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Abstract

We study a linear location model (Hotelling, 1929) in which n (with
n ≥ 2) boundedly rational players follow (noisy) myopic best-reply behavior.
We show through numerical and mathematical analysis that such players
spend almost all the time clustered together near the center, re-establishing
the “Principle of Minimum Differentiation” that had been discredited by
equilibrium analyses. Thus, our analysis of the best-response dynamics shows
that when considering market dynamics as well as their policy and welfare
implications, it may be important to look beyond equilibrium analyses.
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1 Introduction

Hotelling (1929) showed in a linear location model, in which two players

independently choose a location, with their payoffs depending on the distance from

individuals distributed on the line, that both players will locate together in the

center. This result led to the notion of the “Principle of Minimum Differentiation”.
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Hotelling’s model, where individuals have preferences over locations, provided

a theoretical explanation for some casual observations that he reported about a

widespread tendency for decision makers to choose only slight deviations from each

other’s location in the most diverse fields of competitive activity, even quite apart,

as he put it, from what is typically called economic life. Besides geographical

locations, he also discussed locations in product characteristics space, mentioning

a “tremendous standardization of our furniture, our houses, our clothing, our

automobiles and our education” (p. 54), as well as the choice of platforms by political

parties in policy space.

Building on Hotelling’s results, Black (1948) and Downs (1957) established the

“Median Voter Theorem”, i.e., that a plurality voting rule will select the outcome

preferred by the median voter. Also related is “Duverger’s Law” (Duverger, 1954),

which suggests that with plurality voting, one should expect a two-party system.

This has given rise to an extensive empirical and theoretical literature (see e.g. Riker

(1982), Rowley (1984), Osborne (1995), Grofman (2004), and many others). In this

paper, we will go back to Hotelling (1929), and focus on one single aspect of this

literature: The Principle of Minimum Differentiation.

Hotelling’s result that in equilibrium the players will locate together in the center

turns out to be correct for the special case of n = 2 players. As we will briefly sketch

in Section 2, equilibrium analyses have made clear that the Principle of Minimum

Differentiation is not robust to changing the number of players n in the basic location

model to any number n > 2. In fact, for any n > 2, the Nash equilibria look almost

the opposite of what is described by the Principle of Minimum Differentiation, with

all players spread out relatively evenly, leaving only the extreme fringes unoccupied,

as the most extreme players will be tugging in with their neighbors, and strict

bounds on the spatial differences between the players.

Experimental evidence for Hotelling’s location game in the laboratory with n = 3
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(Collins and Sherstyuk, 2000) and n = 4 (Huck, Müller, and Vriend, 2002) suggests

that one may expect many non-equilibrium outcomes in this game, with in particular

more choices near the center than predicted by the theory.1

Given the apparently widespread centripetal tendency of decision makers in a

range of different settings, as argued e.g. by Hotelling (1929), typically also in cases

where there are more than two decision makers, and given also the experimental

evidence for the basic Hotelling game, the game-theoretic analysis of the basic

location game raises the important question as to how one may explain such a

centripetal tendency. In the industrial organization literature, Palma, Ginsburgh,

Papageorgiou, and Thisse (1985) showed that one way to restore the Principle is

to assume that there is sufficient heterogeneity in consumers’ tastes combined with

uncertainty by the firms about these preferences. Another approach is to consider a

different equilibrium concept. Shino and Kawasaki (2012) characterize the farsighted

stable set of the Hotelling game, and show that this set contains location profiles

that reflect the minimum differentiation.

In this paper, we will follow an alternative approach. Instead of an equilibrium

analysis, we will analyze the behavior of myopic best-response dynamics. We will

show, through numerical as well as formal, mathematical analysis, that the players

will be located almost all the time close to the center if their location choices are

governed by noisy, myopic best-responses to the other players. We show for n ≥ 3

that players spend significantly much more time in locations that are closer to the

center (and close to each other) than predicted by the Nash equilibria. What is

more, we show that by refining the discrete space (thus approximating a continuous

space), we can get the players located arbitrarily close to the center almost all the

time, catering essentially just to the median voter.

Thus, while the Principle of Minimum Differentiation is consistent with Nash

1See also Brown-Kruse, Cronshaw, and Schenk (1993) and Brown-Kruse and Schenk (2000) for
related duopoly experiments.
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equilibrium behavior only for n = 2, to the extent that there may be a tendency

for decision makers to choose (noisy) myopic best-responses, our analysis suggests a

possible explanation as to why this popular notion is so ubiquitous, acquiring almost

“folk wisdom” status, as well as for the empirical evidence this is based on.

Providing a possible explanation for some empirical phenomenon is not the only

reason why our analysis may be interesting. That best-response dynamics may

lead to outcomes that are so different from the Nash equilibrium analyses seems an

intriguing feature of the Hotelling game from a theoretical point of view, and relates

to the literature on best-response dynamics and Nash equilibria. See, e.g., Hofbauer

(1995), Hopkins (1999), and Balkenborg, Hofbauer, and Kuzmics (2013).

The rest of the paper is organized as follows. Section 2 presents the basic

Hotelling location model as well as a brief overview of the equilibrium analysis.

Section 3 presents our numerical analysis, to gain some insight into the behavior of

best-response dynamics in our model. We, then, formally characterize the long-run

behavior for the case of n = 3 in Section 4, followed by the case of n = 4 in Section 5.

Section 6 presents some concluding remarks.

2 Equilibrium and minimum differentiation

In this section, we will give a brief overview of the various equilibria found in

Hotelling’s location game. We focus our attention on a basic, linear location model,

which we will present for convenience as a model of spatial voting where the players

are parties who choose a platform x in a one-dimensional, continuous policy space

(normalized to [0, 1]). Following Eaton and Lipsey (1975), assume that no two

parties can choose exactly the same location, with the minimum distance being δ

(with δ close to 0). An infinite number of voters with unit mass, whose preferences

are distributed uniformly over this space, vote for the player who are closest to their
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preferred location.2 The spatial distribution of voters is known to the players.

The payoff for a player from choosing location x is simply the share of votes

received at that location. Therefore, if the two nearest players to the left and to the

right are located in L(x) and R(x) respectively, with L(x) < x < R(x), the payoff

of choosing location x is given by:

π

(
x|L(x), R(x)

)
=



R(x)−L(x)
2

if 0 ≤ L(x) < R(x) ≤ 1(
x+ R(x)−x

2

)
if no player to the left of x and R(x) ≤ 1(

1− x+ x−L(x)
2

)
if 0 ≤ L(x) and no player to the right of x

Eaton and Lipsey (1975) characterized pure strategy Nash equilibria for games

with any number of players but three. If n = 2, the unique Nash equilibrium is when

both players locate at x = 1
2
, giving a payoff π = 1

2
, as any other location would

imply a lower payoff. For n = 3 there is no Nash equilibrium in pure strategies. Any

of the peripheral players will want to move in towards the interior player as much as

possible, but that interior player will always want to jump out of this squeeze. We

will turn our attention to mixed strategy equilibria in a moment, but first we will

consider equilibria in pure strategies for n > 3. For n = 4, the Nash equilibrium

configuration has two players located at 1
4

and the other two at 3
4
. Each player will

get a payoff of 1
4
. When n = 5, there will be three locations that will be occupied

in equilibrium: one in the center (occupied by one player), and two peripheral ones

equally distanced from the center, located at 1
6

and 5
6

respectively, and each occupied

by two players. Note that this means that the interior player will get a payoff of 1
3
,

whereas the four peripheral players will each get a payoff of 1
6
.

Eaton and Lipsey show that there is multiplicity of equilibria when there are

more than 5 players (for any n > 5). For n = 6, one equilibrium configuration

2When a voter finds that the best option to the left and the best option to the right are equally
distant, they choose by a fair coin toss.
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involves three locations, with 1
6
, 3

6
and 5

6
each occupied by two players, and each

of them getting a payoff of 1
6
. An alternative equilibrium configuration involves the

four locations 1
8
, 3

8
, 5

8
and 7

8
, where the two peripheral locations are occupied by two

players and the two interior ones by one player each. In this case the two interior

players will get a payoff of 1
4

and the four peripheral ones a payoff of 1
8
. Between

these two equilibria there is an infinite number of additional equilibria. Think of the

second equilibrium as a stretched version of the first one. As the interval between the

two peripheral locations gets gradually stretched, for any distance one can compute

the required distance for the interior players such that no player has an incentive to

deviate. The same logic, and hence multiplicity of equilibria, applies for any n > 6.

Eaton and Lipsey present an informal proposition (for any n ≥ 6) computing

the bounds for the locations of the peripheral pairs of players, as well as for the vote

shares of each of the players as a function of n. The upper bound for the distance

from the boundary of the space to the leftmost (or rightmost) player is 1
n
. If the

space left at the extreme by the peripheral player were greater than that, this player

would get a payoff greater than 1
n
, and hence the average payoff of the other players

must be strictly less than 1
n
, which means that at least one of them could profitably

deviate to this space left by the peripheral player and get a payoff of at least 1
n
.

Thus, in any equilibrium the distance between the leftmost and rightmost player

will be at least n−1
n

, which will approach 1 as n increases. Within this range the

players must be spread relatively evenly. Towards the two boundaries there must

be a pair of peripheral players, as the outermost players always have an incentive to

move towards their neighbours as far as possible. Interior players may be located

either individually or in pairs. If they appear as a pair their distance will be δ,

but otherwise the upper bound for the intervals between players will be 2
n
. What is

more, in equilibrium no player can get more votes than twice the number of votes

for any of the other players.
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We now consider mixed strategy Nash equilibria. Although no pure strategy

equilibrium exists for n = 3, there is a doubly symmetric mixed strategy Nash

equilibrium characterized by Shaked (1982): All players choose locations x such

that 1
4
≤ x ≤ 3

4
with equal probabilities. Ewerhart (2014) characterized the set

of mixed Nash equilibria for n ≥ 4, showing that as n increases this leads to a

more dispersed distribution of individual locations. The distributions are sharply

M-shaped, with most weight at locations at the periphery of the support interval.

The support increases as n increases, and for the reported values of n exceeds that of

the maximum distance between leftmost and rightmost players in the corresponding

pure strategy Nash equilibria.

