproduced also. 

The results already obtained on the 30 activity set are maintained, i.e. the rule 

MINLFT performs best over the "easy" 229 instances while the rules MINEFT and 

MINSLK are inferior for the "hard" 11 instances. In summary the rule MINLFT gives 

reasonable good results for both "easy" and "hard" instances. 

Table 11: Evaluation of Priority Rules for Larger Instances (| J| =62) 

priority 
rule ÜJ 

229 instances 
2=10 100 

11 instances 
2=10 100 

250 instances 
CPU (2=100) 

MINEFT 8.11 7.87 41.84 41.84 5.8 
MINLFT 1.63 1.52 0.70 0.70 5.9 
MINSLK 5.49 5.26 41.64 41.64 6.1 
MTSUCC 2.67 2.46 1.83 1.83 6.8 
MAXTRC 58.73 17.51 4.17 4.17 28.2 
MINTRU 58.73 17.65 4.17 4.17 20.6 
MINRRU 58.73 17.51 4.17 4.06 21.9 
MINDRRU 58.73 17.51 4.17 4.17 32.8 
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6 Summary and Future Work 

In this paper we consider a generalization of the classical resource constrained project 

scheduling problem. So-called partially renewable resources are introduced by assuming 

for each resource a capacity on subsets of periods. The concept of partially renewable 

resources is a fundamental tool in order to make e.g. timetabling and shift scheduling 

aspects amenable to project scheduling. Furthermore, they cover traditional renewable 

and nonrenewable resource constraints as special cases. We consider makespan minimi

zation as objective. For the exact Solution of the problem we employ a basic enumeration 

scheme. We formulate bounds which take into account future resource consumption of 

partially renewable resources in order to speed up convergence. Moreover, we generalize 

the serial scheduling scheme in order to get fast approximation methods. A rigorous 

assessment of the procedures is provided by solving ProGen instances generated under a 

füll factorial test design. Besides the well-known problem parameters we employ addi-

tionally three parameters which control the generation of partially renewable resources. 

Future work should concentrate on the development of additional bounding rules in 

order to speed-up convergence of the exact algorithm. In addition, fast and reliable local 

search methods have to be developed for solving the RCPSP/?r to suboptimality. 

Appendix: Computation of SC.^, and MCI.^ for example 2 

SC, 

SC 
2,1,« 

SC 
2,2, « 

2,3 ,« 

sc. 

SC. 
3,1,< 

sc. 
3,2,* 

3,3,« 

SC 

sc. 
4,1,« 

ac 
4,2,« 

4,3,« 

SC, 

sc. 
5,1,« 

sc. 
5,2,« 

5,3,« 

start time t 0 1 2 3 4 5 6 7 8 Table A.l: SC.. jrt 

^1,U 

^1,3, 

2 2 2 1 

0 0 0 1 

0 0 0 0 

2 10 0 0 

0 12 2 2 

0 0 0 0 0 

4 2 0 0 

0 2 4 4 

0 0 0 0 

0 0 0 0 

1 1 1 1 

0 0 0 0 

0 0 0 0 

3 2 1 0 

0 1 2 3 
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Start time t 

MC, 

MC; 
1.1,< 

MC, 
1>2,i 

1,3,* 

MC, 

MC, 
2,1,* 

2,2,* 
MC, 2,3,* 

MC. 

MC. 
3,1,* 

MC. 
3,2,* 

3,3,* 

MC. 

