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Marc Möller ‡

Abstract

Do the contests with the largest prizes attract the most-able contestants? To

what extent do contestants avoid competition? In this paper, we show, theoretically

and empirically, that the distribution of abilities plays a crucial role in determining

contest choice. Complete sorting exists only when the proportion of high-ability

contestants is sufficiently small. As this proportion increases, high-ability contes-

tants shy away from competition and sorting decreases, such that, reverse sorting

becomes a possibility. We test our theoretical predictions with a large panel data

set containing contest choice over twenty years. We use exogenous variation in the

participation of highly-able competitors to provide empirical evidence for the rela-

tionship among prizes, competition, and sorting.
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1 Introduction

Competition is a defining feature of most economic and social environments. Contestants

of differing ability compete for valuable but limited resources by exerting effort. In many

cases, contestants choose from a variety of potential contests. For example, architects

choose design competitions; pharmaceutical companies select R&D contests; athletes pick

∗We thank seminar participants at Bocconi, Collegio Carlo Alberto, CREST, LSE, McGill, Stanford
GSB, St. Gallen, and Toronto for valuable comments and suggestions.

†Queen Mary University of London, Centre for Economic Performance (LSE). Email:
g.azmat@qmul.ac.uk

‡Department of Economics, University of Bern. Email: marc.moeller@vwi.unibe.ch

1



sports tournaments; and college graduates apply for positions in firms. In these settings,

contests typically differ in the way in which (relative) performance is rewarded.

Rewarding contestants according to their relative performance is motivated by two

objectives: the provision of incentives to exert effort and the attraction of the most-able

participants. Lazear and Rosen (1981) were the first to consider rank-order tournaments

as a way to provide incentives. Since then, a large theoretical literature has been devel-

oped, determining the optimal design of such tournaments.1 A common theme in this

literature is that contestants exert greater efforts when prizes are larger and more concen-

trated towards the highest ranks.2 Ehrenberg and Bognanno (1990), using data on golf

contests, and Eriksson (1999) and Bognanno (2001), studying labor tournaments, have

provided empirical evidence for these incentive effects.

While the relationship between prizes and effort seems to be well understood, com-

paratively little is known about their influence on contest selection.3 For other incentive

schemes, which use absolute rather than relative performance evaluation, selection effects

have been found to be as important as incentive effects. Lazear (2000) documents a

44-percent increase in productivity for a firm switching from salaries to piece rates and

attributes half of this increase to selection effects. High-ability workers find firms offering

piece rates more attractive than firms offering salaries. In the context of tournaments, it

remains an open question whether selection effects play a similarly important role.

Contest selection is complicated by its multidimensional and interdependent nature.

Contests may differ, not only in the size, but also the number of their prizes, making

prize-concentration and its effect on competition an important consideration for contest

choice. Moreover, a contestant’s set of opponents is endogenously determined through

his rivals’ participation decisions, creating the possibility of multiple equilibria. Existing

models of contest choice have either assumed that each contest awards a single prize (Leu-

ven et al. 2011) or that all contestants are homogeneous (Azmat and Möller 2009, Konrad

and Kovenock, 2012). In this paper, we relax both of these assumptions by proposing

a simple, illustrative model of contest selection with multiple prizes and heterogeneous

contestants, featuring a unique equilibrium. We show that the contests with the largest

prizes attract the highest number of talented contestants only when talent is relatively

scarce. In contrast, when talent exists in abundance, the contests with the least concen-

1For an extensive survey, see Konrad (2009).
2Exceptions to this rule exist when contestants are risk-averse (Krishna and Morgan, 1998) or effort

costs are sufficiently convex (Moldovanu and Sela, 2001).
3A notable exception are models in which contest selection is independent of effort considerations

either because effort choices are absent (Damiano, Li, and Suen 2010, 2012) or because contests (and
hence effort costs) are approximately identical (Morgan, Sisak, and Várdy, 2015).
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trated prize allocation become most attractive. To the best of our knowledge, our model

is the first to provide this tight link between the distributions of prizes and talent within

and across contests.

In our setting, two types of contestants (high- and low-ability), choose between two

types of contests (high- and low-type). High-ability contestants have lower (constant)

marginal costs of effort than low-ability contestants. Contests differ in their prize struc-

ture. High-type contests are characterized by high prizes and high prize concentration,

whereas low-type contests are characterized by low-prizes and low-prize concentration.

More specifically, high-type contests offer a small number of large prizes, whereas low-

type contests offer a large number of small prizes. We show that the probability with

which a high-ability contestant participates in a high-type, rather than a low-type, con-

test is decreasing in the overall proportion of high-ability contestants. When high-ability

contestants become sufficiently numerous, sorting is reversed, that is, high-ability contes-

tants are more likely to enter low-type contests than high-type contests.

At first glance, the possibility of reverse sorting seems counterintuitive since, in this

case, contestants are attracted by contests with smaller prizes and stronger opponents.

The intuition is that low-type contests become more attractive since they mitigate compe-

tition by spreading out their prize budget. As a consequence, the contestants’ effort costs

are lower in low-type contests than in high-type contests. The interaction between effort

choices and contest selection underlines the importance of incorporating both elements

into models of tournament theory.

Empirically testing for selection effects is often difficult, if not impossible. In a labor-

market setting, for example, it is difficult to establish firm and worker types, and, quite

often, measuring individual performance is complicated or confounded by a number of

factors. It is also difficult to obtain information about the full range of workers’ outside

options, as well as their counterfactual earnings. Moreover, an exogenous shock to the

pool of talent, allowing for the study of its effects on sorting, rarely exists.

In this paper, we take advantage of an unusually clean opportunity to investigate the

extent of sorting across contests in a sports setting. Using extensive panel data, we ex-

amine the contest choices of professional marathon runners. Our setup contains all the

relevant ingredients needed to test the predictions of our model. Individual performance

is readily available, together with complete information on contest and runner charac-

teristics. This allows us to abstract from a number of identification problems present in

other types of data.

There are two important features that make marathons the ideal setting in which to
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study contest choice. First, five Major marathons (Berlin, Boston, Chicago, London, and

New York) have a special status comparable to the Grand Slam tournaments in tennis.

They offer much higher prizes than other marathons and, on average, allocate a consid-

erably greater proportion of their prize money to the winner. This allows us to identify a

runner’s decision between competing in a Major or a Minor marathon, as a choice between

high-type and low-type contests. Second, highly-talented East-African runners, mainly

from Kenya and Ethiopia, dominate the sport of marathon running. This dominance is

striking and unparalleled in other sports. For example, according to the International

Association of Athletics Federations’ (IAAF) Top List, the 50 fastest male marathon run-

ners in 2012 were exclusively from Kenya or Ethiopia. This endows us with a proxy of

the contestants’ abilities (runners’ origin), which, unlike performance measures (finishing

times), is independent of effort and prize considerations. More importantly, it allows us

to use exogenous variation in local economic conditions to predict the participation of

high-ability runners (Brückner and Ciccone, 2011).

We find that the likelihood that a high-ability runner will participate in a given

marathon is increasing in the race’s prize budget but decreasing in the expected number of

high-ability opponents. The participation of one additional high-ability opponent must be

compensated by a $2, 583 increase in the contest’s average prize to keep the race equally

attractive to high-ability runners. In line with our model, we find that the concentra-

tion of a race’s prize structure has a positive effect on participation when opposition is

expected to be weak, but has a negative effect when opposition is expected to be strong.

This is important since it establishes that selection and incentive effects are either aligned

or opposed, depending on the overall competitiveness of the environment.

Our paper uses a simple theoretical framework to illustrate that complete sorting

exists in tournaments only when the proportion of high-ability participants is sufficiently

small.4 Our empirical findings constitute first evidence for tournament selection effects

in a real setting.5 In line with our main theoretical result, we find that, when the overall

ability distribution shifts upwards, potential participants become more likely to avoid

competition. In particular, when the proportion of talented contestants increases by ten

percent, the likelihood with which any one of them participates in a Major rather than a

4From a theoretical perspective, assortative matching in the labor market has been extensively studied
in non-tournament settings (see, for example, Eeckhout and Kircher, 2011; Shimer and Smith, 2000).

5Sorting has been the focus of several recent empirical studies in settings such as the labor market
(Bagger and Lentz, 2012; Lise et al., 2013; Lopes de Melo, 2013) or school choice (Urquiola, 2005).
Experimental studies have also considered sorting across single-prize tournaments (Leuven et al., 2011)
and the choice between tournaments and alternative incentive schemes (Dohmen and Falk, 2011; Eriksson
et al., 2009).
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Minor race falls by around seven percent. These results suggest that, depending on the

ability distribution and prize structure, contestants avoid one another to the extent that

reverse sorting becomes a possibility.

Our results have the following implications for contest design: When contest choice

is endogenous, selection effects cannot be neglected, and the optimal prize allocation de-

pends crucially on the distribution of abilities among potential contestants. This holds

true, regardless of whether the objective is to maximize aggregate output or the winner’s

performance since prizes affect both the quality of the field and the incentives to exert ef-

fort. More importantly, selection effects can be diametrically opposed to incentive effects,

and the positive influence of concentrated prize allocations on efforts may be more than

compensated by their negative influence on the self-selection of talented contestants.

2 Theoretical framework

We present a simple theoretical framework to illustrate the effect of changes in the ability

distribution on the level of sorting across contests. The model demonstrates that the pro-

vision of strong incentives increases participation of talented contestants, but that talent

crowds out talent. The model makes precise how these two factors interact, resulting,

first, in a negative relation between the frequency of high abilities and the level of sorting

and, second, in the possible existence of reverse sorting.

2.1 Model

We assume a continuum of contests and a continuum of risk-neutral players.6 contests

allow for the same number N + 1 of participants. The integer N indicates a player’s

number of opponents. We let N ≥ 2 to guarantee that in each contest the number of

players is larger than the number of prizes. In order to balance the number of players

with the number of available contest slots, we assume that there exists a mass 1 of players

and a mass 1
N+1

of contests.

There are two types of contests, high-type contests and low-type contests. A contest of

type j ∈ {l, h} offers Mj ∈ {1, 2, . . . , N} prizes, identical in size, bj > 0.7 High-type con-

6In such a setting, with many contests and a large number of players, a single player’s action has no
effect on the optimal contest choice of the remaining players. This rules out coordination issues, dominant
in settings with a small number of contests and players (Amegashie and Wu, 2004), and guarantees the
uniqueness of equilibrium. The implications of risk aversion are discussed at the end of the section.

7The assumption that, within a given contest, all prizes are identical makes the model tractable. A
general description of competition for the case of heterogeneous players and non-identical prizes is still
missing. Bulow and Levin (2006), Cohen and Sela (2008), Xiao (2016), and Olszewsky and Siegel (2016)
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tests award fewer (Mh < Ml) but larger (bh > bl) prizes than low-type contests.8 In other

words, high-type contests are characterized by high prizes and high prize concentration,

whereas low-type contests are characterized by low-prizes and low-prize concentration.

Note that we do not make any restrictions with respect to the comparison of the contests’

overall prize budgets. However, for the purpose of the subsequent comparative statics

analysis, we define an increase in a prize structure’s concentration to be an increase in bj

accompanied by a decrease inMj , keeping the overall prize budgetMjbj unchanged. Apart

from the differences in their prize structures, high-type and low-type contests are assumed

to be identical. For simplicity, we assume that both types exist in equal proportions.9

There are two types of players, low-ability players and high-ability players, i ∈ {L,H}.

A high-ability player’s (constant) marginal cost of effort, cH > 0, is strictly smaller

than a low-ability player’s marginal cost, cL > cH . To abbreviate notation, we define

c ≡ cH
cL

∈ (0, 1). The crucial parameter of the model is the proportion of high-ability

players, denoted by y. We focus on the case in which high-ability players are in the

minority, y ∈ (0, 1
2
). This assumption guarantees that, if they desire, all high-ability

players can enter a high-type contest.

