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Abstract

We propose an extended time-varying parameter Vector Autoregression that allows for an
evolving relationship between the variances of the shocks. Using this model, we show that the
relationship between the conditional variance of GDP growth and the long-term interest rate
has become weaker over time in the US. Similarly, the co-movement between the variance of the
long-term interest rate across the US and the UK declined over the ‘Great Moderation’ period.
In contrast, the volatility of US and UK GDP growth appears to have become increasingly
correlated in the recent past.
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1 Introduction

A voluminous literature has shown that the volatility of US macroeconomic variables declined
during the early and the mid-1980s. Prominent papers that reached this conclusion include Kim
and Nelson (1999), Cogley and Sargent (2005). The former paper employs a time-vaying VAR with
stochastic volatility (TVP-SVOL) to show that the conditional variance of unemployment declined
by about 40 percent after the early 1980s. Their estimates also suggest a fall in inflation and
short-term interest rate conditional volatility around that time. However, it is unclear if this ‘great
moderation’ extended to a larger set of variables and that the relationship amongst conditional
variances of different variables was of a similar sign and magnitude. For example, Campbell (2005)
provides evidence that the volatility of stock returns was largely unaffected by this structural change
and remained high after the mid-1980s. Fuentes-Albero (2012) shows that the great moderation
did not extend to corporate balance sheet variables and Mumtaz and Sunder-Plassmann (2013)
provide evidence that the conditional volatility of the real exchange rate increased after the 1980s
while macroeconomic volatility was declining.

The recent DSGE literature has also provided economic intuition for the possibility of cross-
country correlation in conditional volatilities. For example Mumtaz and Theodoridis (2015) show
that when agents in a two country model have Epstein-Zin preferences, the conditional volatility
of endogenous variables is time-varying and transfer of resources across countries in the face of a
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shock can induce co-movement in the conditional variances. Mumtaz and Theodoridis (2015) argue
that the strength of this co-movement can vary over time and is affected by factors such as trade
openness, the practice of monetary policy and the degree of price stickiness.

The aim of the current paper is to develop an empirical model that can be used to investigate the
dynamic relationship between conditional volatilities. We attempt to fulfill this aim by extending
the work-horse TVP-SVOL model. In particular, we focus on the transition equation for the
stochastic volatilties. In contrast to the previous literature, we assume that this transition equation
is itself a VAR with time-varying parameters and heteroscedasticity. This allows the computation
of measures of time-varying correlation between the conditional variances at frequencies of interest.
We provide a Gibbs sampling algorithm for this extended model.

We use this model to study the relationship between the conditional volatility of output growth
and the long-term government bond yield in the US and the UK. Our key results suggest that
the correlation between the conditional volatility of output across countries rose substantially after
the mid-1980s and is estimated to be close to 1 over the recent past. In contrast, the correlation
between the conditional variance of the long term interest rate has declined across the two countries.
There is also evidence that within each country the conditional variance of output growth and the
long term rate has become less correlated over the great moderation period. We argue that these
estimates are consistent with structural changes such as increasing trade openness and a higher
weight placed on inflation control by central bankers.

This paper adds to the literature on the great moderation by explicitly considering the evolv-
ing dynamic relationship between conditional volatilities. In contrast, earlier papers have largely
focussed on investigating changes in the relationship amongst the levels of macroeconomic and
financial variables (see for e.g. Prieto et al. (2016)). By considering the co-movement in second
moments we shed new light on the consequences of policies and/or structural changes that resulted
in the great moderation. Given that the recent financial crisis has resulted in high volatility, these
results are of immediate relevance to policy makers.

From an econometric point of view, the paper makes a contribution by proposing a multivariate
stochastic volatility model where the law of motion of the volatilities is characterised by time-
varying parameters. This adds to the literature on stochastic volatility models that allow for jumps
in the level of volatility via a Markov switching specification (see Mike K. P. So (1998) and Lopes
and Carvalho (2007) for e.g.). The key advantage of our specification is that it also allows the
dynamic relationship between the volatilties to evolve over time. This feature also distinguishes
our contribution from alternatives such as multi-variate GARCH models, where the relationship
amongst the conditional variances is constant. Similarly, recently proposed factor models with
time-varying volatility (see Mumtaz and Theodoridis (2015) and Berger et al. (2014)) are able to
capture volatility co-movement but do not directly incorporate the possibility of a time-varying
dynamic relationship between the conditional variances.

The paper is organised as follows. The next section introduces the empirical model and outlines
the estimation algorithm. Section 3 discusses the data used in the study, the model specification
and the key empirical results. Section 4 concludes. Technical details on model estimation and
selection are presented in Appendices A and B.
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2 Empirical model

We estimate the following time-varying VAR model with stochastic volatility

Zt = ct +
P�
j=1

βtjZt−j + Ω
1/2
t et, et ∼ N(0, 1) (1)

where Zt is a matrix of N endogenous variables, ct is a time-varying vector of N intercepts and βtj
denotes N × N coefficient matrices at each point in time. Denoting the vectorised coefficients by
Γt = vec ([βt, ct]), the law of motion for these states is defined as

Γt = Γt−1 + τ t, τ t˜N (0, QΓ) (2)

Following Primiceri (2005), the time-varying covariance matrix Ωt is factored as

Ωt = A
−1
t HtA

−1�
t (3)

where A is a N ×N lower triangular matrix while Ht = diag
�
exp

�
h̃t

��
with h̃t = [h1t, h2t, ..hN,t]

denoting the stochastic volatility of each of the N orthogonal shocks in the VAR model. As in
Primiceri (2005) the free elements of At (denoted by at) evolve as random walks

at = at−1 + s̄t, V AR(s̄t) = S̆ (4)

where S̆ is assumed to be block diagonal.
The specification for the stochastic volatilities marks our point of departure from previous

studies such as Cogley and Sargent (2005), Primiceri (2005) and Canova and Perez Forero (2015).
In contrast to previous applications of the TVP-SVOL, the law of motion of the stochastic volatilties
is assumed to be a VAR(1) model with time-varying parameters:

h̃t = αt + θth̃t−1 + ηt, ηt ∼ N(0, Qt) (5)

In equation 5, αt denotes the N time-varying intercepts, while θt is a N×N matrix of time-varying
slope coefficients. Letting Φt = vec([θt,αt]), the transition equation for the coefficients is given by

Φt = Φt−1 + ut, ut˜N(0, QΦ) (6)

Following Primiceri (2005), we assume that the covariance matrix Qt is non-diagonal. However,
in our application this covariance matrix is time-varying. This time-variation is introduced in the
covariance matrix Qt by factoring it as Qt = C−1t DtC

