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Abstract

This paper uses a FAVAR model with stochastic volatility to estimate the impact of uncertainty shocks

on real income growth in US states. The results suggest that there is a large degree of heterogeneity in the

magnitude and the persistence of the response to uncertainty shocks across states. The response is largest

in Michigan, Indiana and Arkansas while the real income in New York, Alaska and New Mexico seems

least sensitive to uncertainty. We relate the cross section of responses to state-level characteristics and

find that the magnitude of the decline in income is largest in states with a large share of manufacturing,

agriculture and construction industries, a high fiscal deficit and a more volatile housing market. In

contrast, a higher share of mining industries and larger inter-governmental fiscal transfers ameliorate the

impact of uncertainty.
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1 Introduction

The recent financial crisis and ensuing recession have led to a renewed interest in the impact of uncertainty

shocks. A number of proxies for uncertainty have been proposed in the recent literature and several papers

use VAR based analyses to estimate the impact of uncertainty shocks (see for example Bloom (2009) and
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Jurado et al. (2013) ). In addition, a growing DSGE based literature has documented the transmission

mechanism of these shocks from a theoretical point of view (see for example Fernandez-Villaverde et al.

(2015)).

Overall, the empirical literature on this subject provides strong evidence that uncertainty shocks can have

a significant adverse impact on the economy. For example, the analysis in Bloom (2009) suggests that a unit

increase in uncertainty leads to a 1% decline in US industrial production and similar results are reported in

related papers.

However, the estimates reported in these papers typically focus on the impact on aggregate data for the

US. To our knowledge, the impact of uncertainty shocks at the level of US states has remained unexplored

in the literature. This is surprising given the strong evidence that points to structural differences across

US states. For example, the literature on the regional impact of monetary policy shocks (see Carlino and

Defina (1998) amongst others), shows that states differ substantially in terms of the type and concentration

of industry, the banking sector and the degree of credit frictions. These differences make it likely that their

response to US-wide uncertainty shocks may also differ.

This paper attempts to fill this gap in the literature. We propose an extended factor augmented VAR

(FAVAR) model that allows the estimation of a measure of uncertainty that encompasses volatility from the

real and financial sectors of the economy and is a proxy for macroeconomic uncertainty. The proposed FAVAR

model allows this measure of uncertainty to affect state-level real income while accounting for the possible

impact of idiosyncratic uncertainty shocks. We find that the impact of uncertainty shocks differs markedly

across states. The magnitude and persistence of the response is estimated to be the largest in Michigan,

Indiana and Arizona, with income declining by about 0.3% and the impact persisting for more than three

years. In contrast, the uncertainty shock has a smaller impact on states such as New York, Alaska and

New Mexico. We then investigate which state-specific characteristics can explain the heterogeneous impact

of uncertainty shocks. We find that income in states characterised by a larger share of manufacturing,

agriculture and construction industries, a high fiscal deficit to expenditure ratio and more volatile housing

market appears to be affected to a larger degree by these shocks. In contrast, a higher share of mining/oil

and gas industries and larger inter-governmental fiscal transfers mitigate the impact of uncertainty.
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The analysis in the paper adds to the literature on uncertainty by systematically investigating how the

impact of uncertainty differs across US states. The empirical model proposed in the paper builds upon

exisiting VAR and FAVAR models by simultaneously allowing the estimation of time-varying volatility and

the impact of this volatility on a large number of state-level and aggregate variables.

The paper is organised as follows: Sections 3 and 4 introduce the empirical model and discuss the

estimation method. The results from the FAVAR model are presented in Section 5. In section 6 we relate

the state-level impulse responses to various characteristics of the states. Finally, section 7 concludes.

2 Sources of heterogeneity in the response to uncertainty shocks

Recent theoretical research on the transmission of uncertainty shocks has highlighted a number of factors

that may affect the magnitude of the response to uncertainty shocks. As discussed below these factors vary

in intensity and importance across US states thus making it likely that the response to uncertainty shocks

is heterogenous.

2.1 Financial frictions

A number of recent papers have argued that uncertainty affects the economy mainly through its impact on

financial markets (see for example Christiano et al. (2014) and Gilchrist et al. (2014)). According to this

view, if financial markets are subject to moral hazard, uncertainty shocks can affect investment through their

impact on the external finance premium. This implies that the magnitude of the impact of these shocks may

be linked to the intensity of financial frictions. Empirical evidence at the aggregate US level supporting this

view has been presented recently in Alessandri and Mumtaz (2014) who show that uncertainty shocks have

a larger impact during periods of financial stress.

There is some evidence to suggest that the degree of financial frictions also differs markedly across

states. Simple proxies that attempt to capture the intensity of these frictions appear to vary by state. For

example, figure 1 (based on an updated version of the data reported in Carlino and Defina (1998) ) shows

the proportion of lending by small banks, where these are defined as those below the 90th percentile in

terms of assets. As is well known from the work of Kashyap and Stein (1995), the size of banks may affect
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Figure 1: Share of total loans made by small banks

their ability to finance their lending with larger banks expected to have access to more sources of funding.

Figure 1 shows that the proportion of lending varies substantially across US regions. This provides prima

facie evidence that some states may face a higher degree of credit frictions. A similar picture is suggested

by measures of the ‘broad credit channel’ which emphasises the vulnerability of small firms to information

asymmetries problems. That is, the importance of small firms also varies substantially across regions with

these establishments providing the largest share of employment in the Far West and Rocky Mountain region.

In addition, it is likely that the structure of housing markets varies substantially across states, with these

differences possibly contributing to heterogenous behaviour of agents in response to uncertainty shocks.

2.2 Industry composition

If uncertainty shocks have a large impact on the financial markets, they are likely to affect states with a

heavier concentration of the financial and real-estate sector. Similarly, the response of commodity prices (for

e.g. oil) to an uncertainty shock may affect those states which are more exposed to these price fluctuations
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Figure 2: Share of GDP by industry. Average over the period 1963-2014

due to heavier concentration of oil and gas and mining industries. Moreover, as pointed out in Carlino and

Defina (1998), the manufacturing industry might be more sensitive to changes in the short-term interest rate.

If uncertainty shocks affect interest rates (perhaps via the reaction function of the Fed), then the cumulative

impact of these shocks may be larger in regions where manufacturing is more dominant. In figure 2 we plot

the share of GDP accounted for by key industries within US regions. It is clear from the figure that industry

concentration is quite heterogeneous. For example, manufacturing accounts for a large share in the Great

Lakes region, finance is important in the Mid-East, agriculture in the Plains while the mining, oil and gas

and construction is concentrated in the Far/South West and the Rocky Mountain regions.

2.3 State-Level fiscal indicators

As discussed in Owyang and Zubairy (2013), US states also differ substantially in terms of fiscal indicators.

This is clear from figure 3 which shows, for example, that the proportion of expenditure on unemployment

insurance varies from about 0.3% in the Plains region to greater than 0.6% in the Mid Eest. The debt to

total expenditure ratio is close to 80% in New England while being relatively low in the South East and
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Figure 3: Fiscal indicators for US regions

South West regions. There also appears to be some variation in welfare spending and tax revenue. State-

level differences in fiscal capacity may also contribute to heterogeneity in the response to uncertainty shocks.

For example, the magnitude of the impact of uncertainty shocks may be affected by the level of support

available for agents when faced with a drop in income or employment prospects. In addition, as noted by

Carriere-Swallow and Cespedes (2013), fiscal policies may also influence the degree to which state-level credit

frictions can amplify the impact of uncertainty.

2.4 Labour market rigidities

Heterogeneity in the degree of labour market rigidities across the US can also be an important determinant of

the magnitude of the impact of uncertainty. As emphasised in recent theoretical work on uncertainty shocks

(see for e.g. Leduc and Liu (2012)), labour market frictions can play an important role in determining the

magnitude of the effect of uncertainty shocks on employment. If labour maket are rigid, the impact of a

decline in aggregate demand after an uncertainty shock may be magnified if delays in hiring and firing reduce
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the job-finding rate. On the other hand, a more rigid labour market may imply that the initial negative

impact of uncertainty shocks is mitigated to a degree.

