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1 Introduction

Models of elections have repeatedly faced two challenges. First, almost all election

models limit the impact of a vote to the rare occasion in which it is pivotal, changing

the identity of the election winner by making or breaking a tie. This is appropriate in

that, mechanically, this is the only function that a vote is meant to perform. To the

typical voter, however, the notion of pivotal voting seems quite foreign. Moreover,

a growing empirical literature finds that candidate behavior and policy outcomes

also respond to the margin by which a party wins an election.1 Since every vote

contributes (positively or negatively) to the winning party’s margin of victory, a

rational voter’s calculus should take this into account, and the standard pivotal voting

calculus is incomplete.

The second challenge for election models is closely related to the first: namely,

voter participation. A well-known paradox arises because, as recognized at least since

Downs (1957), a pivotal vote is unlikely in large elections, so only a small number

of citizens should be willing to pay the cost of voting. Nevertheless, in spite of the

cost, voter turnout is often quite high, suggesting that for most people the cost of

voting is overcome by ethical motivations such as altruism or a sense of civic duty.2

If so, however, then it is puzzling why turnout is also often quite low. Moreover,

as a seminal paper by Feddersen and Pesendorfer (1996) notes, abstention frequently

occurs when voting is entirely costless. For example, voters often cast incomplete

ballots (or roll off )– voting in some races but not others even after voting costs

have already been paid, and are therefore sunk. Those authors attribute abstention

to a swing voter’s curse that arises when voters share a common interest but have

heterogeneous information: a citizen abstains because he is unsure which policy or

candidate he should vote for, and anticipates that his peers will make a better choice

on his behalf than he can make for himself. This reasoning resonates with everyday

experience, and is also consistent with growing empirical evidence that improving

1For example, see Conley (2001), Fowler (2005, 2006), Bernhard et al. (2008), and Faravelli,
Man and Walsh (2015).

2For example, see Riker and Ordeshook (1968) or, more recently, Myatt (2012). For reviews of
the voluminous costly voting literature, see Dhillon and Peralta (2002), Feddersen (2004), Dowding
(2005), or Geys (2006).
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voters’information makes them more likely to vote.3 Formally, however, the swing

voter’s curse is also inextricably connected to the pivotal voting calculus: when a

citizen’s peers vote informatively, the party with the superior policy position is more

likely to lead by one vote than to trail by one vote, so a mistaken vote for the party

with the inferior policy position is more likely to be pivotal than an additional vote

for the superior party, and this is why a citizen who is unsure which policy is superior

should abstain from voting.

This paper proposes a simple rational model of voter participation by generalizing

the common-value model of costless voting to include not just pivotal voting but also

marginal voting incentives. To this end, we assume that the policy outcome may

jump discontinuously when one party’s vote share crosses the 50% threshold, but

increases continuously with the vote share even away from this threshold, as depicted

in Figure 1.
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Figure 1: Mapping between vote shares and policy outcomes.

Intuitively, it might seem that this should mute the incentive to abstain, because

a citizen no longer conditions his behavior solely on the presumption that his vote

will be pivotal. The main result of the analysis below, however, is that the marginal

voting calculus generates a new reason for abstention: namely, a marginal voter’s

3For a review of this extensive empirical literature, see Triossi (2013) and McMurray (2015). In
particular, turnout and roll-off are both correlated with political knowledge and with other variables
associated with information, such as education and age. Evidence from the natural experiment
of Lassen (2005) and the field experiments of Banerjee et al. (2010) and Hogh and Larsen (2016)
suggest that improving information has a causal impact on voter participation.
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curse. The latter would lead citizens to abstain from voting even if the discontinuity

illustrated in Figure 1 were removed entirely, so that pivotal considerations did not

matter at all to voters.

The logic of the marginal voter’s curse is that a vote for the losing party has a

greater impact on the vote share than a vote for the winning party has. If a voter

trusts his peers to vote informatively, however, then he expects the party with the

superior policy position to be ahead. Thus, if he is uncertain which party is superior,

he should abstain from voting, because the benefit that his vote will generate if his

private opinions are correct is smaller than the damage his vote will create if he is in

error. As discussed below, the marginal voter’s curse and swing voter’s curse can be

viewed as two manifestations of a more general underdog effect that has been noted

in existing literature on voter participation.

Because a pivotal vote is so rare, it might seem intuitive that behavior would be

altered much more dramatically by conditioning on this event than by the marginal

voting calculus. It turns out, however, that the marginal voter’s curse is actually

stronger than the swing voter’s curse, in the sense that equilibrium turnout in a pure

marginal voting model (i.e. with no discontinuity at the 50% threshold) is lower than

turnout in a pure pivotal voting model (i.e., in which the policy outcome shifts only

at the 50% threshold, and nowhere else). An intuition for why this is the case is that,

when all that matters is which side receives a majority of votes, a single mistaken

vote for the political party with an inferior policy platform can be offset by a single

correct vote for the party with the superior policy position. The same is not true

of a pure marginal voting model, because vote shares become diluted. As a simple

illustration of this, suppose that the better of two alternatives received three out of

five votes, or a 60% vote share. One additional vote for the opposite party reduces

this vote share to 50% (three out of six), and an additional vote of support brings

it back up, but only to 57% (four out of seven). In other words, if policy outcomes

move continuously with vote shares then it is not suffi cient to give lots of votes to

the superior side; the electorate must also give as few votes as possible to the inferior

side, so that the better side not only wins, but wins by a large margin.

The analysis below uses observations such as these to derive comparative static
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results about how voter participation in a marginal voting environment responds to

changes in the composition of the electorate, such as improvements in the distrib-

ution of expertise or changes in the number of citizens whose votes reflect partisan

interests rather than objective policy opinions. The theoretical analysis also shows

how incentives for voter participation change as the number of voters grows large.

As the probability of a pivotal vote shrinks, the impact of conditioning on this event

grows, so the swing voter’s curse grows stronger. The marginal impact of a vote also

shrinks in large elections, which intuitively might seem to attenuate the marginal

voter’s curse. To the contrary, however, the marginal voter’s curse grows stronger as

well, as voters increasingly delegate to purge the policy decision of noise. In fact, the

pivotal impact of a vote shrinks more quickly than the marginal impact of vote, so

that only the latter matters in large elections. In other words, a general model with

both incentives exhibits the same levels of voter participation as a purely continuous

model, with no discontinuity at all at the 50% threshold.

To test the predictions of our theoretical analysis, we conduct a laboratory experi-

ment. Voter participation levels differ noticeably from those predicted in equilibrium,

but behavioral patterns match much more closely. We also discuss an application of

the insights of this paper to Proportional Rule electoral systems, which have become

increasingly prevalent throughout the world in recent decades, especially in Europe

and Latin America.

The remainder of this paper is organized as follows. Section 2 discusses related

literature, after which Section 3 introduces the formal model. Before presenting

results for the general model, we present theoretical equilibrium predictions for two

polar cases in Sections 4 and 5. Section 6 compares these two polar cases and Sec-

tion 7 presents theoretical equilibrium predictions for the general model. Section 7.1

then extends the original model to accommodate more general relationships between

vote shares and policy outcomes, Section 8 reports the results of the laboratory ex-

periments, and Section 9 concludes with a possible application to Proportional Rule

electoral systems. Proofs of theoretical results are presented in the Appendix.
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2 Literature

Since the seminal Palfrey and Rosenthal (1983, 1985), the game theoretical liter-

ature on turnout has grown extensively. Most of these papers focus on models which

consider only pivotal motives in a private value settings. A more recent set of papers

explore the introduction of marginal voting incentives in two-party elections (see,

e.g., Castanheira (2003) and Herrera, Morelli, and Palfrey (2014), Kartal (2014a),

Faravelli and Sanchez-Pages (2014), and Faravelli, Man, and Walsh (2015)). The

general finding of these papers is that, unless the two parties are expected to have

the same support, the magnitude of marginal voting incentives dominate in large

elections. The consequence is that turnout is typically higher in these models than

the one in traditional models with only pivotal motives. This contrasts with the

results of sections 6 and 7 in our paper. Shotts (2006) provides a possible micro-

foundation for marginal voting incentives in a model where margins in a first election

communicate information about voters’preference parameters to candidates in a sec-

ond election. Meirowitz and Shotts (2009) show that this, too, dominates the pivotal

voting incentive.

In a common-value environment, Feddersen and Pesendorfer (1999) and Krishna

and Morgan (2011) analyze how the swing voter’s curse is affected by preference

heterogeneity. Krishna and Morgan (2012) and McMurray (2013) introduce more

general distributions of private information, and the latter formulation is used in

the model below. In a similar setting, Oliveros and Várdy (2015) include an initial

choice of the source of (possibly biased) information. Laboratory experiments by

Battaglini, Morton and Palfrey (2008, 2010), Morton and Tyran (2011) and Mengel

and Rivas (2016) corroborate the basic theoretical predictions of the swing voter’s

curse. All of these papers, however, restrict attention to the pivotal impact of

a vote. Razin (2003) proposes a model in which voting has a marginal impact of

shaping candidates’policy beliefs, but does not consider abstention. McMurray (2016)

demonstrates that citizens do have reason to abstain in that environment, because of a

“signaling voter’s curse”. That result relies on candidates sharing voters’preferences,

however, and learning from abstention just as they learn from votes. In contrast,

the marginal voter’s curse arises if the mapping from vote shares to policy outcomes
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is purely mechanical. Together, the swing voter’s curse, signaling voter’s curse, and

marginal voter’s curse suggest that the incentive to abstain is a robust consequence of

common values and heterogeneous expertise, not an artifact of any particular political

institution.

3 The Model

An electorate consists of N citizens where, following Myerson (1998), N is finite

but unknown, and follows a Poisson distribution with mean n. Together, these

citizens must choose a policy from an interval. There are two political parties, each

with policy positions in the interval. One of these policy positions is ultimately better

for society than the other. Let A denote the party with the superior position and

B denote the party with the inferior position. Which party is A and which is B is

determined by Nature at the beginning of the game, with equal probability. Letting

0 denote party B’s position and 1 denote party A’s position, x ∈ [0, 1] can denote any

policy between the two parties’positions and also the social welfare u (x) = x that

will be produced if that policy is implemented.

Citizens are each independently designated as one of two types. With probability

2p, a citizen is a partisan, and with equal probability favors one party or the other,

regardless of which policy position Nature designated as superior. With remaining

probability I = 1 − 2p, a citizen is designated as independent or non-partisan. In-

dependents prefer to do whatever is socially optimal, evaluating policy x according

to the welfare function u (x) given above. From an independent’s perspective, each

of his fellow citizens has probability p of being a partisan supporter of the superior

party A and probability p of being a partisan supporter of the inferior party B.

The policy outcome is a general function x : Z2
+ → [0, 1] of the numbers a and b

of votes that are cast for either party, which can be most easily described in terms of

two benchmark cases. The first is the case of pure marginal voting, which means that

the policy outcome is a weighted average of the parties’policy positions, with weights

given by the parties’vote shares. That is, if a fraction λ+ = a
a+b

of the electorate

votes for party A and a fraction λ− = b
a+b

votes for B then the policy outcome is
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Figure 2: Mapping between vote shares and policy outcomes.

given by x (a, b) = 0λ− + 1λ+ = λ+, ranging continuously from 0 to 1 are the vote

share of the superior party ranges from 0% to 100%.4 The second benchmark is

the more traditional case of pure pivotal voting. In that case, x is simply the policy

position xw ∈ {xA, xB} of the party w who wins the election (i.e. 0 if b > a and 1

if a > b, breaking a tie if necessary by a fair coin toss). The general model admits

both types of voting incentives: the policy outcome is a weighted average

x = θλ+ + (1− θ)xw (1)

of the benchmark cases with θ ∈ [0, 1]. With this formulation, pure marginal voting

and pure pivotal voting correspond to θ = 1 and θ = 0, respectively. Thus, policy

shifts discontinuously when one party’s vote share crosses the 50% threshold but, even

away from this threshold, changes in one party’s vote share push the policy outcome

marginally in that party’s direction, as Figure 2 illustrates.