The model has two stages. In the first stage, players choose (simultaneously) which

(type of) contest to enter, and in the second stage, they compete by exerting effort

(simultaneously).10 At the entry stage, players form expectations about their opponents’

abilities based on their knowledge of the overall distribution of types and the equilibrium

strategies. At the competition stage, players observe their opponents’ abilities and, given

the contest’s prize structure, then simultaneously make their effort choices.11

We model competition as a perfectly discriminating contest, where prizes are awarded

to the players who exert the highest levels of effort (and ties are broken randomly).12 This

are first steps in this direction. We discuss the effect of skewed prize distributions on contest choice after
stating our main thoeretical result.

8This assumption makes contest choice non-trivial. If, instead, one type of contest offered fewer and
smaller prizes, then, neglecting potential differences in opposition, all contestants would prefer the other
type of contest. In a labor tournament setting, Yun (1997) shows that first-best efforts and efficient
self-selection can be achieved when workers are offered the choice between a tournament with many large
prizes and a tournament with few small prizes.

9We have verified that our results remain qualitatively unchanged when this assumption is relaxed.
The corresponding comparative statics are discussed at the end of this section.

10If players would choose contests sequentially and could observe who entered previously, they would
have an even stronger incentive to avoid contests with strong opponents. Hence, our assumption of
simultaneous entry is the most conservative with respect to the possibility of reverse sorting.

11Abstracting from effort choices and instead assuming that performance is determined by a player’s
ability plus noise would neglect the fact that low-type contests might be attractive due to their mitigating
effect on competition.

12Alternatively, competition could have a stochastic element–i.e., winning could depend on efforts and
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follows an extensive literature on contest design (see, for example, Clark and Riis (1998)

and Moldovanu and Sela (2001, 2006)). In terms of payoffs, a player of type i who exerts

effort e ≥ 0 in a contest of type j will receive utility U
j
i = bj − cie if he wins one of the

Mj prizes, and U
j
i = −cie otherwise.

Since, at the competition stage, players can guarantee themselves a payoff of zero by

exerting no effort, and players are assumed to have a zero outside option, at the entry

stage, no player will choose not to participate in any contest at all.13 This means that if a

fraction qi ∈ [0, 1] of type i players enters high-type contests, then the remaining fraction

1−qi will enter low-type contests. The players’ behavior at the entry stage can, therefore,

be completely described by the fractions of low-ability (qL) and high-ability (qH) players

that enter high-type contests.14

The distribution of players across contests can be characterized as exhibiting: complete

sorting when all high-ability players enter high prize contests, qH = 1; partial sorting when

a larger number of high-ability players enter high-type contests than low-type contests,

qH > 1
2
; and reverse sorting when the opposite is the case, qH < 1

2
.

An equilibrium distribution of talent (qH , qL) has to satisfy two conditions: an opti-

mality condition and a feasibility condition. The optimality conditions requires that no

player must be able to increase his payoff by entering another (type of) contest. This

means that if players of the same type i enter both types of contests, qi ∈ (0, 1), then

these players must expect equal payoffs. In addition, if all players of type i enter the

same type of contest–i.e., qi ∈ {0, 1}–then their expected payoff must not be higher in the

other type of contest. The feasibility condition requires that the number of players who

participate in a given type of contest must equal the number of available slots in contests

of this type:

yqH + (1− y)qL = y(1− qH) + (1− y)(1− qL) =
1

2
. (1)

The novelty of the model outlined above is that it allows for the study of contest

selection in a setting with multiple prizes as well as heterogeneous contestants. While

heterogeneity is a pre-requisite for the study of sorting, allowing for multiple prizes is

random factors. For a discussion of this case, see footnote 16.
13We assume that players participate when indifferent between participation and non-participation. We

show that low-ability players expect a zero payoff from participation since their expected prize winnings
are compensated exactly by their effort costs. A zero outside option, thus, means that, apart from prizes,
participation must offer alternative sources of utility that are independent of the choice of contest and
offset the potential benefits from non-participation. Adding a performance-independent payment (wage,
attendance pay) to the contests’ payoff structure has no effect on our results.

14Alternatively, qi can be interpreted as the probability with which a player of type i enters a high-type
contest. Since we consider a continuum of players, both interpretations are equivalent.
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important since the choice between a more competitive environment (with few prizes) and

a less competitive environment (with many prizes) constitutes one of the key dimensions

of the contest choice problem. In previous work, Azmat and Möller (2009) and Konrad

and Kovenock (2012) consider a group of homogeneous contestants choosing between

contests with differing prize structures. Due to the absence of ability differences, sorting

could not be analyzed in these models. In a setting with two single-prize contests of

varying size, Leuven et al. (2011) study sorting by allowing for two types of contestants.

They share our finding that reverse sorting is a possibility but reverse sorting arises for

a different reason and often in conjunction with positive sorting (multiple equilibria). In

their setting, reverse sorting can be an equilibrium only if by deviating to the low-prize

contest high-ability contestants would encounter a higher number of opponents. In our

setting reverse sorting arises even when contestants face the same number of opponents in

each contest and is due to the mitigating effect of low prize concentrations on competition.

Our analysis proceeds by backward induction and consists of two steps. In Section

2.2, drawing on a recent result by Siegel (2009), we characterize a player’s expected payoff

from participating in a contest with a given set of opponents. The main result necessary

for the subsequent analysis, which is the focus of our study, is that a player’s expected

payoff is positive (and equal to bj(1 − c)) if and only if the player has high ability and

the number of high-ability opponents is strictly smaller than the number of prizes Mj.

In Section 2.3, we use these payoffs to derive our main theoretical results on the players’

individual contest choice and the equilibrium distribution of talent across contests. All

proofs are given in the Appendix.

2.2 Competition

In this section, we derive a player’s expected payoff at the competition stage–that is, for a

given set of prizes and opponents. In making their effort choice, players trade off a higher

chance of winning against an increase in their costs of effort. The characterization of

equilibrium effort strategies has proven difficult in general, even for the case in which all

prizes are identical (Baye et al. (1996), Clark and Riis (1998), and Barut and Kovenock

(1998)). Players use mixed strategies due to the all–pay auction character of competition.

Because of the potential presence of identical players, multiple equilibria may exist. These

equilibria differ with respect to the set of players who are active–that is, who provide

effort with positive probability. In equilibrium, all active players win a prize with positive

probability. More-able players are more likely to win a prize since they exert higher efforts

in the sense of first-order stochastic dominance.
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Siegel (2009) shows that for a large class of “generic contests,”all equilibria are payoff-

equivalent. More specifically, the players’ expected payoffs depend on their abilities and

the contest’s prize structure, but not on the particular equilibrium that is played. In

our setting, a contest with Mj prizes is generic if the player with the Mj + 1’s lowest

marginal cost of effort has marginal costs that are different from any other player’s. In

what follows, we use a perturbation argument that allows us to employ Siegel’s results.

For this purpose, suppose that there exist arbitrarily small differences in the marginal

costs of effort for players of the same type i ∈ {L,H}.15 Under this additional assumption,

the main result of Siegel (2009) implies that, in a contest with Mj prizes, a player’s

expected payoff, in any equilibrium, is given by max(0, bj(1 − γ)), where γ denotes the

ratio of the player’s marginal cost over the Mj + 1’s lowest marginal cost of all players in

the contest. Therefore, by taking the limit, we get the following:

Lemma 1 Suppose that NH ∈ {0, 1, . . . , N +1} high-ability players and N +1−NH low-

ability players participate in a contest offering Mj prizes of size bj. A player’s expected

payoff is bj(1− c) if the player has high ability, and the number of high-ability opponents

is strictly smaller than the number of prizes. Otherwise, his payoff is zero.

Note that for low-ability players, (expected) prize winnings are exactly offset by the (ex-

pected) costs of effort.16 High-ability players enjoy a comparative advantage due to their

lower marginal cost of effort and, therefore, obtain a positive payoff. This comparative

advantage disappears when the number of high-ability players, NH , exceeds the number

of prizes, Mj . In this case, all players expect a zero payoff, independent of their ability.

2.3 Contest choice

In this section, we first consider how a player’s preferences over contests depend on the

contests’ prize structure and the expected opposition. In a second step, we determine the

equilibrium allocation of talent across contests.

15The argument is made precise in the proof of Lemma 1 contained in the Appendix.
16 This is a consequence of contests being perfectly discriminating. If contests involved a random

element, then the expected payoffs of low-ability players would depend on prizes, but this dependence
would still be weaker than it is for high-ability players. Since sorting can be expected to be strongest
when ability matters most, the absence of randomness is the most conservative assumption with respect
to our finding that sorting may be reversed. For a detailed study of the relationship between a contest’s
prize structure and its randomness, see Azmat and Möller (2009).
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Individual preferences

The analysis in the previous section showed that low-ability players expect the same

(zero) payoff, independent of the type of contest they enter. Hence, low-ability players

are indifferent between the two types of contests, and we can concentrate our analysis

on the preferences of high-ability players. The expected payoff of a high-ability player

does depend on the specific features of the contest he enters. In the preceding section, we

demonstrated that in a contest offering Mj prizes of size bj , a high-ability player expects

a positive payoff equal to bj(1− c) if the number of high-ability opponents is smaller than

Mj and a zero payoff otherwise.

At the time of entry, the number of high-ability opponents in a particular type of

contest is uncertain. Hence, from the viewpoint of the entry stage, the player’s preferences

will depend on the likelihood pj with which an opponent has high ability. According to

Lemma 1, the probability with which a high-ability player obtains a positive payoff is

identical to the probability with which at mostMj−1 of hisN opponents have high-ability.

It is given by F (Mj − 1;N, pj) with F denoting the cumulative binomial distribution

function

F (K;N, p) ≡
K
∑

k=0

f(k;N, p) ≡
K
∑

k=0

(

N

k

)

pk(1− p)N−k (2)

measuring the likelihood of observing at most K “successes” within N independent bi-

nomial draws with success-probability p. A high-ability player’s expected payoff from

entering the contest is

E[UH ] = bj(1− c)F (Mj − 1;N, pj). (3)

It depends on the contest’s prize structure, represented by Mj and bj , and the expected

opposition, given by the likelihood pj of meeting high- rather than low-ability opponents.

Note that, at this stage, the variable pj is treated as exogenous. The determination of its

equilibrium value follows below. In the Appendix, we prove the following result:

Proposition 1 A high-ability player’s expected payoff from entering a contest is increas-

ing in the size bj of its prizes but decreasing in the probability pj with which opponents have

high ability. Payoffs are increasing in the concentration of the contest’s prize structure

when opposition is weak (pj < p̄j) but decreasing when opposition is strong (pj > p̄j).

The first part of Proposition 1 is intuitive and follows easily from (2) and (3). The

last part of Proposition 1 considers the effect of a decrease in the number of prizes,
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accompanied by an increase in the size of the prize. As can be seen from the proof

contained in the Appendix, the particular value taken by the threshold p̄j depends on the

specific changes in Mj and bj . Intuitively, when the probability of meeting high-ability

opponents is small, high-ability players prefer a more concentrated prize structure due to

their comparative advantage over low-ability players. In contrast, when the probability

of meeting high-ability opponents is large, high-ability players prefer a less concentrated

prize structure due to its mitigating effect on competition and the resulting decrease in

effort costs.

To summarize, while prizes are predicted to have a positive effect on a player’s decision

to enter a particular contest, the effect of (expected) opposition is negative. Moreover,

opposition has not only a level effect, but also an interactive effect with the concentration

of the contest’s prize structure.