In summary, there are a number of reasons to suggest that the impact of uncertainty shocks is heteroge-

nous across US states. In the sections below, we first estimate the response of real income in each state to

this shock. We then investigate if the differences in the response across states can be explained by some of

the factors discussed above.

3 Empirical model

In this section we propose an empirical model that can be used to extract a measure of US-wide uncertainty

while simultaneously allowing the estimation of the impact of uncertainty shocks on aggregate and state-level

US variables. The core of this empirical model is the following vector autoregression:

Ft = c+

P

j=1

βjFt−j +
J

j=1

γj lnλt−j + Ω
1/2
t et (1)

where Ft is a set of unobserved common factors described below that effectively summarise the state of

the US economy and capture the co-movement in state-level data. As in Cogley and Sargent (2005), the

covariance matrix of the residuals is defined as:

Ωt = A
−1HtA−1

where A is lower triangular.

Following Carriero et al. (0), the volatility of the shocks et is given by:

Ht = λtS (2)

S = diag(s1, .., sN )
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The overall volatility evolves as an AR(1) process:

lnλt = α+ β lnλt−1 +Q1/2ηt (3)

and the diagonal elements of S are scaling factors.

The factors Ft are linked to the observed data Xit via the following observation equation:

Xit = BiFt +

K

k=1

ρk,i lnhit−k + vit (4)

As described below, Xit contains both aggregate US data covering real activity, inflation and the financial

sector and real personal income for each state. The idiosyncratic shock is assumed to be heteroscedastic

vit = R
1/2
t εit (5)

with Rt = diag(h1t, ..hNt) and

lnhit = ai + bi lnhit−1 + q
1/2
i nit (6)

The FAVAR model described by equations 1 to 6 has a number of distinctive features. First, the model

allows for time-variation in the volatility of idiosyncratic errors vit and in the volatility of shocks to the

common components et. The time-varying volatility of vit possibly captures changes in the variance of

idiosyncratic shocks and accounts for variable specific features such as measurement error. On the other

hand, λt is the average volatility of shocks to the common components Ft. Given that Ft summarise the

macroeconomic, financial and state-level data included in Xit, we interpret the variance of the unpredictable

component of Ft as a measure of economy-wide uncertainty and ηt as the uncertainty shock. As we show

below, this specification produces estimates of uncertainty that are plausible from a historical perspective

and compares favourably to semi-parametric measures of uncertainty recently suggested in the literature.

The volatility in mean formulation of equation 1 implies that shocks to λt have an impact on the variables

included in Xit. We can therefore estimate the response of these variables to uncertainty shocks. Note that
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this estimated response is net of the impact of idiosyncratic volatility as the observation equation 4 allows

lnhit to enter as a regressor. For the state-specific variables of interest, this implies that we account for the

possible impact of state level uncertainty as partly captured by hit.

The common factors Ft capture the co-movement among the variables included in the panel. In particular,

they account for the relationship between state-specific series and the correlation of state data with aggregate

US data. While the FAVAR model does not explicitly model spill-overs across states, it accounts for cross-

state relationships via Ft.1 Thus, the estimated responses of state-specific variables to aggregate uncertainty

shocks reflect any indirect impact of these shocks that is transmitted via cross-state channels.

The formulation presented in equations 2 and 3 is related to a number of recent empirical contributions.

For example, the structure of the stochastic volatility model used above closely resembles the formulations

used in time-varying VAR models (see Cogley and Sargent (2005) and Primiceri (2005)). Our model differs

from these studies in that it allows a direct impact of the volatilities on the level of the endogenous variables.

The model proposed above can be thought of as a multivariate extension of the stochastic volatility in mean

model proposed in Koopman and Uspensky (2000) and applied in Berument et al. (2009), Kwiatkowski

(2010) and Lemoine and Mougin (2010). In addition, our model has similarities with the stochastic volatility

models with leverage studied in Asai and McAleer (2009) and the non-linear model proposed in Aruoba et al.

(2011). Finally, the model is based on the VAR with stochastic volatility introduced in Mumtaz and Zanetti

(2013), Mumtaz and Theodoridis (n.d.) and Mumtaz and Surico (2013). Models with a common volatility

specification are used in Mumtaz and Theodoridis (2014) and Alessandri and Mumtaz (2014).

4 Estimation and model specification

The model defined in equation 1 and 4 is estimated using an MCMC algorithm. In this section we summarise

the key steps of the algorithm and provide the details in the technical appendix.2 The appendix also presents

the details on the prior distributions which are standard.

As noted in Bernanke et al. (2005), the FAVAR model is subject to rotational indeterminancy of the

1 In other words, while the model is suited to estimating the impact of aggregate uncertainty shocks, a more complex structure
is required if interest centers on estimating the impact of state i uncertainty shocks on the economy of state j. In the FAVAR,
such shocks are ‘filtered out’ by accounting for the impact of hit in the observation equation.

2The appendix presents a small Monte-Carlo experiment that shows that the algorithm displays a satisfactory performance.
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factors and factor loadings. Following Bernanke et al. (2005), we impose a normalisation under which the

first K ×K block of the factor loadings is fixed to an identity matrix.

The MCMC algorithm consists of the following steps:

1. Conditional on a draw for the stochastic volatility λt, the factors Ft the matrix A, and the variances

S, equation (1) represents a VAR model with a known form of heteroscedasticity. The algorithm of

Carter and Kohn (2004) is used to draw the VAR coefficients from their conditional posterior density

while accounting for the time-varying variance via the Kalman filter.

2. Conditional on a draw for the stochastic volatility Ft,λt and S the non-unity and non-zero elements

of A are drawn using methods for linear regressions with heteroscedasticity.

3. Given A and λt, The elements of S have an inverse Gamma posterior and these parameters can be

easily simulated from this distribution.

4. Conditional on λt, the constant α, autoregressive parameter F and variance Q can be drawn using

standard results for linear regressions.

5. Conditional on a draw for the factors Ftand the volatilities hit methods for heteroscedastic linear

regressions can be used to draw the factor loadings Bi and the coefficients ρk,i.

6. Conditional on a draw for the factors Ftand the factor loadings Bi, the coefficients ρk,i and the para-

meters of the transition equations 6, the stochastic volatilities hit can be drawn using a date by date

independence Metropolis step as described in Cogley and Sargent (2005) and Jacquier et al. (1994)

(see also Carlin et al. (1992)). The same algorithm is used to draw the common volatility λt.

7. Given the parameters of the observation equation 4 and the transition equation 1, the Carter and Kohn

(2004) algorithm is used to draw from the conditional posterior distribution of the factors Ft.

In the benchmark specifications, we use 200,000 replications and base our inference on the last 5,000

replications. The recursive means of the retained draws (see technical appendix) show little fluctuation

providing support for convergence of the algorithm.
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4.1 Model specification

We consider models with 3 to 7 factors and select the model which minimises the Bayesian Deviance Infor-

mation Criterion (DIC). Introduced in Spiegelhalter et al. (2002), the DIC is a generalisation of the Akaike

information criterion — it penalises model complexity while rewarding fit to the data. As shown in the ap-

pendix, the DIC can be calculated as DIC = D̄+pD where D̄ measures goodness of fit and pD approximates

model complexity. A model with a lower DIC is preferred. Table 1 shows that the DIC is minimised for

the model with 3 factors. Therefore, we select 3 factors in our benchmark model.

DIC
3 factors 36652.03
4 factors 38096.85
5 factors 41663.51
6 factors 65216.41
7 factors 72648.66

Table 1: Model Comparison via DIC. Best fit indicated by lowest DIC

In the benchmark model, the lag length P and J is set to 4. We show in the technical appendix that the

results do not change substantially for alternative specifications of the model.

4.2 Data

The dataset is quarterly and runs from 1950Q1 to 2014Q1. The panel contains 92 aggregate variables and

the real income for each of the 51 US states. Non-stationary variables are log-differenced. Finally, the series

are de-meaned. The 92 aggregate variables cover real activity, prices, short-term and long term interest rates,

various corporate bond spreads and series on money and credit growth. Data on stock market variables,

commodity prices and exchange rates is included. In summary, the aggregate dataset covers the key sectors

of the US economy and incorporates a wide range of information. The technical appendix provides a list of

the series included in the panel.