We can summarize these findings by noting that for any n > 2 the equilibrium

analyses seem to discredit the Principle of Minimum Differentiation as the locations

chosen in the Nash equilibria are spread out considerably.

Another noteworthy characteristic coming out of the equilibrium analysis is the

generic multiplicity of Nash equilibria (for any n > 5 in pure strategies, and any

n > 3 if we consider mixed strategies too). Besides this multiplicity of equilibria,

another characteristic of these Nash equilibria, to which we will return in our analyis

of the best-response dynamics, is that all these Nash equilibria are weak. While this

is trivially true for any mixed Nash equilibrium, it is also the case in the pure

strategy equilibria for any n > 3, where there are always some players who could

deviate from an equilibrium location to any two locations that are between two other

players without loss of payoffs.

Besides varying the number of players n, a number of alternative variations of

the basic model and their effect on the equilibrium predictions have been considered

in the literature. For example, Eaton and Lipsey (1975) consider one-dimensional

spaces without bounds, or two-dimensional spaces, showing that the Principle of

Minimum Differentiation will normally not hold. Apart from considering other
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spatial dimensions, equilibrium locations may contradict the Principle also when

extending the basic Hotelling game in other dimensions. For example, in industrial

organization, (d’Aspremont, Gabszewicz, and Thisse, 1979) show that in a two-

stage game where two firms choose their locations in the first stage, and then

compete in terms of prices in the second stage, when the cost of transportation is

quadratic for consumers, firms will locate in the opposite ends of the line to soften

the competition in terms of prices.3 Irmen and Thisse (1998) consider product

differentiation in a multi-characteristics space, and show that firms will choose to

maximize differentiation in some dominant (salient) characteristic while minimizing

differentiation in the others. Similarly, in political economy, the Principle may

not apply if political parties care not only about winning elections but are also

ideologically motivated, i.e., they care about the policy actually implemented. Even

with only two parties, in equilibrium we may see diverging platforms if there is

sufficient uncertainty about the location of the median voter (Drouvelis, Saporiti,

and Vriend, 2014).

3 Best-response dynamics: numerical analysis

Before turning to the formal, mathematical analysis of the behavior of best-response

dynamics in the Hotelling model in sections 4 and 5, where we characterize the

invariant distribution of the players in the long run, in this section we will present

a numerical analysis of the dynamics of the system.

For the remainder of the paper we will focus on a slight variation of the basic,

linear location model sketched in section 2. Instead of a continuous strategy space,

we will consider a discrete space. We discretize the interval [0, 1] into 2M+1 equally

3Matsumura, Matsushima, and Yamanori (2010) analyze the consequences of the evolutionary
dynamics of two firms competing in the setting of d’Aspremont, Gabszewicz, and Thisse (1979),
and show that such dynamics restore the minimum differentiation in that, under the unique
stochastically stable equilibrium, the two firms will locate in the center and set their prices equal
to their marginal costs.
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spaced locations x ∈ {0, 1, ..,M − 1,M,M + 1, ..., 2M}, where x = 0 and x = 2M

correspond to the two boundaries, 0 and 1 respectively, and x = M is the median.

Higher values of M correspond to a finer discretization of the space.4 As before,

the spatial distribution of voters (uniform with full support) is known to all players,

and it will stay constant.

Each player can only occupy one of these discretized locations at any point in

time. But any location x can be selected by any of the players simultaneously.5

As the payoff for a player from choosing location x is simply the number of votes

received at that location, when the number of players in location x is nx, and two

nearest players to the left and to the right are located in L(x) and R(x) respectively,

with L(x) < x < R(x), the payoff of choosing location x is given by:

π

(
x|nx, L(x), R(x)

)
=



1
nx

R(x)−L(x)
2

if 0 ≤ L(x) < R(x) ≤ 1

1
nx

(
x+ R(x)−x

2

)
if no player to the left of x and R(x) ≤ 1

1
nx

(
1− x+ x−L(x)

2

)
if 0 ≤ L(x) and no player to the right of x

The discreteness of the space and the opportunity for more than one player to

select the same location induce some slight changes to the equilibria sketched in

section 2, but the main qualitative features, with all Nash equilibria for any n > 2

looking strongly at odds with the Principle of Minimum Differentiation, are not

affected. We will report on the dynamics for values of M ∈ {1500, 15, 000, 150, 000},

and values of n ∈ {3, 4, 5, 6, 7, 8}.6

4Note that this implies that the number of locations will be odd, ensuring that the space has a
median, location M , that can actually be chosen by the players. Results for the numerical analysis
of the best-response dynamics for even numbers of locations are available from the authors upon
request.

5As before, when a voter finds that the best option(s) to the left and the best option(s) to the
right are equally distant, they choose between going left or right by a fair coin toss. If, then, there
is more than one player at location x, votes will be equally divided among the players located
there.

6We chose the values of M so that the number of intervals will be a multiple of 60,
accommodating many of the Nash equilibria in the discretized system for the numbers of players
n that we consider. Of course, as noted already, in a continuous strategy space there is an infinite
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In each period, all players simultaneously decide where to locate themselves,

except in the very first period when they are all located randomly. We consider

noisy myopic best-replies. Each player chooses a myopic best-reply with probability

1 − ε, and chooses a location uniformly randomly with probability ε. We report

the results for ε = 0.001. When myopically best-replying, each player takes the

positions of the other players in the previous period as given and selects a position

that maximizes his payoff. When there are multiple such locations, one of them will

be chosen (uniform) randomly.7

Best-response dynamics are related to a broad class of learning dynamics and

evolutionary dynamics (see, e.g., Hopkins, 1999). The underlying idea of considering

such a plausible class of dynamics is to shed some light on the question as to whether

one should expect (boundedly rational) players to play a Nash equilibrium. If best-

response dynamics converge, it can only be at a strict Nash equilibrium. But if they

exhibit endless cycling, one question to consider will be where the system spends

most of the time.

As we saw above, for any n > 3 the location game is characterized by a

multiplicity of equilibria, and all these Nash equilibria are weak, as there are

always some players who are indifferent between their equilibrium locations and

some alternative locations. As players choose randomly among their best-replies,

for any equilibrium there may be some individual players who move out of their

equilibrium location, rendering these equilibria unstable as other players may be

number of Nash equilibria for any n > 5, and thus any discretization will be able to relate to only
a subset of these. The minor effect of the discreteness of the strategy space is illustrated e.g. in
Huck, Müller, and Vriend (2002), where we see that with n = 4 in equilibrium the paired players
may stay either in the same location or in two neighboring ones. Results for the analysis of the
dynamics for different values of M and n are available from the authors upon request.

7We also considered a version with inertia, in which players for whom the current location
is part of their best-response correspondence will stay put, and a version with a preference for
near-by locations, in which, in case of indifference, the location closest to the current location will
be chosen. Note that these versions rely on additional specific assumptions about moving costs.
Instead of simultaneous moves we also considered a version with sequential moves, where in each
period one randomly chosen player decides where to locate himself. Results for these variants are
available from the authors upon request.
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affected. In addition to this effect of the equilibria being weak, the best-response

dynamics that we consider are characterized by a small amount of noise. This

prevents the system getting stuck in simple periodic trajectories.8 Moreover, the

presence of noise ensures that the location dynamics will be an ergodic Markov

chain. It is then well known that their long run behavior will be described by an

invariant distribution on the states that is reached regardless of the initial conditions

of the system.

The question, then, is what outcomes one should expect in these simple linear

location models when players follow a noisy myopic best-reply. Although one should

not expect perfect convergence to a weak Nash equilibrium, one possible outcome

would be that they spend most of the time near or approximating Nash equilibrium

locations.

Before we will turn to an examination of some statistics of the system later in

this section, we start our numerical analysis with a relatively close-up look at a

number of representative runs of the model, examining how individual players move

around from period to period. This will also provide some insights that may be

helpful in our formal, mathematical analysis in sections 4 and 5.

Figure 1 shows some representative snapshots of locations chosen by all n players

over a 1000 period interval for M = 1500, and n = 3, 4, 5, 6, 7, 8, with ε = 0.001.

Each location chosen by each player in each period is represented by a dot. The

1000 periods were taken after 10, 000, 000 periods had passed from the beginning

of each run to reduce the possible effects of the initial, random allocations. Time

is shown on the horizontal axis, while the vertical axis shows the locations. The

left-hand side column shows the 1000 locations near the center for the graphs for

n = 3, 4, 6 and 8, while the right-hand side column shows the same runs, but now

with the vertical axis zoomed into the most relevant parts of the strategy space for

8It is also effective in the variant with inertia (where players stay put in case of indifference).
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each graph to optimize the display of the locations.

Figure 1 reveals some interesting features. For n = 3, the players are basically

staying within a small set of locations around the center. For n ≥ 4, we can see

more clearly how the dynamics are dominated by waves of outward expansion of

two clusters of players that are equally distanced from the center and located in the

opposite sides of the center, alternated with waves of single clusters slowly moving

inward to the center. While riding the outward waves, when it comes to choosing a

best-response all players are indifferent between these two clusters, as long as there

is at least one other player in their current cluster. As a result, the numbers involved

within each of the clusters may vary from period to period, and at some point it will

happen that all the players locate themselves in the same cluster, and hence in the

same half of the strategy space. The single cluster, then, starts moving step-by-step

towards the center.9 Once the cluster reaches the center, there are two possibilities.

Either all players stay together, moving to either M−1 or to M+1 before returning

to M . Or the cluster splits into two, with some players moving to M − 1 and some

others to M + 1, followed by a step-by-step outwards movement of both clusters,

with varying memberships, until all players happen to choose the same side of the

strategy space again. To start these waves all that is needed is that all players are

located in the same half of the strategy space.10

Note that in none of the snapshots do we see convergence to the corresponding

Nash equilibrium. Instead, we tend to see the wrong clustering at the wrong

locations and moving into the wrong direction. At first sight, the most likely

candidate to be reached by best-response dynamics is the Nash equilibrium for the

case of n = 4, as it consists of exactly two clusters of two players at locations M
2

and 3M
2

. Taking a closer look at this case provides an interesting illustration for the

9Note that during their move to the center at every step all players select the same location.
That is, there is minimum differentiation even when they are still on their way to the center.