Sorting

Having described the players’ individual preferences, we now determine their equilibrium

allocation across the two types of contests. Our analysis proceeds as follows. For a given

allocation (qH , qL), we determine the likelihood pj of meeting high-ability opponents in a

contest of type j ∈ {l, h}, which allows us to calculate the players’ expected payoffs in

both types of contest. We then verify whether the optimality and feasibility conditions

outlined above are satisfied. The indifference of low-ability players implies that optimality

needs to be checked only for high-ability players and that feasibility is guaranteed by the

low-ability players’ willingness to fill any slot that has remained idle.

For a given allocation (qH , qL), the number of high-ability players who choose a high-

type contest is given by yqH . Since there are
1

N+1
contests, and both types of contests exist

in equal proportion, there are 1
2(N+1)

high-type contests, each offering N + 1 slots. The

likelihood with which a slot in a high-type contest is filled with a high-ability opponent

can be calculated by dividing the number of high-ability players who choose a high-type

contest, yqH , by the overall number of slots available in the high-type contests, 1
2
. It is

given by ph = 2yqH . Similarly, the likelihood with which a slot in a low-type contest is

filled by a high-ability opponent is given by pl = 2y(1− qH).

To check optimality for high-ability players, we need to consider the difference between

their expected payoffs from entering a high-type versus a low-type contest. From (3) this

difference is proportional to

∆ ≡ bhF (Mh − 1;N, ph)− blF (Ml − 1;N, pl). (4)
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High-ability players strictly prefer a high-type (low-type) contest when ∆ > 0 (∆ < 0)

and are indifferent when ∆ = 0. In the Appendix, we prove the following result:

Proposition 2 There exists a unique equilibrium allocation (q∗H , q
∗
L) of abilities that de-

pends on the proportion y of high abilities in the population of players. In particular, there

exist critical values ȳ ∈ (0, 1
2
) and ¯̄y ∈ (ȳ, 1

2
] such that the following hold:

1. For y ≤ ȳ, sorting is complete, q∗H = 1. All high-ability players enter high-type

contests.

2. For ȳ < y < ¯̄y, sorting is only partial, q∗H ∈ (1
2
, 1). High-type contests attract

a greater number of high-ability players than low-type contests. Moreover, talent

crowds out talent–i.e., q∗H is strictly decreasing in y.

3. For ¯̄y ≤ y, sorting is reversed, q∗H ≤ 1
2
. Low-type contests attract a greater number

of high-ability players than high-type contests.

An increase in the high-type contests’ prize budget Mhbh relative to the low-type con-

tests’ prize budget Mlbl leads to a higher level of sorting by increasing q∗H and ȳ.

The intuition for this result is as follows. High-type contests offer high prizes, while

low-type contests mitigate competition by spreading out their prize budget. From the

viewpoint of a high-ability player, effort considerations become more important as the

likelihood of meeting high-ability rivals increases, and his comparative advantage over

low-ability players plays a smaller role. When high abilities become sufficiently frequent,

the mitigation of competition outweighs all else, such that high-ability players prefer

low-type contests over high-type contests, even though prizes are smaller and rivals are

more able in the former than in the latter. This contrasts with the common intuition

that, in equilibrium, contest choices should be driven by a trade-off between high prizes

and strong opposition, versus low-prizes and weak opposition. The possibility of reverse

sorting, therefore, emphasizes the need for including effort considerations in models of

contest choice.

For the general case, we cannot rule out that ¯̄y = 1
2
. To show that within our range

of parameters y ∈ (0, 1
2
), reverse sorting is indeed a possibility, we provide an example in

which ¯̄y is strictly smaller than 1
2
.

Example: Reverse sorting between one-prize and two-prize contests. Consider the special

case in which both types of contests have the same total prize budget B. Let high-type

contests award their entire budget to the player with the highest effort–i.e., Mh = 1 and
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bh = B. Let low-type contests offer two identical prizes instead–i.e., Ml = 2 and bl =
B
2
.

In the proof of Proposition 2, we show for the general case that ∆ is strictly decreasing in

qH . This is intuitive since an increase in qH raises the expected opposition in a high-type

contest while lowering the expected opposition in a low-type contest. Hence, ¯̄y < 1
2
if

and only if ∆(qH = 1
2
) < 0 for some y < 1

2
. For the special case under consideration,

substitution of Mj and bj into (4) leads to

∆(q =
1

2
) =

B

2
(1− y)N−1(1− (N + 1)y). (5)

This shows that reverse sorting between one-prize and two-prize contests of identical

budgets exists when y > 1
N+1

. For example, when contests allow for 20 participants,

then sorting would already be reversed when more than five percent of the players in the

population of potential participants have high-ability.

We expect that our results will hold quite generally. In our model, the main driver

of the results is that low prize concentration mitigates competition, leading to a reduc-

tion in effort costs. This element of the model is not unique to our setting. Indeed, it

has been established that low prize concentration (in form of multiple rather than single

prizes) can lead to an increase in (aggregate) efforts only in exceptional cases, for exam-

ple, when effort costs are sufficiently convex (Moldovanu and Sela, 2001), or when the

number of contestants is small and contestants are sufficiently risk averse (Krishna and

Morgan, 1998) or heterogeneous (Szymanski and Valletti, 2005). It is therefore likely that

Proposition 2 will hold in alternative contest setups.

Proposition 2 is also robust with respect to other features of our setup. First, it

remains valid when players are risk averse rather than risk neutral. To see this, note that

from the viewpoint of a high-ability player, each contest can be understood as a lottery

with two possible outcomes. A high payoff is obtained when the number of high-ability

participants fails to exceed the number of prizes, and a low payoff is obtained otherwise.

For qH > 1
2
, the high payoff, though smaller, is more likely to be obtained in low-type

contests than in high-type contests. Hence, low-type contests constitute the less-risky

lottery. Risk aversion gives high-ability players an additional incentive to choose a low-

type rather than a high-type contest.17 Therefore, we consider our assumption of risk

neutrality as the most conservative with respect to the possibility of reverse sorting.18

17This is in line with Dohmen and Falk’s (2011) experimental finding that subjects who choose a
tournament rather than a fixed payment have a lower degree of risk aversion.

18Note that this discussion ignores that risk aversion may also influence the way in which players
compete. It has been shown, for example, that risk aversion decreases the effort of low-ability contestants
but increases the effort of high-ability contestants in single-prize contests (Fibich et al., 2006).
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Second, consider the effect of relaxing our assumption that both types of contests exist

in equal proportions. Suppose, for example, that there exists a larger number of high-type

than low-type contests. In this case, the likelihood of meeting a high-ability opponent

in a high-type contest is lower than 2yqH , and the likelihood of meeting a high-ability

player in a low-type contest is higher than 2y(1 − qH), for any given value of qH . This

makes high-type contests more attractive relative to low-type contests, leading to a (weak)

upward shift in the equilibrium value of q∗H . The thresholds ȳ and ¯̄y shift to the right.

The results in Proposition 2 change quantitatively but remain qualitatively unchanged.

Finally, suppose that contests offer decreasing rather than identical prizes. If high-

type contests offer a steeper prize allocation than low-type contests then contest-types

differ in the same way as before, although differences are less pronounced. In particular,

contests with steeper prize allocations offer higher prizes to top-performers while contests

with flatter prize allocations can be expected to mitigate competition.19 We therefore

believe that our results would extend to settings with heterogeneous prizes.

Coordination

Our model can be used to shed light on the influence of coordination on the allocation of

talent across contests. For this purpose, assume that, rather than being non-cooperative,

the contest choice of all high-ability contestants is the task of a common coordinator.20

The coordinator influences the allocation of high-ability contestants by choosing the frac-

tion qH ∈ [0, 1] entering high-type contests.21 The coordinator’s objective is to maximize

the sum of all high-ability contestants’ (expected) payoffs:

E
[

∑

UH

]

= (1− c) [qHbhF (Mh − 1;N, ph) + (1− qH)blF (Ml − 1;N, pl)] . (6)

The coordinated solution qCH must satisfy the first order condition

∆C = ∆+ 2y(1− c)

[

qHbh
∂F (Mh − 1;N, ph)

∂p
− (1− qH)bl

∂F (Ml − 1;N, pl)

∂p

]

≥ 0. (7)

Here ∆ denotes the term defined in (4), determining the non-cooperative equilibrium q∗H .

The term in square brackets measures the externalities of a high-ability contestant’s con-

test choice on all other high-ability contestants. Since F is decreasing in p, a contestant’s

19Although this seems reasonable, confirming it would require a model of competition with heteroge-
neous players and heterogeneous prizes.

20Assuming full coordination allows us to consider sorting in a setting which is diametrically opposed
to our benchmark case of non-cooperative contest choice. We expect all partially coordinated outcomes
to lie in between these two polar cases.

21While contest-type choices are coordinated, we continue to assume that, within each type, contests
are picked randomly and, once contestants have entered a certain contest, they choose their efforts non-
cooperatively.
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switch from low-type to high-type contests, decreases the payoff of the qH contestants

in high-type contests by (1 − c)bh while increasing the payoff of the 1 − qH contestants

in low-type contests by (1 − c)bl. The difference between the coordinated and the non-

cooperative solution is that the coordinator internalizes these externalities whereas they

are neglected when contestants choose individually.

The internalization of contest-choice externalities may prevent the coordinator’s ob-

jective function from being concave, thereby complicating the characterization of the

coordinated solution qCH along the lines of Proposition 2. However, the coordinator’s ob-

jective is, in fact, concave when the number of high-ability contestants is sufficiently low,

which is when coordination is most likely to play a role. This allows us to obtain the

following:

Proposition 3 Suppose that y < Mh

2N
. If (non-cooperative) sorting is positive, coordina-

tion decreases the fraction of high-talent players participating in high-type contests, i.e.

q∗H ≥ 1
2
⇒ qCH ≤ q∗H with strict inequality for q∗H < 1.

Proposition 3 shows that the coordinated solution qCH serves as a lower bound for the non-

cooperative equilibrium q∗H .
22 This is intuitive since, due to the externalities described

above, the coordinator has an incentive to spread high-ability players across contests.

Moreover, even with coordination, the two major forces -high prizes versus low effort

costs- determining contest choice in the non-cooperative setting are still present. We

therefore expect the coordinated solution to share the properties of the non-cooperative

equilibrium outlined in Proposition 2. In particular, the negative dependence of sorting

on the number of high-ability contestants should continue to exist in the presence of

coordination.23

3 Empirical framework

Our theoretical framework makes precise how a contest’s attractiveness to high-ability

runners depends on its prize structure and how the overall number of high-ability run-

ners influences their sorting across the two types of contests. Thus, testing the model’s

predictions requires variation in the distribution of abilities and variation in prize struc-

tures across contests. In this section, we test our model’s predictions using a large panel

22Since q∗H < 1 ⇔ bhF (Mh − 1, 2ȳ) < bl (see proof of Proposition 2), we can always choose bl
bh

such

that ȳ < Mh

2N
, i.e. there indeed exist parameters for which qCH is strictly smaller than q∗H .

23We have confirmed this numerically. Details are available on request.
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dataset of international city marathons and professional marathon runners, which spans

more than 20 years.24

Beyond the common advantages of sports data recognized in the literature, two im-

portant factors make marathons the ideal setting to test our theory.25 First, a fairly

homogeneous group of high-ability runners can be identified by their (East-African) ori-

gin rather than by performance measures–such as finishing time–that may be endogenous

to the prize budget. Second, there are five races (Boston, Berlin, Chicago, London, and

New York), which, for historical reasons, have a special status in running, comparable

to the “Grand-Slam” tournaments in tennis. These races offer considerably higher and

more-concentrated prizes than others.