11



Figure 4: Estimated Volatility λt. The posterior estimates of λt are compared with the measure of uncertainty
reported in Jurado et al. (2013). The shaded areas represent the NBER recession dates.
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5 Empirical results

5.1 The Measure of Uncertainty

Figure 4 plots the posterior median and the 68% bands for λt. The figure also plots the uncertainty measure

recently proposed in Jurado et al. (2013) for comparison. The measure of uncertainty is high during the early

and the mid-1970s reaching a large peak during the early 1980s. The mid-1980s saw the onset of the great

moderation and λt declined and remained low until the recession during the early 1990s and then during the

early 2000s. The recent financial crisis saw a substantial increase in uncertainty with the level of λt during

2008/2009 matching the volatility seen during the 1970s and the early 1980s.
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Figure 5: Response of aggregate variables to uncertainty shocks
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It is interesting to note that the estimate of λt is highly correlated with the measure of uncertainty

proposed in Jurado et al. (2013). This reflects the fact that the underlying method of capturing uncertainty

has a number of similarities with the calculation in Jurado et al. (2013). The uncertainty measure in

Jurado et al. (2013) is the average time-varying variance in the unpredictable component of a large set of

real and financial time-series. The volatility specification in equations 2 and 3 has a similar intepretation

as it attempts to capture the average volatility in the shocks to Zt where the factors summarise real and

financial conditions. However, as discussed above, the model used in this paper offers a distinct advantage

for the purpose of estimating the impact of uncertainty shocks — it allows one to recover the responses to

overall uncertainty shocks while ‘filtering out’ the effects of idiosyncratic uncertainty and measurement error

captured by hit. In figure 5 we consider how innovations to λt affect aggregate variables. A one standard

deviation uncertainty shock results in a decline in real activity with a fall in hours, investment, consumption

and GDP and an increase in the unemployment rate. These estimates are consistent with impulse responses

reported in Bloom (2009) and Leduc and Liu (2012) and confirm the conventional view on the impact of

uncertainty shocks on real activity. The response of inflation is imprecisely estimated but suggests that

the total impact is positive at the two year horizon providing some support to the ‘pricing bias’ channel

postulated in Fernandez-Villaverde et al. (2015)—in other words, when the economy is characterised by price

and wage rigidity, inflation rises in the face of uncertainty because forward looking agents bias their pricing

decision upwards in order to avoid supplying goods when demand and costs are high. The uncertainty

shock is associated with a deterioration in financial conditions and the corporate bond spread increases. In

addition, oil prices rise by about 0.2% in response to an increase in uncertainty.
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Figure 6: Cumulated response of real income growth to uncertainty shocks at the two year horizon
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Figure 7: The relationship between magnitude and persistence of the response of real income in each state
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5.2 State-Level response of uncertainty shocks

In this section we consider the response the real income growth to uncertainty shocks across US states and

investigate the presence of heterogeniety at the state level. Figure 6 presents the median estimate of the

cumulated response of state-level real income to a one standard deviation uncertainty shock at the two year

horizon. Real income declines in all states in response to an increase in US wide uncertainty, with the median

decline estimated at 0.18%. The magnitude of the decline is largest in Michigan, Indiana and Arkansas with

income falling by about 0.26% to 0.3%. The response in the majority of the states lies within the range

-0.15% and -0.25%. States with the lowest response (i.e. larger than -0.15%) include New York, Alaska and

New Mexico.

Figure 7 shows that the persisitence of the response to uncertainty shocks is larger in states where the

impact is estimated to be of a higher magnitude. We measure the persistence by the number of quarters

before the hypothesis of a zero response cannot be rejected.3 In states such as Michigan, Arizona and

Indiana, the effects of the uncertainty shock persist for longer than three years. In contrast, there is scant

statistical evidence that the impact of the shock is persistent in states such as Alaska.

6 Explaining the heterogeneity of state-level responses

As discussed in section 2, cross-state differences in the response of income to uncertainty shocks can be

driven by cross-state variations in financial and fiscal conditions, industry mix and the labour market. In

this section we attempt to quantify these possible relationships by estimating regressions of the following

form:

responsehi = α+Dj + βXi + vi (7)

where responsehi denotes the h-period cumulated response of state i’s real income. α is an intercept while

Dj represents a set of dummies defined for the BEA regions. The regressors Xi include proxies that attempt

to capture the role of the state-specific factors discussed above.

The first set of regressors that we consider account for heterogeneity in the structure of industry. We

3The 68% posterior error bands are used to calculate the persistence. For states where the error bands include a zero response
at more than one point on the horizon, the last instance is used as the persistence measure.
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consider the share of the proportion of nominal state-level GDP accounted for by manufacturing, finance,

real estate, agriculture, construction, mining, oil and gas and the government.

The next set of regressors attempts to account for the degree of financial frictions. Following Carlino and

Defina (1998), we include the percentage of each state’s loans that are made by small banks. To proxy for the

broad credit channel the proportion of small firms in terms of employment are included with establishments

employing less than 250 workers categorised as small. In order to account for cross-state differences in the

housing market we use the homeowner vacancy rate in the benchmark specification, but also consider the

homeownership rate and the variance of these two variables.

In order to capture the fiscal situation in each state we use a number of proxies. State-specific revenue

is accounted for by including the share of inter-governmental revenue in the total. We attempt to capture

variation in expenditure across states by using the proportion of expenditure on welfare and on subsidies.

The budget situation is accounted for via the budget balance and debt as a share of expenditures. Finally,

we explore the role played by labour market rigidities and include the degree of unionization in some of the

specifications.

The source of this cross section data and the construction of the variables closely follows previous studies

such as Carlino and Defina (1998) and Guisinger et al. (2015). Details on each variable are provided in the

technical appendix to the paper. In the section below we present the results from our preferred specifications

that retain the most important regressors from a statistical point of view. An extensive sensitivity analysis

is presented in the technical appendix and discussed below.

6.1 Benchmark results

Table 2 shows the results using our preferred specifications. The first eight columns of the table refer to the

baseline case which uses the impulse response of income cumulated at the two year horizon as the dependent

variable. The final column of the table considers the response cumulated at the one-year horizon as the

dependent variable.

The first column of the table relates the estimated responses to variables accounting for the structure

of industry in each state. Here we present the result for the industry variables that displayed a robust
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relationship with the uncertainty responses across a variety of specifications. This additional robustness

analysis is presented in Table 1 in the on-line technical appendix. The results in the first column of Table 2

clearly show that the coefficients on the share of manufacturing and mining industries are highly significant.

The negative coefficient on the share of manufacturing suggests that states with a higher concentration of

manufacturing also experience a larger drop in real income in the face of uncertainty shocks. In contrast,

a larger ratio of mining industries in GDP is associated with a smaller negative response. As shown in the

technical appendix, very similar results are obtained when the share of mining in GDP is replaced by the

share of oil and gas, a sub-category of mining in the classification of industries. As shown in figure 5 that the

uncertainty shock results an increase in the price of some commodities like oil which may help to ameliorate

the negative effects of uncertainty in states where a larger share of GDP is accounted for by such industries.

Columns two to five of Table 2 consider the role industry mix and fiscal indicators jointly. As before,

in these columns we present results from specifications that deliver the most robust results. Table 2 in the

technical appendix shows the different specifications used to arrive at these benchmark estimates.4 In terms

of industry mix, the role of manufacturing and mining remains robust. In column four, the coefficients on

the share of agriculture and construction are also significant — the negative coefficients indicate that states

where these industries are heavily concentrated are more vulnerable to uncertainty shocks. In terms of fiscal

indicators, budget deficits and inter-governmental transfers display a robust relationship with the dependent

variable. States with a larger budget deficit as a share of expenditure are associated with a larger negative

response of real income to uncertainty shocks. On the other hand, a larger proportion of inter-governmental

transfers appear to have a positive effect—a smaller negative response of real income is associated with states

with a larger ratio of inter-governmental transfers to total expenditures.