The optimal policy cannot be observed directly, but independent voters observe

private signals si that are informative of Nature’s choice.5 These signals are of

heterogeneous quality, reflecting the fact that citizens differ in their expertise on

4An alternative assumption that would lead to identical analysis is that policy 1 is implemented
with λ+ and policy 0 is implemented with probability λ−, and that independent voters are risk
neutral. This could result from probabilistic voting across independent legislative districts, as in
Levy and Razin (2015).

5Partisans could receive signals as well, of course, but would ignore them in equilibrium.
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the issue at hand. Specifically, each citizens is endowed with information quality

qi ∈ Q = [0, 1], drawn independently according to a common distribution F which,

for simplicity, is continuous and has full support. Conditional on qi = q, a citizen’s

signal correctly identifies the party whose policy position is truly superior with the

following probability.

Pr (si = A|q) =
1

2
(1 + q) (2)

With complementary probability, a citizen mistakes the inferior party for the superior

party.

Pr (si = B|q) =
1

2
(1− q) (3)

With this specification, qi can be interpreted as the correlation coeffi cient between a

voter’s private opinion and the truth. That is, a citizen with qi = 1 is perfectly in-

formed about Nature’s choice, while a signal with qi = 0 is completely uninformative.

An independent can vote (at no cost) for the party that he perceives to be superior,

or can abstain.6 Let σ : Q → [0, 1] denote a (mixed) participation strategy, where

σ (q) denotes the probability of voting for an individual with expertise q ∈ Q, and
let Σ denote the set of such strategies. By Bayes’rule, (2) and (3) can be reinter-

preted as a voter’s posterior belief that he has correctly voted for the superior party

or mistakenly voted for the inferior party, respectively.

Given a participation strategy, the probabilities with which a citizen votes for

party A and party B, respectively, are given by the following.

v+ = p+ I

∫ 1

0

σ (q)
1

2
(1 + q) dF (q) (4)

v− = p+ I

∫ 1

0

σ (q)
1

2
(1− q) dF (q) (5)

These include the probability p of favoring either party for partisan reasons, as well as

the probabilities of voting as an independent with any level of expertise. Together,

(4) and (5) also determine the level vτ = v+ + v− of voter turnout.

If every citizen follows the same participation strategy, (4) and (5) can be inter-

preted as the expected vote shares of the superior and inferior parties, respectively.

6A strategy of voting against one’s signal could be allowed but would not be used in equilibrium.
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By the decomposition property of Poisson random variables (Myerson 1998), the

numbers a and b of votes for the superior and inferior parties, respectively, are inde-

pendent Poisson random variables with means n+ = nv+ and n− = nv−. Thus, the

probability of exactly a votes for the superior party and b votes for the inferior party

is the product

Pr (a, b) =
e−n+na+
a!

e−n−nb−
b!

(6)

of Poisson probabilities. Similarly, the expected total number of votes can be written

as nτ = nvτ .

By the environmental equivalence property of Poisson games (Myerson 1998), an

individual from within the game reinterprets a and b as the numbers of correct and

incorrect votes cast by his peers; by voting himself, he might add one to either total.

When there are a votes for the superior party and b votes for the inferior party, the

change in utility ∆+x (a, b) from contributing one additional vote for the superior

party and the change in utility ∆−x (a, b) from accidentally adding one vote for the

inferior party are given by the following.

∆+x (a, b) = x (a+ 1, b)− x (a, b) (7)

∆−x (a, b) = x (a, b+ 1)− x (a, b) (8)

The magnitudes of these utility changes depend on the numbers of votes cast for either

side by a citizen’s peers; averaging over all possible voting outcomes, the expected

benefit of voting is given by

∆Eu (q) = Ea,b

[
1

2
(1 + q) ∆+x (a, b) +

1

2
(1− q) ∆−x (a, b)

]
(9)

which depends on a citizen’s expertise q. Implicitly, the expectation in (9) depends on

the voting strategy adopted by a citizen’s peers. If his peers all follow the strategy

σ ∈ Σ, a citizen’s best response is to vote if his q is such that (9) is positive and

to abstain otherwise. A strategy σ∗ that is its own best response constitutes a

(symmetric) Bayesian Nash equilibrium of the game.

Sections 4 and 5 analyze incentives for equilibrium behavior under the two bench-
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mark cases of pure marginal voting (θ = 1) and pure pivotal voting (θ = 0), re-

spectively. Section 6 then compares equilibrium levels of participation for these two

benchmarks. Section 7 next analyzes equilibrium behavior for the general case, along

with social welfare, and extends the model to a more general relationship between

vote totals and the policy outcome.

4 Marginal Voting

If θ = 1 then the general model of Section 3 reduces to the benchmark case of

pure marginal voting. In that case, the policy outcome x = λ+ is simply the vote

share of the party with the superior policy position. Changes in utility (7) and (8)

from an additional vote for the superior party and from an additional vote for the

inferior party can then be written as

∆+x (a, b) =
a+ 1

a+ b+ 1
− a

a+ b
= ∆λ+ (10)

∆−x (a, b) =
a

a+ b+ 1
− a

a+ b
= −∆λ− (11)

in terms of the increases ∆λ+ = a+1
a+b+1

− a
a+b

and ∆λ− = b+1
a+b+1

− b
a+b

in these vote

shares that an additional correct vote or incorrect vote cause, respectively.

Since ∆λ+ and ∆λ− are both positive, (9) is increasing in q, and is therefore

positive for all q above some threshold q̄. In other words, as Theorem 1 states below,

the best response to any strategy σ can be characterized as a threshold strategy σq̄,

meaning that a citizen votes if his expertise exceeds a threshold q̄, but abstains

otherwise. Specifically, (9) is positive if and only if q exceeds q̄brM , defined as follows.

q̄brM =
Ea,b (∆λ−)− Ea,b (∆λ+)

Ea,b (∆λ−) + Ea,b (∆λ+)
(12)

From (4) and (5) it is clear that v+ > v− for any strategy in which a positive

fraction of the electorate votes. Because of this, the number a of votes for the

party with the superior policy position is likely to exceed the number b of votes for

the opposing party. This is good for welfare, but since vote shares respond more
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strongly to an additional vote for the party that is behind than to an additional vote

for the party that is ahead, as explained in Section 1, it also implies that Ea,b (∆λ−) >

Ea,b (∆λ+), and therefore that q̄brM > 0.7 In other words, the best response for citizens

with the lowest levels of expertise is to abstain from voting– even though voting is

costless and the swing voter’s curse is not relevant– to avoid the marginal voter’s

curse of pushing the policy outcome in the wrong direction. Equilibrium existence

follows from standard fixed point arguments.

Theorem 1 (Marginal Voter’s Curse) If θ = 1 then σ∗ ∈ Σ is a Bayesian Nash

equilibrium only if it is a threshold strategy σq̄∗M with q̄∗M > 0. Moreover, such an

equilibrium exists.

The result that independent voters each receive informative private signals but

not all report their signals in equilibrium implies that valuable information is lost.

Intuitively, this may seem to justify efforts to increase voter participation, for example

by punishing non-voters with stigma or fines. To the contrary, however, McLennan

(1998) shows that, in common-value environments such as this, whatever is socially

optimal is also individually optimal, implying that equilibrium abstention in this set-

ting actually improves welfare. To see how it can be welfare improving to throw away

signals, note that citizens actually have not one but two pieces of private information:

their signal realization si and their expertise qi. In an ideal electoral system, all sig-

nals would be utilized, but would be weighted according to their underlying expertise.

Here, votes that are cast are instead weighted equally. Abstention provides a crude

mechanism whereby citizens can transfer weight from the lowest quality signals to

those that reflect better expertise.

Theorem 1 applies for a population of any size n. As actual electorates tend to be

extremely large, however, the rest of this section now derives the limit of equilibrium

behavior as n grows large. Such asymptotic results are made possible by Lemma 1,

which offers an algebraic simplification of the formulas obtained previously, in terms

of the expected fractions v+ and v− of the electorate who vote for the parties with

7Section 7.1 uses this underdog property to generalize the marginal voting model to allow non-
linear functions of the vote totals.
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the superior and inferior policy positions, respectively, and the total fraction vτ who

turn out to vote.

Lemma 1 The following hold for any n and for any threshold strategy σq̄.

Ea,b (∆λ+) =
v−
nv2

τ

+
n
(
v2

+ − v2
−
)
− 2v−

2nv2
τ

e−nvτ (13)

Ea,b (∆λ−) =
v+

nv2
τ

+
n
(
v2
− − v2

+

)
− 2v+

2nv2
τ

e−nvτ (14)

With Lemma 1, an equivalent condition to equation (12) is that q̄brM solves the

following.
1 + q

1− q =
2v+ +

[
n
(
v2

+ − v2
−
)
− 2v−

]
e−nvτ

2v− + [n (v2
− − v2

+)− 2v+] e−nvτ
(15)

As n grows large, the right-hand side of this expression converges simply to the

likelihood ratio ρ (q̄) = v+
v−
of correct to incorrect votes. Since (15) is continuous both

in q̄ and in n, therefore, the limit qM = limn→∞ q̄
∗
n of any sequence of equilibrium

threshold must solve the following simpler equation,

ρ (q̄) =
1 + q

1− q (16)

which can also be written in terms of the vote share λ+:8

λ+ =
1

2
(1 + q̄) (17)

For a threshold strategy, v+ and v− reduce from (4) and (5) to the following,

v+ = p+ I

∫ 1

q

1

2
(1 + q) dF (q)

= p+
1

2
I [1− F (q)] [1 +m (q̄)] (18)

8The convergence of (15) to (16) is not trivial– because v+, v−, and vτ change with q̄∗n, which
changes with the population size– but nevertheless holds, as the proof of Proposition 1 demonstrates
formally.
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v− = p+ I

∫ 1

q

1

2
(1− q) dF (q)

= p+
1

2
I [1− F (q)] [1−m (q̄)] (19)

vτ = 2p+ I [1− F (q)]

where m (q̄) = E (q|q > q) denotes the average expertise among citizens who actually

vote, and the left-hand side of (16) can therefore be rewritten as

ρ (q̄) =
K + [1− F (q̄)] [1 +m (q̄)]

K + [1− F (q̄)] [1−m (q̄)]
(20)

in terms of the ratio K = 2p
I
of partisans to independents.

The proof of Proposition 1 shows that equation (16) has a unique solution qM .

Uniqueness in the limit does not imply a unique equilibrium in any game with finite

size parameter n. But if there are multiple equilibrium participation thresholds then

the implication of Proposition 1 is that these all converge to each other in the limit.

A unique limiting participation threshold of course translates into a unique limiting

level vτ = v++v− of expected voter participation, and actual turnout in large elections

converges to its expectation. The margin of victory µ = v+−v−
vτ

in a large election is

determined by the same threshold.