−1�
t . Ct is a lower triangular matrix where

the non-zero and non-one elements ct evolve as random walks

ct = ct−1 + st (7)

where var (st) = S is a block-diagonal covariance matrix. Similarly, the log of non-zero elements
of the diagonal matrix Dt follow a random walk

dt = dt−1 + nt, nt ∼ N(0, q) (8)

where dt = [d1t, d2t, ..dN,t] and Dt = diag (exp (dt)) .
These extensions to the basic TVP-SVOL model are in a similar spirit to the modifications to
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this model introduced in Cogley et al. (2010). These authors introduce time-variation in the law
of motion for the VAR coefficients in order to allow for the possibility of a shift in the dynamics of
Γt. In the present application our interest centers on volatility co-movement and a consequence we
extend the law of motion for h̃t to incorporate co-movement and time-variation. Given an estimate
of Φt and Qt, it is trivial to compute an approximation to the unconditional correlation matrix of
h̃t at each point in time. In addition, the multivariate spectrum of h̃t can also be approximated
and the relationship amongst the volatilities at different frequencies can be examined.

2.1 Estimation

The model is estimated via a Gibbs sampling algorithm. The details of the algorithm are provided
in Appendix A with a brief description of the main steps given below. The appendix also provides
details of all the prior distributions. Note that a key feature of the latter is the prior density for
QΦ. Following the TVP-VAR literature this prior is set using a training sample. In particular, we
estimate a VAR with stochastic volatility that excludes time-varying dynamics in the transition
equation to get a rough estimate for h̃t. Then using a training sample of T0 observations we estimate
a fixed coefficient VAR(1) model using this initial estimate of h̃t as endogenous variables and obtain
the OLS estimate of the coefficient covariance matrix Q̂OLS . The prior for QΦ is then set as an
inverse Wishart density with scale parameter Q̂OLS × T0 × κ and degrees of freedom dim (Φ) + n.
Following Cogley and Sargent (2005), the scaling parameter κ is set equal to 3.5e − 04. We set
n = 10 implying some weight on the prior. We find that while using a more non-informative prior
(i.e. with n = 1) results in very similar estimates of the time-varying correlations, the changes in
some of the parameters are estimated to be very volatile.1We use non-informative priors for the
blocks of S. The scale matrix of this inverse Wishart prior is set to a matrix with diagonal elements
given by 10−3 and the degrees of freedom are the dimension of the block plus 1.

The Gibbs algorithm samples from the following conditional posterior distributions.

1. G
�

Γt\At, h̃t, QΓ
�
. Given h̃t, the model in equation 1 is a linear Gaussian state-space model.

We draw from this conditional posterior using the Carter and Kohn (1994) algorithm.

2. G
�
At\Γt, h̃t, S̆

�
. Given the VAR coefficients, the model can be written in terms of the

residuals as Atut = H
1/2
t et. This defines a series of heteroscedastic, time-varying regressions

in the residuals. Given h̃t this again represents a series of linear, Gaussian state-space models
and the Carter and Kohn (1994) algorithm can again be employed.

3. G(Φt\h̃t, Ct, Dt, QΦ). Given h̃t and Qt, equations 5 and 6 constitute a linear Gaussian state-
space model. We draw from the conditional posterior of Φt using the Carter and Kohn (1994)
algorithm. Rejection sampling is used to ensure that all draws satisfy stability at each point
in time.

4. G(Ct\Φt, h̃t, Dt, S). As in step 2 above, the VAR model in equation 5 can be written as
Ctηt = D

1/2
t η̄t, η̄t˜N(0, 1). Given a block diagonal S in transition equation 7, the Carter and

Kohn (1994) algorithm can again be used to draw the the time-varying elements of Ct.

5. G(Dt\Ct,Φt, h̃t, q). Given Ct,Φt the orthogonal residuals of the VAR model in equation 5 can
be calculated. A uni-variate stochastic volatility model applies to each residual with the tran-
sition equation . We draw each dt using a multi-move step employing the recently developed

1As described in the appendix, the prior for is set in an identical fashion QΓ.
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particle Gibbs algorithm with ancestoral sampling (see Andrieu et al. (2010), Lindsten et al.
(2014)). This algorithm enables us to draw from the conditional posterior of the state-variable
in a non-linear model without the need for linearisation (see Sangjoon Kim (1998)).

6. G
�
h̃t\Γt, At,Φt, Qt

�
. Equations 1 and 5 form a non-linear state-space system. As in step 5,

we use a particle Gibbs step to sample from the conditional posterior of h̃t.

7. The variances QΓ, S̆, QΦ, S and q can be easily drawn from their respective conditional pos-
terior distributions.

2.1.1 Estimation on artificial data

In order to test the algorithm, we conduct a small Monte-Carlo experiment. We generate artificial
data from a bi-variate VAR with stochastic volatility featuring a change in the coefficients of the
transition equation. In particular, the data generating process (DGP) is defined as	

Z1t
Z2t



=

	
0.7 0.1
−0.1 0.7


	
Z1t−1
Z2t−1



+

	
1 0
0.1 1


	
h1t 0
0 h2t


	
e1t
e2t



	
lnh1t
lnh2t



=

	
θ1 θ2
θ3 θ4


	
lnh1t−1
lnh2t−1



+

	
1 0

−0.1 1


	
exp (d1t) 0

0 exp (d2t)


	
η1t
η2t




where
	
e1t
e2t



,

	
η1t
η2t



˜N(0, I2) and dt = dt−1+nt, nt ∼ N(0, I2×0.001) with dt = {d1t, d2t}. The

coefficients
	
θ1 θ2
θ3 θ4



=

	
0.7 0.2
0.2 0.7



for the first half of the sample but change to

	
θ1 θ2
θ3 θ4



=	

0.7 −0.6
0.2 0.7



for the second half implying a decline in the unconditional correlation between lnh1t

and lnh2t. We generate 600 observations, discarding the first 100 and using the remaining 500 for
estimation. The model is estimated using 5000 iterations with a burn-in of 4000 and 20 particles
employed in the particle Gibbs step. The experiment is repeated 200 times.
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Figure 1: Estimation on artificial data. The figure reports true values and median estimates across the Monte-Carlo replications. The
pink shaded area represents 1 standard deviation error band.
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Figure 1 presents the results from this experiment. The top left panel shows the unconditional
correlation between lnh1t and lnh2t calculated using an approximation to the unconditional covari-
ance at each point in time (see equation 9). The black line which presents the correlation based
on the DGP shows an abrupt shift at observation 250. The estimates from the proposed model
display a smoother decline reflecting the law of motion embedded in the specification. However,
the estimates provide a reasonable characterisation of the time-variation present in the correlation
between lnh1t and lnh2t. The remaining panels display the cumulated impulse responses derived
using the transition equation for the stochastic volatilities. As expected, the median estimates
display a more gradual shift than the DGP. However, as before the direction and the timing of the
change provides a reasonable approximation of the underlying structural shift.