Columns six and seven consider the possible role played by proxies for financial frictions such as the

proportion of loans made by small banks and the share of small firms in total employment. The coefficients

on these variables are estimated imprecisely. There is some weak evidence that a larger proportion of loans

made by small banks is associated with a bigger drop in income due to uncertainty shocks. However as

shown in Table 3 in the technical appendix, this result is not robust. Across a variety of specifications (that

4We also consider the degree of unionisation in this table. We find that this variable has a negligible relationship with the
estimated response to uncertainty shocks.
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use different definitions of these variables) the main conclusion appears to be that these proxies for financial

frictions are not significantly related to the response to uncertainty shocks.

Column eight of Table 2 shows that the coefficient on the home vacancy rate is significant and negative.

States with a larger home vacancy rate experience a larger drop in income in the face of uncertainty shocks.

This suggest that a higher vacancy rate may signal the inability or unwillingness of agents to absorb negative

shocks. Similar results are obtained if the home vacancy rate is replaced by the standard deviation of this

variable (see Table 4 in the technical appendix). The home ownership rate and its volatility also has a

negative relationship with response to uncertainty but appears to be less signficant.

In the final column of table 2 we consider if the results are robust to the horizon of the impulse response

used to contruct the dependent variable. This specification uses the impulse response cumulated over four

quarters. The results suggest that while the magnitude of the estimated coefficients is somewhat smaller,

the sign and signifcance are broadly similar to the benchmark case.

In summary, the benchmark estimates and the detailed robustness checks presented in the technical

appendix suggest the following results: (1) States with a heavy concentration of manufacturing, agriculture

and construction industries experience a larger drop in income when hit by an uncertainty shock. In contrast,

states with mining as a larger proportion of GDP appear to be affected less by this shock. (2) The fiscal

position of states plays an important role — a larger budget deficit is associated with a more negative response

of state-level income to uncertainty shocks while the proportion of inter-governmental transfers appear to

ameliorate the impact of uncertainty. (3) Income in States with a more volatile housing market declines by

a larger amount in the face of uncertainty shocks.

7 Conclusions

This paper uses an extended factor augmented VAR (FAVAR) model to study the impact of uncertainty

shocks on the real income of US states. We find that the impact of uncertainty shocks is heterogenous. The
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(1) (2) (3) (4) (5) (6) (7) (8) (9)
IRF 2yr IRF 2yr IRF 2yr IRF 2yr IRF 2yr IRF 2yr IRF 2yr IRF 2yr IRF 1yr

Manufacturing -0.352∗∗∗ -0.340∗∗∗ -0.433∗∗∗ -0.542∗∗∗ -0.221∗∗ -0.343∗∗∗ -0.552∗∗∗ -0.464∗∗∗ -0.187∗∗∗

(0.105) (0.097) (0.121) (0.089) (0.088) (0.099) (0.089) (0.084) (0.033)

Mining 0.400∗∗∗ 0.410∗∗∗ 0.505∗∗∗ 0.385∗∗∗ 0.581∗∗∗ 0.479∗∗∗ 0.416∗∗∗ 0.310∗∗∗ 0.124∗∗∗

(0.146) (0.110) (0.151) (0.111) (0.123) (0.112) (0.121) (0.096) (0.045)

Agriculture -0.225 -0.365∗∗∗ -0.319∗∗ -0.450∗∗∗ -0.130∗∗

(0.173) (0.124) (0.131) (0.135) (0.056)

Construction -2.466∗∗ -2.822∗∗∗ -3.022∗∗∗ -2.082∗∗ -0.894∗∗

(1.088) (0.971) (0.926) (0.935) (0.376)

Financial services 0.281 0.459∗∗∗

(0.200) (0.136)

Small banks (≤ 90th pctile) -0.041∗

(0.024)

Budget deficit -0.162∗∗ -0.158∗∗ -0.148∗∗ -0.166∗∗ -0.182∗∗∗ -0.160∗∗ -0.126∗∗ -0.053∗∗

(0.065) (0.061) (0.059) (0.062) (0.058) (0.063) (0.057) (0.025)

Intergov’t transfers 0.225∗∗∗ 0.232∗∗∗ 0.216∗∗∗ 0.256∗∗∗ 0.201∗∗ 0.223∗∗ 0.176∗∗ 0.075∗∗∗

(0.083) (0.072) (0.077) (0.070) (0.089) (0.083) (0.067) (0.026)

Small firms (< 250) -0.148
(0.173)

Home vacancy rate -3.071∗∗∗ -0.939∗∗

(0.861) (0.350)

Observations 51 50 50 50 50 50 50 50 50
Adjusted R2 0.460 0.545 0.634 0.627 0.590 0.558 0.624 0.679 0.640
All models include regional dummies
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01

Table 2: Cross-sectional regression results
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magnitude and persistence of the response is estimated to be the largest in Michigan, Indiana and Arizona.

In contrast, the uncertainty shock has a smaller impact on income in states such as New York, Alaska

and New Mexico. Cross-sectional regressions relating the state-specific impulse responses to state features

suggest that income declines by more in states characterised by a larger share of manufacturing, agriculture

and construction industries, higher fiscal deficit to expenditure ratio and home vacancy rate. States that

have a higher share of mining industries and larger inter-governmental fiscal transfers appear to be affected

less by uncertainty.

These results highlight the importance of industrial structure and concentration for the transmission of

uncertainty shocks. In future work, It would be interesting to explore how these features can be introduced

into theoretical models used to study the impact of uncertainty. It would also be useful to explore, in detail,

the interaction between uncertainty shocks and prices of commodities such as oil and the role played by

commodity prices in propagating the effect of uncertainty at an international level.
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The State Level Impact of Uncertainty Shocks (Technical Appendix)
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1 Model

The FAVAR model is defined as

Xit = BiFt +

K

k=1

ρk,i lnhit−k + vit (1)

Ft = c+

P

j=1

βjFt−j +
J

j=1

γj lnλt−j + Ω
1/2
t et (2)

Rt = diag(h1t, ..hNt) (3)

Ωt = A−1HtA−1 (4)

Ht = diag(Skλt), k = 1, 2, ..N (5)

lnλt = α+ β lnλt−1 +Q1/2ηt (6)

lnhit = ai + bi lnhit−1 + q
1/2
i nit (7)

εit, et, ηt, nit˜N(0, 1) (8)

2 Estimation

2.1 Priors

2.1.1 Factor loadings

The prior on B̃i = [Bi; ρi] is normal and is assumed to be N (Bi,0, VB) where Bi,0 is set equal to the loadings
obtained using a principal component estimate of Ft. The variance VB is assumed to be equal to 1. The initial
estimate of the factors FPCt provides the initial value of the factors F0\0 with the initial variance set equal to the
identity matrix.

2.1.2 VAR Coefficients

Following Banbura et al. (2010) we introduce a natural conjugate prior for the VAR parameters b̃ = {c, b, δ} via
dummy observations. In our application, the prior means are chosen as the OLS estimates of the coefficients of an
AR(1) regression estimated for each endogenous variable using a training sample. As is standard for US data, we
set the overall prior tightness τ = 0.1.

2.1.3 Elements of S,A and the parameters of the common volatility transition equation

The elements of S have an inverse Gamma prior: P (si)˜IG(S0,i, V0). The degrees of freedom V0 are set equal to
1. The prior scale parameters are set by estimating the following regression: λ̄it = S0,iλ̄t + εt where λ̄t is the first

∗Queen Mary College. Email: h.mumtaz@qmul.ac.uk
†University of Copenhagen. E-mail: laura.sunder-plassmann@econ.ku.dk
‡University of Westminster. Email: A.Theophilopoulou@westminster.ac.uk
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principal component of the stochastic volatilities λ̄it obtained using a univariate stochastic volatility model for the
residuals of each equation of the VAR in equation 2 estimated via OLS using the principal components FPCt .