The dominance of East-African marathon runners is most striking. In 2009, for exam-

ple, 88 of the 100 fastest (male) marathon runners were from either Kenya or Ethiopia.26

This dominance, unparalleled in other sports, has been explained by genetic, social, nu-

tritional, and geographical factors (Finn, 2012). It allows us to overcome the usual iden-

tification problem of measuring ability using past performance, which, unlike origin, may

depend on prize and effort considerations. Another advantage is that this group of high-

ability runners is fairly homogeneous, as postulated by our model, and exhibits a good

deal of variation in marathon participation, thereby enabling our analysis of sorting. The

dominance of East-African runners became apparent in the 1970s, when a handful of East-

African runners participated in international marathons, winning by great margins. Their

success sparked a professional running culture in their home countries making marathon

running a way to escape poverty. Certain minimum standards, however, must be met to

make travel abroad worthwhile and, as a consequence, the participation of East- Africans

in international races is still restricted to the most-talented.27 Marathon running, in gen-

eral, has become more competitive (see Figure 1). While in the early 1980s, the fastest

runners had a comparative advantage of around six percent (eight minutes), this advan-

tage had decreased to less than two percent (two minutes) by the late 2000s. This change

24We are not the first to use sports data to test the predictions of contest theory, although this literature
has focused mainly on incentive effects; see Ehrenberg and Bognanno (1990) and Brown (2011) on golf;
Becker and Huselid (1992) on auto racing; and Lynch and Zax (2000) on running.

25Sports contests share many features with other contests, such as those seen in a labor-market setting.
However, unlike in labor tournaments, prizes and performance are easily observed. It is often difficult,
if not impossible, to know the pay structure within firms. Moreover, workers’ individual performance is
seldom observed; nor are there well-defined measures that are recognized across firms, even for those in
the same industry or sector.

26See Top List of the International Association of Athletic Federations (IAAF) available online at
http://www.iaaf.org/statisitics/toplist/index.html.

27As a robustness check, we compare performance in years with a greater presence of East-African
runners to years in which there are fewer. The quality of performance is not affected. See Section 3.4.
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in the ability distribution constitutes a crucial element of our analysis of sorting.

Regarding contests, our model postulates the existence of two types that differ with

respect to their prize structure. In the world of running, a clear distinction can be made

between the races in Berlin, Boston, Chicago, London, and New York and the remaining

races. These five marathons have the longest history and attract the highest number of

runners. Their special status has manifested itself in the creation of the World Marathon

Majors series in 2006.28 In the following we will therefore refer to these races as “Major”

marathons and denote all remaining races as “Minor” marathons. Most importantly,

the Major marathons award much higher prizes and offer considerably more-concentrated

prize allocations than other marathons. These features allows us to identify the World

Marathon Majors as the high-type contests of our theoretical model.

Apart from the dominance of East-African runners and the special status of the Major

marathons, a number of other features of professional marathons make them an appro-

priate setting for testing the theoretical model. First, the model assumes that players

can participate in, at most, one contest. This is consistent with the empirical framework.

Marathons are typically clustered into two seasons: spring and autumn. Marathon run-

ners can run more than one race, but to achieve top performance they must allow for a

considerable rest period between races. As a consequence, runners typically choose only

one race per season.29

Second, the model assumes that runners make their race choices simultaneously. In

fact, what matters for the analysis is not the precise timing of entry, but that runners

face uncertainty regarding the race choice of other runners at the time of their own entry

decision. An important feature of marathon running is that runners must choose their

races several months in advance in order to achieve peak performance on race day via the

exact adjustment of their training plans. Thus, it is reasonable to assume that runners

face considerable uncertainty about their prospective opponents when making their race

choices.

Third, in the model, players are assumed to be motivated only by prize money. To

empirically judge the importance of other factors, such as prestige or the possibility of

achieving a personal best, we perform a counterfactual analysis in Section 3.4. In this

analysis, we show that, conditional on their effort and that of all other runners, runners

most often enter the race in which they maximize their monetary payoff, providing support

28Collectively, the group annually attracts more than five million on-course specta-
tors, 250 million television viewers, and 150,000 participants. For more details, see
http://worldmarathonmajors.com/US/about/.

29In our sample, less than two percent of runners run more than two races per year.
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for the model’s focus on prizes. In this respect, it is also important to note that in

comparison to other sports, very few runners obtain the status of a marketable superstar,

so prize money consititutes the dominant source of income for most runners.

Finally, our restriction to two types of contests with few (identical) high prizes or many

(identical) low-prizes is certainly a simplification with respect to the more sophisticated

prize structures used in marathons. Nevertheless, it provides a good approximation of

the runners’ main trade-off between a small likelihood of winning a high prize and a large

likelihood of winning a low prize.

3.1 Data description

We use data from the Association of Road Racing Statisticians, which contains detailed

race and runner information for the largest international marathons. We restrict attention

to the 35 marathons that are present in our sample for the entire period from 1986 to

2009.30 Since a marathon’s prize budget and participation are strongly correlated with

the number of years that the race has been in existence, these races are among the most

important events in the world of road racing.

For each race, we observe the date, location, and the prize distribution. At the runner

level, we identify the top (professional) finishers for each race. To maintain a balanced

panel and since we are only interested in the race choice of the most-able runners, we

restrict our attention to the first 20 finishers in each race (separately by gender). Since

marathons award fewer than twenty prizes for each race, our data contain runners who

win and runners who do not win a prize. We have information on the runners’ gender,

nationality, date of birth, finishing time, finishing position, and the prize awarded (if

any).31 Tables 1 and 2 provide the main descriptive statistics for races and runners,

respectively.

In Table 1, we show the descriptive statistics separately for Major and Minor races.

Table 1 shows that the average prize in a Major marathon is considerably higher than

the average prize in a Minor marathon ($17,227 compared to $3,240). Moreover, we see

30These are: Beijing, Berlin, Boston, California International, Chicago, Dallas, Detroit, Dublin, Frank-
furt, Gold Coast, Grandma’s, Hamburg, Honolulu, Houston, Italia, Kosice, London, Los Angeles, Madrid,
New York, Ottawa, Paris, Reims, Richmond, San Antonio, Rome, Seoul, Stockholm, Tokyo, Turin, Twin
Cities, Valencia, Venice, Vienna, and Warsaw. We exclude the marathons in Rotterdam, Amsterdam,
and Fukuoka since no prize-money information was available. We also exclude Dubai because it has
existed only a few years.

31Some marathons have faster (flatter) race courses than others, but the Association of Road Rac-
ing Statisticians has constructed conversion factors to make marathons comparable. We adjust all the
finishing times in our dataset using these conversion factors.
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that Major marathons award a considerably greater share of their prize budget to the

winner than Minor marathons (34 percent compared to 27 percent). A comparison of the

Herfindahl concentration index based on the first three prizes reveals that 57 percent of

the Major races have a Herfindahl index greater than the average, compared to only 35

percent for Minor races. Hence, in line with our theoretical framework, Major marathons

offer higher but more-concentrated prize structures. Further support for the identification

of Major races as high-type contests is provided in Section 3.4.

Apart from prizes, there are other stark differences between the two race categories.

Major marathons have (overall) around three times more participants thanMinor marathons

(22,332 compared with 6,838). The two types of races also differ in the quality of the run-

ners they attract. From Table 1, we can see that, on average, over all years, the fraction of

high-ability runners has been considerably larger in the Major races. This holds whether

we identify high-ability runners by origin or by (course-adjusted) finishing times. For

example, 18 percent of the finishers in the Major races were East-African, compared to

only 14 percent in the other races. Similarly, 29 percent of runners in the Major races had

a finishing time within five percent of the year’s best, compared with only eight percent

in the Minor races. As a consequence, winning times in Major races are, on average, eight

minutes faster, which is equivalent to a 2.6km lead.

Table 2 shows the descriptive statistics of runners. In this table, we compare East-

African runners, high-ability Non-East-African runners, and other Non-East-African run-

ners, respectively. High-ability Non-East-African runners are defined as the 100 fastest

Non-East-African runners within their gender category, based on their fastest finishing

time for a given year.32 For male runners, we see that East-African runners are com-

parable to high-ability Non-East-African runners on a number of dimensions, including

prize money ($7,676 versus $8,284), finishing times (two hours, 14 minutes versus two

hours, 12 minutes), and the number of marathons entered in a given year (1.42 versus

1.44). Compared with other runners, however, these two groups look very different. For

female runners, the same patterns hold. East-African runners are comparable with the

best Non-East-Africans, lending support to our identification of East-African runners as

high-ability contestants; but both groups are noticeably different from other runners. The

focus of the analysis will be on these high-ability runners.

32Our results are robust with respect to changes in the cut-off point for our definition of “high-ability.”
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3.2 Individual contest choice

We are now ready to test the predictions of our model. We start by considering a run-

ner’s individual race choice before moving to the equilibrium allocation of talent in the

subsequent section.

To test Proposition 1, we investigate how a runner’s expected payoff from a marathon

and, hence, his probability of entering depend on the race’s characteristics. Letting Pijt

denote the probability with which runner i enters race j in time period t, we estimate the

following equation:

Pijt = α0 + αAAjt−1 + αBBjt + αCCjt + αAC(Ajt−1 ∗ Cjt) +Xiβ + εijt. (8)

The variable Ajt−1 denotes the level of expected opposition. It is measured as the pro-

portion of high-ability participants among the race’s top 20 finishers in the previous year.

The variable Bjt denotes the marathon’s average prize. Cjt is a measure of the prize struc-

ture’s concentration, calculated as the ratio of the first prize over the sum of all prizes.

We also include a vector of control variables, Xi, containing the runner’s age, nationality,

gender, and ranking in the previous year. In addition, we control for whether the race

took place on the runner’s home turf since that may confer some comparative advantage.

We also control for gender-specific time dummies and race fixed-effects. Standard errors

are clustered at the runner-year level.

According to Proposition 1, the probability with which a runner enters a race will

be increasing in the average prize, Bjt, such that αB > 0, and decreasing in expected

opposition, Ajt−1, such that αA < 0. Moreover, we expect the effect of concentration, Cjt,

on entry to depend on the level of expected opposition. The model predicts that more-

concentrated prize structures are attractive only when there are sufficiently few opponents,

and are unattractive otherwise. Therefore, we expect the coefficient on the interaction

term (Ajt−1 ∗ Cjt) to be negative (αAC < 0). Since Proposition 1 is concerned with the

preferences of high-ability contestants, we restrict our attention to the race choice of the

top runners.

As our main variable of interest (Ajt−1), is based on the past race choices made by

a group of top-runners, using the race choice observations for runners from the same

group would result in a mechanical bias. This is because their races choices would be

influenced by the races’ characteristics in an identical way. We would therefore want to

separate runners into two groups with identical (high) ability but (potentially) different

race choice preferences. We do this by restricting the participation analysis to the high-

ability Non-East-African runners and by using the proportion of East-African runners in
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a race’s previous edition as proxy for the expected opposition. We showed in Table 2 that

both groups of runners are comparable in their abilities. However, it is likely that there

exists enough independent variation in their race choices to give a causal estimation of the

effect of expected opposition on race participation. Another advantage of using runners

from East-Africa is that it allows us to use exogeneous variation in local conditions as an

instrument for expected opposition.33 We will deal with this issue explicitly in the next

section.