3 Empirical Analysis

The close relationship between the yield curve and the macroeconomy has been highlighted in
several recent studies (see for e.g. Diebold et al. (2006)). Moreover, Mumtaz and Surico (2009)
and Bianchi et al. (2009) show that this relationship is characterised by time-varying dynamics
and heteroscedasticity. While the relationship between the level of government bond yields and
macroeconomic variables has received substantial attention, the possibility of a link between the
conditional variances associated with these variables has not been considered in the literature. From
an economic perspective there are several reasons that suggest that such a link may exist and its
strength may change over time. The volatility of the long-term interest rate is related closely to
the term-premium (the wedge between the long-term interest rate and expectations about policy
rates). The importance of the term-premium has been stressed by several studies (Wright (2011),
Rudebusch and Swanson (2012), Swanson (2015)) and is considered as one of the main driver of
the long-rate. From a policy perspective, the importance of the term premium has been enhanced
further as ‘unconventional’ monetary policies are communicated in terms of long-rates (Bernanke
(2013)). Thus an estimate of the time-varying correlation between long rate volatility and the
volatility of macroeconomic variables provides valuable information on the possible impact of such
policies. Similarly an estimate of the co-movement of long rate volatility across countries can
enhance our understanding of the cross-country correlation of risk premia (see (Wright (2011)
and Jotikasthira et al. (2015)) and the prevalance of risk sharing (see Colacito and Croce (2013),
Kollmann (2015), Gourio et al. (2013) and Benigno et al. (2011) ).

In order to explore this further, we estimate the TVP-VAR model proposed above using Zt =
{Y USt , RUSt , Y UKt , RUKt } where Y it denotes real GDP growth in country i while Rit is the 10 year
Government bond yield. This model, thus, not only allows us to investigate volatility comovement
within the United States and the United Kingdom but also provides information on cross-country
links in volatility as considered in Mumtaz and Theodoridis (2015).

The data on Zt is quarterly and runs from 1955Q2 to 2015Q2. Note that we use the first ten
years of data as a training sample and use the remaining years for estimation. US real GDP is
obtained from the Federal Reserve Bank of St. Louis (FRED) database (Code: GDPC96). The US
long term yield is downloaded from Global Financial data (Code: IGUSA10D). UK real GDP is
obtained from the Office of National Statistics (Code: ABMI). The 10 year bond yield is obtained
from the Bank of England’s long-run database. The lag length is set to 4 in the benchmark model.

The model is estimated using 200,000 iterations of the MCMC algorithm described above. The
first 100,000 iterations are discarded as burn-in and we retain every 20th draw from the remainder
for inference. The appendix shows that the estimated inefficiency factors are fairly low providing
some evidence for convergence.
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Figure 2: Stochastic volatility of the VAR shocks. The red sold lines are posterior medians while the red shaded area represents the
68% error bands. The grey and light blue vertical shaded areas represent US and UK recessions as reported by the NBER and OECD
respectively.
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3.1 Empirical results

We first compare the marginal likelihood (ML) of the proposed model to that of a standard TVP-
SVOL which assumes an independent random walk specification as the transition equation for
the stochastic volatilties. The ML is computed using the estimator proposed in Chib (1995) and
described in Appendix B in context of the model proposed in this paper. The estimated log ML for
the benchmark model is 9434.5. This is substantially larger than the estimate for the TVP-SVOL
model: 4207.85. This provides strong evidence in favour the TVP-VAR that features time-varying
dynamics in the transition equation for h̃t.

Figure 2 presents the posterior estimates of the stochastic volatility, i.e. exp
�
h̃t

�1/2
. Consider

the results for the US presented in the top panel. The great moderation is clearly visible in
the estimated volatility associated with the GDP shock — the shock standard deviation declined
dramatically during the early 1980s and remained relatively low until the ‘great recession’ in 2008.
The shock volatility of the US long-term rate was at its peak during the late 1970s and the early
1980s, with this episode coinciding with the Volcker experiment of targeting non-borrowed reserves.
This volatility declined subsequently to levels seen in the earlier part of the sample. The bottom left
panel of the figure shows that the shock variance associated with UK GDP growth remained high
until the early 1990s. The post-1992 inflation-targeting period was characterised by stability until
2008, when this shock volatility spiralled to the levels seen in the 1970s and the 1980s. The evolution
of the standard deviation of the UK long-rate shock displays a similar pattern—the volatility is high
pre-1992 followed by a stable period until the recent financial crisis. In general, the temporal
evolution of the stochastic volatilities is estimated to be similar to that reported in previous studies
employing TVP-SVOL models (see Cogley and Sargent (2005) and Benati (2008)). In contrast
to these previous studies, however, we are able to explore if there was a systematic co-movement
between the elements of h̃t. We turn to this analysis next.
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Figure 3: Correlation between the conditional volatility of US GDP growth and the volatility of the US long-term interest rate. The red
sold lines are posterior medians while the red shaded area represents the 68% error bands. The grey vertical shaded areas represent US
recessions as reported by the NBER.

10



Figure 4: Correlation between the conditional volatility of UK GDP growth and the volatility of the UK long-term interest rate. The
red sold lines are posterior medians while the red shaded area represents the 68% error bands. The blue vertical shaded areas represent
UK recessions as reported by the OECD.
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3.1.1 Dynamic Correlations

Note that an approximation to the unconditional variance-covariance of h̃t can be calculated at
each point in time using the parameters of equation 5:

(I − θt ⊗ θt)−1 vec (Qt) (9)

The time-varying correlation matrix can easily be computed as a by-product. Similarly, the spectral
density matrix of h̃t can be calculated at each point in time as:

f̂t(ω) = (I − θte−iω)−1Qt
2π

�
(I − θte−iω)−1

��
, (10)

where ω denotes the frequency. The off-diagonal elements of the spectral density matrix summarises
the relationship between h̃t at different frequencies. We focus on a particular measure of association
called dynamic correlations proposed in Christophe Croux (2001). This measure is defined as:

ĉij (ω)�
f̂ iit (ω)f̂

jj
t (ω)

, (11)

where ĉij (ω) denotes the cospectrum between the ith and jth volatility at frequency ω. The dynamic
correlation lies between -1 and 1. It equals one if h̃it and h̃jt are exactly synchronised at a given
frequency.