MC 
4,1,* 

MC 
4,2,* 

4,3,* 

0 1 

1111 

0 0 0 1 

0 0 0 0 

0 0 0 0 0 

0 12 2 2 

0 0 0 0 0 

0 0 0 0 

0 2 4 4 

0 0 0 0 

0 0 0 0 

1111 

0 0 0 0 

MCM,< 0 0 0 0 

0 0 0 0 

MC5,3,« 0 1 2 3 

Start time t 0 1 2 3 4 5 6 7 8 

MCV,< 0 0 0 0 

^1,2,« 1 4 7 7 

l
 

CA?
 0 1 2 3 

MCT2,1,< 
*«2,2,, 

0 0 0 0 0 MCT2,1,< 
*«2,2,, 0 0 0 0 0 

MCT2,3,< 0 0 1 2 3 

^3,1,« 0 0 0 0 

MCIZ,2,t 1 1 1 1 

^3,3,* 0 1 2 3 

^4,1,* 
0 0 0 0 

^4,2,* 
0 0 0 0 

^4,3,* 
0 1 2 3 

^5,1,* 0 0 0 0 

^5,2,* 0 0 0 0 

^5,3,* 0 0 0 0 

Table A.2: MC. jrt 

Table A.S: MCI. . jrt 



29 

References 

Alvarez-Valdes, R. and J.M. Tamarit (1989): "Heuristic algorithms for resource-
constrained project scheduling: A review and an empirical analysis", in: Slowinski, 
R. and J. Wgglarz (eds.): Advances in project scheduling, Elsevier, Amsterdam, pp. 
113-134. 

Bell, C.E. and J. Han (1991): "A new heuristic Solution method in resource-constrained 
project scheduling", Naval Research Logistics, Vol. 38, pp. 315-331. 

Bell, C.E. and K. Park (1990): "Solving resource-constrained project scheduling problems 
by A* search", Naval Research Logistics, Vol. 37, pp. 61-84. 

Biazewicz, J.; W. Cellary; R. Slowinski and J. Weglarz (1986): Scheduling under resource 
constraints - deterministic models, Baltzer, Basel (Annais of Operations Research, 
Vol. 7). 

Boctor, F.F. (1990): "Some efficient multi-heuristic procedures for resource-constrained 
project scheduling", European J. of Operational Research, Vol. 49, pp. 3-13. 

Böttcher, J. (1995): "Projektplanung: ein exakter Algorithmus zur Lösung des Problems 
mit partiell erneuerbaren Ressourcen", Master Thesis, University Kiel (in German). 

Brucker, P.; A. Schoo and O. Thiele (1996): " A brauch and bound algorithm for the 
resource-constrained project scheduling problem", Working Paper, University 
Osnabrück. 

Carlier, J. and B. Latapie (1991): "Une methode arborescente pour resoudre les 
problemes cumulatifs", Recherche Operationneüe, Vol. 25, pp. 311-340. 

Christofides, N.; R. Alvarez-Valdes and J.M. Tamarit (1987): "Project scheduling with 
resource constraints: A branch and bound approach", European J. of Operational 
Research, Vol. 29, pp. 262-273. 

Cooper, D.F. (1976): "Heuristics for scheduling resource-constrained projects: An 
experimental investigation", Management Science, Vol. 22, pp. 1186-1194. 

Davis, E.W. and G.E. Heidorn (1971): "An algorithm for optimal project scheduling 
under multiple resource constraints", Management Science, Vol. 17, pp. 803-816. 

Demeulemeester, E. and W. Herroelen (1992): "A branch-and-bound procedure for the 
multiple resource-constrained project scheduling problem", Management Science, 
Vol. 38, pp. 1803-1818. 

Demeulemeester, E. and W. Herroelen (1995): "New benchmark results for the resource-
constrained project scheduling problem", Working Paper, Katholieke Universiteit 
Leuven. 

Drexl, A. (1991): "Scheduling of project networks by job assignment", Management 
Science, Vol. 37, pp. 1590-1602. 

Drexl, A. and J. Grünewald (1993): "Nonpreemptive multi-mode resource-constrained 
project scheduling", IIE Transactions, Vol. 25/5, pp. 74-81. 

Elmaghraby, S.E. (1977): Activity networks - Project planning and control by network 
models, Wiley, New York. 

Garey, M.R. and D.S. Johnson (1979): Computers and intractability - A guide to the 
theory of NP-completeness. Freeman, San Francisco. 