In Table 3, we present the results without the interaction between opposition and

concentration. Columns 1 and 2 present the baseline regression without and with con-

trols, respectively. Column 3 includes year dummies and year dummies interacted by

gender to control for the changing trends in the participation of (East-African) runners

in marathons. Column 4 includes race fixed-effects, which allows for race-specific features

that are attractive or unattractive to runners. Races tend to take place in the same month

each year. We also control for this, as a means to account for seasonal effects. Overall, we

find that an increase in expected opposition is associated with a decrease in the entry of a

high-ability contestant in a race, and the average prize has a positive effect on entry. The

results allow us to determine the “prize” that contestants are willing to pay for a reduc-

tion in opposition. We find that a high-ability runner’s likelihood of participation is kept

unchanged if a reduction in the (expected) number of opponents by one is accompanied

by a decrease in the race’s average prize by $2, 583.34 This constitutes almost 50 percent

of a race’s average prize, calculated over all races. With respect to prize concentration,

overall, prize concentration has a positive effect on participation once we control for time

and race fixed-effects.

Table 4 shows that the results are robust to alternative definitions of high-ability and

expected opposition. First, we extend our definition of high-ability Non-East-African

runners to include those who finish in the Top 100 during any of the last three years

rather than the previous year alone (Column 1). This accounts for the (rare) possibility

that during a particular year, a runner with Top 100 potential may have failed to finish a

race within the top twenty. Second, we restrict our definition of expected opposition by

counting only those East-African opponents whose finishing time was amongst the Top 100

finishing times of the (previous) year (Column 2). Using performance in combination with

33Using past finishing times as a measure of expected opposition would not allow for such an instrument
and would add measurement error coming from factors such as weather conditions.

34A reduction in the number of East-Africans by one is equivalent to a five percentage point decrease
in expected opposition since the determination of Ajt−1 is based on the race’s top 20 finishers. Keeping
the likelihood of participation constant, therefore, requires a reduction in the race’s average prize by
100, 000 · 0.05 · 0.0109

0.0211
= 2, 583 dollars.
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the runners’ origin allows us to capture the possibility that runners base their expectations

about opposition on the speed with which the race was run, while still allowing for a

decomposition of runners into two groups as outlined above.

In Table 5, we present the results with the interaction between opposition and prize-

concentration. Columns 1 to 4 show that there exists a differential effect of prize con-

centration on entry, depending on the expected level of opposition. In line with the

predictions of Proposition 1, we find that an increase in the prize structure’s concentra-

tion is associated with an increase in entry if and only if the level of opposition is below

a certain threshold. In particular, we find that an increase in the share awarded to the

winner makes a race more attractive when expected opposition (i.e., the proportion of

East-Africans among the race’s top twenty finishers in the previous year) is below 44%.35

For higher levels of expected opposition, prize concentration has a negative effect on the

entry of high-ability runners. This finding provides support for our assertion that, in

contests, selection effect can be opposed to incentive effects.

Exogenous variation in opposition

We have shown that participation is negatively related to expected opposition. An im-

portant concern, however, is that the main variable of interest, Ajt−1, might be correlated

with some unobservable characteristics, leading to a biased estimate of αA. If a race

becomes attractive to all high-ability runners, East-African and Non-East-African, for

reasons unexplained by our set of observables, it will create a positive correlation between

the entry of these runners and the error term. This would translate into an upward-biased

estimate of αA. To deal with this issue, we instrument for expected opposition, Ajt−1,

using exogenous variation in the entry of East-African runners, that is uncorrelated with

the (unobservable) race characteristics. We do this by instrumenting Ajt−1 with rainfall,

as well as commodity prices, in Kenya and Ethiopia in the previous year, t − 1. Both

variables are correlated with the number of East-African runners who compete in a given

year but uncorrelated with race characteristics. It is unlikely that these correlations will

affect the race choice of Non-East-Africans, except through the effect that they have on

the level of expected opposition, Ajt−1.

The reasoning behind the two instruments follows a growing literature, mainly in

political economy, which relates rainfall and commodity prices to economic conditions in

Sub-Saharan countries. It has been shown that rainfall levels positively affect income per

35To determine this threshold we divide the concentration coefficient in column 4 by the interaction
term to get 0.0117/0.0264=0.44.
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capita (Miguel et al., 2004) and the functioning of democratic institutions (Brückner and

Ciccone, 2011) in Sub-Saharan African countries. In addition, Deaton (1999) documents

that commodity price downturns cause rapidly worsening economic conditions in Sub-

Saharan African economies. Therefore, we expect rainfall and commodity prices to have

a positive effect on the international marathon participation of East-African runners. This

is intuitive since most East-African runners rely on the support of sponsors, some of which

are local businesses or regional government agencies.36

We construct international commodity price indices for Kenya and Ethiopia following

Deaton (1999) and Brückner and Ciccone (2011). For this purpose, we use the Interna-

tional Monetary Fund monthly price data for exported commodities for the period 1986

to 2009 and the countries’ export shares of these commodities taken from Deaton for

1990. The rainfall data, covering the period 1986 to 2009, are taken from the NASA

Global Precipitation Climatology Project. The first-stage estimates show that rainfall

and commodity prices are, indeed, strongly related to the participation of East-African

runners in international marathons. In particular, with the exception of commodity prices

in Ethiopia, positive rainfall shocks and commodity price upturns, increase the number

of East-African runners competing internationally. The instruments are individually and

jointly significant in the first stage (the F-Statistic of their joint significance is 12.22).

The first-stage regression is reported in Table 8.

In Table 5, Column 5, we present the results for the IV estimates. Since the in-

struments are annual and do not vary across races, we focus on the interaction of the

instrumented expected opposition with prize concentration. As in the OLS regressions,

we find that the effect of concentration on entry depends on the level of (expected) oppo-

sition. As opposition increases, prize concentration becomes less attractive. The results

are in line with those found using OLS; however, the magnitudes are larger, suggesting

that the coefficient on expected opposition is, indeed, biased upwards when using OLS.

Separating by gender (Column 6 and 7), the interaction between expected opposition and

prize steepness is slightly stronger for men, but overall we observe a similar pattern.

3.3 Sorting

While Proposition 1 was concerned with the contestants’ individual preferences, Propo-

sition 2 focuses on the equilibrium distribution of players across contests. We now move

36We might be concerned that in years when there are more (fewer) East-African runners, the quality
of the marginal runner is lower (higher). We check this by looking at the finishing times of East-African
runners in the years when there are many (few) and find that these times are not statistically different
from one another.

23



from the determinants of individual race choice to the analysis of the aggregate distribu-

tion of runners across races, using the time-series variation of our dataset.

To test Proposition 2, we analyze whether an increase in the overall number of high-

ability contestants leads to a more balanced distribution of talent across contests. More

specifically, we test the following equation:

SM
t = α0 + αHAHAt + αBB

M
t + t+ εt. (9)

The dependent variable, SM
t , measures the level of sorting. It denotes the proportion of

East-African runners who choose to participate in a Major rather than a Minor marathon

in period t. For SM
t = 1, sorting is complete–i.e., East-African runners participate exclu-

sively in Major marathons. The main variable of interest, HAt, is the overall proportion

of East-African runners, in period t. According to Proposition 2, sorting should be de-

creasing in HAt. The variable B
M
t denotes the proportion of the total prize money that is

awarded in the Major marathons. According to Proposition 2, sorting should be increas-

ing in BM
t . We control for both time trends and for whether the year was an Olympic

year. Since marathons can be divided into spring and autumn races, and runners typically

choose one from each group, we consider contest choice for a given gender category, per

season rather than per year to allow for a richer analysis.

Table 6 shows the estimates for equation (9). Since, in our theoretical model, the

number of high-type contests is identical to the number of low-type contests, we first

restrict our analysis (columns 1 to 4) to the top ten races. These races include the five

Major marathons, as well as the next five most important races (Hamburg, Honolulu,

Frankfurt, Paris, and Rome). In columns 5 to 8, we consider the runners’ allocation

across all 35 races. The results are similar for both samples.

We find that an increase in the proportion of high-ability contestants leads to a sig-

nificant decrease in sorting. More specifically, as the proportion of East-African runners

in the top ten races increases by one percent, the share of East-Africans who choose a

Major marathon decreases by 0.77 percent without controlling for time trends and 1.28

percent when controlling for time trends. The effect is comparable, when all 35 races are

considered. These results constitute evidence for the decrease in sorting, as predicted by

Proposition 2. As expected, we also find evidence for a positive relation between sorting

and prize budget differences. In particular, a one-percent increase in the proportion of

prize money awarded by the Major races leads to an increase in the share of East-African

runners entering a Major race by 1.22 percent for the top ten races and by 0.52 percent

for all 35 races. It is reassuring that these effects persist when we control for time trends,

gender and differential trends across gender.
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We see that in an Olympic year, the proportion of East-African runners entering a

Major marathon increases by ten percent. This is intuitive since participation in the

Olympics is restricted by country quotas. Due to the large number of talented Kenyan

and Ethiopian runners, many of them are unable to run the Olympic marathon, whereas

runners of comparable ability but different nationality are able to participate with a higher

probability. As a result, the proportion of East-African runners in the Major races, the

next-best alternative to the Olympics, is higher in Olympic years.

To determine whether our results are identified by some time periods more than others,

we estimate equation (9) by accounting for different time periods. We interact the main

variable of interest, the fraction of high ability runners, with time dummies and plot

the resulting coefficients for time periods 1986-1991, 1992-1997, 1998-2003, and 2004-

2009 together with their standard errors in Figure 2. The results show that the effect is

identified across all periods, except the first period, where, although the point estimate

is highly negative, the standard errors are quite large. Overall, our result that sorting

depends negatively on the fraction of high ability runners is consistent over time.

An alternative explanation for the decrease in sorting could be that organizers of

Major marathons restrict the number of East-African participants in order to guarantee a

diversified field. In order to rule this out, we check the robustness of our results using an

alternative proxy for talent. Rather than using origin, we identify a group of high-ability

runners in a given season using performances.37 We identify high-ability runners as those

who have (adjusted) finishing times within one percent of the season’s fastest finishing

time in their gender category. We also look at those finishing within five and ten percent

of the fastest time, respectively. It is likely that the changes in the overall number of high-

ability runners over the years are, at least in part, a result of the increase in East-African

participation. However, this measure of high-ability is less restrictive, especially if the

quality and composition of the group of East-African runners are changing over time.

Table 7 shows that our main results still hold when we repeat the analysis for the

alternative measure of ability based on rankings. The sorting of high-ability runners into

Major races is increasing in the proportion of prize money on offer but decreasing in

the overall proportion of high-ability runners. Interestingly, the decrease is stronger the

more able the runners under consideration. In particular, a ten-percent increase in the

proportion of high-ability runners reduces sorting by 46, seven, or three percent when high-

ability refers to runners within one, five, or ten percent of the fastest time, respectively.

37Note that, since effort and ability are hard to separate, finishing times may be related to prize money.
An advantage of using origin is, therefore, that this definition of high-ability is independent of prize money
considerations.

25



Thus, it seems as if a contestant’s tendency to avoid competition by equally talented

opponents is increasing in his ability. Finally, note that in contrast to our estimation

based on runners’ origin, the Olympic year dummy is no longer significant, which is in

line with the reasoning provided above.

3.4 Robustness

In this section, we address four relevant concerns: 1) the importance of prize-money for

a runner’s race choice; 2) the possibility of coordination; 3) the potential endogeneity of

prize budgets; and 4) the identification of Major races as high-type contests.

Do runners choose races based on prizes?

Based on runner-race characteristics (finishing times, prizes), how important are (ex-

pected) prize winnings in a runner’s race choice? For example, a runner’s race choice

might be driven by other (unobservable) factors, such as sponsors’ preferences. This issue

is crucial for determining whether our empirical setting is appropriate to test our model.

As an illustration, we use the most recent year of our data to investigate a runner’s

potential prize winnings, taking the behavior of all other runners as given. We then

construct the counterfactual outcome by counting the number of races in which the runner

could have obtained a higher prize than in the one he actually chose to compete in. We

take as given his current time (effort), as well as the times of all other runners, thus

neglecting potential effort adjustments.