Figure 3 shows the estimated correlation between the stochastic volatilities associated with the
US GDP shock and the US long-rate shock. The first panel shows the unconditional correlation. The
remaining panels show the dynamic correlation at the long-run and the business cycle frequencies.
The long run frequency corresponds to cycles of 100 years, while the business cycle frequency is
associated with cycles of 3 years. The figure shows that the correlation between these conditional
volatilties changed dramatically over the sample period. In the pre-1980 period, this correlation
was close to 1. However the onset of the great moderation coincided with a sharp decline in this
volatility co-movement. After the mid-1980s the median correlation remains largely below zero,
with the period leading up to great recession providing one exception. The estimated dynamic
correlations suggest that this decline in co-movement was concentrated at the long-run frequencies.
While, the business cycle association between these conditional volatilities did decline over time,
the magnitude of the decline was much less dramatic. The evolution of this correlation followed a
similar pattern during the 1970s in the UK (figure 4). That is, the volatilities of the output growth
and the long rate shock were characterised by high co-movement which then declined as the decade
progressed. In contrast to the US, however, the estimated median correlation for the UK displays
an increase after 1992. The top right panel of the figure suggests that this increase largely occurs
at the long run frequency with the dynamic correlation reaching its pre-1980 level in the period
after the Bank of England was granted operational independence.
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Figure 5: Correlation between the conditional volatility of US GDP growth and the volatility of the UK GDP Growth. The red sold lines
are posterior medians while the red shaded area represents the 68% error bands. The grey and light blue vertical shaded areas represent
US and UK recessions as reported by the NBER and OECD respectively.
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Figure 6: Correlation between the conditional volatility of US long-term rate and the volatility of the UK long-term rate. The red sold
lines are posterior medians while the red shaded area represents the 68% error bands. The grey and light blue vertical shaded areas
represent US and UK recessions as reported by the NBER and OECD respectively.
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Figures 5 and 6 consider the correlation between the conditional volatilities across countries.
Figure 5 shows that the correlation between GDP growth volatilties increased dramatically after the
mid-1980s with long run correlation close to 1 over the post-1985 period. This supports the results
in Mumtaz and Theodoridis (2015) who also show an increasing co-movement in the volatility of
output growth across countries. In contrast, figure 6 shows that the conditional variance of the
long-term rate has become less correlated across these two countries. After the late 1990s, the
unconditional correlation is about half of the estimate of the early 1980s and the long-run dynamic
correlation is estimated to be negative.
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Figure 7: Unconditional correlations between volatilities from a model using alternative priors for QΦ. The grey and light blue vertical
shaded areas represent US and UK recessions as reported by the NBER and OECD respectively.
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To check the robustness we explore if the choice of prior for QΦ affects the degree of time-
variation estimated in the correlations. In particular, we re-estimate the benchmark model setting
the scaling factor κ equal to a reduced value of 1e − 04. The degrees of freedom remain as in the
benchmark model. Thus we incorporate a prior belief favouring a smaller degree of time-variation.
The estimated unconditional correlations from this alternative model are presented in figure 7. It
is immediately clear that these are very similar to the benchmark case suggesting therefore that
the key results are not driven by the choice of the prior for QΦ.

In summary, this analysis suggests three main conclusions. First, the correlation between the
conditional variance of US output growth and the conditional variance of the long-term rate was
high during the 1970s and the early 1980s but declined substantially thereafter. A similar decline is
evident for the UK, but the correlation appears to have increased again over the inflation targeting
period. Second, the correlation between the conditional variance of US and UK GDP shows a
dramatic increase over the great moderation period. Finally, the co-movement between the volatility
of the long-rate in these two countries was strong until the early 1990s—over the inflation targeting
period in the UK, however, the null hypothesis of zero correlation between these variances cannot
be rejected.

3.1.2 Discussion

The discussion in this section sketches out some of the structural changes and transmission channels
that they could be consistent with the estimates presented above.2 The decline in the correlation
between GDP growth and long-term rates volatility seems to be consistent with the more weight
placed by monetary authorities on the stabilisation of inflation. As authorities target inflation more
aggressively, inflation premia (perhaps one of the most important component of the term-premium)
decreases as market participants understand that the likelihood that long-run inflation expectation
will be away from their target is small. In this case they do not demand a premium on investing
on long-term debt as it is unlikely that high inflation is going to erode their investment cash flows.
Assuming that the volatility of GDP growth has a real and nominal component, the decrease in
the term-premium could be consistent with a fall in nominal volatility in the economy and lead to
a lower correlation between the variance of GDP and the long rate.3

The increase in the correlation between US and UK GDP growth volatility could be consistent
with more global markets and the reduced ability of domestic agents to share risks with the rest of
the world (Colacito and Croce (2013) and Campbell (2005)). For instance, as the degree of home
bias decreases, the contribution of imports (net trade) to GDP rises. In this situation domestic
households and firms are unable to diversify risks that originate abroad making it more likely that
domestic volatility is going to co-move with the foreign one.

In order to understand the declining correlation between US and UK long-term interest rate
volatility, it is important to take the exchange rate regime into account as well. It is perhaps not a
coincidence that the fall in the correlation estimated by the model takes place around 1992 when
the sterling was withdrawn from the European Exchange Rate Mechanism (‘Black Wednesday’),
which marks the beginning of the UK floating exchange regime. As explained in Obstfeld and
Taylor (2003), monetary authorities cannot achieve a stable exchange rate, perfect capital mobility
and pursue an independent monetary policy simultaneously. Thus, prior to 1992, given a managed
exchange rate it is likely that long run domestic inflation expectations closely followed those preva-
lent in major foreign economies. In such an environment it is not difficult to understand that if

2The discussion in this section is based on simulations from the model developed in Chin et al. (2015).
3The rebound in this correlation in the UK would suggest that real volatility also declined significantly after the

introduction of inflation targeting.
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foreign investors demand a compensation (inflation premium) to invest in foreign long-term debt
due to the volatility of the inflation, then it is very likely that domestic investors will request a sim-
ilar compensation to invest in domestic long-run debt as they are equally exposed to inflation risk.
After the ERM crisis and the introduction of inflation targeting, long run inflation expectations
returned to target in the UK with domestic market participants willing to undertake long term
investments without requiring an additional inflation premium. Such a change would be consistent
with a fall in the correlation of long-rate volatility across the two countries.