10This takes, depending on n, typically only a few periods from a random initial allocation.
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Figure 1: Locations over 1000 period interval for M = 1500, n = 3, 4, 6, 8, with
ε = 0.001
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general lack of convergence to equilibrium. Note that, for any n, the farthest the

outward-moving waves can reach is a distance M
2

from the center, as the clusters

are shattered at that point because players prefer to move to anywhere between

the two clusters rather than continue their outward movement. Thus, if this Nash

equilibrium were reached, it may be shattered immediately. But as Figure 1 shows,

the outward-moving clusters may disintegrate already long before the equilibrium

locations are reached. For other values of n the dynamics look similar, but on top

of that the Nash equilibrium configurations are not characterized by two clusters.

What is more, for any n > 4 the Nash equilibria require some players to move beyond

the points where clusters would stop moving outwards and start disintegrating with

some players moving back inwards.

Next, what about the long-run properties in terms of the average distances of

players from the center for various n? How do they vary when we increase the

number of locations, i.e, when we increase M? To answer such questions, we

now turn to some statistics of these best-response dynamics, moving beyond these

representative runs.

We analyze the myopic best-replies for 11 × T periods where T = 10, 000, 000.

We drop, again, the data from the first T periods to reduce the possible effects of

the initial, random allocations, and keep the outcomes from the remaining 10 × T

periods. For a given run, for each period we compute the average distance of the n

players from the center, and we then check for that run the distances from the center

below which this average distance is found 90%, 95% and 99% of the 100 million

periods. Table 1 reports these distances for n = 3, 4, 5, 6, 7 or 8 and for M = 1500,

15, 000 and 150, 000, and with ε = 0.001 throughout. The reported mean distances

(with the standard deviations in parentheses) are taken over 30 runs.

Table 1 also reports the distances for the Nash equilibrium predictions that

minimize the average distance from the center, i.e., the equilibria with as much
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clustering of players in the middle as possible, to compare the outcomes of the noisy

best-replies dynamics with the best Nash equilibrium predictions.11

Table 1 shows that when n = 3, regardless of the number of locations, the players

are within distance 2 from the center almost all the time. Moving beyond n = 3, the

average distance from the center increases with the number of players n. This is true

for all values of M . Focussing on M , we note that the average distance below which

the system spends time increases only very slightly as we move from M = 1500 to

M = 15, 000, and to M = 150, 000, with these increases being detectable only for

larger values of n. Thus, for example, for M = 1500 and n = 8, we see that the

distance from the center below which the system (i.e., the average distance of the n

players in the period concerned) spends 95% of the time is 265.5, and this increases

to only 271.9 when we increase the number of locations to 150,000 (a hundredfold

increase).

We can compare this with how the average distances in the Nash equilibria

increase with the number of locations. As we see in Table 1, the predictions of the

Nash equilibria are not affected by the refinements of the strategy space in the sense

that they are scaled up proportionally with the number of locations and hence stay

away from the median at a constant relative distance. For example, the average

distances from the center for n = 4 are 750, 7500, and 75,000 for M =1500, 15,000

and 150,000, respectively.12

Table 1 also reflects the fact that as n increases, the average distance of the Nash

equilibrium that is closest to the center is essentially constant.13 As n increases the

peripheral players get closer to the boundaries, but this is exactly offset by the

most central ones getting closer to the center, and thus the average distance stays

11For n = 3 this is based on the mixed strategy Nash equilibrium, and therefore we report the
average distance below which the system will spend 90% of the time.

12If, for n = 3, we consider the 99% criterion instead of the 90% reported in the Table, these
will be 652, 6521, and 65, 213, for M = 1500, 15, 000, and 150, 000, respectively.

13Apart from some minor variances as different values of n lead to slightly different types of
Nash equilibrium configurations.
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M = 1500
n=3 n=4 n=5 n=6 n=7 n=8

90% 2.0 8.0 30.0 66.0 123.7 203.7
(0.0) (0.0) (0.0) (0.0) (0.5) (0.6)

95% 2.0 10.0 40.0 86.9 161.3 265.5
(0.0) (0.0) (0.0) (0.3) (0.5) (0.9)

99% 2.0 15.0 65.9 139.9 247.4 409.3
(0.0) (0.0) (0.4) (0.3) (0.8) (1.4)

NE 539 750 800 667 804 750

M = 15, 000
n=3 n=4 n=5 n=6 n=7 n=8

90% 2.0 8.0 30.0 66.1 124.1 204.6
(0.0) (0.0) (0.0) (0.3) (0.4) (0.6)

95% 2.0 10.0 40.0 87.3 164.2 271.1
(0.0) (0.0) (0.0) (0.5) (0.4) (0.9)

99% 2.0 15.0 67.2 152.0 291.5 481.9
(0.0) (0.0) (0.4) (0.5) (1.4) (2.4)

NE 5392 7500 8000 6667 8036 7500

M = 150, 000
n=3 n=4 n=5 n=6 n=7 n=8

90% 2.0 8.0 30.0 66.1 124.2 204.7
(0.0) (0.0) (0.0) (0.3) (0.4) (0.6)

95% 2.0 10.0 40.0 87.5 164.6 271.9
(0.0) (0.0) (0.0) (0.5) (0.5) (0.8)

99% 2.0 15.0 67.9 154.0 302.0 525.6
(0.0) (0.0) (0.3) (0.5) (1.4) (3.8)

NE 53,914 75,000 80,000 66,667 80,357 75,000

Table 1: Mean distances from the center (with standard deviations in parentheses),
and NE distances, for M = 1500, 15, 000, 150, 000, n = 3, 4, 5, 6, 7, 8, with ε = 0.001
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constant. A good example of this is a comparison the average distance for the Nash

equilibria reported for n = 4 and 8.

We can conclude that Table 1 confirms what we saw in Figure 1, i.e. that the

best-response dynamics do not converge to the Nash equilibria.14 Our numerical

analysis also shows that for any n > 2, as M , and hence the number of locations,

increases, the players tend to spend their time farther and farther away from the

Nash equilibrium predictions and within smaller and smaller regions around the

center. In other words, as we refine the discrete strategy space, approximating a

continuous strategy space, we can get the players locating arbitrarily close to the

median when they follow best-response dynamics.

Thus, the best-response dynamics restore something close to the Principle of

Minimum Differentiation and as a result, the preferences of the median voter will

tend to rule.

4 Long run behavior: analyzing the invariant

measure with three players

With the numerical analysis presented in Section 3 in mind, in this section and in

Section 5, we characterize the long-run properties of the system. For any number of

locations M and any level of noise ε, the long run behavior of the location dynamics

is described by the invariant distribution µM,ε of an ergodic Markov chain. The

dynamics that we observe in the numerical analysis after a sufficiently large number

of time steps, are in fact sample paths from the distribution µM,ε. Our analytical

results concerning the behavior of the location dynamics are based on an asymptotic

analysis (w.r.t. M and ε) of the invariant distribution µM,ε. In other words, we study

this distribution when the number of locations tends to infinity and/or the level of

14That the best-response dynamics lead to outcomes that are in some sense the ‘opposite’ of the
Nash equilibrium predictions was also observed in Pancs and Vriend (2007).
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noise is driven to zero. The asymptotic analysis is relevant for understanding the

behavior of the dynamics when the number of locations is finite but large and for

positive but small levels of noise, which is precisely the setting we are interested in

here.

For the case of n = 3 players analyzed in this section, we will let the number

of locations M be fixed and drive noise down to zero, as is a standard approach in

the equilibrium selection literature. The states in which the invariant measure is

concentrated as noise goes to zero are referred to as the stochastically stable states,

and correspond to outcomes that remain stable when players make errors with a

small probability.

In the case with four players, presented in Section 5, we will use the fact that

M is large and we will study the behavior of µM,ε driving M to infinity and noise

down to zero simultaneously, while imposing some conditions on the relative speed

of convergence of these quantities. Although by doing so we lose the connection

to the equilibrium selection approach, such an asymptotic analysis, as we argued

above, does indeed capture the behavior of our system when the number of locations

is large and the noise level small.

The reason we present two distinct approaches for n = 3 and n = 4 is related to

the difference in the dynamics between these two cases as we have seen in Section 3.

For n = 3, as observed in the numerical analysis and as we will prove in this section,

the agents spend almost all their time at locations whose average distance from

the center is strictly less than three. Thus, the typical distance to the center is

bounded independently of the system size. For n ≥ 4, instead, there are repeated

waves of two-sided expansion and one-sided contraction centered around the middle.

The distance of these waves from the center is typically very small compared to the

number of locations, but it is not bounded independently of the latter. When the

number of locations increases, the maximal distance of the waves from the center
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also increases but at a speed that is some orders of magnitude smaller. Thus, as

the number of locations increases, the sizes of the waves will become negligible

compared to the size of the system. We will make such statements more precise in

the asymptotic framework presented in Section 5. In the remainder of this section

we will characterize the stochastically stable steady states for the case of three firms.

4.1 Absorbing classes

It is well known that when noise is driven down to zero, the invariant distribution

will concentrate on some union of absorbing classes. A set of states is an absorbing

class if we remain within the class under best reply without noise (ε = 0). Thus, we

begin by characterizing the absorbing classes of our system.

Recall that we consider a system where the center is unique and denoted by M .

The leftmost location is then 0 and the rightmost location 2M . Let (a, b, c) denote

the locations of the players, adopting the convention that a ≤ b ≤ M < c. By

symmetry, we consider, without loss of generality, the case where two players are

to the left of the center and the third player on the other side.15 The number of

positions to the left of a is then a and the number of positions to the right of c is

2M − c. If a > 2M − c it is preferable to locate to the left of a than to the right of c

and conversely. If a = 2M−c these two choices are indifferent. We will also consider

the distance between the peripheral, i.e. the most extremely located, players, which

under the above assumptions is the length of the interval [a, c], i.e., c − a. Also,

a and 2M − c are the distances of the peripheral players to the boundaries. For

given M , when a and 2M − c increase, the distance to the center decreases. We

will denote the set of best replies to (a, b, c) by BR(a, b, c). Since all players are

identical we do not care who is located where so we will take BR(a, b, c) to be an

unordered set. We will denote by BRl, BRm, BRr the best responses of the leftmost,

15The case where all players are on the same side will be treated separately.
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middle and rightmost player respectively. We denote by BRl
t, BR

m
t , BR

r
t the t-th

best response of the leftmost etc. player.16 We denote by BRt(a, b, c), or sometimes

for convenience simply BRt, the locations of the players after t periods, determined

by best replies, starting from (a, b, c). Best replies may be non-unique.