The prior for the off-diagonal elements A is A0 ∼ N âols, V âols where âols are the off-diagonal elements
of the inverse of the Cholesky decomposition of v̂ols, with each row scaled by the corresponding element on the
diagonal. These OLS estimates are obtained using the initial VAR model described above. V âols is assumed to
be diagonal with the elements set equal to 10 times the absolute value of the corresponding element of âols.
We set a normal prior for the unconditional mean μ = α

1−β . This prior is N(μ0, Z0) where μ0 = 0 and
Z0 = 10.The prior for Q is IG (Q0, VQ0) where Q0 is the average of the variances of the transition equations of
the initial univariate stochastic volatility estimates and VQ0 = 5. The prior for β is N (F0, L0) where F0 = 0.8 and
L0 = 1.

2.1.4 Parameters of the idiosyncratic shock volatility transition equation

We set a normal prior for the unconditional mean μ̃ = a
1−b . This prior is N(μ0, Z0) where μ0 = 0 and Z0 = 10.The

prior for qi is IG (q0, Vq0) whereq0 = 0.01 and Vq0 = 5. The prior for b is N (F0, L0) where F0 = 0.8 and L0 = 1.

2.2 Gibbs algorithm

The Gibbs algorithm cycles through the following steps:

1. G (Ft\Ξ): Given a draw for all other parameters (denoted by Ξ ), the algorithm of Carter and Kohn (2004)
is used to sample from the conditional posterior distribution of Ft. The conditional posterior is: Ft\Xit,Ξ ∼
N FT\T , PT\T and Ft\Ft+1,Xit,Ξ ∼ N Ft\t+1,Ft+1 , Pt\t+1,Bt+1

where t = T − 1, ..1. As shown by Carter
and Kohn (2004) the simulation proceeds as follows. First we use the Kalman filter to draw FT\T and PT\T
and then proceed backwards in time using Ft|t+1 = Ft|t+Pt|tf �P

−1
t+1|t Ft+1 − fFt\t − μt and Pt|t+1 = Pt|t−

Pt|tf �P
−1
t+1|tfPt|t. Here f denotes the autoregressive coefficients of the transition equation 2 b in companion

form, while μt denotes the pre-determined regressors in that equation in companion form.

2. G B̃i\Ξ : Given a draw for the factors and the variance of the idiosyncratic component, a seperate het-

eroscedastic linear regression model applies to each Xit and the standard formulae for linear regressions
apply. In particular, the model for each i is

Xit = B̃iF̃t + h
1/2
it εit

where F̃t = [Ft, lnhit−1, lnhit−2, ...]. The model can be transformed to remove heteroscedasticity by creating
X∗
it =

Xit√
hit
, F̃ ∗t =

F̃t√
hit

The conditional posterior is: N (B∗i ,ΛB)

B∗i = V −1B + F̃ ∗�t F̃
∗
t

−1
V −1B Bi,0 + F̃

∗�
t X

∗
it

ΛB = V −1B + F̃ ∗�t F̃
∗
t

−1

3. G (hit\Ξ): Given a draw for the factors, the parameters of the transition equation 7 and the factor loadings
B̃i, a univariate stochastic volatility in mean model applies for each i:

Xit = BiFt +

K

k=1

ρi,l lnhit−l + h
1/2
it εit

lnhit = ai + bi lnhit−1 + q
1/2
i nit

The algorithm of Jacquier et al. (1994) (described below) is used to draw hit.

4. G(b̃\Ξ).Given a draw of λt, the left and the right hand side variables of the VAR: yt = Ft and xt =
[c, Ft−1,Ft−2, ..Ft−j ,λt,λt−1, ..λt−j ] can be transformed to remove the heteroscedasticity in the following man-
ner

ỹt =
yt

λ
1/2
t

, x̃t =
xt

λ
1/2
t
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Then the conditional posterior distribution for the VAR coefficients is standard and given by

N(b̃∗, Ω̄⊗ (X∗�X∗)−1)

where b̃∗ = (X∗�X∗)−1 (X∗�Y ∗), Ω̄ = A−1diag(S)A−1� and Y ∗ and X∗ denote the transformed data appended
with the dummy observations.

5. G(A\Ξ). Given a draw for the VAR parameters the model can be written as A� (vt) = ẽt where vt = Ft −
c+

P
j=1 βjFt−j +

J
j=1 γj lnλt−j and V AR (ẽt) = Ht. This is a system of linear equations with a known

form of heteroscedasticity. The conditional distributions for a linear regression apply to each equation of this
system after a simple GLS transformation to make the errors homoscedastic. The jth equation of this system
is given as vjt = −αv−jt + ẽjt where the subscript j denotes the jth column while −j denotes columns 1
to j − 1. Note that the variance of ẽjt is time-varying and given by λtSj . A GLS transformation involves
dividing both sides of the equation by λtSj to produce v∗jt = −αv∗−jt+ ẽ∗jt where * denotes the transformed
variables and var ẽ∗jt = 1. The conditional posterior for α is normal with mean and variance given by M∗

and V ∗ :

M∗ = V âols
−1
+ v∗�−jtv

∗
−jt

−1
V âols

−1
âols + v∗�−jtv

∗
jt

V ∗ = V âols
−1
+ v∗�−jtv

∗
−jt

−1

6. G(S\Ξ). Given a draw for the VAR parameters A� (vt) = ẽt. The jth equation of this system is given by
vjt = −αv−jt + ẽjt where the variance of ejt is time-varying and given by λtSj . Given a draw for λt this
equation can be re-written as v̄jt = −αv̄−jt + ējt where v̄jt = vjt

λ
1/2
t

and the variance of ējt is Sj . The

conditional posterior is for this variance is inverse Gamma with scale parameter ē�jtējt + S0,j and degrees of
freedom V0 + T.

7. Elements of λt. Conditional on the VAR coefficients, and the parameters of the volatility transition equation,
the model has a multivariate non-linear state-space representation. Carlin et al. (1992) show that the condi-
tional distribution of the state variables in a general state-space model can be written as the product of three
terms:

h̃t\Zt,Ξ ∝ f h̃t\h̃t−1 × f h̃t+1\h̃t × f Zt\h̃t,Ξ (9)

where Ξ denotes all other parameters, Zt denotes the endogenous variables in equation 2 and h̃t = lnλt. In
the context of stochastic volatility models, Jacquier et al. (1994) show that this density is a product of log
normal densities for λt and λt+1 and a normal density for Zt.Carlin et al. (1992) derive the general form of the

mean and variance of the underlying normal density for f h̃t\h̃t−1, h̃t+1,Ξ ∝ f h̃t\h̃t−1 × f h̃t+1\h̃t
and show that this is given as

f h̃t\h̃t−1, h̃t+1,Ξ ∼ N (B2tb2t, B2t) (10)

where B−12t = Q−1 + F �Q−1F and b2t = h̃t−1F �Q−1 + h̃t+1Q−1F. Note that due to the non-linearity of the
observation equation of the model an analytical expression for the complete conditional h̃t\Zt,Ξ is unavailable
and a metropolis step is required. Following Jacquier et al. (1994) we draw from 9 using a date-by-date
independence metropolis step using the density in 10 as the candidate generating density. This choice implies

that the acceptance probability is given by the ratio of the conditional likelihood f Zt\h̃t,Ξ at the old and

the new draw. To implement the algorithm we begin with an initial estimate of h̃ = ln λ̄t We set the matrix
h̃old equal to the initial volatility estimate. Then at each date the following two steps are implemented:

(a) Draw a candidate for the volatility h̃newt using the density 9 where b2t = h̃newt−1 F
�Q−1 + h̃oldt+1Q

−1F and
B−12t = Q

−1 + F �Q−1F

(b) Update h̃oldt = h̃newt with acceptance probability
f(Zt\h̃newt ,Ξ)
f(Zt\h̃oldt ,Ξ)

where f Zt\h̃t,Ξ is the likelihood of the

VAR for observation t and defined as |Ωt|−0.5−0.5 exp ẽtΩ
−1
t ẽ�t where ẽt = Ft− c+

P
j=1 βjFt−j +

J
j=1 γj lnλt−j +

and Ωt = A−1 exp(h̃t)S A−1
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Repeating these steps for the entire time series delivers a draw of the stochastic volatilties.1

7. G(α,β, Q\Ξ).We re-write the transition equation in deviations from the mean

h̃t − μ = β h̃t−1 − μ + ηt (11)

where the elements of the mean vector μ are defined as α
1−β . Conditional on a draw for h̃t and μ the transition

equation 11 is a simply a linear regression and the standard normal and inverse Gamma conditional posteriors
apply. Consider h̃∗t = βh̃

∗
t−1 + ηt, V AR (ηt) = Q and h̃

∗
t = h̃t − μ, h̃∗t−1 = h̃t−1 − μ. The conditional posterior

of β is N (θ∗, L∗) where

θ∗ = L−10 +
1

Q
h̃∗�t−1h̃

∗
t−1

−1
L−10 F0 +

1

Q
h̃∗�t−1h̃

∗
t

L∗ = L−10 +
1

Q
h̃∗�t−1h̃

∗
t−1

−1

The conditional posterior of Q is inverse Gamma with scale parameter η�tηt +Q0 and degrees of freedom T + VQ0.
Given a draw for β, equation 11 can be expressed as Δ̄h̃t = Cμ + ηt where Δ̄h̃t = h̃t − βh̃t−1 and C = 1 − β.