In addition to stating uniqueness in the limit, Proposition 1 derives some com-

parative static implications of the limiting equilibrium condition (16). Intuitively,

it might seem that the marginal voter’s curse should attenuate as n grows large,

because the damage caused by one mistaken vote shrinks, so citizens should be less

worried about making mistakes. If so, abstention should decline as the electorate

grows large, and turnout should tend toward 100% in the limit. Contrary to this

intuition, however, the first part of Proposition 1 states that qM is strictly positive,

meaning that a positive fraction of the electorate continue to abstain no matter how

large the electorate grows. In fact, if there are no partisans then qM equals one,

meaning that– in sharp contrast with the intuition above– turnout tends to 0% in

the limit.
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Proposition 1 There exists a unique qM such that, for any sequence q̄∗M (n) of equi-

librium thresholds under pure marginal voting, limn→∞ q̄
∗
M (n) = qM . Moreover, qM

exhibits the following properties:

(i) qM > 1
2
for any partisan share p. If p = 0 then qM = 1.

(ii) qM decreases strictly with p.

(iii) If p > 0 then improvements in the distribution F of expertise that satisfy the

monotone likelihood ratio property increase qM .

Intuitively, the reason why the incentive to abstain does not vanish in large elec-

tions is that the policy outcome is a weighted average of the two extremes, with

weights corresponding to vote shares. Citizens wish to vote as unanimously as possi-

ble in favor of the superior side, and this is accomplished by limiting participation to

those who are the least likely to err. That qM = 1 when there are no partisans is a

consequence of the assumption that the distribution F of expertise has full support;

more generally, if the maximum level of expertise is qmax then, when there are no par-

tisans, qM = qmax. Either way, the entire electorate defers to the vanishing segment

of the electorate who are least likely to dilute the electoral outcome with incorrect

votes.

The limiting level of equilibrium participation can be most easily compared with

that of pure pivotal voting by solving the limiting equilibrium condition (16) for K,

as follows.
1− F (q̄)

q̄
[m (q̄)− q̄] = K (21)

This also facilitates numerical examples, as the abstention rate F (q̄) and conditional

mean m (q̄) can easily be computed for specific distributions of expertise. The sim-

plest example of this is a uniform distribution, for which F (q̄) = q̄ and m (q̄) = 1+q̄
2
,

so that (21) reduces to

qM = (K + 1)−
√
K (K + 2). (22)

Using the uniform distribution, Figure 3 plots the left- and right-hand sides of (16)

for various levels p of partisanship.
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Figure 3: Left and right-hand side of equation (16) when the distribution F of exper-
tise is uniform for various levels of partisans.

Evidently, the left-hand side of (16) is maximized precisely at the intersection of

the two. Indeed, in demonstrating uniqueness, the proof of Proposition 1 shows

that this must always be the case. The intuition for Proposition 1 is related to

the intuition for this phenomenon. To see this, first note that ρ (q̄) represents the

likelihood ratio of a correct vote to an incorrect vote, for a randomly chosen voter.

The objective of independent voters is precisely to make this ratio as large as possible,

so that the policy outcome will be as close as possible to whatever is truly optimal.

The right-hand side of (16) is the likelihood ratio of a correct vote to an incorrect

vote for the marginal independent voter– that is, one whose expertise is right at the

participation threshold. Equilibrium equates the average and the margin.9 Equating

the average and marginal likelihood ratios serves to maximize the average, just as

equating the average and marginal costs of a firm’s production serves to minimize

the average: if the marginal voter’s likelihood ratio is not as good as the average

voter’s, increasing the participation threshold removes votes of below-average quality,

thus improving the average; if the marginal voter’s likelihood ratio is better than the

average voter’s, raising the participation threshold removes votes of above-average

quality, thus making things worse.

9Equivalently, as is clear from (17), equilibrium equates the vote share of the superior party with
the posterior beliefs of the marginal voter.
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The second part of Proposition 1 states that the marginal voter’s curse is most

severe when there are fewer partisans. Since partisans always vote, this implies

that turnout is lower with fewer partisans, as well. With no partisans at all, average

quality always exceeds marginal quality, because the marginal voter is precisely the

one with the lowest expertise– except at the very top of the domain of expertise;

thus, the equilibrium threshold rises all the way to qM = 1. From an independent’s

perspective, however, adding partisans adds noise to the electoral process. For any

participation threshold q̄, therefore, a higher level of partisanship reduces the average

accuracy of a vote, as Figure 3 makes clear. The accuracy of the marginal voter is

unchanged, however, and strictly improves with q̄, implying that the solution qM to

(16) is lower, as stated in the second part of Proposition 1. Since partisans always

vote, this has the clear effect of raising turnout.

The last part of Proposition 1 states that improving the distribution of expertise

has the effect of raising the limiting participation threshold qM . The intuition for this

merely complements that of increasing partisanship: improving expertise improves

the correct-to-incorrect vote ratio for any participation threshold q̄, so the solution to

(16) is higher than before. In the case of partisanship, lowering qM unambiguously

raises voter participation. Holding fixed the distribution of expertise, increases in

qM correspond to decreases in voter turnout. If changes in qM are the result of

changes in the distribution of expertise, however, then the effect of these changes on

participation are ambiguous: on one hand, raising citizens above the participation

threshold increases turnout by transforming non-voters into voters, but on the other

hand, raising the participation threshold lowers turnout, by transforming voters into

non-voters.

5 Pivotal Voting

If θ = 0 then the general model of Section 3 reduces to the benchmark case of

pure pivotal voting. In that case, the policy outcome is a random variable xw that

equals 0 if a < b, 1 if a > b, and 0 or 1 with equal probability if a = b. A single vote
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for the superior party increases its probability of winning by the following amount,

Pr (P+) =
1

2
Pr (a = b) +

1

2
Pr (a = b+ 1) (23)

which is the standard probability of being pivotal (event P+). Similarly, the proba-

bility with which an incorrect vote is pivotal (event P−) is given by the following.

Pr (P−) =
1

2
Pr (a = b) +

1

2
Pr (b = a+ 1) (24)

A pivotal vote for the party with the superior policy position increases utility from

zero to one (a change of 1) and a pivotal vote for the inferior party decreases utility

from one to zero (a change of −1). Outside of these pivotal events, a vote does not

change the policy outcome, and so does not impact utility; accordingly, the expected

benefit (9) of voting reduces to the following.

∆Eu (q) =
1

2
(1 + q) Pr (P+)− 1

2
(1− q) Pr (P−) (25)

Since pivot probabilities are positive, (25) increases in q, implying that the best

response to any strategy is again for a citizen to vote if his expertise is suffi ciently

high but abstain otherwise. In other words, as Theorem 2 states below, best-response

voting can be characterized as a threshold strategy, just as in the case of pure marginal

voting. Specifically, the best-response threshold q̄brP is given by the following.

q̄brP =
Pr (P−)− Pr (P+)

Pr (P−) + Pr (P+)
(26)

As noted above, v+ > v− for any strategy in which a positive fraction of the

electorate votes. Because of this, the number a of votes for the party with the

superior policy position is likely to exceed the number b of votes for the opposing

party. This is again good for welfare, since the party with the superior policy

position is more likely to win the election by one vote than to lose by one vote, and

an additional vote for the inferior party is more likely to change the election outcome

than an additional vote for the superior party. In other words Pr (P−) > Pr (P+),
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implying that q̄brP > 0. For citizens with the lowest levels of expertise, then, the

best response is to abstain from voting as in Feddersen and Pesendorfer (1996), to

avoid the swing voter’s curse of overturning an informed electoral decision. Thus,

pure marginal voting and pure pivotal voting elicit the same type of voting behavior

from citizens. As before, equilibrium existence follows from standard fixed point

arguments. Also, the logic of McLennan (1998) again implies that equilibrium voter

abstention improves social welfare.

Theorem 2 (Swing voter’s curse) If θ = 0 then σ∗ ∈ Σ is a Bayesian Nash equi-

librium only if it is a threshold strategy σq̄∗P with q̄
∗
P > 0. Moreover, such an equilib-

rium exists.

Next, we consider how the equilibrium threshold changes as n grows large for the

case of pure pivotal voting (i.e., θ = 0). Myerson (2000) provides a useful preliminary

result, which is that pivot probabilities in large elections can be written as follows,

where h1 (n) and h2 (n) both approach one as n grows large.

Pr (P+) =
e−n(

√
v+−
√
v−)

2

4
√
nπ
√
v+v−

√
v+ +

√
v−√

v+

h1 (n) (27)

Pr (P−) =
e−n(

√
v+−
√
v−)

2

4
√
nπ
√
v+v−

√
v+ +

√
v−√

v−
h2 (n) (28)

Using these formulas, the equilibrium condition (26) converges to the following,

q̄ =

√
v+ −

√
v−√

v+ +
√
v−

which is equivalent to the following.

ρ (q̄) =
v+

v−
=

(
1 + q

1− q

)2

(29)

The limit qP of any sequence q̄∗P (n) of equilibrium thresholds must be a solution to

this equation.10 As before, this can be rewritten using (20), and solved for K, as

10This approximation actually requires that the number of votes tend to infinity, not just the
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follows, which makes it easy to compute qP for specific example distributions.

1− F (q̄)

q̄

(
(1 + q̄2)

2
m (q̄)− q̄

)
= K. (30)

Proposition 2 now states that a solution to (29) exists and, if the distribution F of

expertise is well-behaved, this solution is unique.11 As in the case of pure marginal

voting, uniqueness in the limit implies that if multiple equilibria exist then they all

converge to the same behavior, determined by the partisan share p and the distribu-

tion F of expertise. As before, these uniquely determine expected voter turnout and

the expected margin of victory, as well, and in large elections actual turnout and mar-

gins of error converge to their expectations. Uniqueness also facilitates the derivation

of comparative statics, which according to Proposition 2 match those of pure marginal

voting: a higher partisan share leads to a lower qP (i.e., higher participation) and a

better-informed electorate leads to a higher qP (i.e., lower participation).

Proposition 2 If f is log-concave then there exists a unique qP such that, for any
sequence {q̄∗n} of equilibrium thresholds under pure pivotal voting, limn→∞ q̄

∗
n = qP .

Moreover, qP exhibits the following properties:

(i) 0 < qP < 1

(ii) qP strictly decreases in p

(ii) Improvements in the distribution F of expertise that satisfy the monotone

likelihood ratio property increase qP .

In stating that qP is strictly positive, the first part of Proposition 2 implies that,

for any level of partisanship, a positive fraction of the electorate abstain from voting,

no matter how large the electorate grows. This was also true of pure marginal voting,

number of citizens, but this is guaranteed by the result below that qM < 1 no matter what fraction
of the electorate is partisan.

11Bagnoli and Bergstrom (2005) show that log-concavity is satisfied by many of the most standard
density functions, but log-concavity is actually stronger than necessary for uniqueness: one can easily
construct examples that exhibit unique equilibria but are not log-concave. The important thing, as
the proof of Proposition 2 indicates, is that raising the participation threshold q̄ should not increase
the average expertise m (q̄) of citizens above the threshold too quickly. This will be the case as
long as the distribution of expertise does not include atoms, or “spikes” of probability (see also
McMurray 2013).
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as stated in Proposition 1. The result that qP is also strictly less than one implies

that a positive fraction of the electorate continues to vote, no matter how large the

electorate grows. Under pure marginal voting, Proposition 1 states the same result

for any p > 0 but if there are no partisans then everyone abstains in the limit but the

infinitesimal fraction who are perfectly informed. Section 6 further emphasizes this

difference between electoral rules.

The logic for the result that qP decreases in p is analogous to the corresponding

result for qM : when the fraction of partisans is low, an uninformed independent

worries that he will cancel the vote of a better-informed independent, but when

the fraction of partisans is high, it is more likely that he is canceling the vote of a

partisan; in the former case he wishes to abstain, but in the latter case he wishes

to vote. Mathematically, an increase in p lowers the average vote quality for any

participation threshold, and therefore the correct-to-incorrect vote ratio ρ (q̄), which

is the left-hand side of (29). Since this ratio increases in q̄, this implies a solution that

is lower than before. Similar logic underlies the last part of Proposition 2, because

improving the distribution of expertise raises ρ (q̄) for any q̄, so the solution to (29)

is higher than before.