The following proposition characterizes the absorbing classes of the system.

Proposition 1 Let C = {(M − 3,M − 1,M + 1), (M − 1,M + 1,M + 3), (M,M +

2,M + 2), (M,M − 2,M − 2), (M − 1,M + 1,M + 1), (M − 1,M − 1,M + 1), (M −

2,M,M + 2), } and Ck = {(M − k,M − k,M + k− 1), (M − k+ 1,M + k,M + k)}.

Then, C is an absorbing class, and Ck is an absorbing class for 1 ≤ k ≤ K, where

K =: max{k|2M − (M + k − 1) > 2k−1
2
}.

Proof: Immediate verification. The condition on k ensures that the players on the

left will prefer location M + k to an interior location. �

Although it is possible to show that C and (Ck)
k=K
k=1 are the only absorbing

classes, we will not need this result. In fact, in our analysis we will focus on the

following union of absorbing classes: Define S = C
⋃
C1

⋃
C2.

4.2 Basins of attraction

If an element that is not in the absorbing class S will eventually lead to S by best

replies with probability one, it is said to belong to the basin of attraction of S. The

basins of attraction of the absorbing classes play an important role in determining

their stochastic stability. We recall that the basin of attraction B(S) of an absorbing

class S is: B(S) = {z|Prob (∃ T st BRt(z) ∈ S ∀ t > T ) = 1}).

As the following two lemmas show, a large subset of configurations is in the basin

of attraction B(S) of the union of absorbing classes S defined above.

16Note that BRl
t refers to the t-th best reply of the leftmost player at time t − 1, which is not

necessarily the leftmost player in the initial configuration.
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Lemma 1 Any configuration (a, b, c) where a ≤ b ≤ c ≤ M (or M ≤ a ≤ b ≤ c),

i.e. with all players on the same side of the center, is in the basin of attraction of

S.

Proof: We make explicit the possible BR sequences. If a ≤ b < c ≤ M ,

BR(a, b, c) = (b + 1, c + 1,+c + 1). If b < 2M − c − 2, BR2 = (c + 2, c + 2, c + 2),

which is considered below. If b ≥ 2M − c − 2, which is only possible if c = M and

b ∈ {M − 1,M − 2}, these cases correspond to BR ∈ {(M,M + 1,M + 1), (M −

1,M + 1,M + 1)}. The first is in C1 and the second in C. If a ≤ b = c < M , we

get (c+ 1, c+ 1, c+ 1), (c+ 2, c+ 2, c+ 2), and then all the way to (M,M,M). The

configuration (M,M,M) leads either to (M−1,M−1,M+1) or (M−1,M+1,M+1),

which are both in C or to (M−1,M−1,M−1) and then (M,M,M) or similarly to

(M + 1,M + 1,M + 1) and then (M,M,M). In this case we cycle, but with positive

probability we will eventually reach C from (M,M,M). �

Lemma 2 Any configuration that lies within [M − 3,M + 3]−C3 is in the basin of

attraction of S.

Proof: Given in Appendix A. It simply requires checking a number of

configurations. �

Combined, Lemmas 1 and 2 characterize the basin of attraction B(S) of the

union of absorbing classes S that is the focus of our analysis.
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4.3 Stochastically stable steady states: Radius, coradius

results

To show that the invariant distribution will be concentrated on S, we will use the

radius-coradius theorem of Ellison (2000). The main idea behind this theorem is to

associate a cost to any path of transitions. Loosely speaking, this cost is proportional

to the number of random events (i.e. choices that are not best replies) required on

the path. The stochastic stability of a set is then determined by comparing the cost

of leaving its basin of attraction and the cost of entering its basin of attraction from

the outside.

The Hotelling model with noise lies within the general setting considered by

Ellison (2000) since a player locates with probability 1 − p on a best reply, and

with probability p uniformly at random. In the Hotelling model, we can define a

cost function as follows: the cost of the transition from configuration z1 to z2 is

c(z1, z2) = 3 − m, where m is the number of players in z2 who play a best reply

to z1. In other words, the cost of a transition is the number of random events it

requires. The cost of a path (z1, ..., zt) can then be defined as
∑i=t−1

i=1 c(zi, zi+1). It

can be verified that this cost function satisfies the properties required to use Ellison’s

radius-coradius theorem.

The crucial quantities defined by Ellison (2000) are the radius and coradius of

S, R(S) and CR(S) respectively. The coradius of S basically measures the number

of random events required to reach B(S) from outside S. The radius of a union

of stochastically stable sets measures the random events required to leave B(S)

starting from S.

The main result in Ellison (2000) is that the invariant measure is concentrated

on a union of absorbing classes such that the number of random events required to

leave this set (the radius) is greater than the number of random events required to

reach it from the outside (the coradius):
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Theorem 1 (Ellison, 2000) In a model of evolution with noise, let Ω be a union of

limit states. If R(Ω) > CR(Ω) then the long run stochastically stable set is contained

in Ω.

We will use this theorem in order to show that the stochastically stable steady

state is contained in S = C
⋃
C1

⋃
C2. We first compute the radius and coradius of

S.

Proposition 2 Let S = C
⋃
C1

⋃
C2, then the coradius of S, CR(S) = 1.

To see that a single random event is sufficient to enter the basin of attraction

of S, consider some Ck with k > 2. To move from such a Ck into S, it is sufficient

that one player, the one who is alone on one side, relocates at random to the other

side.17

Proposition 3 The radius of S, R(S) > 1.

We show that a single random event is not enough to leave the basin of attraction

of S with Lemma 3.

Lemma 3 Take a configuration s ∈ S. Relocate one player. Call this configuration

ω. Then there exists 0 < t < 3 such that BRt(ω) ∈ ([M − 3,M + 3]− C3)
⋃
B(S).

Proof: Given in Appendix A. It simply requires checking a number of

configurations. �

Lemma 3 shows that after a single random event, we will return to ([M −3,M +

3]− C3)
⋃
B(S), which by Lemma 2 is also in B(S). Consequently, any path from

S to a configuration that is not in the basin of attraction of S requires at least two

random events, and hence the cost is strictly greater than 1.

17Note that this applies to any configuration outside B(S), as they are all of the two on one side
versus one on the other side type.
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Combining Proposition 2 and 3 shows that the radius R(S) is strictly greater

than the coradius CR(S), and together with the theorem in Ellison (2000) this gives

us the main result for our analysis of the case of three players:

Corollary 1 The long run stochastically stable set is a subset of S = C
⋃
C1

⋃
C2.

All configurations in S are such that the average distance to the center is strictly

smaller than 3, and for none of the players is the distance to the center greater than

3.

5 Long run behavior: analyzing the invariant

measure with four players

We now move to the analysis of cases with four or more players. As mentioned

already, the case with more than three players differs qualitatively from the case

with only three players and needs to be studied using a different approach.

With only three players, in the absence of random noise, the central location

belongs to an absorbing class. This is not the case with more than three players.

In this case, players will move away from the center in waves and then return to it.

However, we will show that the distance to the center will typically remain small

compared to the system size as a whole when the latter is large. To capture this

intuition formally, we let the number of locations grow and impose some restrictions

on the level of random noise compared to the number of locations. We then show

that the invariant measure is concentrated on the center and on some absorbing

classes close to the center. We first provide some notation needed to state our main

result.
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5.1 Description and notation

We denote by N the 2M +1 locations indexed by {0, 1, 2, ...,M,M +1, ..., 2M}. Let

ω ∈ {0, 1, 2, ...,M,M+1, ..., 2M}4 be a configuration, i.e. giving the locations of the

four players. For convenience, we will write ω = (a ∗ k, ...), when the configuration

ω has k (k ≥ 3) players located at a.

We denote by ā the configuration where all players are at location a. The distance

between two locations a and b is d(a, b) = |a−b|. For a configuration ω = (a, b, c, d),

we define the distance from the center M as d(ω,M) =: maxi=a,b,c,dd(i,M). Given

a configuration ω at date t, the configuration at t + 1 is given by the realization of

the following random variables: (1) First, we determine the number of players who

do not relocate at one of their best replies. This number is given by a binomial

random variable Xt = Bin(ε, 4). (2) Given the realization of Xt, we draw a variable

Yt following a uniform law on all the subsets of {1, 2, 3, 4} of size Xt. If Xt = 1,

each player has probability 1
4

of being selected for relocation. (3) Finally, for any

element e ∈ {1, 2, 3, 4} such that e ∈ Yt, we draw its location uniformly at random.

Any player who is not drawn for random relocation, picks each of his best replies

according to a uniform probability.

This description, where we draw first the number of uniformly relocated players,

then their identity, then their location, is convenient for our proof and obviously

equivalent to relocating each player uniformly at random with i.i.d. probability

ε. Let us also introduce some notation for some particular subsets of configurations

that will be of interest. Let A be the set of configurations where all players are on the

same side (i.e. ≥M or ≤M). Analogous to the case of three players, we note that

the classes consisting of the two states {((M−a)∗3,M+a−1), (M−a+1, (M+a)∗3)},

with the same restriction on a as we saw for k in Proposition 1, are absorbing classes

for the dynamics. Let us denote by ΩAC the set of such absorbing classes. Moreover,

let Ωl
AC be the subset of such classes for which d(a,M) < l, in other words absorbing
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classes containing configurations that are closer than l to the center.

5.2 Setting and main result

In the case of n = 3 players, the number of locations was fixed and the level of

noise ε converged to zero asymptotically. In other words, we studied the behavior

of the invariant distribution µN,ε, holding N fixed and taking the noise ε down to

zero. For the case with n = 4 players, we will analyze the behavior of the invariant

distribution µN,ε when N goes to infinity and ε goes down to zero. We will put

some restrictions on the level of noise compared to the number of locations. To

this effect, assume that the level of noise in a Hotelling model with N locations is

εN
18 The invariant measure µN,εN will be denoted simply by µN . Our main result

characterizes the asymptotic behavior of µN under some assumptions on the speed

at which εN goes down to zero as N increases.