We find that a surprisingly high fraction of runners choose a race that maximizes

their prize winnings ex post. In particular, around 40 percent of the prize winners could

not have earned a higher prize in any other marathon. A further 20 percent had only

one alternative race in which their prize would have been higher. This suggests that

(expected) prize winnings are an important determinant of runners’ behavior, relegating

other factors as major drivers of contest choice.

Coordinated race choices

In some instances runners are managed by athlete representatives. This may lead to

the race choices of runners, who are managed by a common representative, to become

coordinated. Our theory (Proposition 3) shows that such coordination would have a

negative effect on sorting. Hence coordination may confound our result that sorting

depends negatively on the number of high-ability contestants but only if coordination

was easier to achieve in larger groups, which seems unlikely to be the case. In fact,
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coordination is commonly seen as a small-group phenomenon due to the relative ease

to agree on a common decision. If anything, we, therefore, underestimate the actual

reduction in sorting implied by an increase in the number of high-ability contestants.

Moreover, with respect to marathon running, we expect the effect of coordination on

contest choices to be small. Using affiliation data by Road Race Management Inc. (2015),

we find that the number of runners who share a common manager is relatively low with

respect to the overall number of runners. Based on the information available for the

1081 (male) East-African runners that year, we find that more than half of the runners

have no manager. For those who are represented by a manager (46%), the Herfindhal

concentration index calculated for the distribution of runners across managers is only 0.04.

This number increases only slightly to 0.10 when we restrict attention to the East-African

runners included in the IAAF Top 100 List. In particular, those runners are managed by

sixteen different representatives with at most nine runners sharing a common manager.

Hence, while athlete representatives may have some influence on race choices, the low

level of runners’ concentration suggests that their effect is rather small.

Exogenous variation in prize budgets

We may be concerned that race organizers adjust their prizes to keep their race attractive

to high-ability contestants. If entry falls, race organizers may increase prize money. As

a consequence, the coefficient on Bjt in equation (8) would be biased downwards. We

deal with this problem by instrumenting the value of a race’s average prize with the

exchange rate of the country where the race takes place, relative to a currency basket.38

We expect that a move in the exchange rate is associated with an exogenous change in

the value of the race’s average prize. This change should not be associated directly with

race entry. In order to construct a currency basket, we use the annual Special Drawing

Rights basket provided by the International Monetary Fund.39 Table 9 shows that when

we instrument for the prize budget, the coefficient is positive and significant, as previously

seen. However, compared with OLS, the coefficient is larger, even after controlling for

race and year fixed-effects, suggesting that the OLS is, indeed, downward-biased. The

first stage of the instrument is reported in Table 8.

38This is preferable over instrumenting with the value of an East-African runner’s national currency
since changes in the latter affect the attractiveness of all marathons equally.

39This basket contains U.S. Dollars, Euros, Japanese Yen, and Pounds Sterling. Weights assigned to
each currency are adjusted annually to take account of changes in the share of each currency in world
exports and international reserves.

27



Identification of high-type contests

In our analysis of sorting in Section 3.3, we identify the Major races as the high-type

contests–i.e., as those with high prizes and high concentration. We verify our identifica-

tion by repeating the participation analysis in Section 3.2 through making a distinction

between entry into Major and Minor races. We define the variable Major, which takes

the value 1 if the race is a Major race and 0 otherwise, and we use it as an alternative

to the winner’s share to measure the prize structure’s concentration. We find that our

main results from Section 3.2 hold. Being a Major race increases entry, but as opposition

increases, Major races become less attractive to enter. This provides additional support

for our identification of Major races as high-type contests. The results are presented in

Table 10.

4 Conclusion

While the incentive effects of rewarding relative performance have been extensively studied

in the theoretical and empirical literature, little is known about contest selection. In this

paper, we have presented and tested a simple model that studies both contest and effort

choices. Contestants take into account their own ability, the (expected) strength of their

competitors, and the reward schemes offered by the different types of contests. We show

that contrary to common belief, the contests with the highest and most-concentrated

prizes do not always attract the largest number of high-ability contestants. Contest

selection depends, in a systematic way, on the overall distribution of talent, and sorting

is reversed when the proportion of high-ability individuals increases beyond a certain

threshold. We show that the selection and incentive effects of a contest’s prize structure

can be either aligned or opposed depending on the competitiveness of the environment,

highlighting the importance to study both effects.

Data limitations often prevent the empirical study of contest theory. Key model

parameters, such as individual ability and performance, are often unobservable. Moreover,

in many tournament settings, a wide array of factors confound the variables of interest. In

a labor-market setting, for example, it is often difficult to separate worker from firm types.

Our real-effort tournament setting overcomes such identification problems and allows us

to shed light on important aspects of contest design. Detailed data on marathons and

professional road runners, spanning three decades, have provided us with an opportunity

to empirically test theoretical predictions on contest selection.

Our empirical findings confirm our theoretical results and provide evidence for the
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contestants’ trade-off between entering a contest with few high prizes or a contest with

many low-prizes. Empirically, we have determined the “prize” that contestants are willing

to pay to avoid talented opponents and that organizers must offer to guarantee their

contest’s attractiveness. Using exogenous variation in the level of competition, our results

provide evidence for a strong negative relation between the level of sorting and the overall

frequency of highly-talented contestants.

This paper sheds light on an aspect of contest design that has been largely overlooked.

By focusing on the effect of contest design on participation, we have been able to es-

tablish results, both theoretically and empirically, that complement those in the existing

literature. Since the basic trade-off between prizes and opposition, which determines con-

test selection in our framework, is present in other settings, including labor tournaments,

procurement contests, and R&D competition, we expect our results to have important

implications for contest design in a broad variety of contexts.
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Figure 1: Competitiveness of Marathon Running. Competitiveness is defined as the
ratio of the fastest (male) winning time of a year over the average finishing times of the
top 20 (male) finishers in all races. Finishing times are adjusted for racecourse differences.
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Figure 2: Sorting of High-Ability Runners (Time-Periods). The effect of the pro-
portion of high-ability runners on sorting (αHA) for different time periods. The regression
used to construct the figure controls for the same variables as in Table 6. The dotted lines
represent a 95% confidence interval.
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Major Races All other Races
Variable Obs Mean Std. Dev. Obs Mean Std. Dev.

Average Prize ($) 238 17,277 9,372 1381 3,240 4,331
1st/Total 238 0.34 0.12 1381 0.27 0.27

High Concentration 238 0.57 0.5 1381 0.35 0.48
No. of Participants 236 22,332 10,143 859 6,838 6,462

Winning Time (hh:min) 238 02:17 00:09 1381 02:25 00:13
High Ability (Origin) 238 0.18 0.18 1381 0.14 0.22

High Ability (1%) 238 0.03 0.06 1381 0.00 0.02
High Ability (5%) 238 0.29 0.26 1381 0.08 0.17
High Ability (10%) 238 0.66 0.29 1381 0.36 0.36

Table 1: Descriptive Statistics (Races) Means and standard deviations for Major and
Minor marathons, respectively. Major races are the Berlin, Boston, Chicago, London,
and New York marathons. The sample period is 1986 to 2009. “Average Prize” is the
sum of all prizes awarded in a race (US dollars at 2000 prices) divided by the number
of prize winners. “1st/Total” is the winner’s prize divided by the sum of all prizes in
a race. “High Concentration” takes value 1 if the Herfindahl index, calculated for the
top three prizes, is above its mean value. “No. of Participants” is the total number of
participants, including amateurs, in a race. These data were collected separately from
various sources, including ARRS and race websites. “Winning Time” is adjusted using
ARRS conversion factors to ensure that times are comparable across races. “High Ability
(Origin)” refers to the fraction of runners from East Africa among the first 20 finishers
of a race. Similarly, “High Ability (1%) (5%), (10%)” refers to the fraction of runners
among the first 20 finishers of a race, finishing within 1%, 5%, and 10% of the best time
of the year, respectively.
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Male Runners
East-African Top 100 Non-East-African All others

Variable Obs Mean Std. Dev. Obs Mean Std. Dev. Obs Mean Std. Dev.
Age 2892 28.78 4.54 2684 30.05 4.14 4619 30.96 5.16

Prize ($) 2892 7,676 17,780 2684 8,284 16,048 4619 833 2,075
No. Races 2892 1.42 0.6 2684 1.44 0.61 4619 1.17 0.45

Fraction entering Major Race 2892 0.23 0.42 2684 0.38 0.49 4619 0.14 0.34
Finish Time 2892 2:14 0:05 2684 2:12 0:02 4619 2:20 0:05

Female Runners
East-African Top 100 Non-East-African All others

Variable Obs Mean Std. Dev. Obs Mean Std. Dev. Obs Mean Std. Dev.
Age 646 27.69 4.44 2621 30.82 5.35 4840 32.26 6.31

Prize ($) 646 12,420 25,536 2621 10,339 18,319 4840 815 1,885
No. Races 646 1.45 0.59 2621 1.54 0.72 4840 1.19 0.46

Fraction entering Major Race 646 0.32 0.47 2621 0.43 0.49 4840 0.19 0.39
Finish Time 646 2:33 0:08 2621 2:32 0:04 4840 2:46 0:07

Table 2: Descriptive Statistics (Runners) Means and standard deviations (by gender category) for East-African
runners, Top 100 Non-East-African runners, and all other runners, respectively. The sample period is 1986 to 2009. “No.
of Races” is the number of races run in a given year. “Prize” is the prize money in US dollars at 2000 prices that a runner
wins (on average) per race. “Finishing Times” have been adjusted using ARRS conversion factors to ensure that race
courses are comparable.
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OLS OLS OLS OLS
[1] [2] [3] [4]

Variable enter enter enter enter
Expected Opposition (t-1) -0.0271*** -0.0250*** -0.0162*** -0.0109***

[0.002] [0.003] [0.004] [0.004]
Average Prize (’00000) 0.3381*** 0.3404*** 0.3197*** 0.0211*

[0.017] [0.017] [0.017] [0.012]
1st/Total -0.0259*** -0.0271*** -0.0108*** 0.0086***

[0.002] [0.002] [0.002] [0.003]
Female -0.0013 0.0033* 0.0032

[0.001] [0.002] [0.002]
Age -0.0000** -0.0000** -0.0000**

[0.000] [0.000] [0.000]
At Home 0.1164*** 0.1200*** 0.1223***

[0.006] [0.006] [0.002]
Nationality: US 0.0070*** 0.0063*** 0.0065***

[0.001] [0.001] [0.002]
Rank (t-1) -0.0001*** -0.0001*** -0.0001***

[0.000] [0.000] [0.000]
Constant 0.0312*** 0.0281*** 0.0261*** 0.0215***

[0.001] [0.001] [0.004] [0.005]
Time Fixed Effects No No Yes Yes
Race Fixed Effects No No No Yes

Observations 144,880 144,120 144,120 144,120
R-Squared 0.015 0.036 0.041 0.059

Table 3: Probability of Entering a Race (OLS). *,**,*** denotes significance at the
10%, 5%, and 1% level, respectively. The standard errors are clustered at the runner-year
level. The sample is restricted to the runners who were among the Top 100 Non-East-
African runners in the previous year. The sample period is 1986 to 2009. “Expected
Opposition (t-1)” is the fraction of East-African runners among the top 20 finishers of the
race in the previous year. “Average Prize” is the sum of all prizes awarded in the race
(US dollars at 2000 prices) divided by the number of prize winners. “1st/Total” is the
winner’s prize divided by the sum of all prizes in the race. “At home‘” takes the value
1 if the runner is racing in his or her home country. “Nationality” takes the value 1 if
the runner is from the US and 0 otherwise. “Rank (t-1)” is the ranking of the runner in
the previous year (between 1 and 100). The time fixed-effects include a complete set of
month and year dummies, as well as year and gender interactions.
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OLS OLS
[1] [2]