6 Comparison

Sections 4 and 5 emphasize the similarities between the comparative static impli-

cations of the marginal voter’s curse for pure marginal voting and the swing voter’s

curse for pure pivotal voting. Maintaining a focus on large electorates, this section

now compares the levels of equilibrium voter participation under the two regimes (as-

suming a log-concave density of expertise, so that equilibrium behavior under either

electoral system is unique). Such a comparison is surprisingly unambiguous, because

of the strong similarity between the limiting equilibrium conditions (16) and (29) for

proportional and pure pivotal voting.

Intuitively, it might seem that conditioning on the event a pivotal vote should have

a much greater impact on behavior than conditioning on the marginal impact of a

nudge in one direction or the other– especially in large elections, where a pivotal vote
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Figure 4: Turnout among independent voters as a function of the partisan share (2p)
when the distribution F of expertise is uniform.

is so extremely rare, and where the magnitude of the nudge is vanishingly small. If

so, abstention should be much higher– and turnout much lower– under pure pivotal

voting than under pure marginal voting. As Theorem 3 now states, however, the

opposite is true: qM exceeds qP , meaning that voter participation is highest under

pure pivotal voting.

Theorem 3 If f is log-concave then qM > qP .

In stating that qM > qP , Theorem 3 leaves open the possibility that the two

thresholds are quite close to one another, so that the difference is negligible. For spe-

cific distributions, this is straightforward to investigate. Suppose, for example, that

F is uniform and that partisans comprise one third of the electorate (i.e. p = 1
6
, and

thereforeK = 1
2
). From (22), this implies that qM ≈ 0.38, and therefore that approx-

imately 75% of the electorate vote in large pure marginal voting elections (i.e. 62% of

independents and 100% of partisans). From (30), qP ≈ 0.19, implying approximately

87% turnout in large majoritarian elections (i.e. 81% among independents and 100%

among partisans). Similar computations can be made for any level of partisanship,

and corresponding turnout levels are displayed in Figure 4. Evidently, there is a

substantial gap between qM and qP for all but the highest levels of partisanship.

The difference in turnout for the two electoral rules is most notable when there
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are no partisans. In that case, as Section 4 explains, turnout under pure marginal

voting tends toward 0%, because of strategic unraveling: citizens with below-average

expertise abstain, so as to not bring down the average vote quality, but then the

average among those who are still voting is higher, and citizens below this average

abstain, and so on. Since the marginal citizen is always below average, this unraveling

continues until only the infinitesimal fraction of the most expert citizens remain.

Intuitively, it might seem that turnout should unravel under pure pivotal voting, as

well, because regardless of the electoral system, the marginal citizen always has less

expertise than the average citizen, and so should eventually abstain, to get out of

the way. The implication of Proposition 2, however, is that this does not occur:

a substantial fraction of the electorate continue to vote, no matter how large the

electorate grows. As McMurray (2013) explains, this reflects a trade-off between

the quantity of information and the quality of information: holding the number of

voters fixed, electoral outcomes are better when the expertise behind those votes is

higher, which would lead people to vote, but holding expertise fixed, increasing the

number of votes also improves election accuracy, just as in the classic “jury theorem”

of Condorcet (1785), which gives citizens a motivation for participation. For a citizen

with below-average expertise, voting decreases the average quality of information but

increases the quantity. These competing considerations balance in the limit so that

turnout remains substantial. In pure marginal voting, by contrast, the quality of

information matters but the quantity of information does not: fixing the distribution

of expertise, there is no advantage to having more votes. An expected outcome of

winning by 50 to 40 is just as good as one of winning by 500 to 400, for example,

because the policy outcomes 50
90

= 500
900
are the same, whereas under pure pivotal voting,

the latter outcome is much more robust to small deviations that would reverse the

election outcome. Thus, quality considerations dominate, and turnout unravels in

that case.

An alternative intuition for the discrepancy between turnout levels under majority

and pure marginal voting makes use of the optimality arguments above. As Section 4

notes, the limiting equilibrium condition (16) coincides with the first-order condition

for maximizing ρ (q̄) = v+
v−
– or equivalently, for maximizing v+

v++v−
. The latter is

essentially an expected vote share, but in large elections this also specifies independent
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Figure 5: Left and right-hand sides of equations (16) and (29) when the distribution
F of expertise is uniform for various levels of partisanship.

voters’ utility, since actual vote shares converge to their expectations. In other

words, ρ (q̄) can be viewed as a monotonic transformation of voters’objective function

(in large elections), and the threshold adjusts in equilibrium to the level qM that

maximizes this objective. The condition (29) for pure pivotal voting equates ρ (q̄)

to
(

1+q̄
1−q̄

)2

instead of to 1+q̄
1−q̄ . Since the latter maximizes ρ (q̄), the former does not,

as Figure 5 illustrates for a uniform distribution. The figure also illustrates how(
1+q̄
1−q̄

)2

> 1+q̄
1−q̄ guarantees that q

P < qM , which is the crux of the proof of Theorem 3.

That qM maximizes the objective function for pure marginal voting but qP does

not begs the question of whether qP maximizes the objective function for pure pivotal

voting. Indeed, this turns out to be the case– a feature that seems not to have

been noted in existing literature on majority rule. As Myerson (2002) shows, the

probability with which a Poisson variable with mean nv− exceeds an independent

Poisson variable with mean nv+ with v+ > v− is of order e
−n(√v+−√v−)

2

, where the

exponent
(√

nv+ −
√
nv−

)2
is defined by Myerson (2000) as the magnitude of the

event.12 The first-order condition for minimizing this magnitude is none other than

the limiting equilibrium condition (29). Thus, just as qM maximizes utility under

pure marginal voting, qP maximizes utility under pure pivotal voting. Intuitively,

12In addition to measuring the magnitude of the event of a win, this quantity measures the
magnitude of the event of a tie, which is the smallest deviation from the expected outcome.
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what matters is not only that the expectation of a exceeds the expectation of b,

but also that the variances of a and b are small relative to their expectations, so that

accidents in which b > a do not occur.13 The standard deviation of a Poisson random

variable is the square root of its mean, so
√
nv+ and

√
nv− represent the expected

numbers of correct and incorrect votes, measured in standard deviations instead of

in numbers of votes.

The results that equilibrium participation thresholds for both pure marginal and

pure pivotal voting maximize their respective objective functions, but generate differ-

ent levels of voter participation, begs the question of which system is better for social

welfare. To answer this, first let xPn and x
M
n denote any equilibrium policy outcomes

under majority and pure marginal voting, respectively, for a population size parame-

ter n, and let uP = limn→∞E
(
xPn
)
and uM = limn→∞E

(
xMn
)
denote the limits of

expected utility under either regime. uP and uM are well-defined because, as shown

above, equilibrium behavior under either electoral rule converges to the same limiting

behavior as n grows large.

Intuitively, the observation above that equilibrium abstention improves welfare,

together with the result of Theorem 3 that participation in large elections is higher

under a majoritarian regime than under pure marginal voting, might seem to suggest

that welfare should be higher under pure marginal voting than under pure pivotal

voting.

Proposition 3 uP = 1 for all p < 1
2
. uM decreases in p, with uM = 1 when p = 0

and uM = 1
2
when p = 1

2
.

The comparison here of welfare has little to do with the comparison of turnout from

Theorem 3. What drives the result is that, under pure pivotal voting, A partisans and

B partisans negate one another’s influence, so that the majority decision is determined

entirely by the behavior of independent voters, no matter how small this group is. In

a large election, a majority of these almost surely identify the true state of the world.

If there are no partisans then pure marginal voting delivers the same outcome in the

13These two considerations correspond to the considerations of quality and quantity, discussed
above.
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limit: as participation is limited to increasingly elite voters, the election outcome

tends toward unanimity, and the policy outcome converges to the desired extreme.

A positive mass of partisan votes for either side, however, bounds the policy outcome

away from 0 and 1, implying some utility loss, which is increasing in p. If the domain

of F were bounded such that even the maximum level of expertise were some qmax < 1

then pure marginal voting would fall short of pure pivotal voting even for the case of

no partisans, because independent voters would be unable to coordinate unanimously

on the desired side.

Another way of describing the result of Proposition 3 is to say that pivotal voting

leads to full information equivalence, as Feddersen and Pesendorfer (1996, 1999) em-

phasize, meaning that large elections produce the same policy outcomes that would

occur if information were made perfect. The same is not true of marginal voting,

because full information equivalence requires that citizens unanimously rally around

the correct extreme. This is impossible unless there are no partisans and the best

informed independent voters are essentially infallible. Otherwise, the damage caused

by mistaken votes and partisan votes is irreversible.

7 General Model

If θ is strictly between 0 and 1 then the electoral rule is a hybrid of the marginal

voting and pivotal voting benchmarks, as given by equation (1). In that case, the

expected benefit of voting is merely the weighted average of the expected benefits

derived in Sections 4 and 5.

∆Eu (q) =
1 + q

2
[θ (∆λ+) + (1− θ) Pr (P+)]− 1− q

2
[θ (∆λ−) + (1− θ) Pr (P−)]

This difference is positive if and only if q exceeds the following threshold.

q̄brG =
θ (∆λ− −∆λ+) + (1− θ) [Pr (P−)− Pr (P+)]

θ (∆λ+ + ∆λ−) + (1− θ) [Pr (P+) + Pr (P−)]
(31)

For any p, this threshold lies strictly between (12) and (26). Since q̄brP and q̄brM are

both positive for any strategy in which a positive fraction of the electorate votes, (31)
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is positive as well, implying that the best response for citizens with the lowest levels of

expertise is to abstain. Theorems 1 and 2 make no claim of equilibrium uniqueness,

but if the distribution of expertise is such that there is a unique equilibrium partic-

ipation threshold for each of these extreme electoral rules then the fact that (31) is

between (12) and (26) implies that any equilibrium threshold q̄∗G in the general model

must be strictly between q̄∗P and q̄
∗
M . As in the special cases of pure marginal or pure

pivotal voting, the logic of McLennan (1998) implies that equilibrium abstention is

good for social welfare.

Theorem 4 If 0 < θ < 1 then σ∗ ∈ Σ is a Bayesian Nash equilibrium only if it is a

threshold strategy σq̄∗ with q̄∗G > 0. Moreover, such an equilibrium exists.

The fact that q∗G (n) lies between q̄∗P (n) and q̄∗M (n) implies that the limit qG of a

sequence of equilibrium thresholds under a general model lies weakly between qP and

qM . As noted above, however, the distance between these thresholds may be rather

large. The goal of the rest of the section is to generate more specific predictions

about the location of qG, relative to the other two thresholds.