Theorem 2 In the Hotelling model with N locations, let IN be an interval centered

at M containing lN locations. Let SN be a subset of locations such that ω ∈ SN ⇐⇒

ω ∈ [M − 3,M + 3]
⋃

Ω
l/2
AC ⊂ IN . Let BN be any set of states BN ⊂ Ic such

that card(BN) ≤ card(SN). Suppose that the Condition 1 below is verified, then

limN→∞
µN (BN )
µN (SN )

= 0.

Condition 1 There exist constants α ∈]0, 1
7
[, βM <∞ and N0 such that for every

N ≥ N0, lN = Nα and the level of random noise εN verifies εN = N−β, where

β ∈ [1, βM ].

Theorem 2 states that when we consider a certain set of states SN included in

a ‘small’ (some orders of magnitude smaller than N) interval around the center,

IN , any set containing the same number of locations as SN (or a smaller number)

and that is located outside of the interval IN , i.e. farther from the center, has an

18Later on, when N is fixed, for convenience we will omit the index N , writing simply ε.
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invariant measure that is vanishingly small compared to the measure of SN when

the number of locations is large. In particular, it follows from this result that states

close to the center have more weight than the Nash equilibrium, and also more

weight than absorbing classes farther from the center.

How demanding are assumptions under which this asymptotic result holds? The

most important restriction imposed by Condition 1 concerns the speed at which εN

goes down to zero as the number of locations increases, since we must have εN ≤ 1
N

.

The upper bound of the size of the interval lN is not a demanding condition in our

context. Since we want to show that the invariant measure is concentrated close

to the center, we are only interested in intervals lN that are small compared to the

total number of locations N . The lower bound of the size of lN and the lower bound

on the noise are not very restrictive. Together they guarantee that ε2N ≥ plN for any

0 < p < 1 when N is large. We should note that Condition 1 is a sufficient but not

necessary condition.

5.3 Analysis of the dynamics of the system and intuition for

our results

Before turning to the proof of Theorem 2 itself, we will provide some intuition for the

result based on the behavior of the system’s dynamics. A central part of our proof

is to show that starting from the center, we will return to it with high probability.

As we have seen in the numerical analysis shown in Figure 1, starting from the

center, in absence of random noise, the dynamics would be as follows. If two players

locate at M − 1 and two at M + 1, we move farther away from the center. However,

there is also a positive probability that all players locate on the same side. As we

have established previously, the dynamics will then bring them back to the center.

Similarly, in the next step, all players may locate on M − 2 and M + 2 but again,

with positive probability, they may all end up on the same side. In each period, we
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can move farther away from the center but there is also a positive probability that

all players end up on the same side. The probability that the latter does not occur

in a long sequence of time steps is very small.19 This description of the dynamics

ignores the possibility of random relocations. However, with high probability only

few random relocations occur (as shown in Lemma 4 in subsection 5.3.2). This

makes the dynamics somewhat more complex but not significantly different from

what is described above.

An occasional random relocation may lead to various configurations within the

interval I. However, we show (Lemma 5 in subsection 5.3.3) that the configurations

we reach are always either contracting, in the sense that best replies bring us closer

to the center, or, if the state is such that best replies can be farther away from the

center with positive probability, there is also a positive probability that all players

end up on the same side. This is because such configurations involve indifference on

the part of some players. The typical, but not unique, example of such a state is the

one described previously where two players are at M − k and two players at M + k.

Thus, we can only move far away from the center if we pass through configurations

of the second type a large number of times. However, each time we do, there is a

positive probability that all players end up on the same side and the probability of

avoiding this event for a long time is very small.

So far, we have ignored the possibility of entering one of the absorbing classes

in Ωl
AC . This case is analyzed separately in subsection 5.3.4. If such a class is

reached, we remain there for a long time. The most probable way to exit is with

a single random relocation. When a single random relocation occurs, with positive

probability we move to another absorbing class farther from the center, or, also with

positive probability, we enter a state where all players are on the same side. Again,

it is highly unlikely to have a long sequence of realizations where we move farther

19The conditions we impose in Theorem 2 guarantee that the probability of not returning in this
way is in fact smaller than the probability of a random relocation.
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away from the center without an occurrence of an event where all players end up on

the same side.

Finally, the proof also involves showing that with a single random relocation we

can move back from any state to the center. This is the object of subsection 5.3.5.

5.3.1 Proof of Theorem 2

In what follows, we often do not need to establish exact values of quantities but

only their order of magnitude with respect to N when N is large. We will thus use

the notation g(N) = O(f(N)) if 0 < limN→∞
f(N)
g(N

<∞. Moreover, from now on we

will write l for lN and ε for εN .

Our proof will make use of the following property of the invariant distribution

of a Markov chain: µ(S) = µ(b)E[V (S, b, b)], where V (S, b, b) is a random variable

that counts the number of times that the process reaches an element in S before it

reaches b, starting from state b.20

To bound the value of this expectation, we will bound on the one hand the

expected number of times we return to S starting from S, and also bound the

probability of reaching S from a state in Ic. These two bounds are the object of the

following two propositions:

Proposition 4 The probability of not returning to the set S when starting from a

configuration in S is bounded above by 1− q = O( ε
l2

).

Proposition 5 Let b ∈ IC, the probability of reaching S from b without passing

again through b is bounded below by q̃ = O(ε).

The event V (S, b, b) = k, requires first that we move from b ∈ IC to S without

passing again through b, which occurs with a probability greater than q̃, and then

that starting from S, we return again to S exactly k − 1 times before reaching

20See, e.g., Kemeny and Snell (1960).
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b again. Due to propositions 4 and 5, we can bound the expectation as follows:

E[V (S, b, b)] =
∑∞

k=1 q̃kq
k(1− q) = q̃E[Z], where Z is a geometric law of parameter

q. Thus E[Z] = 1
1−q and E[V (S, b, b)] = q̃

1−q = O( εl
2

ε
). The number of elements in

the set S is at most 2l, because we can index the states in Ωl
AC by the location of the

three players who are at the same location. Therefore if card(B) ≤ card(S) ≤ 2l,

limN→∞
µN (S)
µN (B)

= limN→∞
µN (S)∑i=card(B)

i=1 µN (b)
= limN→∞2lE[V (S, b, b)] =∞. �

The rest of the section will provide proofs of Propositions 4 and 5. A number of

lemmas needed for these proofs will be presented in the next subsections.

5.3.2 Typical sequences: bounding the probability of rare events

Scenarios where two or more random relocations occur close to each other are very

unlikely. It will be useful to bound the probability of such an event to show that

it is very small. This is the objective of Lemma 4. When we study the dynamics,

we will then condition on the fact that there is at most one random relocation in a

given number of periods.

Definition 1 We will say that a sequence is typical if it contains at most one

random relocation and this relocation is not located in I.

Lemma 4 The probability that a sequence of length l is not typical is at most O( εl
2

N
).

Proof: The probability of at least two random relocations in a sequence of length

l is
∑k=4l

k=2 ε
k(1 − ε)4l−kC4l

k ≤
∑k=4l

k=2 ε
k(4l)k = (4lε)2−(4lε)4l+1

1−4lε = O(ε2l2). Note that

we have 4l because at each date, there are four players who each relocate with

probability ε. The probability that there is exactly one random relocation and that

it is in I is smaller than 4lε l
N

= O( l
2ε
N

). �
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5.3.3 Best reply dynamics starting from a state close to the center

In what follows, a state will be ω =: (a, b, c, d) with a ≤ b ≤ c ≤ d and l(ω) = d− a.

Lemma 5, proven in Appendix B.1 together with some other lemmas, tells us

that starting from a configuration close to the center and assuming the sequence is

typical, best replies will either take us closer to the center than before, or, if there is

a positive probability of moving farther away from the center, there is also a positive

probability that all the agents end up on the same side, or, as a final possibility, we

may enter an absorbing class close to the center.

Lemma 5 Assume that the evolution is ‘typical’ as in Definition 1 above. Any state

ω ∈ I − S belongs to
⋃i=4
i=1 Ωi where:

• If ω ∈ Ω1,Then P ((BRt+4(ω)
⋃
BRt+5(ω)) = x̄ ∈ I) ≥ p (p ≥ 1

83
)and if this

does not occur, d(BR2(ω),M) ≤ d(ω,M) + 2.

• If ω ∈ Ω2, then d(BR(ω),M) ≤ d(ω,M) and l(BR(ω)) ≤ l(ω), with at least

one strict inequality.

• If ω ∈ Ω3, then BR(ω) is at the same distance to the center as ω and

BR(ω) ∈ Ω1

⋃
Ω2.

• If ω ∈ Ω4, then BR2(ω) belongs to an absorbing class in Ωl
AC with l <

d(ω,M) + 2.

We will also need a lemma that tells us that when the sequence is typical, a state

of the type x̄ ∈ I leads to [M − 3,M + 3].

Lemma 6 If we are in x̄ ∈ I at date t and the sequence is typical until t + l, we

reach a state in [M − 3,M + 3] within l periods.
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5.3.4 Best reply dynamics starting from an absorbing class Ω
l/2
AC

We also need to determine what happens when we exit an absorbing class in Ω
l/2
AC .

Lemma 7 Consider a date t at which the deterministic best reply is ω = ((M−a)∗

3, (M + a− 1)) ∈ Ω
l/2
AC (without loss of generality). Conditioning on the fact that a

single random relocation outside of I occurs at t, and no random relocation occurs

at t+ 1, the state at t+ 1 can be

• ωt+1 = ((M−a)∗3, (M +a−1)) ∈ Ω
l/2
AC, i.e. we remain in the same absorbing

class at the same distance from the center.

• ωt+1 ∈ A. This happens with probability at least p = 1
8
, and consequently, the

probability that ωt+3 = x̄ ∈ I is at least p = 1/8 times the probability that no

random relocation occurs at t+ 2 or t+ 3.

• ωt+1 ∈ {(M−a−1)∗3, (M+a)}, that is in an absorbing class one step further

from the center than before, which occurs with at most probability 1− p.