4 Conclusion

In this paper we extend the TVP-SVOL model to allow for a time-varying dynamic relationship
among the stochastic volatilties. This extended model allows researchers to investigate changes in
the relationship between conditional variances. Such changes are consistent with structural shifts
seen recently in the industrialised countries. Using this model, we show that the co-movement
between the conditional variance of GDP growth and the long-term rate has become weaker over
time in the US. Similarly, the correlation between the variance of the long-term interest rate across
the US and the UK declined over the great moderation period. In contrast, the volatility of US
and UK GDP appears to have become increasingly correlated. We argue that these estimates are
consistent with (a) a decline in the term-premium possibly resulting from policy-makers focus on
inflation control and (b) a greater degree of globalisation.

In future work, it would be useful to explore whether a DSGE model featuring time-varying
volatility can be used to replicate some of these second moment co-movements. It may also be
interesting to investigate if the relationship between the conditional variance of real variables and
financial series such as stock returns and credit spreads has remained stable over time. This would
be provide additional insights on the impact of the great moderation and the consequences of the
great recession.
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— 338.

Fuentes-Albero, Cristina, 2012, Financial Frictions, Financial Shocks, and Aggregate Volatility,
Dynare Working Papers 18, CEPREMAP.

Gourio, Francois, Michael Siemer and Adrien Verdelhan, 2013, International risk cycles, Journal of
International Economics 89(2), 471 — 484.

Jotikasthira, Chotibhak, Anh Le and Christian Lundblad, 2015, Why do term structures in different
currencies co-move?, Journal of Financial Economics 115(1), 58 — 83.

Kim, Chang-Jin and Charles R. Nelson, 1999, Has The U.S. Economy Become More Stable? A
Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle, The Review
of Economics and Statistics 81(4), 608—16.

Kollmann, Robert, 2015, Exchange Rates Dynamics with Long-Run Risk and Recursive Preferences,
Open Economies Review 26(2), 175—196.

Lindsten, Fredrik, Michael I. Jordan and Thomas B. Schön, 2014, Particle Gibbs with Ancestor
Sampling, Journal of Machine Learning Research 15, 2145—2184.

19



Lopes, Hedibert Freitas and Carlos Marinho Carvalho, 2007, Factor stochastic volatility with time
varying loadings and Markov switching regimes, Journal of Statistical Planning and Inference
137(10), 3082 — 3091. Special Issue: Bayesian Inference for Stochastic Processes.

Mike K. P. So, K. Lam, W. K. Li, 1998, A Stochastic Volatility Model with Markov Switching,
Journal of Business Economic Statistics 16(2), 244—253.

Mumtaz, Haroon and Konstantinos Theodoridis, 2015, Common and Country Specific Economic
Uncertainty, Working Papers 752, Queen Mary University of London, School of Economics and
Finance.

Mumtaz, Haroon and Laura Sunder-Plassmann, 2013, Time-Varying Dynamics Of The Real Ex-
change Rate: An Empirical Analysis, Journal of Applied Econometrics 28(3), 498—525.

Mumtaz, Haroon and Paolo Surico, 2009, Time-varying yield curve dynamics and monetary policy,
Journal of Applied Econometrics 24(6), 895—913.

Nonejad, Nima, 2015, REPLICATING THE RESULTS IN ŚA NEWMODEL OF TREND INFLA-
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A Appendix A: Model Estimation

Consider the VAR model:
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Zt = ct +

P�
j=1

βtZt−j + Ω
1/2
t et, et ∼ N(0, 1) (12)

Γt = vec ([βt, ct]) (13)

Γt = Γt−1 + τ t, τ t˜N (0, QΓ) (14)

Ωt = A−1t HtA
−1�
t (15)

at = at−1 + s̄t, V AR(s̄t) = S̆ (16)

h̃t = αt + θth̃t−1 + ηt, ηt ∼ N(0, Qt), E (et, ηt) = 0 (17)

Φt = vec([θt,αt]) (18)

Φt = Φt−1 + ut, ut˜N(0, QΦ) (19)

Qt = C−1t DtC
−1�
t (20)

ct = ct−1 + st, V AR(st) = S (21)

dt = dt−1 + nt, nt ∼ N(0, q) (22)

where h̃t = [h1t, h2t, ..hN,t], Ht = diag
�
exp

�
h̃t

��
. Similarly dt = [d1t, d2t, ..dN,t], Dt = diag (exp (dt)) .

A.1 Prior distributions and starting values

A.1.1 VAR Coefficients

The initial conditions for the VAR coefficients Γ0 in equation 12 are obtained via an OLS estimate
of a fixed coefficient VAR using the first T0 = 40 observations of the sample period. Let Γols and
V̂ ols denote the OLS estimate of the VAR coefficients and the covariance matrix estimated on the
pre-sample data. The prior for Γ0˜N(Γ

ols, var(Γols)). The prior on QΓ is assumed to be inverse
Wishart IW

�
Q̄Γ, TT0

�
where Q̄Γ is assumed to be TT0 × var(Γols) × k and T0 is the length of

the sample used to for calibration and TT0 equals the rows of QΓ plus 10. Following Cogley and
Sargent (2005), the scaling factor k is set to 3.5× 10−4 in the benchmark case.

A.1.2 Elements of A

The prior for the off-diagonal elements At is A0 ∼ N
�
aols, V

�
aols

��
where aols are the off-diagonal

elements of V̂ ols, with each row scaled by the corresponding element on the diagonal. V
�
aols

�
is

assumed to be diagonal with the elements set equal to 10 times the absolute value of the correspond-
ing element of aols. The prior distribution for the blocks of S̆ is inverse Wishart: S̆i,0 ∼ IW (Ši,Ki)
where i = 1..N − 1 indexes the blocks of S̆. Ši is calibrated using aols. Specifically, Ši is a diagonal
matrix with the diagonal elements given by 10−3. A similar prior specification is used in previous
studies such as Benati and Mumtaz (2007).

A.1.3 Elements of Ht

Following Cogley and Sargent (2005) we use the training sample to set the prior for the elements
of the transition equation of the model. Let V̂ ols denote the OLS estimate of the VAR covariance
matrix estimated on the pre-sample data of T0 = 40 observations. The prior for h̃t at t = 0 is
defined as lnh0 ∼ N(lnμ0, I4) where μ0 are the diagonal elements of the Cholesky decomposition
of V̂ ols. To obtain starting values for h̃t we estimate a VAR model that allows for a univariate
stochastic volatility process for each orthogonalised VAR shock. Denote this starting value by h̃0t .
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A.1.4 Coefficients of the transition equation

The initial conditions for the VAR coefficients Φ0 (eq 17) are obtained via an OLS estimate of
a fixed coefficient VAR using the first T0 = 40 observations of the sample period. The VAR
is estimated using the starting value ln h̃0t . Let Φols and v̂ols denote the OLS estimate of the
VAR coefficients and the covariance matrix estimated on the pre-sample data described above.
The prior for Φ0˜N(Φ

ols, var(Φols)). The prior on QΦ is assumed to be inverse Wishart QΦ,0 ∼
IW

�
Q̄Φ,0, TT0

�
where Q̄Φ,0 is assumed to be TT0×var(Φols)×k and T0 is the length of the sample

used to for calibration and TT0 equals the rows of QΦ plus 10. Following Cogley and Sargent
(2005), the scaling factor k is set to 3.5× 10−4 for the benchmark case.