Equation (31) gives the equilibrium condition for a general model and a finite

n. This equation depends on the marginal changes ∆λ+ and ∆λ− in policy associ-

ated with additional votes for the superior and inferior parties, respectively, and the

probabilities Pr (P+) and Pr (P−) of such votes being pivotal. The former can be

rewritten as (13) and (14), which each have one term that decreases linearly in n and

another that decreases exponentially with n, and the latter can be written as (27)

and (28), which decrease exponentially with n. (31) is therefore equivalent to

1 + q̄

1− q̄ =

θ

[
v+
nv2τ

+
n(v2−−v2+)−2v+

2nv2τ
e−nvτ

]
+ (1− θ)

[
e−n(√v+−

√
v−)2

4
√
nπ
√
v+v−

√
v++
√
v−√

v−

]
θ

[
v−
nv2τ

+
n(v2+−v2−)−2v−

2nv2τ
e−nvτ

]
+ (1− θ)

[
e−n(√v+−

√
v−)2

4
√
nπ
√
v+v−

√
v++
√
v−√

v+

]
which reduces simply to

1 + q̄

1− q̄ =
v+

v−
= ρ (q̄) (32)
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because exponential terms vanish more quickly than linear terms.14

The limit of any sequence of equilibrium thresholds q∗G (n) must be a solution to

(32). By the arguments of Section 4, such a solution qG exists and is unique. In

fact, as Theorem 5 now states, it coincides exactly with qM , because (32) is identical

to the limiting equilibrium condition (16) for pure pure marginal voting. In other

words, the general model allows the possibility of a discrete policy jump when parties’

vote shares cross the 50% threshold, but nevertheless in equilibrium in large elections

voters act as if there is no such jump. Put differently, a mixture of pure pivotal voting

and pure marginal voting (i.e. 0 < θ < 1) elicits voting behavior in large elections

that is the same as what is elicited by pure pure marginal voting (i.e. θ = 1). The

behavior described in Section 5 arises only in the knife-edge case of pure pivotal voting

(i.e. θ = 0).

Theorem 5 If θ ∈ (0, 1], then qG = qM .

The general model analyzed in this section has only a single discontinuity, at the

50% threshold. In some applications, it might be reasonable to assume additional

discontinuities. In the U.S. Senate, for example, a party that obtains at least 2/3

of the power can prevent the opposing party from using filibusters to block legisla-

tive actions. In cases like this, it might be reasonable to assume that there is a

large discontinuity at the 50% threshold and smaller discontinuities at the 1
3
and 2

3

thresholds. Another example might be Proportional Representation (PR) systems,

as discussed in Section 9, where seats in the legislature are apportioned in a way

that is proportional to vote shares. An ideal PR system would be continuous, like

the model above, but in practice the number of seats is quite finite, so the smooth

14Castanheira (2003) and Faravelli, Man, and Walsh (2015) argue that this slower convergence
rate of marginal voting can also help explain turnout in costly voting environments. In private
value settings, pivot probabilities decrease exponentially only when the electoral split is uneven,
and is exactly known: with a small amount of uncertainty regarding the exact electoral split, pivot
probabilites can decrease at a linear rate instead (see Myatt 2012). The key ingredient for that result,
however, is that either side might actually have the electoral advantage. Here, small uncertainty
regarding the distribution of expertise or other parameters of the game would not change the result
that pivot probabilities decrease exponentially with n, because every citizen with qi > 0 is more
likely to vote for the superior party. The average level of expertise E (qi|i votes) might not be
known precisely, but is unambiguously positive.
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transition from 0% to 100% of the vote share translates into a step-function of power,

jumping up at discrete intervals.

The logic that pivotal events become exponentially less likely relies in no way

on there being a unique pivotal event; with two or more pivotal events, each should

becoming exponentially less likely as n grows large, so that in the limit, any marginal

changes away from the pivotal events will be all-important, and the combined set of

pivotal discontinuities will be irrelevant.

7.1 Extension: Nonlinear Policy Functions

The model of Section 3 assumes that the policy outcome x (a, b) = a
a+b

= λ+

in the marginal voting component of the general model is simply equal to the vote

share of the superior party. This section considers a more general policy function

ψ : Z2
+ → [0, 1] and shows that the marginal voter’s curse still arises as long as

x = ψ (a, b) satisfies the following three conditions.

Condition 1 (Monotonicity) ψ (a, b) increases in a and decreases in b.

Condition 2 (Symmetry) For any a, b ∈ Z+, ψ (b, a) = 1− ψ (a, b).

Condition 3 (Underdog property) |ψ (a, b+ 1)− ψ (a, b)| −
|ψ (a+ 1, b)− ψ (a, b)| has the same sign as a− b.

The monotonicity condition merely states that A and B votes push the policy

outcome toward 1 and 0 and therefore increase and decrease utility, respectively.

Symmetry implies that reversing the numbers of votes that each party receives exactly

reverses the parties’power, for example implying that ψ (a, b) = 1
2
when a = b. The

underdog property states that the impact of one additional vote for the party that

has fewer votes is greater than the impact of one additional vote for the party with

a majority. If ψ is a monotonic and symmetric function of the vote share λ+ = a
a+b

then Condition 3 is implied if ψ is S-shaped– that is, convex for vote shares in
[
0, 1

2

]
and concave for vote shares in

[
1
2
, 1
]
, meaning that the vote share has a diminishing

29



marginal impact on the majority party’s power. Other examples of policy functions

that satisfy Conditions 1 through 3 include any “contest”function of the form

ψ (a, b) =
az

az + bz

with positive z. Such contest functions are S-shaped for z > 1 but an inverted S-

shape (i.e. concave and then convex) for z < 1. Theorem 6 now generalizes Theorem

4 to state that a marginal voter’s curse arises for any policy function that satisfies

Conditions 1 through 3.

Theorem 6 If ψ : Z2
+ → [0, 1] satisfies Conditions 1 through 3 then σ∗ ∈ Σ is a

Bayesian Nash equilibrium only if it is a threshold strategy σq̄∗ with q̄∗ > 0. Moreover,

such an equilibrium exists.

Condition 3 highlights an important similarity between the swing voter’s curse and

the marginal voter’s curse, which is that these curses arise from two manifestations of

the same phenomenon, namely that an electoral rule exhibits an underdog property.

In pivotal voting environments, a vote for the losing party is more likely to be pivotal

than a vote for the winning party; in marginal voting environments, a vote for the

losing party induces a larger policy shift than a vote for the winning party. Ex ante,

parties in this model are symmetric: there is no winning party and no losing party.

When citizens vote informatively, however, the party with the superior policy platform

receives more votes (in expectation) than the inferior party. Thus, a common-value

environment translates either manifestation of the underdog property into an incentive

for poorly informed citizens to abstain from voting, in deference to those with better

expertise.

As noted above, the underdog property– which is so central to the logic of the

marginal voter’s curse– is satisfied by a large class of continuous policy functions.

Asymptotically, the condition actually holds for any increasing and differentiable

function ψ (λ+) of the vote share λ+ = a
a+b
. To see this, note that, given monotonic-

ity, the difference |ψ (a, b+ 1)− ψ (a, b)| − |ψ (a+ 1, b)− ψ (a, b)| can be rewritten as
follows.

− [ψ (a, b+ 1)− ψ (a, b)]− [(a+ 1, b)− ψ (a, b)]
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Figure 6: Isolevels of ψ (a, b)

As a and b grow large (keeping the vote share λ+ fixed), this converges to the following,

− ∂

∂b
ψ (a, b)− ∂

∂a
ψ (a, b) = −ψ′ (λ+)

−a
(a+ b)2 − ψ

′ (λ+)
b

(a+ b)2

which has the same sign as a− b.
An intuition for the asymptotic genericity of Condition 3 can be aided by Figure 6,

which plots isolevels of ψ (a, b) for vote totals a and b. When ψ depends on a and

b only through the vote share λ+, sets of vote totals that generate the same policy

outcome, the isolevels, correspond to rays from the origin. For example, the 45-

degree line corresponds to exact ties, or a vote share of λ+ = 1
2
. The steeper dashed

line corresponds to a higher vote share λ′+ > 1
2
.

For large a and b, the vector of changes to the policy outcome generated by in-

creases in a and b is proportional to the gradient, which by definition is perpendicular

to the isolevel. In the region where a > b, therefore, the policy reaction to a B

vote exceeds the reaction to an A vote, while the opposite is true in the region where

a < b.

31



8 Experiment

The analytical results above give sharp comparative static predictions for pure

marginal and pure pivotal voting electoral systems. To test these predictions, one

might hope for a natural experiment in which a single group of voters decide two

issues for which the distributions of expertise are the same, but the mechanisms (e.g.

voting rules or legislative bargaining protocols) that translate votes into policy out-

comes differ. Such a natural experiment seems unlikely to occur, however, so we

instead turn for evidence from a laboratory experiment. This presents challenges of

its own: first, financial and space constraints limit the number of participants, making

it diffi cult to test asymptotic results for large elections. Second, technical features

of the model such as the Poisson population uncertainty and the continuum of pos-

sible types, while elegant and convenient for theoretical derivations, are impractical

to explain to experimental subjects. To circumvent these challenges we implement a

simplified version of the model above, and compute equilibrium predictions numeri-

cally. While simple relative to the model above, this preserves the key comparative

static implications, as explained below.

8.1 Experimental Design and Procedures

Experiments were conducted at the Experimental Economics Laboratory at the

University of Valencia (LINEEX) in November 2014, with 360 students as subjects.

Subjects were randomly assigned into groups of twelve, and each group was assigned

to one of six treatments, described below. Before the experiment, instructions were

provided in writing and also read aloud by an instructor, and subjects answered a

questionnaire to check their full understanding of the experimental design.15 Each

session consisted of fourty rounds. The instructions for each round were the same. In

each of the rounds, the group of twelve was randomly divided into two subgroups of six

participants, and payoffs in that round depended only on the choices of participants

in the subgroup. All interactions among participants took place only via computer

15Instructions for treatments P25 and M25 descrived later can be found in Appendix A3.
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terminals.16 Each participant could earn between 0 and 100 points in each round,

and at the end of the experiment, five periods were randomly selected for payment

and points were converted to Euros at the rate of 2.5€ per 100 points.17

At the beginning of each round, the color of a triangle was chosen randomly to

be either blue or red with equal probability. Subjects were not told the color of

the triangle, but were told that the goal of the subgroup was to guess the color of

the triangle. Independently, each would observe one ball (analogous to the signal

modeled in Section 3) drawn randomly from an urn with 20 blue and red balls. With

40% probability, a participant would be designated as a high type H, meaning that

19 of the 20 balls in the urn would be the same color as the triangle. With 60%

probability, a participant would be designated as a low type L, meaning that only 13

of the 20 balls would be the same color as the triangle. Individuals were told their

own types, but did not know the types of the other five team members.

After observing their signals, subjects each had to take one of three actions: vote

Blue, vote Red, or Abstain from voting. Regardless of which action they chose,

however, they were told that their action choice might be replaced at random, by

the choice of a computer: with 10% probability, their vote choice would be changed

to Abstain.18 With some probability 2p ∈ {0%, 25%, 50%} the voting choice would
be replaced with a partisan vote– Blue or Red with equal probability (leaving a vote

unchanged with probability .9−2p). Replacements of votes were determined indepen-

dently across subjects. The partisanship parameter 2p was one of the two treatment

variables of the experiment. The second was the voting rule, which determined sub-

jects’payoff as a function of the team’s votes. Under pure pivotal voting (P ), the

team scored 100 points if the number of votes for the color of the triangle exceeded

the number of votes for the other color, 50 points in the event of a tie, and 0 points

16The experiment was programmed and implemented with z-Tree (Fischbacher 2007).
17In total, subjects earned an average of 14.21€, including a show-up fee of 4€. Each experimental

session lasted approximately an hour.
18This form of population uncertainty follows Feddersen and Pesendorfer (1996). With a known

number of voters, the swing voter’s curse depends heavily on whether that number is even or odd.
If it is odd, for example, there is always an equilibrium with full participation, because a vote is
then pivotal only if the rest of the electorate is evenly split. In that case, an individual infers no
information beyond his or her own signal the event of a pivotal vote, and therefore has a strict
incentive to vote.
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otherwise. Under pure marginal voting (M), the team’s score was the percentage of

non-abstention votes that had the same color as the triangle– or 50 points, if every-

one abstained. At the end of each round, each subject was told the true color of the

triangle, their own original and final vote, and the total numbers of final Blue votes,

Red votes, and abstentions in their team (though they were not told whether these

were the intended votes of the other participants, or computer overrides). In pure

marginal voting treatments, they also observed the percentage of votes that matched

the color of the triangle; in pure pivotal voting treatments, they instead were told

whether the color of the Triangle received more, equal, or fewer votes than the other

color.