Lemma 8 Starting from any state ω ∈ Ω
l/2
AC, the probability of returning to S before

reaching a configuration in IC is greater than 1−O( ε
l2

).

Lemma 7 are 8 are proven in Appendix B.1. Now, we can prove Proposition 4.

5.3.5 Proof of Proposition 4

We want to bound the probability of returning to S from a state in S = [M−3,M+

3]
⋃

Ω
l/2
AC . First, consider the case where we start from an ω ∈ [M − 3,M + 3]. Let

us bound the probability of returning in at most l/4 periods, assuming that the

sequence is typical over these periods. We can assume that we do not enter an

absorbing class because if we do we have returned to S, so |Ω4|=0. Note that by

Lemma 5, we have |Ω3| = |Ω1| + |Ω2| since any successor of an element in Ω3 is
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in Ω1

⋃
Ω2. Also note that if |Ω1| < 2|Ω2|, then we have returned to the center M

because the configurations in Ω2 contract one step and those in Ω1 grow at most

two steps. Therefore we must have |Ω3| + |Ω1| + |Ω2| = l
4
, where |Ω1| ≥ 2|Ω2|.

Suppose that |Ω1| < l
24

. Then |Ω2| ≤ 2l
24

and |Ω3| < 3l
24

. But this contradicts

|Ω3|+ |Ω1|+ |Ω2| = l
4
. Consequently, |Ω1| ≥ l

24
. Each time we are in Ω1, we enter a

state x̄ ∈ I with probability p. From such a state we then return to [M − 3,M + 3]

if the sequence is typical by Lemma 6. The probability of not reaching a x̄ ∈ I

in l/24 trials is (1 − p)l/24 ≤ O(ε2), which is a consequence of Condition 1 since

0 < (1 − p) 1
24 < 1. Consequently, the probability of returning to S is bounded by

1− (1− p)l/24 times the probability that the sequence is typical for l/4 + l periods.

Using Lemma 4 this probability is greater than (1− O(ε2))[1− ε2l2] = 1− O(ε2l2).

In the case which was not considered before, where we start from a state ω ∈ Ω
l/2
AC ,

it is sufficient to apply Lemma 8. �

5.3.6 Proof of Proposition 5

Proposition 5 is a consequence of Lemma 9 below which is proved in Appendix B.2:

Lemma 9 For any configuration ω ∈ AC, there exists a random relocation of a

player, which occurs with probability O(ε) such that A is reached in at most three

steps.

The proposition follows almost immediately from this lemma. Indeed, once in A,

the configuration will move towards the center at the pace of one location per time

step. To reach the center, it is thus sufficient that no random relocation occurs in N

steps. The probability that this is the case is (1−p)N , where p = 1− (1− ε)4. Since

ε < 1/N , we have (1 − p)N = O(1). Consequently, the probability of reaching M

from b ∈ AC is given by the probability of entering A, which is O(ε), since a single

random relocation takes us to A, times the probability that no random relocation
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occurs for N periods after entering A, which has probability O(1). The result in

Proposition 5 follows. �

5.4 A remark regarding extensions to n > 4

In this section, we have provided a proof for the case n = 4 players. For cases n > 4,

the dynamics starting from the center are similar: we move away from the center

as long as all players do not locate on the same side. With probability (1
2
)n−1 all

players end up on the same side and we return to the center. It would seem possible

to generalize the proof regarding the probability of returning to the center to the

case n > 4. However, proving that a single random relocation takes us back from

any location to the center becomes less manageable, because there is a large number

of cases to consider. We conjecture that the behavior of the system for n > 4 is

similar to the case n = 4, as is suggested by the numerical analysis.

Analyzing the dynamics also allows us to understand why the average distance to

the center is larger when we increase the number of players. Indeed, the probability

that all players end up on the same side and then return to the center is pn =: (1
2
)n−1

at each time step, and thus the expected value of the first time that this occurs is

1/Pn.

6 Concluding remarks

We considered a linear location model (Hotelling, 1929) in which players follow noisy

myopic best-replies. We asked what are the likely configurations in terms of numbers

of players in each location in such a case.

We analyzed numerically how the average distance from the center depends on

the number of players n and the number of locations 2M + 1, showing that by

refining the discrete strategy space we can get the players locate arbitrarily close to
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the center almost all the time.

In our formal, mathematical analysis we prove, in the case of n = 3 players,

that all the players are located in close proximity of the center in the stochastically

stable steady states. For the case of n = 4 we prove that the players will tend to be

located near the center if the noise is small (in a sense made precise) relative to the

number of locations. The logic of the proof for n = 4 seems applicable to any n ≥ 5

as well.

Although our analyses show that we do not necessarily always have all players

located precisely in the center, and thus we do not always have the minimum

differentiation as the principle of minimum differentiation would suggest, our

analyses suggest that if players are myopic and adaptive, we may tend to observe

outcomes that conform rather closely to the principle of minimum differentiation,

with the difference becoming negligible as the space is refined and approximates a

continuum. Thus, we re-established Hotelling’s principle for this class of boundedly

rational players, and provided a possible explanation for the relatively common

perception that decision makers in a wide range of situations tend to cater to the

median voter: The return of the median voter.

As mentioned already in Section 1, and emphasized by Hotelling (1929) to start

with, interpreting the location model as one of electoral competition is only one of the

many possibilities, and the Principle of Minimum Differentiation seems applicable

in a wide range of situations of players competing in some discrete or continuous

strategy space. Thus, our analysis of the best-response dynamics seems relevant in

particular also for market dynamics, with the firms competing e.g. in geographical

space or product characteristics space.21

Focussing on geographical space, the total distance between the locations chosen

by the firms and the preferred locations of the consumers corresponds to the total

21Firms may compete in other dimensions too. For example, Ewerhart (2014) discuss competition
between professional forecasters with reputational concerns.
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travel distance for the consumers, and we can use this to do some welfare analysis. As

Eaton and Lipsey (1975) already indicated, one important aspect of the multiplicity

of the Nash equilibria in the Hotelling model is that these travel costs may differ

from equilibrium to equilibrium. Our analysis adds a new dimension to this, as

the best-response dynamics lead to outcomes that stand in stark contrast to these

Nash equilibria. It is not just that we do not get perfect convergence to the Nash

equilibria. What we see is that these equilibria are not even approximated, as the

system moves into other directions, with minimum differentiation quickly emerging.

This implies an important welfare loss as less differentiation means substantially

increased travel costs compared with any of the Nash equilibria.

Thus, to the extent that firms may be inclined to adopt behavior resembling

myopic best-replies, our analysis suggests that from a policy (welfare) point of view,

it may be important to look beyond an equilibrium analysis of such models.
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A Appendix: Proofs for the three player case

A.1 Lemma 2

Proof: Because we have shown that when all the three players are on the same

side (AOS, for ‘all one side’), we are in B(S), we consider the remaining cases.

There are 19 cases that we need to consider (up to symmetry). And, for each

case, we will show the best response path either reaches the state where all the

players are on the same side AOS or S.

(i) [M − 3,M − 3,M + 3] → either

• [M − 4,M − 4,M − 2] ∈ AOS

• [M + 4,M + 4,M − 2]→ [M − 1,M − 1,M + 3], which will be considered

below (xi)

• [M − 4,M + 4,M − 2] → either

– [M − 5,M − 1,M − 5] ∈ AOS

– [M − 3,M − 1,M + 5]→ [M − 2,M − 4,M ] ∈ AOS
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(ii) [M − 3,M − 2,M + 3] → either

• [M − 3,M − 4,M − 1] ∈ AOS

• [M − 3,M + 4,M − 1]→ [M − 2,M,M − 4] ∈ AOS

(iii) [M − 3,M − 1,M + 3] → either

• [M − 2,M − 4,M ] ∈ AOS

• [M − 2,M + 4,M ]→ [M − 1,M − 3,M + 1] ∈ S

(iv) [M − 3,M,M + 3] → either

• [M−1,M+4,M+1]→ either [M,M+2,M−2] ∈ S or [M+2,M+2,M ] ∈

S

• [M−1,M−4,M+1]→ either [M+2,M+2,M ] ∈ S or [M+2,M−2,M ] ∈

S

(v) [M − 3,M − 3,M + 1]→ [M + 2,M + 2,M − 2] to be considered below (xiv)

(vi) [M − 3,M − 2,M + 1]→ [M + 2,M + 2,M − 1] ∈ S

(vii) [M − 3,M − 2,M + 2]→ [M + 3,M + 3,M − 1] considered above (v)

(viii) [M − 3,M − 1,M + 2]→ [M + 3,M + 3,M ] ∈ AOS

(ix) [M − 3,M,M + 1]→ [M + 2,M + 2,M + 1] ∈ AOS

(x) [M − 3,M,M + 2]→ [M + 3,M + 3,M + 1] ∈ AOS

(xi) [M − 3,M + 1,M + 1]→ [M,M − 2,M − 2] ∈ S

(xii) [M − 3,M + 1,M + 2]→ [M,M + 3,M + 2] ∈ AOS

(xiii) [M − 3,M + 2,M + 2]→ [M + 1,M − 2,M − 2] ∈ S

(xiv) [M − 2,M − 2,M + 2] → either
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• [M − 3,M − 3,M − 1] ∈ AOS

• [M − 3,M + 3,M − 1] considered above (iii)

(xv) [M − 2,M − 1,M + 1] → either

• [M − 2,M + 2,M ] ∈ S

• [M + 2,M + 2,M ] ∈ S

(xvi) [M − 2,M − 1,M + 2] → either

• [M − 2,M + 3,M ] considered above (x)

• [M − 2,M − 3,M ] ∈ AOS

(xvii) [M − 2,M,M + 1] → either

• [M − 1,M + 2,M + 1] considered above (xv)

• [M,M + 2,M − 2] ∈ S

(xviii) [M − 2,M + 1,M + 1]→ [M − 2,M − 2,M ] ∈ S

(xix) [M − 1,M,M + 1] → either

• [M − 1,M − 2,M + 1] considered above (xv)

• [M − 1,M + 2,M + 1] considered above (xv)

�

A.2 Lemma 3

Proof: Let s = (a, b, c) ∈ S, and consider all possible cases.
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• First case, we relocate the middle player b: If he is relocated in [0,M − 4],

then BRr = a + 1, BRm = c + 1 and the best reply of the left player is a− 1

or c+ 1. We are in [M −3,M + 3]−C3 unless c = M + 3 or a = M −3. In the

first case s = (M − 1,M + 1,M + 3) and BR = (M − 2,M,M + 4) but then

BR2 = (M−3,M−1,M+1) ∈ S. In the second case s = (M−3,M−1,M+1)

and BR2 = (M − 2,M,M + 2) ∈ S. The case where he is relocated on the

right is identical by symmetry.