A.1.5 Elements of Ct

The prior for the off-diagonal elements Ct is C0 ∼ N
�
cols, V

�
cols
��
where cols are the off-diagonal

elements of v̂ols, with each row scaled by the corresponding element on the diagonal. V
�
cols
�
is

assumed to be diagonal with the elements set equal to 10 times the absolute value of the correspond-
ing element of cols. The prior distribution for the blocks of S is inverse Wishart: Si,0 ∼ IW (S̄i,Ki)
where i = 1..N − 1 indexes the blocks of S. S̄i is calibrated using cols. Specifically, S̄i is a diagonal
matrix with diagonal elements given by 10−3. This prior specification is used in previous studies
such as Benati and Mumtaz (2007).

A.1.6 Elements of Dt

Following Cogley and Sargent (2005) we use the training sample described above to set the prior
for the elements of the transition equation of the model. The prior for dt at t = 0 is defined as
ln d0 ∼ N(lnμd0, I4) where μd0 are the diagonal elements of the Cholesky decomposition of the
error covariance matrix obtained by estimating a fixed coefficient VAR using h̃0t as the endogenous
variables. The prior for the elements of q is inverse Gamma: p (q) ˜IG (q0, vq0). The degrees of
freedom are set to 5. The scale parameters q0 are calibrated by estimating a VAR on the starting
values h̃0t that features univariate stochastic volatility models for the orthogonalised residuals.

A.2 Simulating the posterior distributions

The MCMC algorithm samples from the following conditional posterior distributions.

A.2.1 VAR coefficients H
�

Γt|QΓ, At, Ht, S̆,Φt, QΦ, Ct, Dt, S, q
�

Given a draw for the stochastic volatility h̃t and the covariance matrix QΓ the VAR model repre-
sents a linear Gaussian state space mode. The Carter and Kohn (1994) algorithm can be applied
to draw from the conditional posterior of Γt. The distribution of the time-varying coefficients
conditional on all other parameters Ξ is linear and Gaussian: Γt\h̃t,Ξ ∼ N

�
ΓT\T , PT\T

�
and

Γt\Γt+1,h̃t,Ξ ∼ N
�
Γt\t+1,Γt+1 , Pt\t+1,Γt+1

�
where t = T − 1, ..1. As shown by Carter and Kohn

(1994) the simulation proceeds as follows. First we use the Kalman filter to draw ΓT\T and
PT\T and then proceed backwards in time using Γt|t+1,Γt+1 = Γt|t + Pt|tP−1t+1|t

�
Γt+1 − Γt|t

�
and

Pt|t+1,Γt+1 = Pt|t − Pt|tP−1t+1|tPt|t.
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A.2.2 Covariance Matrix QΓ H
�
QΓ|Γt, At, Ht, S̆,Φt, QΦ, Ct, Dt, S, q

�
Given a draw of Γt, the covariance matrix QΓ can be drawn from the inverse Wishart density with
scale matrix τ �tτ t + Q̄Φ,0 and degrees of freedom T + TT0

A.2.3 Element of At H
�
At|QΓ,Γt, Ht, S̆,Φt, QΦ, Ct, Dt, S, q

�
Given a draw for Γt and Ht the VAR model can be written as A�t

�
Z̃t

�
= ẽt where Z̃t = Zt −

ct −
�P
j=1 βtZt−j . This is a system of linear equations with time-varying coefficients and a known

form of heteroscedasticity. The jth equation of this system is given as Z̃jt = ajtZ̃−jt + ẽjt where
the subscript j denotes the jth column of Z̃t while −j denotes columns 1 to j − 1. Note that the
variance of ẽjt are time-varying and given by exp(hjt). The time-varying coefficient follows the
process ajt = ajt−1+ s̄jt with the shocks to the jth equation s̄jt uncorrelated with those from other
equations. In other words the covariance matrix is assumed to be block diagonal as in Primiceri
(2005). With this assumption in place, the Carter and Kohn (1994) algorithm can be applied to
draw the time varying coefficients for each equation of this system seperately.

A.2.4 Covariance Matrix S̆ H
�
S̆|QΓ,Γt, At, Ht,Φt, QΦ, Ct, Dt, S, q

�
Given a draw of At the conditional posterior for the blocks of S̆ is inverse Wishart and these
covariance matrices can be drawn easily. The scale matrix is s̄�jts̄jt + S̆j,0 and the degrees of
freedom are the sample size plus the prior degrees of freedom.

A.2.5 Coefficients of the transition equation Φt H
�

Φt|S̆, QΓ,Γt, At, Ht, QΦ, Ct, Dt, S, q
�

Given a draw for h̃t and Qt, the transition equation is a VAR with time-varying coefficients.
As this is a linear and Gaussian state space model, the Carter and Kohn (1994) algorithm can
be applied to draw from the conditional posterior of Φt. The distribution of the time-varying
loadings conditional on all other parameters is linear and Gaussian: Φt\h̃t,Ξ ∼ N

�
ΦT\T , P̄T\T

�
and Φt\Φt+1,h̃t,Ξ ∼ N

�
Φt\t+1,Φt+1 , P̄t\t+1,Φt+1

�
where t = T − 1, ..1, Ξ denotes a vector that

holds all the other parameters and states of the transition equation. As shown by Carter and
Kohn (1994) the simulation proceeds as follows. First we use the Kalman filter to draw ΦT\T and
P̄T\T and then proceed backwards in time using Φt|t+1,Φt+1 = Φt|t + P̄t|tP̄−1t+1|t

�
Φt+1 − Φt|t

�
and

P̄t|t+1,Φt+1 = P̄t|t − P̄t|tP̄−1t+1|tP̄t|t.