The six possible combinations of the partisanship share and the electoral rule

constituted the six treatments for the experiment. Five twelve-member groups were

assigned to each treatment, producing 30 independent observations of voting behavior.

For each treatment, equilibrium behavior can be derived numerically. Empirical

voting behavior for voter types in each of the six treatments is discussed in the

following section.

8.2 Experimental Results

Figure 7 displays voter abstention for high- and low-type voters, across the six

treatments. The most basic behavioral feature evident here is that voters respond

to both the swing voter’s curse and the marginal voter’s curse: under both electoral

rules, a positive fraction of subjects seek to improve the election outcome by not

voting. Moreover, consistent with the predictions of Propositions 1 and 2, subjects

with higher levels of expertise were more willing to vote. Indeed, the payoffs used

in the experiment are such that high types should never abstain, and consistent with

this, the level of abstention is quite low across treatments, ranging from 0.3% to 3.2%.

The payoffs of this experiment were chosen to make as stark equilibrium predic-

tions as possible. Under pure pivotal voting, the equilibrium incentive for low types

under pure pivotal voting is to abstain if there are no partisans, but vote if the par-

tisan share is 25% or 50%. Under pure marginal voting, low types should abstain

if the partisan share is 0% or 25% but vote if the partisan share is 50%. Figure 7
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Figure 7: Observed abstention for each treatment, by voter type, averaged across round
and groups.

makes clear that empirical levels of abstention do not closely match the equilibrium

predictions, but do follow the same pattern, dropping dramatically (from 42.6% to

29.7%) between treatments M0 and M25 but then staying about the same (28.5%) in

M50, and staying about the same (37.0% and 36.2%) in P0 and P25 but then drop-

ping dramatically (to 27.5%) in P50. Consistent with Theorem 3, then, abstention

with moderate levels of partisanship is higher under pure marginal voting than pure

pivotal voting.

The statistical significance of these patterns can be tested by using a random

effects GLS regression of the frequency of abstention on dummies for each possible

combination of voter type and treatment (excluding high types in treatment M0 as

the reference category). Coeffi cient estimates for such a regression are presented in

Table 1 in the appendix.19 Using this regression, the hypothesis that abstention levels

are the same for all three partisan levels can rejected (χ2 = 58.75, p < 0.001) for pure

pivotal voting but is marginally insignificant (χ2 = 2.17, p = 0.338) for pure marginal

19To ease interpretation of the coeffi cients, this regression specification does not include temporal
variables, and therefore ignores potential evolution in behavior throughout the experiment. How-
ever, none of the main results from the basic regression analysis are sensitive to the inclusion of
temporal variables.
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Figure 8: Realized payoff vs equilibrium payoff in each independent group.

voting. Pure pivotal and pure marginal voting generate abstention levels that do not

differ significantly when the level of partisans is 0% or 50% (χ2
1 = 0.43, p = 0.514 and

χ2
1 = 0.04, p = 0.844 respectively), but pure marginal voting generates significantly

higher abstention when the partisan share is 25% (χ2
1 = 16.76, p < 0.001).

In addition to comparing behavior across electoral rules, the experiment above

allows us to evaluate voter welfare. For each treatment, the average payoff across

groups is displayed in Figure 8. Consistent with the prediction of Theorem 3, welfare

is lower under pure marginal voting than under pure pivotal voting, for any level of

partisanship (χ2 = 93.83, p < 0.001 for 0% partisan share, χ2 = 9.71, p < 0.01

for 25% partisan share, and χ2 = 13.96, p < 0.001 for 50% partisan share), because

the mal-effects of partisan behavior and non-partisan mistakes are harder to negate.20

Figure 8 also compares realized utility with the utility subjects would have obtained if

they had followed equilibrium predictions. Across treatments, actual utility is lower

than equilibrium utility, although the average loss is only 8.3%, which is relatively

minor. The loss is slightly higher under pure marginal voting than pure pivotal

voting (10.3% as opposed to 6.3%), but is not as severe when the partisan share is

20These test results come from a regression similar to that of Table 1, but with the payoff as the
independent variable, rather than abstention.
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highest (since voter behavior tends not to influence utility in that case).

With payoffs as they are, subjects should never vote against their private signals:

they should either vote in line with their signals or abstain. Empirically, 4.5%

of high-type voters and 16.5% of low-type voters did vote against their signals.21

Additionally, these frequencies seems to increase with the level of partisans. This

is consistent with models of quantal response equilibrium, where mistakes are less

prevalent when the payoff difference across actions is smaller.22

9 Discussion

This paper has analyzed a common-value model of voter participation in which the

full impact of a vote includes the marginal effect of adding or subtracting one from

the winning party’s margin of victory in addition to the standard pivotal impact

of pushing one party’s vote share above the 50% threshold. Just as pivotal voting

considerations generate a swing voter’s curse, marginal voting considerations generate

a marginal voter’s curse that dissuades citizens from voting unless they are suffi ciently

confident in their policy opinions. Both curses can be viewed as manifestations of

an underdog effect, but the marginal voter’s curse is actually stronger. Moreover,

pivotal voting considerations become irrelevant in large elections, so the marginal

voter’s curse alone determines equilibrium levels of voter participation.

Across the world, plurality rule is probably the most prevalent electoral system,

which explains the emphasis on pivotal voting in extant literature. Increasingly,

however, nations and other electoral bodies have adopted alternative electoral rules.

In legislative elections, the most common alternative to majority rule is Proportional

Representation (PR).23 In an ideal PR system, a party that receives 37% of the

21This anomaly has been found systematically in experimental studies on information aggregation.
See, for instance, Bouton, Castanheira and Llorente-Saguer (2015) or Bouton, Llorente-Saguer and
Malherbe (2016).

22See Guarnaschelli, McKelvey and Palfrey (2000) and Holt and Goeree (2005) for applications
of QRE to voting.

23According to the ACE Electoral Knowledge Network, Proportional Representation is now
used for national legislative elections in 53.3% of countries, including much of Europe and Latin
America. See http://aceproject.org/epic-en/CDTable?question=ES005&set_language=en (ac-
cessed 9/1/2015).
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popular vote receives 37% of the seats in parliament, and thus (depending on the

bargaining protocol) 37% of the power in determining policy. Accordingly, efforts

to study pure marginal voting formally have often modeled policy outcomes as linear

(or at least continuous) functions of parties’vote shares.24 As a practical matter,

of course, this is simplistic, as actual legislatures have limited numbers of seats, so

PR systems cannot match legislative seats to vote shares precisely.25 To the extent

that the continuous model approximates an actual PR electoral system, however, the

analysis above can be applied to this increasingly popular institution.

With this application in mind, the main result of the analysis above implies that,

even though the swing voter’s curse does not apply, citizens who lack information

should tend to abstain from voting or to cast incomplete ballots in PR elections just

as they do in majoritarian elections. This is intuitively appealing, since the basic

logic of abstaining in deference to those with better information does not seem highly

sensitive to the institutional details of the voting rule. Empirically, Sobbrio and

Navarra (2010) indeed find that voter participation in PR elections is correlated with

voter information, just as it is in majoritarian systems.26 A clear example of roll off

in PR elections is the Peruvian national election. In 2011, for example, PR elections

for the Peruvian Congress and for the Andean Parliament were conducted on the

same day as the first round of a presidential election.27 Out of 20 million registered

voters 89% turned out to vote. Of these, only 88% cast valid votes in the presidential

election, 77% cast valid votes in the PR elections for Congress, and 61% cast valid

votes for the Andean Parliament. Evidently, the incentive to roll off is just as robust

in PR elections as it is in the presidential election, or in the decision of whether to

turn out at all.28 Moreover, information seems plausibly to be the most important

24See Ortuño-Ortín (1997), Llavador (2006, 2008), Iaryczower and Mattozzi (2013), Herrera,
Morelli and Palfrey (2014), Kartal (2014a and 2014b), Faravelli, Man, and Walsch (2015), Faravelli
and Sanchez-Pages (2015), Herrera, Morelli, and Nunnari (2015), and Matakos, Troumpounis, and
Xefteris (2015a, 2015b).

25These analyses also typically only include two political parties, whereas legislatures that use
PR frequently have more than two major political parties.

26This is also consistent with Riambau (2015), which studies abstention for informational reasons
in legislative elections in Austria, Germany, and Israel.

27Evidence of roll off in other countries is often less clear-cut, only because parliamentary elections
are often conducted separately from other elections, or have different voter elligibility requirements.

28That abstention is higher in the PR elections than in the majoritarian election is also consistent
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factor that differs across the three elections.

Normatively, proportional representation is often lauded for its protection of mi-

norities.29 Consider, for example, an electorate comprised solely of partisans, with

no independents: under majority rule, the policy outcome corresponds with the most-

preferred policy of the larger group of partisans, but this is also the least-preferred

policy of the smaller group of partisans. As conceptualized here, PR instead produces

a moderate compromise (i.e. the weighted average of the partisan groups’ideal poli-

cies, with weights given by vote shares). However, the analysis above suggests that

this minority protection may come at the cost of informational effi ciency: whereas

majority rule satisfies full information equivalence and almost surely selects the party

that independents truly prefer, PR suffers from a dilution problem, such that the

damage caused by mistaken opinions and partisan votes cannot be undone.

The superiority of majority rule is partly a consequence of the assumption that

the optimal policy α lies at one of the extremes of the policy space: if interior policies

could also be optimal then there may be informational benefits to compromise in

addition to the benefit of minority protection. Thus, a tractable model in which the

optimal policy can lie in the interior of the policy interval would be a useful direction

for future extension. In addition to altering welfare implications, this might mitigate

the marginal voter’s curse: as noted above, a binary state gives citizens a strong reason

to abstain, to be as nearly unanimous as possible.30 This does not seem that it would

affect the basic logic of the marginal voter’s curse, however: informative voting should

produce vote shares that lean in the direction of the optimal policy, wherever it may

be, and the underdog principle should then imply that opposing votes will have more

influence than additional votes of support, so a citizen who is uncertain where the

optimum lies should still abstain in deference to those who know more.

with the prediction of Theorem 3, although this is not a perfect comparison, because the runoff
system for the presidential election differs slightly from the pivotal voting formulated above, and
because the distribution of expertise may well differ across elections.

29See, for example, Lijphart (1999).
30An interior optimum may also balance the two parties’vote shares such that, as in Myatt (2012),

pivotal voting incentives shrink to zero at the same rate (i.e., 1n ) as marginal voting incentives, rather
than exponentially. If so, both motivations will remain relevant in large elections.
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Appendices

Appendix A: Proofs

Proof of Theorem 1. As explained in the text, σ is an equilibrium only if it is a
quality threshold strategy, with threshold given by (12). Conditional on the total number
τ = a + b of votes, the precise numbers of votes a and b for either side follow binomial
distributions, with probability parameters v+

vτ
and v−

vτ
. As long as not all citizens abstain,

(4) exceeds (5), implying that the distribution of the number a of correct votes first-order
stochastically dominates the distribution of the number b of incorrect votes. Keeping
the total a + b fixed, however, a+1

a+b+1 −
a
a+b decreases in a and increases in b, implying

that the distribution of ∆λ− first-order stochastically dominates the distribution of ∆λ+.
In particular, then, Ea,b (∆λ−|a+ b = τ) > Ea,b (∆λ+|a+ b = τ) and, taking expectations
over τ , Ea,b (∆λ−) > Ea,b (∆λ+). This implies that (12) is positive.