Variable enter enter
Expected Opposition (t-1) -0.0114*** -0.0147***

[0.004] [0.004]
Average Prize (’00000) 0.0199 0.0235**

[0.019] [0.012]
1st/Total 0.0092*** 0.0083***

[0.002] [0.003]
Female 0.0027 0.0011

[0.002] [0.001]
Age -0.0000** -0.0000**

[0.000] [0.000]
At Home 0.1204*** 0.1217***

[0.005] [0.002]
Nationality US 0.0058*** 0.0063***

[0.001] [0.002]
Rank (t-1) -0.0000*** -0.0001***

[0.000] [0.000]
Constant -0.0087*** 0.0345***

[0.003] [0.004]
Time Fixed Effects Yes Yes
Race Fixed Effects Yes Yes

Observations 168,461 144,120
R-Squared 0.054 0.058

Table 4: Probability of Entering a Race (Robustness). *,**,*** denotes significance
at the 10%, 5%, and 1% level, respectively. The standard errors are clustered at the
runner-year level. In Column [1] the sample is extended to include the race choices of those
runners who were among the Top 100 Non-East-African runners in any of the previous
three years. In Column [2] the definition of “Expected Opposition (t-1)” is narrowed to
include only those East-African participants of the previous year’s race whose performance
was within the Top 100 finishing times of that year. All other variables are as described
previously in Table 3.
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OLS OLS OLS OLS IV IV IV
[1] [2] [3] [4] [5] [6] [7]

Variable enter enter enter enter enter enter enter
Expected Opposition (t-1) 0.0003 0.0061 0.0084* -0.0031

[0.003] [0.004] [0.004] [0.005]
Average Prize (’00000) 0.3462*** 0.3264*** 0.3273*** 0.0272** 0.0387*** 0.0146 0.0374*

[0.017] [0.017] [0.017] [0.012] [0.013] [0.017] [0.020]
1st/Total -0.0158*** -0.0007 -0.0008 0.0117*** 0.0166*** 0.0232*** 0.0126***

[0.002] [0.002] [0.002] [0.003] [0.003] [0.006] [0.004]
Exp.Opp(t-1)*1st/Total -0.0927*** -0.0853*** -0.0849*** -0.0264** -0.0551*** -0.0598*** -0.0494**

[0.008] [0.008] [0.008] [0.010] [0.015] [0.021] [0.023]
Female -0.0009 0.0013 0.0027 0.0036*

[0.001] [0.002] [0.002] [0.002]
Age 0 -0.0000* 0 0 0 0

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
At Home 0.1192*** 0.1196*** 0.1222*** 0.1222*** 0.1446*** 0.1012***

[0.006] [0.006] [0.002] [0.002] [0.003] [0.003]
Nationality: US 0.0062*** 0.0063*** 0.0064*** 0.0063*** 0.0070** 0.0053

[0.001] [0.001] [0.002] [0.002] [0.003] [0.003]
Rank (t-1) -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0001** -0.0001***

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
Constant 0.0284*** 0.0221*** 0.0246*** 0.0211*** 0.0211*** 0.0042 0.0379***

[0.001] [0.004] [0.004] [0.005] [0.005] [0.005] [0.005]
Time Fixed Effects No No Yes Yes Yes Yes Yes
Race Fixed Effects No No No Yes Yes Yes Yes

Observations 144,880 144,120 144,120 144,120 144,120 75,369 68,751
R-squared 0.016 0.042 0.042 0.059 0.059 0.065 0.056

P-Value of F-test of exc. ins. 0.0000 0.0000 0.0000

Table 5: Probability of Entering a Race (Instrument for Expected Opposition). *,**,*** denotes significance at
the 10%, 5%, and 1% level, respectively. The standard errors are clustered at the runner-year level. Expected opposition
is instrumented with the commodity price index in Kenya and Ethiopia in the previous year, as well as the (log) rainfall
in Kenya and Ethiopia in the previous year. Separate regressions for men and women are shown in Columns [6] and [7]
respectively. For definition of variables, see Table 3.
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Top 10 Races All 35 Races
Variables Sorting Sorting Sorting Sorting Sorting Sorting Sorting Sorting

Proportion of HA (Origin) -0.7742*** -0.3551** -1.0272** -1.2758** -0.6214*** -0.5321*** -1.2260** -1.3164***
[0.187] [0.171] [0.501] [0.494] [0.131] [0.125] [0.471] [0.465]

Proportion of Prize 1.1128*** 1.1749*** 1.2193*** 0.4822*** 0.4887*** 0.5204***
[0.190] [0.195] [0.189] [0.139] [0.138] [0.137]

Female -0.0894* -0.0734* -0.2516 -0.2575* -0.009 -0.0297 0.0303 0.0139
[0.050] [0.042] [0.153] [0.148] [0.035] [0.033] [0.113] [0.111]

Trend 0.0125 0.02 0.0250* 0.0271*
[0.017] [0.016] [0.015] [0.015]

Trend*Female 0.0014 -0.0008 -0.0099 -0.0102
[0.008] [0.008] [0.006] [0.006]

Olympic Year 0.0967** 0.0598*
[0.039] [0.031]

Constant 0.8727*** -0.2134 -0.1688 -0.2579 0.4619*** 0.1331 -0.0424 -0.0743
[0.097] [0.202] [0.280] [0.273] [0.065] [0.113] [0.175] [0.173]

Observations 79 79 79 79 79 79 79 79
R-squared 0.19 0.448 0.471 0.513 0.275 0.375 0.399 0.429

Table 6: Sorting of High-Ability Runners (Origin). *,**,*** denotes significance at the 10%, 5%, and 1% level,
respectively. High-ability runners are defined as those who originate from Kenya or Ethiopia. Top 10 Races include the
Major races (Berlin, Boston, Chicago, London, and New York), as well as Hamburg, Honolulu, Frankfurt, Paris, Rome.
The dependent variable, “Sorting”, is the proportion of high-ability runners who enter a Major rather than a Minor race.
“Proportion of HA” is the overall proportion of high-ability runners in the population of runners. Both variables are
calculated separately for each race season (spring, autumn). “Proportion of Prize” is the proportion of the overall prize
money awarded in the Major races. “Trend” is a linear trend for the sample period 1986 to 2009. “Olympic Year” takes
value 1 in years 1988, 1992, 1996, 2000, 2004, and 2008 and 0 in all other years.
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Top 10 Races All Races
VARIABLES Sorting Sorting Sorting Sorting Sorting Sorting

[1] [2] [3] [4] [5] [6]
Proportion of HA (1%) -1.9589*** -4.6357**

[0.707] [2.148]

Proportion of HA (5%) -0.2751* -0.7163***
[0.159] [0.214]

Proportion of HA (10%) -0.1194 -0.3075***
[0.146] [0.110]

Proportion of Prize 0.3263* 1.0318*** 1.1413*** 1.2664*** 0.7091*** 0.4475***
[0.176] [0.126] [0.119] [0.286] [0.140] [0.082]

Female -0.1602 -0.0097 -0.0432 0.1364 -0.0995 -0.1608*
[0.128] [0.105] [0.122] [0.221] [0.112] [0.083]

Trend -0.0193** -0.0139** -0.0036 0.0171 -0.0170** -0.0166***
[0.008] [0.007] [0.008] [0.014] [0.007] [0.005]

Trend*Female 0.0102* 0.0027 -0.0007 -0.0086 0.0060 0.0063**
[0.006] [0.005] [0.005] [0.010] [0.005] [0.003]

Olympic Year 0.0233 -0.0231 0.0071 -0.0634 -0.0008 0.0137
[0.035] [0.025] [0.023] [0.061] [0.028] [0.016]

Constant 1.0270*** 0.1000 -0.1355 -0.3148 0.4351* 0.5788**
[0.259] [0.242] [0.336] [0.380] [0.240] [0.220]

Observations 79 79 79 79 79 79
R-squared 0.314 0.719 0.692 0.364 0.603 0.622

Table 7: Sorting of High-Ability Runners (Performance). *,**,*** denotes significance at the 10%, 5%, and 1%
level, respectively. High-ability runners are defined as those with an (adjusted) finishing time within 1% (5%, 10%) of the
race seasons’s fastest time in their gender category. The dependent variable “Sorting” is the proportion of high-ability
runners who enter a Major rather than a Minor race. “Proportion of HA 1% (5%, 10%)”, is the overall proportion of
high-ability runners in the population of runners. Both variables are calculated separately for each race season (spring,
autumn). For definition of other variables, see Table 6.
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Variables Exp. Opp. (t-1)*1st/Total Exp. Opp. (t-1)*Major Race Average Prize (’00000)
Commodity Price Index in Kenya (t-1) 0.0021*** 0.0003***

[0.000] [0.000]
Log Rainfall in Kenya (t-1) 0.1833*** 0.0193***

[0.005] [0.005]
Commodity Price Index in Ethiopia (t-1) -0.001*** -0.002***

[0.000] [0.000]
Log Rainfall in Ethiopia (t-1) 0.0115*** 0.0201***

[0.003] [0.003]
Exchange Rate 0.0001***

[0.000]
Constant -0.6411*** -0.1305*** -0.0369**

[0.0184] [0.0165] [0.0039]
Controls Yes Yes Yes

Time Fixed Effects Yes Yes Yes
Race Fixed Effects Yes Yes Yes

Observations 144,120 144,120 144,120
R-Squared 0.49 0.61 0.743

Table 8: First Stage Regressions. *,**,*** denotes significance at the 10%, 5%, and 1% level, respectively. Standard
errors are clustered at the runner-year level. “Commodity Price Index Kenya (Ethiopia) in t-1” is constructed using
the international commodity price data from International Monetary Fund. “Log Rainfall in Kenya (Ethiopia) in t-1” is
annual rainfall data from the NASA Global Precipitation Climatology Project. “Exchange Rate” is the exchange rate of
the country of the race relative to the Special Drawing Rights currency basket provided by the International Monetary
Fund.
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IV IV
[1] [2]

Variable enter enter
Expected Opposition (t-1) -0.0124*** 0.011

[0.004] [0.009]
Average Prize (’00000) 0.3499** 0.3257**

[0.168] [0.160]
1st/Total -0.0172 -0.0049

[0.013] [0.009]
Exp.Opp(t-1)*1st/Total -0.0787***

[0.030]
Female 0.0060** 0.004

[0.003] [0.002]
Age 0 0

[0.000] [0.000]
At Home 0.1220*** 0.1219***

[0.002] [0.002]
Nationality: US -0.0001*** -0.0001***

[0.000] [0.000]
Rank (t-1) 0.0064*** 0.0064***

[0.002] [0.002]
Constant 0.0247*** 0.0230***

[0.005] [0.005]
Time Fixed Effects Yes Yes
Race Fixed Effects Yes Yes

Observations 144,120 144,120
R-squared 0.053 0.055

P-Value of F-test of exc. ins. 0.0000 0.0000

Table 9: Probability of Entering a Race (Instrument for Prizes). *,**,*** denotes
significance at the 10%, 5%, and 1% level, respectively. The standard errors are clustered
at the runner-year level. Average Prize is instrumented with the exchange rate of the
country of the race relative to the Special Drawing Rights currency basket provided by
the IMF. For definition of variables, see Table 3.
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OLS OLS OLS OLS OLS OLS IV
[1] [2] [3] [4] [5] [6] [7]

Variable enter enter enter enter enter enter enter
Expected Opposition (t-1) -0.0156*** -0.0137*** -0.0204*** -0.0048** -0.0048* -0.0126***