A.2.6 Covariance Matrix QΦ H
�
QΦ|Γt, At, Ht, S̆,Φt, QΓ, Ct, Dt, S, q

�
Given a draw of Φt, the covariance matrix QΦ can be drawn from the inverse Wishart density with
scale matrix u�tut + Q̄Φ,0 and degrees of freedom T + TT0

A.2.7 Elements of Ct H
�
Ct|QΓ,Γt, Ht, S̆,Φt, QΦ, At, Dt, S, q

�
Given a draw for the coefficients of the transition equation and stochastic volatility dt the transition
equation can be written as Ct (ηt) = ēt where ηt denotes the residuals. This is a system of linear
equations with time-varying coefficients and a known form of heteroscedasticity. The jth equation
of this system is given as ηjt = cjtη−jt+ ējt where the subscript j denotes the jth column of v while
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−j denotes columns 1 to j−1. Note that the variance of ējt is time-varying and given by exp (djt).
The time-varying coefficient follows the process cjt = cjt−1+sjt with the shocks to the jth equation
sjt uncorrelated with those from other equations. In other words the covariance matrix is assumed
to be block diagonal as in Primiceri (2005). With this assumption in place, the Carter and Kohn
(1994) algorithm can be applied to draw the time varying coefficients for each equation of this
system seperately.

A.3 Covariance Matrix S H
�
S|QΓ,Γt, At, Ht,Φt, QΦ, Ct, Dt, S̆, q

�
Given a draw of Ct the conditional posterior for the blocks of S is inverse Wishart and these
covariance matrices can be drawn easily. The scale matrix is s�jtsjt + Sj,0 and the degrees of
freedom are the sample size plus the prior degrees of freedom.

A.3.1 Elements of Dt H
�
Dt|Ct, QΓ,Γt, Ht, S̆,Φt, QΦ, At, S, q

�
Given a draw for the coefficients of the transition equation and Ct the orthogonalised resduals
Ct (ηt) = ēt can be calculated. The jth residual follows a univariate stochastic volatility model

ējt =
�
exp (djt)ē

∗
jt, ē

∗
jt˜N(0, 1)

djt = djt−1 + njt, var (njt) = qj

We use the Particle Gibbs step described below to draw djt from its conditional posterior distribu-
tion. Given djt, the conditional posterior for qj is inverse Gamma with degrees of freedom T + vq0
and scale parameter q0 + n�jtnjt.

A.3.2 Elements of Ht H
�
Ht|Ct, QΓ,Γt, Dt, S̆,Φt, QΦ, At, S, q

�
Given a draw for the time-varying parameters of the transition equation 17 and the time-varying
parameters of the observation equation 12, the model has a multivariate non-linear state-space
representation. Following recent developments in the seminal paper by Andrieu et al. (2010), we
employ a particle Gibbs step to sample from the conditional posterior of h̃t. Andrieu et al. (2010)
show how a version of the particle filter, conditioned on a fixed trajectory for one of the particles can
be used to produce draws that result in a Markov Kernel with a target distribution that is invariant.
However, the usual problem of path degeneracy in the particle filter can result in poor mixing in the
original version of particle Gibbs. Recent developments, however, suggest that small modifications
of this algorithm can largely alleviate this problem. In particular, Lindsten et al. (2014) propose
the addition of a step that involves sampling the ‘ancestors’ or indices associated with the particle
that is being conditioned on. They show that this results in a substantial improvement in the
mixing of the algorithm even with a few particles.4As explained in Lindsten et al. (2014), ancestor
sampling breaks the reference path into pieces and this causes the particle system to collapse towards
something different than the reference path. In the absence of this step, the particle system tends
to collapse to the conditioning path. We employ particle Gibbs with ancestor sampling in this step.

Let h̃(i−1)t denote the fixed the fixed trajectory, for t = 1, 2, ..T obtained in the previous draw
of the Gibbs algorithm. We denote the parameters of the model by Ξ, and j = 1, 2, ..M represents
the particles. The conditional particle filter with ancestor sampling proceeds in the following steps:

4See Nonejad (2015) for a recent application of this algorithm.
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1. For t = 1

(a) Draw h̃(j)1 \h̃(j)0 ,Ξ for j = 1, 2, ..M − 1. Fix h̃(M)
1 = h̃

(i−1)
1

(b) Compute the normalised weights p(j)1 =
w
(j)
1

M
j=1 w

(j)
1

where w(j)1 denotes the conditional

likelihood:
���Ω(j)1 ���−0.5 − 0.5 exp	ẽ1 �Ω

(j)
1

�−1
ẽ�1



where ẽ1 = Zt −

�
ct +

�P
j=1 βt,jZt−j

�
and Ω

(j)
1 = A−1t H

(j)
1 A−1

�
t with H(j)

1 = diag
�
exp

�
h̃
(j)
1

��
.

2. For t = 2 to T

(a) Resample h̃(j)t−1 for j = 1, 2, ..M − 1 using indices a(j)t with Pr
�
a
(j)
t = j

�
∝ p(j)t−1

(b) Draw h̃
(j)
t \h̃(a

(j)
t )

t−1 ,Ξ for j = 1, 2, ..M − 1 using the transition equation of the model
(equation 17). Note that h̃(a

(j)
t )

t−1 denotes the resampled particles in step (a) above.

(c) Fix h̃(M)
t = h̃

(i−1)
t

(d) Sample a(M)
t with Pr

�
a
(M)
t = j

�
∝ p

(j)
t−1 Pr

�
h̃
(i−1)
t \h̃(j)t−1,αt, θt, Qt

�
where the density

Pr
�
h̃
(i−1)
t \h̃(j)t−1,αt, θt, Qt

�
is computed as |Qt|−0.5−0.5 exp

�
η̃
(j)
t (Qt)

−1 η̃(j)t
�
where η̃t =

h̃
(i−1)
t −

�
αt + θth̃

(j)
t−1
�
. This constitutes the ancestor sampling step. If a(M)

t = M then

the algorithm collapses to the simple particle Gibbs.

(e) Update the weights p(j)t =
w
(j)
t

M
j=1 w

(j)
t

where w(j)1 denotes the conditional likelihood:���Ω(j)t ���−0.5 − 0.5 exp	ẽt �Ω
(j)
t

�−1
ẽ�t



where ẽt = Zt −

�
ct +

�P
j=1 βt,jZt−j

�
and Ω

(j)
t =

A−1t H
(j)
1 A−1

�
t with H(j)

t = diag
�
exp

�
h̃
(j)
t

��
.

3. End

4. Sample h̃(i)t with Pr
�
h̃
(i)
t = h̃

(j)
t

�
∝ p

(j)
T to obtain a draw from the conditional posterior

distribution

We use M = 50 particles in our application. The initial values μ0 defined above are used to
initialise step 1 of the filter.