Equilibrium existence follows because the best response to a threshold strategy σq̄ is
another σq̄brM . Since the best-response threshold q̄brM depends continuously on q̄ and the

set [0, 1] of possible thresholds is compact, a fixed point q̄∗ = q̄brM (q̄∗) exists by Brouwer’s
theorem, that characterizes a voting strategy σq̄∗ that is its own best response, and therefore
a Bayesian Nash equilibrium of the game.
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Proof of Lemma 1. The expected vote share of the superior party can be written as

Ea,b [λ+ (a, b)] =

∞∑
a=0

∞∑
b=0

e−nτ
na+
a!

nb−
b!
u [x (a, b)]

= e−nτ
∞∑
a=1

∞∑
b=0

na+
a!

nb−
b!

(
a

a+ b

)
+

1

2
e−nτ

= e−nτ
∞∑
a=1

[
1

(a− 1)!

na+
na−

∞∑
b=0

na+b
−

b! (a+ b)

]
+

1

2
e−nτ

where the second equality follows because x (0, 0) = 1
2 . Differentiating and integrating the

innermost summand as follows,

∞∑
b=0

na+b
−

b! (a+ b)
=

∞∑
b=0

∫ n−

0

d

dt

(
ta+b

b!

1

a+ b

)
dt

=

∫ n−

0

∞∑
b=0

(
ta+b−1

b!

)
dt

=

∫ n−

0
ta−1etdt,

this reduces further to the following.

Ea,b [λ+ (a, b)] = e−nτ
n+

n−

∫ n−

0

∞∑
a=1

(
n+
n−
t
)a−1

(a− 1)!
etdt+

1

2
e−nτ

= e−nτ
n+

n−
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0
e

(
n+
n−

t
)
etdt+

1

2
e−nτ
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n+

n−

∫ n−

0
e

(
nτ
n−

)
t
dt+

1

2
e−nτ

= e−nτ
n+

nτ
(enτ − 1) +

1

2
e−nτ

=
n+

nτ
+
n− − n+

2nτ
e−nτ (33)

If a citizen votes for the party with the superior platform, this increases the expected
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vote share to

Ea,b [λ+ (a+ 1, b)] =
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a=0
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which, differentiating and integrating as before, reduces further as follows.

= e−nτ
∞∑
a=0

a+ 1

a!

na+
na+1
−

∫ n−

0
taetdt

= e−nτ
∫ n−

0

∞∑
a=0

(
a

a!

na+
na+1
−

ta +
1

a!

na+
na+1
−

ta

)
etdt.

= e−nτ
∫ n−

0

n+

n2
−
t

∞∑
a=1

(
n+
n−
t
)a−1

(a− 1)!
+

1

n−

∞∑
a=0

(
n+
n−
t
)a

a!

 etdt
= e−nτ

∫ n−

0

[
n+

n2
−
te

(
n+
n−

t
)

+
1

n−
e

(
n+
n−

t
)]
etdt

=
n+

n2
−
e−nτ

∫ n−

0
te

(
nτ
n−

)
t
dt+

1

n−
e−nτ

∫ n−

0
e

(
nτ
n−

)
t
dt

Integrating by parts, this reduces to the following.
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The difference Ea,b (∆λ+) between (33) and (34) is then given by

Ea,b (∆λ+) =
n−
n2
τ

+
n2

+ − n2
− − 2n−

2n2
τ

e−nvτ

which is equivalent to (13). The difference Ea,b (∆λ−) is given by (14), by an analogous
derivation.
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Proof of Proposition 1. The left- and right-hand sides of the equilibrium condition
(15) are continuous in n and in q̄ (through the continuous functions v+, v−, and vτ ) so a
sequence q̄∗M (n) of solutions to (15) must converge to a solution of the limit equilibrium
condition (15). If limn→∞ vτ [q̄∗M (n)] is positive then the limit of (15) is given by (16),
because the terms in parentheses in both the numerator and denominator of the right-hand
side of (15) are bounded in absolute value by n+2. The limit of e−nvτ can be positive only
if limn→∞ vτ = 0, implying that v+ and v− both converge to zero. But (15) converges to
(16) in that case, as well.

As q̄ increases from zero to one, the right-hand side of (16) increases from one to infinity.
For any p, differentiating (18) and (19) with respect to q̄ yields

v′+ = −I
2

(1 + q̄) f (q̄)

v′− = −I
2

(1− q̄) f (q̄)

and differentiating (20) therefore yields

ρ′ (q̄) =
v′+v− − v+v

′
−

v2
−

=
I

2
f (q̄)

− (1 + q̄) v− + (1− q̄) v+

v2
−

which is positive if and only if the left-hand side of (16) exceeds the right-hand side. In
other words, any solution to (16) also constitutes the unique maximum of ρ (q̄); clearly,
there is exactly one such solution.

If p = 0 then (20) reduces to ρ (q̄) = 1+m(q̄)
1−m(q̄) which is increasing for all q̄, implying that

the limit of equilibrium behavior is the corner solution qM = 1. If p > 0 then ρ (0) > 1

and ρ (1) = 1, so the solution qM is strictly between 0 and 1, as claimed in (i). (20) also
decreases in K (and therefore in p) for all q̄, implying that the solution qM to (16) strictly
decreases in K (and therefore in p), as claimed in (ii).

To show claim (iii), first rewrite (20) as

ρ (q̄) =
K +

∫ 1
q (1 + q) f (q) dq

K +
∫ 1
q (1− q) f (q) dq

=

∫ 1
0 Γ+ (q) f (q) dq∫ 1
0 Γ− (q) f (q) dq

in terms of Γ+ (q) = K + Iq (1 + q) and Γ− (q) = K + Iq (1− q), where Iq is the indi-
cator function of the interval [q̄, 1]. For any K, Γ+ (q) and Γ− (q) are non-negative and
respectively non-decreasing and non-increasing functions of q.

With this notation, consider a distribution g such that g(q)f(q) is increasing, thus satisfying
the monotone likelihood ratio property MLRP. For any K and any q̄ ∈ [0, 1), we will show
that ρ (q̄) is higher under g than under f , implying that the solution qM to (16) is lower
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under g than under f . That is, we will show the following,∫ 1
0 Γ+ (q) g (q) dq∫ 1
0 Γ− (q) g (q) dq

>

∫ 1
0 Γ+ (q) f (q) dq∫ 1
0 Γ− (q) f (q) dq

which is equivalent to the following.∫ 1
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∫ 1

0
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f
(
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)
g (q) dqdq′ >

∫ 1

0

∫ 1

0
Γ+ (q) Γ−

(
q′
)
f (q) g

(
q′
)
dqdq′

Equivalently, we will show that the expression

Γ =

∫ 1

0

∫ 1

0
Γ+ (q) Γ−

(
q′
) [
f (q) g

(
q′
)
− f

(
q′
)
g (q)

]
dqdq′ (35)

is positive.

Splitting the domain of integration into two symmetric parts produces the following.

Γ =

∫ ∫
q>q̃

Γ+ (q) Γ− (q̃) [f (q̃) g (q)− f (q) g (q̃)] dqdq̃

+

∫ ∫
q̃>q

Γ+ (q) Γ− (q̃) [f (q̃) g (q)− f (q) g (q̃)] dqdq̃

Reversing the labels of q and q̃ in the second double integral and collecting similar terms,
this is equivalent to

Γ =

∫ ∫
q>q̃

[Γ+ (q) Γ− (q̃)− Γ+ (q̃) Γ− (q)] [f (q̃) g (q)− f (q) g (q̃)] dqdq̃

=

∫ ∫
q>q̃

Γ− (q) Γ− (q̃)

[
Γ+ (q)

Γ− (q)
− Γ+ (q̃)

Γ− (q̃)

]
f (q) f (q̃)

[
g (q)

f (q)
− g (q̃)

f (q̃)

]
dqdq̃

This expression is positive, as desired, because Γ+ and
g(q)
f(q) are non-decreasing in q and Γ−

is non-increasing in q.

Proof of Theorem 2. As argued in the text, σ is an equilibrium only if it is a quality
threshold strategy, with threshold given by (26). Conditional on the total number a + b

of votes, the precise numbers of votes a and b for either side follow binomial distributions,
with probability parameters v+vτ and

v−
vτ
. As long as not all citizens abstain, (4) exceeds (5),

implying from (6) that Pr (a = k + 1, b = k) exceeds Pr (a = k, b = k + 1) for any k and,
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taking averages over k, that Pr (a = b+ 1) exceeds Pr (a = b). (24) therefore exceeds (23),
implying that (26) is positive.

Since the best response to a threshold strategy σq̄ is another threshold strategy σq̄brP ,

where the best-response threshold q̄brP depends continuously on q̄ and the set [0, 1] of pos-
sible thresholds is compact, a fixed point q̄∗ = q̄brP (q̄∗) exists by Brouwer’s theorem, that
characterizes a voting strategy σq̄∗ that is its own best response, and therefore a Bayesian
Nash equilibrium of the game.

Proof of Proposition 2. The left-hand side of (30) approaches infinity as q̄ approaches
0 and approaches zero as q̄ approaches 1. q̄ = 1 is therefore a solution to (30) if and only if
K = 0. In that case, however, Theorem 3 of McMurray (2013) implies that no sequence of
equilibrium thresholds can converge to one, because the assumption that f is log-concave
implies that limq→1

f ′(q)
f(q) < ∞.31 Moreover, Theorem 4 of McMurray (2013) implies that

there is a unique solution qP0 to (30) in the open interval (0, 1). This implies that the
left-hand side of (30) is positive on the interval

[
0, qP0

)
and negative on the interval

(
qP0 , 1

)
.

When the left-hand side of (30) is positive, it is strictly decreasing in q̄. To see this,
differentiate the left-hand side of (30) to obtain the following.

−f (q̄)

(
1 + q2

2

m (q)

q
− 1

)
+

1− F (q̄)

2

(
−1 + q2

q2
m (q) +

1 + q2

q
m′ (q)

)
(36)

Since f is assumed to be log-concave, Lemma 2 of Bagnoli and Bergstrom (2005) states
that E (q − q̄|q ≥ q̄) decreases with q̄ or, equivalently, that m′ (q̄) < 1, implying that the
second term in (36) is negative. If the left-hand side of (30) is positive then the first term
of (36) is negative, as well.

That the left-hand side of (30) is decreasing whenever it is positive implies a unique
solution qP to (30) for any partisanship ratio K, thus establishing (i). This also makes
clear that if K increases (or, equivalently, if p increases) then qP decreases, thus establishing
(ii). The proof of (iii) is then analogous to the proof of part (iii) of Proposition 1.

Proof of Theorem 3. As the proofs of Propositions 1 and 2 show, ρ (q̄) exceeds the
right-hand side of (16) if and only if q̄ < qM and exceeds the right-hand side of (29) if and
only if q̄ < qP . The right-hand side of (29) exceeds the right-hand side of (16) for any
q̄ > 0 (and when q̄ = 0 both equal one, whereas ρ (0) > 1), however, so in particular ρ

(
qP
)

exceeds the right-hand side of (16), implying that qP < qM .