• Second, we relocate the rightmost player c: If we relocate him on the left we are

in [0,M ]. If he is relocated on [M+4, 2M ], then BR = (a−1, b−1, b+1). This

is in [M−3,M+3]−C3 unless a = M−3. But then s = (M−3,M−1,M+1)

and BR = (M − 4,M − 2,M) ∈ [0,M ].

• Third, we relocate the leftmost player a: If he is relocated in [0,M − 4],

then BRr = b + 1, BRm = c + 1 and BRl is either b − 1 or c + 1. We are in

[M−3,M+3]−C3 unless c = M+3. If this is the case s = (M−1,M+1,M+3)

and BR = (M,M + 2,M + 4) ∈ [M, 2M ]. If we relocate the leftmost player

at a in [M + 4, 2M ], then BRl = c− 1, BRm = b− 1 and BRr is either c+ 1

or b− 1. We are in [M − 3,M + 3]−C3 unless c = M + 3 but in this last case,

BR = (M + 2,M,M) ∈ [M, 2M ].

• Finally, we need to check that we cannot get to C3 by relocating a single player

in a configuration s ∈ S. Indeed, we need to have two players at M − 3 or at

M + 3. Consider s = (M − 1,M + 1,M + 3) and (M − 3,M − 1,M + 1). We

cannot get from these to C3 by moving a single player.

�
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B Appendix: Proofs for the four player case

We begin by proving Lemma 5, 6, 7, and 8 used in Proposition 4. We then provide

a proof of Proposition 5.

B.1 Lemma 5 to 8

Proof: (of Lemma 5) First, we prove that Lemma 5 holds at a date t where no

random perturbation occurs. Let us prove that any state (a, b, c, d) ∈ I belongs to

one of the aforementioned categories.

• First, consider a < b ≤ c < d. Note that there are two possible cases, either

there are two players on each side of the center, or three players on one side and

one player alone on the other side. Sometimes, but not always, it is necessary

to treat these cases separately.

– First, consider the case d(a,M) = d(d,M). If c < M , the best reply

(a − 1, a − 1, b − 1, c + 1) ∈ A has positive probability, so we are in Ω1.

Suppose from now on that c ≥ M . If d(b − 1,M) ≥ d(c + 3,M), with

positive probability BRt = (a−1, a−1, b−1, c+1) , BR2 = (b, (c+2)∗3),

and with positive probabilityBR3 = (c+1, (c+3)∗3) ∈ A. If d(b−1,M) <

d(c + 3,M), with positive probability BRt = (d + 1, d + 1, b − 1, c + 1),

BR2 = (c, (b− 2) ∗ 3), and BR3 = (b− 1, (b− 3) ∗ 3) ∈ A.

– Suppose now without loss of generality that d(d,M) < d(a,M), that is

players prefer location d+ 1 to a− 1.

∗ If d(d+1,M) < d(a,M), then the maximal endpoint has contracted,

we are in Ω2.

∗ If d(d + 1,M) = d(a,M), then if d(b,M) > d(a + 2,M), BRt =

(b−1, d+1, d+1, c+1) and l(BRt(ω)) = (d+1)−(b−1) < d−a = l(ω).
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Thus, ω ∈ Ω2.

· If d(b,M) = d(a + 2,M), BRt = (a + 1, c + 1, d + 1, d + 1) and

BRt+1 = (a, a, a, c), which has contracted.

· If d(b,M) = d(a+1,M), we can have BRt = (a, c+1, d+1, d+1),

as a is indifferent between staying put and d+1. In the next step,

a will relocate at c. All others are indifferent between a− 1 and

d+ 2, so with positive probability they end up on the same side

as c so that A is reached. Thus we are in Ω1.

• Now consider the case (a, b, c, c) with a < b < c, where there are two players

at one of the endpoints.

– If d(a,M) = d(c,M), we are in Ω1 because due to indifference, there is a

positive probability that all players end up on the same side as b− 1.

– If d(a,M) ≥ d(c + 1,M), BRt = ((c + 1) ∗ 3, b − 1). Thus, we assume

b ≤ M . Since c + 1 − (b − 1) = c − b + 2, the interval has contracted

unless b ∈ {a + 1, a + 2}. If d(b,M) = d(a + 1,M), ω = (a, a + 1, c, c)

and (c + 1) ∗ 4 ∈ A ∈ BRt. If b = a + 2, and if d(a,M) > d(c + 1,M),

with positive probability BRt = (c+1)∗4 ∈ A. If d(a,M) = d(c+1,M),

BRt = (a+ 1, (c+ 1) ∗ 3) which is an absorbing state. We are then in Ω4.

– If d(a,M) ≤ d(c − 1,M), BRt = ((a − 1) ∗ 3, b − 1), and since

b− 1− (a− 1) = b− a < c− a, we are in Ω2.

• If the configuration is (a, c, c, c), if d(c,M) ≤ d(a,M), with positive probability

all players locate on the same side and we reach A. If d(a,M) < d(c,M),

BRt = ((a − 1) ∗ 3, c − 1). If d(a − 1,M) = d(c,M), we are in an absorbing

state. Otherwise the maximal endpoint has decreased and we are in Ω2.
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• Finally if the configuration is (a, a, c, c), without loss of generality d(a,M) ≤

d(c,M) and with positive probability, BRt = (a− 1) ∗ 4 ∈ A.

Now, consider a date t at which exactly one player is relocated randomly. Let

Lp and Rp be the leftmost and rightmost endpoint at time t. At t + 1, the players

who best reply are not further from the center than max{−Lp−1, Rp+1}. Suppose

that BRt+1 = (a, b, c, r). The player who locates at random at r locates outside the

interval I. At t + 2, the player located at random will locate at a− 1 or c + 1 and

the remaining players at a− 1 if r is to the right and at c+ 1 if r is to the left. Thus

at t+ 2, no player locates further away than max{−a− 2, d+ 2}.

When exactly one player relocates at random, each player is chosen to be the

one who does with probability 1
4
. His probability of being on the right/left side

respectively is 1
2
.

Let us show that the probability of entering A is at least 1
8
, in other words there

is at least one player whose random relocation leads to BR in A. Let a, b, c, d be (one

of) the best replies without random relocation at time t+1. Note that now (a, b, c, d)

is the configuration we reach by best replies (in the absence of random relocations)

and not as before the configuration we start from. It is obvious that if at least

three players are on the same side it is sufficient to relocate the last one. Therefore

suppose a ≤ b < 0 ≤ c ≤ d. Suppose first that d(a,M) ≤ d(d,M) (without loss of

generality). Relocate the player whose deterministic best reply was c to the right of

d (such a relocation occurs with probability 1
8
), so that the best reply with random

relocation is BRt+1 = (a, b, d, r). Since r >> d, BRt+2 = ((a − 1) ∗ 3, b − 1) ∈ A.

It is now sufficient to note that whenever we are in A
⋂
I, if no random relocation

occurs, we reach a configuration of the form x̄ ∈ I in two steps. Therefore, if we

reach a state in A
⋂
I in two or three steps starting from ω, we reach a configuration

of the form x̄ ∈ I in four or five steps. �
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Proof: (of Lemma 6) Suppose without loss of generality that x < M . If a random

relocation outside I occurs, the configuration can be (r, x∗3) and then BR = x+ 1.

Given that this is the only random relocation in l periods, best replies take us into

[M−3,M+3] within l periods. If the configuration with random location is (x∗3, r),

r > M , then BR = ((x − 1) ∗ 3, x + 1), and since all players are on the same side,

again best replies take us into [M − 3,M + 3] within l periods. �

Proof: (of Lemma 7) Consider without loss of generality ω = ((M − a) ∗

3, (M + a − 1)) (the other case is similar by symetry). If the player who is alone

is randomly relocated outside of I, if it is on the right we are done because all

players are on the same side. This choice has probability 1
8
, as each player is

chosen with probability 1
4
, and a location on the right is chosen with probability

1
2
. If it is on the left, the configuration with random relocation is (r, (M − a) ∗ 3)

and BRt = (M − a − 1, (M − a + 1) ∗ 3) ∈ A
⋂
I. If one of the three players

on the same side relocates at random on the left, the configuration with random

relocation is (r, (M − a) ∗ 2,M + a− 1) and BRt = (M − a+ 1, (M + a) ∗ 3) ∈ Ω
l/2
AC .

If one of the three players on the same side relocates at random on the right,

the configuration with random relocation is ((M − a) ∗ 2, (M + a − 1), r), hence

BRt = ((M − a− 1) ∗ 3, (M + a)) ∈ ΩAC . Note that we are not necessarily in Ω
l/2
AC

because we have moved to an absorbing state one step farther from the center. �

Proof: (of Lemma 8) Consider the probability of returning to S from a state in

Ω
l/2
AC . This probability is minimized when ω = {(M−a)∗3,M+a−1)} with a = l/2,

the state in S that is the farthest from the center. Let q be the probability that

exactly one random relocation occurs and that it leads to {(M−a−1)∗3, (M+a)}.

With probability 1 − q − O(ε2) we return to S. With probability q = O(ε) we are

in {(M − a − 1) ∗ 3, (M + a)}, an absorbing class that is neither in S nor in IC .
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From this class, we can reach IC in two ways. Either by gradually moving from one

absorbing class to another one step farther from the center, i. e. repeating l/2 times

case 3 in Lemma 7, or we can exit rapidly because of ‘atypical’ random relocations.

Consider the sequence of random variables drawn at times t, ...t+ L, where t is the

date of entry in ((M − a− 1) ∗ 3, (M + a)) and L =: l4

ε
. Let us define three events

E1, E2, E3 such that if these three events are realized we return to S.