Hart, J.P. and A.W. Shogan (1987): "Semi-greedy heuristics: an empirical study", 
Operations Research Letters, Vol. 6, pp. 107-114. 

Haupt, R. (1989): "A survey of priority rule-based scheduling", OR Spektrum, Vol. 11, 
pp. 3-16. 



30 

Icmeli, O. and W.O. Rom (1994): "Solving the resource constrained project scheduling 
problem with Optimization Subroutine Library", Working Paper, Cleveland State 
University. 

Kelley, J.E.Jr. (1963): "The critical-path method: resources planning and scheduling", 
in: Muth, J.F. and G.L. Thompson (eds.): Industrial scheduling, Prentice-Hall, New 
Jersey, pp. 347-365. 

Kolisch, R. (1995): Project scheduling under resource constraints - Efficient heuristics 
for several problem classes, Physica, Heidelberg. 

Kolisch, R. (1996a): "Serial and parallel resource-constrained project scheduling methods 
revisited: theory and computation", European J. of Operational Research, Vol. 90, 
pp. 320-333. 

Kolisch, R. (1996b): "Efficient priority rules for the resource-constrained project 
scheduling problem", J. of Operations Management (to appear). 

Kolisch, R. and A. Drexl (1996): "Adaptive search for solving hard project scheduling 
Problems", Naval Research Logistics, Vol. 43, pp. 23-40. 

Kolisch, R.; A. Sprecher and A. Drexl (1995): " Characterization and generation of a 
general class of resource-constrained project scheduling problems", Management 
Science, Vol. 41, pp. 1693-1703. 

Laguna, M.; T.A. Feo and H.C. Elrod (1994): "A greedy randomized adaptive search 
procedure for the two-partition problem", Operations Research, Vol. 42, pp. 
677-687. 

Leon, V.J. and R. Balakrishnan (1995): "Strength and adaptability of problem-space 
based neighborhoods for resource constrained scheduling", OR Spektrum, Vol. 17, 
pp. 173-182. 

Li, R.K.-Y. and J. Willis (1992): "An iterative scheduling technique for resource-
constrained project scheduling", European J. of Operational Research, Vol. 56, pp. 
370-379. 

Mingozzi, A.; V. Maniezzo; S. Ricciardelli and L. Bianco (1994): "An exact algorithm for 
project scheduling with resource constraints based on a new mathematical 
formulation", Working Paper, University of Bologna. 

Panwalkar, S.S. and W. Iskander (1977): "A survey of scheduling rules", Operations 
Research, Vol. 25, pp. 45-61. 

Oguz, O. and H. Bala (1994): "A comparative study of computational procedures for the 
resource constrained project scheduling problem", European J. of Operational 
Research, Vol. 72, pp. 406-416. 

Patterson, J.H. and G.W. Roth (1976): "Scheduling a project under multiple resource 
constraints: a zero-one programming approach", AHE Transactions, Vol. 8, pp. 
449-455. 

Pritsker, A.A.B.; L.J. Watters and P.M. Wolfe (1969): "Multiproject scheduling with 
limited resources: a zero-one programming approach", Management Science, Vol. 16, 
pp. 93-107. 

Radermacher, F.J. (1985/86): "Scheduling of project networks", Annais of Operations 
Research, Vol. 4, pp. 227-252. 

Sampson, S.E. and E.N. Weiss (1993): "Local search techniques for the generalized 
resource constrained project scheduling problem", Naval Research Logistics, Vol. 40, 
pp. 365-375. 

Stinson, J.P.; E.W. Davis and B.M. Khumawala (1978): "Multiple resource-constrained 
scheduling using branch and bound", AHE Transactions, Vol. 10, pp. 252-259. 



31 

Talbot, F.B. and J.H. Patterson (1978): "An efficient integer programming algorithm 
with network cuts for solving resource-constrained project scheduling problems", 
Management Science, Vol. 24, pp. 1163-1174. 

Wiest, J.D. (1964): "Some properties of schedules for large projects with limited 
resources", Operations Research, Vol. 12, pp. 395-418. 