B Appendix B: Calculating the marginal likelihood

The marginal likelihood is estimated via the Chib (1995) estimator. This estimator is based on
rearranging the Bayes theorem. Consider the Bayes Theorem in logs:

H (Ψ,Ξ\Z) = F (Z\Ψ,Ξ) + P (Ψ)−H (Z)

where Ψ = {QΓ, S̆, QΦ, S, q} i.e. parameters, Ξ denotes the state variables. H (Ψ,Ξ\Z) is the log
posterior that equals the log likelihood F (Z\Ψ,Ξ) plus the log prior P (Ψ) minus the log marginal
likelihood H (Z). Thus:

H (Z) = F (Z\Ψ,Ξ) + P (Ψ)−H (Ψ,Ξ\Z) (23)
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Because the parameters and the states do not appear in H (Z), this expression can be evaluated
at any point in the posterior density for Ψ. Conventionally this point is chosen to be the posterior
mean Ψ∗.

Thus, to estimate the marginal likelihood we need to evaluate eq 23. P (Ψ) is easiest to evaluate
as it involves evaluating the prior for each parameter (at Ψ∗) and then taking the product. The
likelihood F (Z\Ψ,Ξ) is evaluated using a Particle filter (see Arulampalam et al. (2002)). The key
task is evaluating the posterior density H (Ψ,Ξ\Z). We turn to this next.

B.1 Evaluating the posterior density

The posterior density evaluated at the mean is defined as

H
�
Q∗Γ, S̆

∗, Q∗Φ, S
∗, q∗,Ξ

�
= H

�
Q∗Γ\S̆∗, Q∗Φ, S∗, q∗,Ξ

�
×H

�
S̆∗\Q∗Φ, S∗, q∗,Ξ

�
× (24)

H (Q∗Φ\S∗, q∗,Ξ)×H (S∗\q∗,Ξ)×H (q∗\Ξ)

where ∗ denotes posterior mean. We suppress dependence on the data for notational simplicity.
Each term on the RHS of equation 24 can be evaluated using an extended Gibbs sampler:

1. H
�
Q∗Γ\S̆∗, Q∗Φ, S∗, q∗,Ξ

�
is a complete conditional evaluated at the posterior mean for S̆∗, Q∗Φ, S

∗, q∗.

The additional Gibbs run samples from 1)H
�
Q̃Γ\S̆∗, Q∗Φ, S∗, q∗, Ξ̃

�
and 2)H

�
Ξ̃\Q̃Γ, S̆∗, Q∗Φ, S∗, q∗

�
where the superscript ~denotes Gibbs draws. After a burn-in period,H

�
Q∗Γ\S̆∗, Q∗Φ, S∗, q∗,Ξ

�
≈

1
M

�M
j=1H

�
Q∗Γ\S̆∗, Q∗Φ, S∗, q∗, Ξ̃

�
where M denotes the retained draws. Note thatH

�
Q∗Γ\S̆∗, Q∗Φ, S∗, q∗, Ξ̃

�
is the inverse Wishart density with scale parameter calculated using this extended sampler.

2. H
�
S̆∗\Q∗Φ, S∗, q∗,Ξ

�
can be written as�
H
�
S̆∗\Q∗Φ, S∗, q∗, Q∗Γ,Ξ

�
×H (Q∗Γ\Q∗Φ, S∗, q∗,Ξ) dQ∗Γ

Thus this density can be approximated by a Gibbs sampler that samples from 1)H

�
˜

S̆\Q∗Φ, S∗, q∗, Q̃Γ, Ξ̃
�
,

2) H

�
Q̃Γ\Q∗Φ, S∗, q∗,

˜

S̆, Ξ̃

�
and 3) H

�
Ξ̃\Q̃Γ, Q∗Φ, S∗, q∗,

˜

S̆

�
. After a burn in period, the (in-

verse Wishart) density can be approximated as 1
M

�M
j=1H

�
S̆∗\Q∗Φ, S∗, q∗, Q̃Γ, Ξ̃

�
3. H (Q∗Φ\S∗, q∗,Ξ) can be written as

� ⎡⎢⎢⎢⎣
�
H
�
Q∗Φ\Q∗Γ, S̆∗, S∗, q∗,Ξ

�
×H

�
Q∗Γ\S̆∗, S∗, q∗,Ξ

�
dQ∗Γ� �� �

H(Q∗Φ\S̆∗,S∗,q∗,Ξ)

⎤⎥⎥⎥⎦×
H
�
S̆∗\S∗, q∗,Ξ

�
dS̆∗

This can be approximated by a Gibbs run that samples from (1) H

�
˜

S̆\Q̃Φ, S∗, q∗, Q̃Γ, Ξ̃
�
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Figure 8: Inefficiency factors

(2) H

�
Q̃Γ\Q̃Φ, S∗, q∗,

˜

S̆, Ξ̃

�
(3) H

�
Ξ̃\Q̃Γ, Q̃Φ, S∗, q∗,

˜

S̆

�
and (4) H

�
Q̃Φ\Q̃Γ, S∗, q∗,

˜

S̆, Ξ̃

�
.

After burn in we use the average 1
M

�M
j=1H

�
Q∗Φ\Q̃Γ, S∗, q∗,

˜

S̆, Ξ̃

�
as an approximation of

the desired density. H

�
Q∗Φ\Q̃Γ, S∗, q∗,

˜

S̆, Ξ̃

�
is inverse Wishart.

4. H (S∗\q∗,Ξ) can be approximated by a Gibbs sampler that samples from (1)H
�
˜

S̆\Q̃Φ, S̃, q∗, Q̃Γ, Ξ̃
�

(2) H

�
Q̃Γ\Q̃Φ, S̃, q∗,

˜

S̆, Ξ̃

�
(3) H

�
Ξ̃\Q̃Γ, Q̃Φ, S̃, q∗,

˜

S̆

�
(4) H

�
Q̃Φ\Q̃Γ, S̃, q∗,

˜

S̆, Ξ̃

�

(5)H

�
S̃\Q̃Φ, Q̃Γ, q∗,

˜

S̆, Ξ̃

�
. After a burn-in period we use the average 1

M

�M
j=1H

�
S∗\Q̃Φ, Q̃Γ, q∗,

˜

S̆, Ξ̃

�

5. H (q∗\Ξ) can be approximated as 1
M

�M
j=1H

�
q∗\QΓ, S̆, QΦ, S,Ξ

�
using draws from the orig-

inal Gibbs sampler

C Appendix C: Convergence

Figure 8 reports inefficiency factors for key parameters calculated using a Parzen window. For most
parameters, the estimates are close to or below the recommended level of 20, with the time-varying
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coefficients of the transition equation providing some exceptions. Given the heavily parameterised
nature of the model, these results provide reasonable evidence for convergence of the algorithm.
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