Proof of Proposition 3. As n grows large, equilibrium strategies converge pointwise to
σqP under pure pivotal voting and to σqM under pure marginal voting. In either regime,

31As that paper notes, this condition merely rules out electorates that are arbitrarily close to
being perfectly informed, and is suffi cient for the result but not necessary.
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actual vote shares converge in probability to expected vote shares. That is, ab →p
nv+
nv−

=
v+
v−

= ρ. Under pure pivotal voting, expected utility is given by Pr
(
a
b > 1

)
, which therefore

converges to uP = 1 since a
b converges to ρ

(
qP
)
> 1. This logic is valid for any p < 1.32

Under pure marginal voting, utility is given by a
a+b , which converges in probability to

uM = nv+
nv++nv−

=
ρ(qM)
ρ(qM )+1

. This decreases in p since it increases in ρ
(
qM
)
, which decreases

in p (as shown in Section 4). As that section explains, p = 0 implies that limq̄→qM ρ (q̄) =∞,
therefore implying that uM = 1. If p = 1 then from (18) and (19) it is also clear that
ρ (q̄) = 1 for any q̄, implying that uM = 1

2 in that case.

Proof of Theorem 4. That a Bayesian Nash equilibrium must be a threshold strategy
σq̄∗ with q̄∗G > 0 is explained in the text. Equilibrium existence follows because the best
response to a threshold strategy σq̄ is another σq̄brG . Since the best-response threshold q̄brG
depends continuously on q̄ and the set [0, 1] of possible thresholds is compact, a fixed point
q̄∗G = q̄brG (q̄∗) exists by Brouwer’s theorem, that characterizes a voting strategy σq̄∗ that is
its own best response, and therefore a Bayesian Nash equilibrium of the game.

Proof of Theorem 6. With a generalized policy function, the expected benefit of voting
(9) can be rewritten as follows,

∆Eu (q) = Ea,b

[
1

2
(1 + q) ∆+ψ (a, b) +

1

2
(1− q) ∆−x (a, b)

]
in terms of the positive difference in policy ∆+ψ (a, b) = ψ (a+ 1, b) − ψ (a, b) induced by
one additional vote for the superior party A and the negative policy difference ∆−ψ (a, b) =

ψ (a, b+ 1) − ψ (a, b) induced by one additional vote for party B. Given the symmetry
condition, the latter difference can be written as

∆−ψ (a, b) = [1− ψ (b+ 1, a)]− [1− ψ (b, a)]

= ψ (b, a)− ψ (b+ 1, a)

= −∆+ψ (b, a)

in terms of the positive impact of a correct vote when there are b votes for party A and a
votes for party B.

Since ∆+ψ (a, b) and ∆+ψ (b, a) are both positive, (9) is positive if and only if q exceeds
the following threshold,

q̄brM =
Ea,b [∆+ψ (b, a)]− Ea,b [∆+ψ (a, b)]

Ea,b [∆+ψ (a, b)] + Ea,b [∆+ψ (b, a)]

32For p = 1, Pr (nα > nβ) = Pr (nα < nβ) for any n, implying that uM = 1
2 + 0.
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which generalizes (12). The denominator of this expression is positive, and the numerator
reduces as follows. ∑

a,b

[∆+ψ (b, a)−∆+ψ (a, b)]
e−n+−n−na+n

b
−

a!b!

=
∑
a>b

[∆+ψ (b, a)−∆+ψ (a, b)]
e−n+−n−na+n

b
−

a!b!

+
∑
a<b

[∆+ψ (b, a)−∆+ψ (a, b)]
e−n+−n−na+n

b
−

a!b!

Relabeling variables in the second summation yields the following.

∑
a>b

[∆+ψ (b, a)−∆+ψ (a, b)]
e−n+−n−na+n

b
−

a!b!

+
∑
b<a

[∆+ψ (a, b)−∆+ψ (b, a)]
e−n+−n−nb+n

a
−

a!b!

=
∑
a>b

[∆+ψ (b, a)−∆+ψ (a, b)]
e−n+−n−nb+n

b
−

a!b!

(
na−b+ − na−b−

)
Monotonicity and the underdog property together imply that ∆+ψ (a, b) < ∆+ψ (b, a)

if and only if a > b. This, together with the fact that n+ > n−, implies that the above
expression is strictly positive, and therefore that q̄brM is positive. That the best-response
threshold is strictly positive implies that any equilibrium threshold is positive as well, and
a positive fraction of the electorate therefore prefer to abstain in equilibrium.

Proof of Theorem 5. This theorem is proven in the text.
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Appendix B: Regression Tables

Variable Coef. Std. Err. z P>z 95% C.I.

High×P25 0.021 0.012 1.81 0.071 [−0.002, 0.045]
High×P50 0.019 0.006 3.26 0.001 [0.008, 0.031]
High×M0 0.008 0.006 1.47 0.142 [−0.003, 0.020]
High×M25 0.011 0.011 1.04 0.298 [−0.010, 0.032]
High×M50 0.032 0.022 1.45 0.147 [−0.011, 0.075]
Low×P0 0.420 0.062 6.77 0.000 [0.299, 0.542]
Low×P25 0.293 0.038 7.63 0.000 [0.218, 0.368]
Low×P50 0.284 0.050 5.69 0.000 [0.186, 0.382]
Low×M0 0.361 0.093 3.89 0.000 [0.179, 0.543]
Low×M25 0.359 0.040 9.08 0.000 [0.281, 0.436]
Low×M50 0.272 0.061 4.5 0.000 [0.154, 0.391]
Constant 0.003 0.006 0.54 0.588 [−0.009, 0.015]

Observations 14,400 σu .209 ρ .313
Subjects 360 σe .309

Table 1: Random effects GLS regression of the probability of abstention on a constant and
a number of dummies indicating the interaction between voter type, voting rule, and level
of partisanship.

Appendix C: Instructions for the Experiment

Welcome and thank you for taking part in this experiment. Please remain quiet and
switch off your mobile phone. It is important that you do not talk to other participants
during the entire experiment. Please read these instructions very carefully; the better you
understand the instructions the more money you will be able to earn. If you have further
questions after reading the instructions, please give us a sign by raising your hand out of
your cubicle. We will then approach you in order to answer your questions personally.
Please do not ask aloud.

During the experiment all sums of money are listed in ECU (for Experimental Currency
Unit). Your earnings during the experiment will be converted to euros at the end and paid
to you in cash. The exchange rate is 40 ECU = 1€. The earnings will be added to a
participation payment of 4€.

At the beginning of this experiment, participants will be randomly and anonymously
divided into sets of 12 participants. These sets remain unaltered for the entire experiment,
but you will never be told who is in your set. The experiment is divided into 40 rounds.
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The rules are the same for all participants and for all rounds. In each round, participants
in each set are divided into two groups of 6 participants. In a given round you will only
interact with the participants in your group for that round. The earnings in each round
will depend partly on your own decision, partly on the decisions of the other participants
in your group, and partly on chance.

The Triangle Color. There is a triangle, and at the beginning of each round, the
color of the triangle will be chosen randomly. With 50% probability it will be blue N, and
with 50% probability it will be red N. You will not know the color of the triangle, but each
member of your group will receive a hint. Your objective as a group will be to guess the
color of the triangle.

Types. As a hint of the color of the triangle, each group member will observe the color
of one ball, drawn from an urn filled with 20 red and blue balls. First, however, each group
member will be assigned a type: with 40% probability you will be designated as Type B
and will receive a big hint; with 60% probability, you will be designated as Type S and
will receive a small hint. Types will be assigned independently for each member of the
group, so you and the other members of your group might have different types. You will
learn your own type, but will not know the types of the other members of your group.

Big Hints. If your type is Type B, you will receive a big hint. First, an urn will be
filled with 19 balls that are the same color as the triangle, and 1 ball of the opposite color
(a total of 20 balls). If the triangle is blue N, for example, then the urn will be filled with 19
blue balls and 1 red ball. If the triangle is red N, the urn will be filled with 1 blue ball and
19 red balls. As a Type B individual, you will observe the color of one ball, drawn randomly
from this urn. If other members of your group are designated as Type B, they will also
observe one ball from this same urn. They might observe the same ball you observed, or a
different ball.

Small Hints. If your type is Type S, you will receive a small hint. First, an urn will
be filled with 13 balls that are the same color as the triangle, and 7 balls of the opposite
color (a total of 20 balls). If the triangle is blue N, for example, then the urn will be filled
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with 13 blue balls and 7 red balls. If the triangle is red N, the urn will be filled with 7
blue ball and 13 red balls. As a Type S individual, you will observe the color of one ball,
drawn randomly from this urn. If other members of your group are designated as Type S,
they will also observe one ball from this same urn. They might observe the same ball you
observed, or a different ball.

Your Voting Decision. Your voting decision is one of three options: (1) vote Blue,
(2) vote Red, or (3) Abstain from voting.

Regardless of your decision (vote Blue, vote Red, or Abstain), your choice might be
changed with some probability:

• With a probability of 65% (or 13 out of 20) your voting decision choice will be
maintained.

• With a probability of 10% (or 1 out of 10) your voting decision will be replaced by a
computer who will Abstain.
• With a probability of 12.5% (or 1 out of 8) your voting decision will be replaced by a

computer who will vote Blue.
• With a probability of 12.5% (or 1 out of 8) your voting decision will be replaced by a

computer who will vote Red.
At the end of each round you will be told whether your voting decision was maintained

or replaced. If your vote is replaced, you will also be told how a computer voted in your
place.

The other members of your group will cast votes in the same fashion, and like you, their
votes might randomly be replaced by computers. At the end of each round, you will see
the final vote cast by each of your group members, but you will not be told whether their
original vote choices were replaced by computers or not.

Your Payoff. Your payoff in a given round will be the same for all members in your
group. Your payoff will depend only on the numbers of Blue and Red votes in your group
(and not on the number of abstentions).

[P]
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• If the color of the triangle receives more votes than the other color, your payoff will
be 100.
• If the color of the triangle receives fewer votes than the other color, your payoff will

be 0.
• If the color of the triangle and the other color receive equal numbers of votes, your

payoff will be 50.

Example 1 : Suppose that the triangle is red N and that there are 3 Blue votesand 2
Red votes. Since there are fewer votes for the color of the triangle than for the other color,
your payoff is 0 ECUs.

Example 2 : Suppose that the triangle is red N and that there are 0 Blue votes and 2
Red votes. Since there are more votes for the color of the triangle than for the other color,
your payoff is 100 ECUs.

The following table lists your payoff, for any possible combination of Blue and Red
votes.

[M]

Your payoff in will be the percentage of votes that have the same color as the triangle
(if this percentage is not an entire number, the payment will be rounded to the closest entire
number). If there are no votes (because everyone abstains) then your payoff is 50.

Example 1 : Suppose that the triangle is red N and that there are 3 Blue votes and 2
Red votes. Since 40% (i.e. two out of five) of the votes match the color of the Triangle,
your payoff is 40.

Example 2 : Suppose that the triangle is red N and that there are 0 Blue votes and 2
Red votes. Since 100% (i.e. two out of two) of the votes match the color of the Triangle,
your payoff is 100.

The following table lists your payoff, for any possible combination of Blue and Red
votes.
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Information at the end of each Round. Once you and all the other participants
have made your choices and these choices have been randomly replaced (or not), the round
will be over. At the end of each round, you will receive the following information about
the round: the color of the triangle, your vote, and the total numbers of Blue votes, Red
votes, and abstentions in your group. You will also observe [M: the percentage of votes that
match the color of the Triangle, and] [P: whether the color of the Triangle received more,
equal or fewer votes than the other color, and] the payoff for your group.

Final Earnings. After the 40 rounds are over, the computer will randomly select 5 of
the 40 rounds and you will receive the rewards that you had earned in each of those rounds.
Each of the 40 rounds has the same chance of being selected.

Control Questions. Before starting the experiment, you will have to answer some
control questions in the computer terminal. Once you and all the other participants have
answered all the control questions, Round 1 will begin.

Questionnaire. After the experiment, we will ask you to complete a short question-
naire, which we need for the statistical analysis of the experimental data. The data of the
questionnaire, as well as all your decisions during the experiments will be anonymous.
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