• E1: Let Ak be the event that there is no random relocation in I at date t+ k

or t + k + 1, and at most one random relocation in IC (either at t + k or at

t+ k + 1 but not both), and let E1 be the event
⋂k=L−1
k=1 Ak).

• E2 is the event that there are at least O(l) random relocations in IC .

• E3 is the event that at least one random relocation in IC leads to a state x̄ ∈ I.

If the three events above are realized, we return to S. Consequently the

probability that we do not return to S is bounded by P (EC
1

⋃
EC

2

⋃
EC

3 ) ≤

P (EC
1 ) + P ((EC

2

⋃
EC

3 )).

We begin by bounding P (E1). At each date, the probability that there is no

random relocation is (1 − ε)4 =: 1 − π, with π = 4ε + O(ε2N). The probability

that exactly one random relocation occurs at a given date is q =: 4ε(1 − ε)3 =

4ε + O(ε2). The probability that the required property is satisified by A1 is

thus (1 − π)2 + 2(1 − π)q(N − l)/N = 1 − O( lε
N

). Either we have no random

relocations in A1 or there is a random relocation outside of I at one of the dates

and no random relocation at the other date. The probability that Ak satisfies

the property is not independent of the probability that it is satisfied by Ak−1

since there is one date in common. However the probability P (
⋂k=L−1
k=1 Ak) =∏k=L−1

k=2 P (Ak|Ak−1)P (A1). The conditional probability P (Ak|Ak−1) is not smaller

than P (Ak). Indeed the dependence occurs through the common location k and the

probability of a random relocation at this date is lower conditioning on Ak−1. We
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have P (
⋂k=L−1
k=1 Ak) ≥ (1−O( lε

N
))L = (1−O( lε

N
))(

N
lε
)( l

5

N) = exp−O( l
5

N
) = 1−O( l

5

N
).

Thus P (EC
1 ) = O( l

5

N
) < O( 1

l2
) since limN→∞

l7

N
= 0.

Next, we prove that with high probability the number of random relocations in

IC is approximately Lε, their expected value. The number of periods at which we

obtain random relocations is given by a binomial random variable Bin(q, L). This

variable has mean qL = O(l4) and standard deviation σ =
√
Lq(1− q) = O(l2). By

the Chebycheff inequality, the probability P (|Bin(q, L) − qL| ≥ kσ) ≤ 1
k2

. Taking

for example k = l, with probability at least 1− 1
l2

, the number of random relocations

is O(l4). Thus, P (E2) ≥ 1− 1
l2

.

Finally, each time a random relocation occurs, it is such that we enter A with

probability p = 1
8
, and if no random relocation occurs in the next two steps,

which has a probability close to 1, we then reach x̄ ∈ I. Consequently, at each

random relocation, the probability of not reaching x̄ ∈ I is smaller than, say, 8
9
.

If we condition on the fact that there are O(l4) random relocations in IC , the

probability that none leads to x̄ ∈ I is P (EC
3 |E2) = (8

9
)O(l4) < O(ε2) (as a result of

Condition 1). Therefore P ((EC
2

⋃
EC

3 )) = 1− P (E2

⋂
E3) = 1− P (E3|E2)P (E2) =

1− [1− P (EC
3 |E2)]P (E2) ≤ 1− [1−O(ε2)](1− 1

l2
) = O( 1

l2
)

Thus, we conclude that P (EC
1

⋃
EC

2

⋃
EC

3 ) = O( 1
l2

). Since the probability of

entering ((M − a− 1) ∗ 3, (M + a)) instead of returning to S immediately is q, the

probability of not returning to S is O( q
l2

) = O( ε
l2

). �

B.2 Lemma 9

Proof: The proof is based on a number of lemmas dealing with all possible cases

of configurations in AC .

The first lemma deals with configurations where three players are on the same

side:
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Lemma 10 Suppose that ω is a configuration such that a ≤ b ≤ c < M < d. Then

either BR(ω) is a configuration such that a ≤ b < M < c ≤ d, or a single random

relocation will place BR(ω) in A.

Proof: Indeed, suppose that the deterministic best replies place three players on

the same side, it is then sufficient to relocate at random the last player. If he is

relocated on the same side as the others, which occurs with probability 1
2
, we are in

A. �

Therefore, from now on, we restrict attention to configurations with two players

on each side of the center: a ≤ b < M < c ≤ d.

In Lemma 11 below, we consider the case where both endpoints of the

configuration are close to the center so that no player has an interior best reply.

Lemma 11 Suppose that max {d(a,M), d(d,M)} < N
4

, then the set A is reached

within at most two steps with a probability at least equal to εc1, where c1 is a constant

independent of N.

Proof: If max {d(a,M), d(d,M)} < N
4

, the interior players prefer to relocate at

the endpoints. We have a ≤ b < M < c ≤ d, and d(d,M) ≤ d(a,M) (without loss

of generality), then with probability at least 1
4

both interior players locate at d+ 1,

and the player at d locates at c+ 1. It is sufficient to randomly relocate the player

at a on the right side to be in A. �

When the endpoints of a configuration are far from the center, best replies can

be interior. We summarize some useful properties of interior best replies. We denote

by U[a,b] a discrete uniform law on the set of locations strictly between a and b.

Property 1
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• If the players at a or d prefer an interior location it is given by U[b,c]

• If the player at b has an interior best reply, it is given by the uniform random

variable U[a,c] or U[c,d]

• If the player at c has an interior best reply, it is given by the uniform random

variable U[b,d] or U[a,b]

• If the best reply of the player at b is U[c,d], the best reply of the player at c is

U[b,d]

• If the best reply of the player at c is U[a,b], the best reply of the player at a is

U[a,c]

Lemma 12 Suppose that U ∈ {U[a,c], U[b,c], U[b,d], U[c,d], U[a,b]} is an interior best reply

of some player, then P (d(U,M) < N
4

) ≥ c2, where c2 > 0 is a constant independent

of N.

Proof: For uniform variables on the intervals [a, c], [b, c] and [b, d], the result is

obvious since these intervals contain M . For example [a, c] = [a,M ]
⋃

(M, c] and at

least one of the two intervals must have a strictly positie probability to make [a, c]

a best reply, and similarly for [b, c] and [b, d]. Let us show that the best reply U[c,d]

(and similarly U[a,b] by symetry ) can only occur if d(c,M) ≤ [1
4
− K]N , implying

P (d(U[c,d],M) < N
4

) ≥ K. If d(c,M) > [1
4
− K]N , the utility of location U[c,d] is

inferior to N/8 + KN , but then if d(a,M) < N
4

, the player at b prefers location

a−1, which gives a utility of at least N
4

. And if d(a,M) > N
4

, he prefers U[a,c] which

provides a utility superior to N
4
−KN (with K assumed small but positive). Thus,

U[c,d] cannot be a best reply. �
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Lemma 13 Let c3 = 1
10

. If d(b,M) > kN and d(c,M) > c3N , then any

configuration ω where at least one player has an interior best reply reaches A with

a single random relocation.

Proof: Suppose at least one player has an interior best reply U ∈

{U[a,c], U[b,c], U[b,d]}. By the assumptions, P (U > M) > 1
10

and P (U < M) > 1
10

.

Such a player can end up on any side of the center with positive probability. If

one of the remaining three players is alone on his side, it suffices to relocate him

at random. We note that by Property 1, if the interior reply (of player b) is U[c,d] ,

then the best reply of the player at c is U[b,d], and similarly if the interior reply (of

player c) is U[a,b] then that of player b is U[a,c]. �

The cases that were not covered by Lemma 13 are covered by Lemma 14.

Lemma 14 If d(b,M) ≤ c3N or d(c,M) ≤ c3N , where c3 = 1
10

, then any

configuration ω reaches A in at most three steps involving a single random relocation.

Proof: Suppose without loss of generality d(b,M) ≤ d(c,M).

(i) Suppose d(a,M) > N
4

and d(d,M) < N
4

. Since the point d+1 ≤ N
4

is available,

no player locates at a−1. If some player has an interior best reply, by lemma 12,

the realized location is closer than N
4

to the center with probability at least 1
4
,

and we reach a configuration where both endpoints are inferior to N
4

, a case

already treated in Lemma 11.

(ii) The case d(a,M) < N
4

and d(d,M) > N
4

is the same as the one above, by

symmetry, since the positions of b and d did not intervene in the argument

above.

(iii) Suppose d(a,M) > N
4

and d(d,M) > N
4

.
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(a) If d(b,M) ≤ d(c,M) < c3N , then the best replies are b− 1, c+ 1 and the

interior players either locate at the smallest endpoint or in the interior.

In both cases, with positive probability, the smallest endpoint in BRt(ω)

is closer than N
4

to the center, and we are in one of the cases considered

above.

(b) Suppose d(c,M) ≥ c3N , and d(a,M) > d(d,M). If the best reply of the

player at b is U[a,c], he has positive probability of ending up on either side.

We can then apply the argument in the proof of Lemma 13: at least two

of the other players locate on the same side. Relocate the remaining one

on this side. Thus suppose the player at b locates at d+1 or at U[c,d]. The

players at c and d locate on the right with positive probability.22 The

player at a relocates at b− 1. It is sufficient to relocate the player whose

best reply is b− 1 on the right side.

(c) Suppose d(c,M) ≥ c3N , and d(a,M) ≤ d(d,M). If the best reply of the

player at b is U[a,c], he has positive probability of ending up on either

side, and we are done by the argument in the proof of Lemma 13. Thus,

suppose the player at b locates at a − 1 or U[c,d] and the player at a

relocates at b − 1. Note that d(c,M) < N/5, because otherwise the

player at b would prefer the interval [a, c]. The possible locations to the

right of c are U[b,d] and U[c,d] but P (d(U[c,d],M) < N
4

) ≥ N/4−N/5
d−c . With

positive probability, we reach a configuration whose rightmost endpoint

is smaller than N
4

, a case that has been analyzed before.

�

Combining Lemma 10 to 14 proves Lemma 9. �

22Indeed U[a,b] is not a best reply for the player at c if U[a,c] is not a best reply for the player at
b.
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