The conditional posterior of μ is N (μ∗, Z∗) where

μ∗ = Z−10 +
1

Q
C �C

−1
Z−10 μ0 +

1

Q
C �Δ̄h̃t

Z∗ = Z−10 +
1

Q
C �C

−1

Note that α can be recovered as μ (1− β)
8. G(ai, bi, qi\Ξ). Given a draw for hit, the conditional posterior distributions for the parameters of the transition
equations 7 are as described in step 7.

2.3 A Monte-Carlo experiment

In order to examine the performance of this algorithm, we consider a small Monte-Carlo experiment

2.3.1 Data Generating Process

We generate data from the following FAVAR model with 2 factors:

Xit = BiFt +R
1/2εit

where R = 0.1, the factor loadings Bi are drawn from N(0, 0.1) and i = 1, 2, ...100.
The dynamics of the factors are defined as

F1t
F2t

=
0.7 0.1
−0.1 0.5

F1t−1
F2t−1

+
−0.5
0.5

lnλt +
v1t
v2t

, var
v1t
v2t

= Ωt

The variance process is defined as

Ωt = A−1 (Sλt)A−1

A =
1 0
−1 1

S =
1 0
0 2

lnλt = −0.1 + 0.75 lnλt−1 + (0.5)
1
2 vt

1 In order to take endpoints into account, the algorithm is modified slightly for the initial condition and the last observation. Details
of these changes can be found in Jacquier et al. (1994).
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We generate 500 observations for Xit and drop the first 100 observations to reduce the influenceof initial conditions.
The experiment is repeated 500 times. At each iteration, the FAVAR model is estimated using the MCMC algorithm
described above using 5000 iterations with a burn-in of 4000 observations. The retained draws are used to calculate
the impulse response of Xit to a 1 standard deviation shock to lnλt for a horizon of 20 periods. In the figures below
we report the difference between the cumulated response at various horizons estimated via the MCMC algorithm
and the response using the true parameter values for each of the N Xit. The figure below shows that, on average,
the difference in the estimated responses and the true responses is zero across the panel and across the different
horizons considered. This provides evidence that the MCMC algorithm performs well.

Figure 1: Monte-Carlo experiment

3 Sensitivity Analysis

3.1 Number of factors

We re-estimate the model and set the number of factors to 5. Figure 2 shows the correlation between the long
run cumulated response of state-level income obtained from the five-factor model and the benchmark model.2 The
scatter plot in the figure shows that the pattern of state-level responses in this model is very similar to the benchmark
case— in fact the cross-sectional correlation between the two sets of responses at this horizon is 0.8.

2The long run response is proxied by the cumulated response at the 40 quarter horizon
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Figure 2: using five factors

3.2 Using Employment

We re-estimate the benchmark model replacing state-level real income with the growth of non-farm employment in
each state. Figure 3 plots the long run cumulated responses of state-level real income from the benchmark model
against the long run cumulated response of state-level employment. The figure shows that there is a high correlation
(of about 70%) between the benchmark estimates and the employment responses.

6



Figure 3: using Employment

3.3 Robustness of the cross section results

Table (1) documents further evidence on the industry mix effects on the state response to uncertainty shocks,
after controling for our baseline mix of public finance and housing market effects. Column 1 is the baseline specifi-
cation. Columns 2 and 3 show that the financial services industry is important by itself, but not after controlling
for the prevalence of agriculture and construction in a state. Column 4 and 5 documents the same pattern using
the real estate sector, a subsector of the financial industry, with the same conclusion. Columns 6 through 10 are
the same as columns 1 through 5, except using the oil industry instead of mining as a whole. These columns show
both sectors play largely similar roles in shaping state responses to uncertainty shocks. Column 11 shows that the
size of the public sector in a state has no significant effect on its response to uncertainty shocks.

Table (2) further investigates the role of various aspects of state government finances in driving the uncertainty
shock responses. Comparing to the baseline specification in column 1, columns 2 and 3 show that expenditures on
social security play a role in dampening the adverse effects of uncertainty shocks, but not after controling for the
effects of state governent deficits and federal transfers. Columns 4, 5 and 6 show that debt, expenditures on welfare
programs and an indicator for the extent of labor market protection (rate of union membership) have no significant
effects on state-level uncertainty shock responses.

Table (3) explores the roles of proxies for financial frictions used in the literature on explaining state-level
heterogeneity along various dimensions. It shows that none are significant, after controlling for our baseline mix
of industry, public finance and housing market effects. Column 1 is again the baseline specification. We next
investigate where the prevalence of small banks plays an important role. Column 2 includes as a regressor the
fraction of loans extended by small banks where small is defined as at or below the 90th percentile of the national
asset distribution of financial institutions. Column 3 includes the same measure where small banks are at or below
the 70th percentile. Both have negative, but not significant effects. Next we explore the role of small firms. Column
4 includes as a regressor the share of employment accounted for by small establishments, where small is defined
as establishments with less than 250 employees. Column 5 defines establishments as small if they have less than
10 employees. Neither measure has a signficant effect on the response to uncertainty shocks. Finally column 6
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Manufacturing -0.464∗∗∗ -0.196∗∗ -0.404∗∗∗ -0.249∗∗ -0.558∗∗∗ -0.467∗∗∗ -0.232∗∗∗ -0.454∗∗∗ -0.278∗∗∗ -0.588∗∗∗ -0.433∗∗∗

(0.084) (0.082) (0.121) (0.098) (0.117) (0.080) (0.082) (0.141) (0.097) (0.131) (0.097)

Mining 0.310∗∗∗ 0.498∗∗∗ 0.387∗∗ 0.406∗∗∗ 0.166 0.328∗∗∗

(0.096) (0.128) (0.153) (0.137) (0.156) (0.101)

Oil 0.337∗∗∗ 0.497∗∗∗ 0.355 0.415∗∗ 0.129
(0.123) (0.164) (0.226) (0.169) (0.231)

Agriculture -0.450∗∗∗ -0.360∗ -0.662∗∗ -0.471∗∗∗ -0.453∗ -0.737∗∗ -0.426∗∗∗

(0.135) (0.189) (0.270) (0.155) (0.256) (0.314) (0.138)

Construction -2.082∗∗ -1.918∗ -1.997∗∗ -2.028∗∗ -1.991∗ -1.949∗∗ -2.134∗∗

(0.935) (1.012) (0.922) (0.859) (1.009) (0.861) (0.932)

Financial services 0.390∗∗ 0.169 0.270 0.035
(0.154) (0.240) (0.211) (0.313)

Real estate 0.236 -0.436 0.109 -0.572
(0.249) (0.373) (0.293) (0.437)

Public sector 0.168
(0.152)

Budget deficit -0.126∗∗ -0.153∗∗ -0.134∗∗ -0.142∗∗ -0.121∗∗ -0.097∗∗ -0.111∗∗ -0.097∗ -0.112∗∗ -0.108∗∗ -0.115∗∗

(0.057) (0.063) (0.059) (0.066) (0.056) (0.047) (0.051) (0.048) (0.054) (0.050) (0.055)

Intergov’t transfers 0.176∗∗ 0.201∗∗∗ 0.187∗∗∗ 0.185∗∗∗ 0.151∗∗ 0.181∗∗ 0.198∗∗∗ 0.184∗∗ 0.182∗∗∗ 0.146∗∗ 0.149∗

(0.067) (0.062) (0.066) (0.061) (0.066) (0.072) (0.065) (0.069) (0.063) (0.068) (0.077)

Home vacancy rate -3.071∗∗∗ -2.974∗∗∗ -2.864∗∗∗ -3.156∗∗∗ -3.701∗∗∗ -3.170∗∗∗ -3.141∗∗∗ -3.133∗∗∗ -3.283∗∗∗ -3.942∗∗∗ -2.961∗∗∗

(0.861) (0.879) (0.915) (0.908) (1.214) (0.852) (0.892) (0.977) (0.920) (1.250) (0.866)

Observations 50 50 50 50 50 50 50 50 50 50 50
Adjusted R2 0.679 0.644 0.676 0.610 0.680 0.664 0.608 0.656 0.588 0.676 0.676
All models include regional dummies. Dependent variable: IRF at 2 year horizon
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01

Table 1: Industry Mix
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(1) (2) (3) (4) (5) (6)

Budget deficit -0.126∗∗ -0.102 -0.134∗∗

(0.057) (0.087) (0.065)

Intergov’t transfers 0.176∗∗ 0.155∗∗ 0.197∗∗∗

(0.067) (0.073) (0.067)

Social security 0.349∗∗ 0.109
(0.163) (0.248)

Assistance/subsidies 0.365
(0.791)

Gov’t debt -0.000
(0.020)

Union membership 0.001
(0.001)

Manufacturing -0.464∗∗∗ -0.495∗∗∗ -0.480∗∗∗ -0.480∗∗∗ -0.470∗∗∗ -0.446∗∗∗

(0.084) (0.090) (0.085) (0.090) (0.092) (0.095)

Mining 0.310∗∗∗ 0.340∗∗∗ 0.332∗∗∗ 0.300∗∗ 0.294∗∗ 0.341∗∗∗

(0.096) (0.096) (0.098) (0.133) (0.141) (0.111)

Agriculture -0.450∗∗∗ -0.304∗∗ -0.388∗∗ -0.460∗∗∗ -0.461∗∗∗ -0.339∗∗

(0.135) (0.145) (0.159) (0.139) (0.139) (0.166)

Construction -2.082∗∗ -1.912∗∗ -1.907∗∗ -2.037∗∗ -1.958∗∗ -1.919∗∗

(0.935) (0.877) (0.935) (0.920) (0.895) (0.859)

Home vacancy rate -3.071∗∗∗ -3.121∗∗∗ -2.818∗∗∗ -3.711∗∗∗ -3.740∗∗∗ -2.560∗∗∗

(0.861) (0.907) (0.937) (0.974) (1.052) (0.877)

Observations 50 50 50 50 50 50
Adjusted R2 0.679 0.657 0.677 0.623 0.622 0.684
All models include regional dummies. Dependent variable: IRF at 2 year horizon
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01

Table 2: Fiscal Indicators
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is the specification used in Carlino and Defina (1998), which does not include our baseline controls, but only the
manufacturing share, small banks and small firms measures. Again, neither the bank nor the firm measure are
significant.

Table (5) shows that our results are robust to considering the uncertainty shock response at different horizons.
At very short horizons of 1 quarter, the confidence intervals around the responses are wider and some effects
insignificant although qualitatively comparable to the longer horizons. For all but the very shortest horizon, the
results are both qualitatively and quantitatively robust.

4 Data

4.1 Data for FAVAR

The FAVAR model includes 91 Macroeconomic and Financial time-series and real personal income for 51 states.
The data for total personal income for each state is obtained from FRED. These series are divided by CPI and then
transformed by taking the log difference and multiplying by 100. The table below lists the 91 Macroeconomic and
Financial time-series. In terms of the data sources GFD refers to Global Financial Database, FRED is the Federal
Reserve Bank of St Louis database. D denotes the log difference transformation (times 100), while N denotes no
transformation.
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(1) (2) (3) (4) (5) (6)

Small banks (≤ 90th pctile) -0.018 -0.018
(0.029) (0.022)

Small banks (≤ 70th pctile) -0.026
(0.053)

Small firms (< 250) -0.278 0.249
(0.166) (0.227)

Small firms (< 10) -0.076
(0.252)

Manufacturing -0.464∗∗∗ -0.455∗∗∗ -0.462∗∗∗ -0.471∗∗∗ -0.465∗∗∗ -0.477∗∗∗

(0.084) (0.089) (0.086) (0.082) (0.085) (0.106)

Mining 0.310∗∗∗ 0.349∗∗∗ 0.345∗∗ 0.357∗∗∗ 0.320∗∗∗

(0.096) (0.124) (0.130) (0.102) (0.098)

Agriculture -0.450∗∗∗ -0.382∗∗ -0.389∗∗ -0.375∗∗∗ -0.426∗∗

(0.135) (0.179) (0.184) (0.135) (0.161)

Construction -2.082∗∗ -2.014∗∗ -2.146∗∗ -2.347∗∗∗ -2.042∗∗

(0.935) (0.960) (0.886) (0.829) (0.972)

Budget deficit -0.126∗∗ -0.139∗∗ -0.135∗∗ -0.145∗∗ -0.128∗∗

(0.057) (0.060) (0.060) (0.061) (0.058)

Intergov’t transfers 0.176∗∗ 0.163∗∗ 0.163∗∗ 0.182∗∗ 0.179∗∗

(0.067) (0.073) (0.075) (0.074) (0.070)

Home vacancy rate -3.071∗∗∗ -3.034∗∗∗ -2.977∗∗∗ -3.540∗∗∗ -3.145∗∗∗

(0.861) (0.858) (0.859) (0.945) (0.914)

Observations 50 50 50 50 50 51
Adjusted R2 0.679 0.674 0.673 0.693 0.671 0.312
All models include regional dummies. Dependent variable: IRF at 2 year horizon
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01

Table 3: Financial Frictions
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(1) (2) (3) (4)

Home vacancy rate -3.071∗∗∗

(0.861)

Home vacancy rate (sd) -0.131∗∗∗

(0.034)

Home ownership rate -0.038
(0.172)

Home ownership rate (sd) -0.027∗∗

(0.011)

Manufacturing -0.464∗∗∗ -0.528∗∗∗ -0.521∗∗∗ -0.543∗∗∗

(0.084) (0.083) (0.139) (0.086)

Mining 0.310∗∗∗ 0.225∗∗ 0.400∗∗∗ 0.371∗∗∗

(0.096) (0.091) (0.134) (0.095)

Agriculture -0.450∗∗∗ -0.360∗∗ -0.341∗ -0.373∗∗∗

(0.135) (0.137) (0.186) (0.126)

Construction -2.082∗∗ -1.606 -2.705∗∗ -2.039∗∗

(0.935) (1.042) (1.311) (0.915)

Budget deficit -0.126∗∗ -0.136∗∗∗ -0.153∗∗ -0.163∗∗∗

(0.057) (0.048) (0.065) (0.057)

Intergov’t transfers 0.176∗∗ 0.112∗ 0.218∗∗∗ 0.182∗∗

(0.067) (0.060) (0.077) (0.078)

Observations 50 50 50 50
Adjusted R2 0.679 0.706 0.618 0.671
All models include regional dummies. Dependent variable: IRF at 2 year horizon
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01

Table 4: Housing Market
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(1) (2) (3) (4)
IRF 2yr stateirf_1 stateirf_12 IRF 4yr

Manufacturing -0.464∗∗∗ -0.045∗∗∗ -0.670∗∗∗ -0.751∗∗∗

(0.084) (0.009) (0.127) (0.152)

Mining 0.310∗∗∗ 0.022∗∗ 0.492∗∗∗ 0.602∗∗∗

(0.096) (0.010) (0.151) (0.187)

Agriculture -0.450∗∗∗ -0.054∗∗∗ -0.514∗∗ -0.442∗

(0.135) (0.016) (0.203) (0.248)

Construction -2.082∗∗ -0.135 -3.264∗∗ -4.072∗∗

(0.935) (0.083) (1.502) (1.909)

Budget deficit -0.126∗∗ -0.015∗∗ -0.183∗∗ -0.206∗

(0.057) (0.006) (0.086) (0.104)

Intergov’t transfers 0.176∗∗ 0.010 0.275∗∗∗ 0.339∗∗∗

(0.067) (0.007) (0.099) (0.114)

Home vacancy rate -3.071∗∗∗ -0.118 -4.562∗∗∗ -5.563∗∗∗

(0.861) (0.087) (1.364) (1.693)

Observations 50 50 50 50
Adjusted R2 0.679 0.561 0.671 0.657
All models include regional dummies
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01

Table 5: Using IRFs at different horizons
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Table 6: Data for the factor model.

Variable Description Source Transformation
1 Industrial Production FRED D
2 Industrial Production: Business Equipment FRED D
3 Industrial Production: Consumer Goods FRED D
4 Industrial Production: Durable Consumer

Goods
FRED D

5 Industrial Production: Durable Materials FRED D
6 Industrial Production: Final Products

(Market Group)
FRED D

7 Industrial Production: Final Products and
Nonindustrial Supplies

FRED D

8 Industrial Production: Manufacturing FRED D
9 Industrial Production: Materials FRED D
10 Industrial Production: Nondurable Con-

sumer Goods
FRED D

11 Dow Jones Industrial Index GFD D
12 GDP Deflator FRED N
13 ISM Manufacturing: New Orders Index FRED N
14 ISM Manufacturing: Inventories Index FRED N
15 ISM Manufacturing: Supplier Deliveries In-

dex
FRED N

16 ISM Manufacturing: PMI Composite Index FRED N
17 ISM Manufacturing: Employment Index FRED N
18 ISM Manufacturing: Production Index FRED N
19 ISM Manufacturing: Prices Index FRED N
20 Employment FRED D
21 All Employees: Construction FRED D
22 All Employees: Financial Activities FRED D
23 All Employees: Goods-Producing Indus-

tries
FRED D

24 All Employees: Government FRED D
25 All Employees: Trade, Transportation and

Utilities
FRED D

26 All Employees: Retail Trade FRED D
27 All Employees: Wholesale Trade FRED D
28 All Employees: Durable goods FRED D
29 All Employees: Manufacturing FRED D
30 All Employees: Nondurable goods FRED D
31 All Employees: Service-Providing Indus-

tries
FRED D
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Table 6: Data for the factor model.

32 All Employees: Total Nonfarm Payrolls FRED D
33 Real personal income excluding current

transfer receipts
FRED D

34 Business Conditions Index GFD N
35 Imports Fred D
36 Exports Fred D
37 Real Government Spending Fred D
38 Real Tax revenues Fred D
39 Business Investment Fred D
40 Real Consumption Expenditure Fred D
41 Real GDP Fred D
42 Unemployment Rate Fred N
43 Number of Civilians Unemployed for 15

Weeks and Over
Fred D

44 Number of Civilians Unemployed for 15 to
26 Weeks

Fred D

45 Number of Civilians Unemployed for 27
Weeks and Over

Fred D

46 Number of Civilians Unemployed for 5 to 14
Weeks

Fred D

47 Number of Civilians Unemployed for Less
Than 5 Weeks

Fred D

48 Average (Mean) Duration of Unemploy-
ment

Fred D

49 Average Weekly Hours Fred D
50 Average Weekly Hours of Production

and Nonsupervisory Employees: Goods-
Producing

Fred D

51 Average Hourly Earnings of Production
and Nonsupervisory Employees: Goods-
Producing

Fred D

52 Average Hourly Earnings of Production and
Nonsupervisory Employees: Construction

Fred D

53 Average Hourly Earnings of Production and
Nonsupervisory Employees: Manufacturing

Fred D

54 Average Weekly Hours of Production and
Nonsupervisory Employees: Manufacturing

Fred D

55 Civilian Labour Force Fred D
56 Civilian Participation Rate Fred D
57 Unit Labour Cost Fred D
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Table 6: Data for the factor model.

58 Nonfarm Business Sector: Real Compensa-
tion Per Hour

Fred D

59 M2 Money Fred D
60 Total Consumer Credit Owned and Securi-

tized, Outstanding
Fred D

61 Commercial and Industrial Loans, All Com-
mercial Banks

Fred D

62 Real Estate Loans, All Commercial Banks Fred D
63 Producer Price Index for All Commodities Fred D
64 Producer Price Index by Commodity Met-

als and metal products: Primary nonferrous
metals

Fred D

65 Producer Price Index by Commodity for
Crude Materials for Further Processing

Fred D

66 Producer Price Index by Commodity for
Finished Consumer Goods

Fred D

67 Producer Price Index by Commodity for
Finished Goods

Fred D

68 Producer Price Index by Commodity Inter-
mediate Materials: Supplies and Compo-
nents

Fred D

69 Consumer Price Index Fred D
70 Consumer Price Index for All Urban Con-

sumers: Apparel
Fred D

71 Consumer Price Index for All Urban Con-
sumers: Medical Care

Fred D

72 Consumer Price Index for All Urban Con-
sumers: All items less shelter

Fred D

73 Personal Consumption Expenditures:
Chain-type Price Index

Fred D

74 3 Month Treasury Bill Rate Fred N
75 10 year Govt Bond Yield minus 3mth T-bill

rate
GFD N

76 6mth T-Bill rate minus 3mth T-bill rate GFD N
77 1 year Govt Bond Yield minus 3mth T-bill

rate
GFD N

78 5 year Govt Bond Yield minus 3mth T-bill
rate

GFD N

79 Commodity Price Index GFD D
80 West Texas Intermediate Oil Price GFD D
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Table 6: Data for the factor model.

81 BAA Corporate Spread GFD N
82 AAA Corporate Bond Spread GFD N
83 S&P500 Total Return Index GFD D
84 NYSE Stock Market Capitalization GFD D
85 S&P500 P/E Ratio GFD N
86 Pound dollar Exchange Rate GFD D
87 US and Canadian Dollar exchange rate GFD D
88 US dollar and German Mark exchange rate GFD D
89 Us Dollar and Japanese Yen Exchange Rate GFD D
90 Nasdaq Composite GFD D
91 NYSE Composite GFD D
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4.2 Data for Cross-section Analysis

• Small establishment employment share: Employment at the 6-digit NAICS industry level, by state and estab-
lishment size, annual 1986 to 2013. Source: Census Bureau, County Business Patterns. Small establishments
are defined as those with less than 250 employees. We aggregate to the state level, and average over time.

• Industry shares of GDP (oil, agriculture, finance, manufacturing): State-level GDP by industry, annual 1963
to 2013, average over time. Source: BEA. Industry classification is NAICS since 1997, SIC prior to that.

• Share of loans extended by small banks: Bank balance sheet data on all FDIC-insured financial institutions
excluding bank holding companies, quarterly 2001Q1 to 2015Q3. Source: Call Reports from the FFIEC.
Small banks are defined as at or below the 90th percentile of the national distribution of bank size by assets.
The small bank loans share is the time-average of the fraction of total loans on small bank balance sheets in
each state. The panel contains 449,777 observations, the cross-section contains on average 150 institutions
per state.

• State government debt, deficit and intergovernmental transfers: State government sources of revenues and
expenditures, annual 1992 to 2013, average over time. Source: Census Bureau. Intergovernment transfers are
the sum of transfers to/from federal and local governments.

• Homeownership rate: Home ownership rates, quarterly 2005Q1-2015Q4, standard deviation over time. Source:
Census Bureau.

• Union membership as a share of nonagricultural employment by state, average of 1984 and 2000. Source:
Barry T. Hirsch (2001)

5 Recursive means of retained draws
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Figure 1: Recursive means calculated every 20 draws
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