[0.002] [0.003] [0.004] [0.002] [0.003] [0.004]
Average Prize (’00000) 0.1092*** 0.1109*** 0.1069*** 0.1542*** 0.1562*** 0.1527*** 0.1872***

[0.016] [0.016] [0.017] [0.016] [0.016] [0.017] [0.011]
Major Race 0.0633*** 0.0630*** 0.0639*** 0.0819*** 0.0812*** 0.0787*** 0.0851***

[0.004] [0.004] [0.004] [0.004] [0.004] [0.005] [0.002]
Exp. Opp. (t-1)*Major Race -0.1401*** -0.1376*** -0.1238*** -0.1863***

[0.014] [0.014] [0.015] [0.010]
Female -0.0013 -0.0001 -0.0031*** -0.0026 0.0024

[0.001] [0.002] [0.001] [0.002] [0.002]
Age 0 0 0 0 0

[0.000] [0.000] [0.000] [0.000] [0.000]
At Home 0.1155*** 0.1193*** 0.1152*** 0.1190*** 0.1187***

[0.006] [0.006] [0.006] [0.006] [0.002]
Nationality: US 0.0065*** 0.0063*** 0.0065*** 0.0063*** 0.0060**

[0.001] [0.001] [0.001] [0.001] [0.002]
Rank (t-1) -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0001***

[0.000] [0.000] [0.000] [0.000] [0.000]
Constant 0.0252*** 0.0219*** 0.0232*** 0.0221*** 0.0200*** 0.0200*** 0.0229***

[0.001] [0.001] [0.004] [0.001] [0.001] [0.004] [0.005]
Time Fixed Effects No No Yes No No Yes Yes

Observations 144,880 144,120 144,120 144,880 144,120 144,120 144,120
R-squared 0.022 0.043 0.047 0.024 0.045 0.049 0.049

P-Value of F-test of exc. ins. 0.0000

Table 10: Probability of Entering a Race (Major Race as Indicator for High Concentration ). *,**,*** denotes
significance at the 10%, 5%, and 1% level, respectively. The standard errors are clustered at the runner-year level. “Major
Race” takes value 1 if the race is a Berlin, Boston, Chicago, London, or New York marathon. Expected opposition is
instrumented with the commodity price index in Kenya and Ethiopia in the previous year, as well as the (log) rainfall in
Kenya and Ethiopia in the previous year. For definition of variables, see Table 3.

40



Appendix - Proofs

Proof of Lemma 1

Consider a contest withMj prizes of size bj that has attracted NH high-ability participants

and N +1−NH low-ability participants. Index the N +1 participants of the contest in a

way such that players n ∈ {1, . . . , NH} are of type H and players n ∈ {NH +1, . . . , N+1}

are of type L. Our model satisfies the definition of a (separable) all-pay contest in Siegel

(2009) with a player n’s valuation for winning given by vn = bj − cne where cn = cH for

n ∈ {1, . . . , NH} and cn = cL for n ∈ {NH + 1, . . . , N + 1}.

In order to satisfy Siegel’s conditions for a generic contest, we now perturb the model

by assuming that player n’s (perturbed) valuation of winning is given by ṽn = vn − nǫ

with ǫ ∈ (0,
bj

N+1
). This can be motivated by the existence of (small) differences in the

players’ benefits from obtaining one of the contest’s prizes. Theorem 1 of Siegel (2009)

then implies that, in any equilibrium, the expected payoff of player n is given by

max{0, bj − nǫ−
cn

cMj+1
[bj − (Mj + 1)ǫ]}. (10)

Note that expected payoffs are zero for all players n ∈ {Mj + 1, . . . , N + 1}. Also note

that for NH ≥ Mj +1, all players n ∈ {1, . . . ,Mj +1} have marginal cost cn = cH , which

implies that the expected payoff of player n ∈ {1, . . . ,Mj} is given by (Mj + 1 − n)ǫ.

Finally, for NH < Mj + 1, it holds that cMj+1 = cL. In this case, the expected payoff

of player n ∈ {1, . . . , NH} is given by bj − nǫ − cH
cL
[bj − (Mj + 1)ǫ] whereas the expected

payoff of player n ∈ {NH + 1, . . . ,Mj} is (Mj + 1− n)ǫ. Taking the limit ǫ → 0 leads to

the payoffs described in Lemma 1.

Proof of Proposition 1

To abbreviate notation in this and in most of the subsequent proofs, we suppress the

number of opponents N as an argument in the (cumulative) distribution functions defined

in (2) by letting f(k; p) ≡ f(k;N, p) and F (k; p) ≡ F (K;N, p).

It is immediate that E[UH ] is increasing in bj and Mj , but decreasing in pj. To prove

the last claim of Proposition 1, increase the concentration of the contest’s prize structure

by letting M̃j < Mj and b̃j > bj , and consider

E[UH ]− ˜E[UH ]

1− c
= bjF (Mj − 1; pj)− b̃jF (M̃j − 1; pj) (11)

= bj [F (Mj − 1; pj)− F (M̃j − 1; pj)]− (b̃j − bj)F (M̃j − 1; pj).
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The first term represents the advantage of the less-concentrated prize structure. When

the number of high-ability opponents turns out to be between M̃j and Mj − 1, the less-

concentrated prize structure guarantees a positive payoff, bj , whereas payoffs are zero

for the more-concentrated prize structure. The second term represents the advantage of

the more-concentrated prize structure. When the number of high-ability opponents is

smaller or equal to M̃j − 1, payoffs are positive for both prize structures, but the more-

concentrated prize structure offers an extra payoff b̃j − bj > 0. Now E[UH ]− ˜E[UH ] ≥ 0

is equivalent to

bj

b̃j − bj
≥

[

F (Mj − 1; pj)

F (M̃j − 1; pj)
− 1

]−1

. (12)

We show below that the likelihood ratio
F (Mj−1;pj)

F (M̃j−1;pj)
is strictly increasing in pj, tends to

infinity for pj → 1, and converges to 1 for pj → 0. Hence, there exists a p̄j ∈ (0, 1) such

that E[UH ] − ˜E[UH ] ≥ 0 if and only if pj > p̄j . The more-concentrated prize structure

(M̃j , b̃j) guarantees a higher payoff if and only if the likelihood pj with which opponents

have high ability is smaller than p̄j. The threshold p̄j is decreasing in Mj − M̃j and

increasing in
b̃j
bj
. To complete the proof, consider

∂F (K; p)

∂p
=

K
∑

k=0

(

N

k

)

[kpk−1(1− p)N−k − (N − k)pk(1− p)N−k−1] (13)

=
1

p(1− p)

K
∑

k=0

f(k; p)(k −Np)

=
F (K; p)

p(1− p)
{Ep[k|k ≤ K]− Ep[k]} < 0.

Here Ep[k] = Np denotes the expected number of successes under the binomial distri-

bution f(k; p) and Ep[k|k ≤ K] is the expected number of successes conditional on this

number being smaller or equal to K. Using (13) we obtain for K > K̃:

∂

∂p

[

F (K; p)

F (K̃; p)

]

=
F (K; p)

F (K̃; p)

Ep[k|k ≤ K]− Ep[k|k ≤ K̃]

p(1− p)
> 0. (14)

For p → 0 it holds that F (K; p) → 1 for all K implying that F (K;p)

F (K̃;p)
→ 1. Finally, using

l’Hopital’s theorem we obtain

lim
p→1

F (K; p)

F (K̃; p)
= lim

p→1

∂F (K;p)
∂p

∂F (K̃;p)
∂p

= lim
p→1

(N −K)
(

N

K

)

(N − K̃)
(

N

K̃

)(
p

1− p
)K−K̃ = ∞ (15)
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where we have used the representation of F in terms of the regularized incomplete beta

function

F (K; p) = (N −K)

(

N

K

)
∫ 1−p

0

xN−K−1(1− x)Kdx (16)

to get

∂F (K; p)

∂p
= −(N −K)

(

N

K

)

(1− p)N−K−1pK . (17)

Proof of Proposition 2

The high-ability players’ preferences over contests are given by (4) with ph = 2yqH and

pl = 2y(1− qH). It follows from (13) that

d∆

dqH
= 2y

[

bh
dF (Mh − 1; ph)

dph
+ bl

dF (Ml − 1; pl)

dpl

]

< 0. (18)

The higher the fraction of high-ability players who choose high-type contests, the less

willing are high-ability players to enter such contests. The fact that bh > bl implies that

∆(qH = 0) = bh − blF (Ml − 1; 2y) > 0. (19)

Hence, there cannot exist an equilibrium in which q∗H = 0. Moreover,

∆(qH = 1) = bhF (Mh − 1; 2y)− bl. (20)

Note that ∆(qH = 1) is strictly decreasing in y with ∆(qH = 1) → −bl < 0 for y → 1
2
and

∆(qH = 1) → bh − bl > 0 for y → 0. Hence, there exists a unique ȳ ∈ (0, 1
2
) such that

∆(qH = 1) ≥ 0 if and only if y ≤ ȳ. Therefore, an equilibrium in which q∗H = 1 exists if

and only if y ≤ ȳ. Moreover, the equation ∆(q∗H) = 0 has a solution q∗H ∈ (0, 1) if and

only if y > ȳ. This solution and, hence, the equilibrium are unique. To determine how

q∗H depends on y for y > ȳ, use (13) to get

y
d∆

dy
= bhph

dF (Mh − 1; ph)

dph
− blpl

dF (Ml − 1; pl)

dpl
(21)

=
bhF (Mh − 1; ph)

1− ph
{Eph[k|k ≤ Mh − 1]− Eph[k]} (22)

−
blF (Ml − 1, pl)

1− pl
{Epl[k|k ≤ Ml − 1]− Epl[k]}.
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For qH such that ∆ = 0, we can substitute bh = bl
F (Ml−1;pl)
F (Mh−1;ph)

to get

y d∆
dy

blF (Ml − 1; pl)
=

Eph[k|k ≤ Mh − 1]− Eph[k]

1− ph
−

Epl[k|k ≤ Ml − 1]−Epl [k]

1− pl
(23)

<
Eph[k|k ≤ Ml − 1]− Eph[k]

1− ph
−

Epl[k|k ≤ Ml − 1]− Epl[k]

1− pl

where the inequality follows from Mh < Ml. Note that

∂

∂p

Ep[k|k ≤ K]−Ep[k]

1− p
=

(1− p)∂Ep[k|k≤K]
∂p

+ Ep[k|k ≤ K]−N

(1− p)2
≤ 0 (24)

because Ep[k|k ≤ K] ≤ Ep[k] = pN and ∂Ep[k|k≤K]
∂p

≤ ∂Ep[k]
∂p

= N (see below).

In summary, since ph ≥ pl ⇔ qH ≥ 1
2
, we have thus shown that at any equilibrium

such that q∗H ∈ [1
2
, 1) it holds that d∆

dy
|qH=q∗

H
< 0. Together with d∆

dqH
< 0, this implies that

q∗H is strictly decreasing in y as long as q∗H ∈ [1
2
, 1). This also means that once q∗H has

crossed 1
2
from above, it will stay below 1

2
for all higher values of y. In other words, there

exists a ¯̄y ∈ (ȳ, 1
2
] such that q∗H ≤ 1

2
for all y ≥ ¯̄y.

It remains to show that ∂Ep[k|k≤K]
∂p

≤ ∂Ep[k]
∂p

. Following Jones (1990), let k̃ be a so called

weighted random variable with distribution function f̃(k̃) ≡ k̃
Ep[k]

f(k̃; p,N). Let F̃ denote

the corresponding cumulative distribution function. Supressing p as an argument we can

write

E[k|k ≤ K] =

K
∑

k=0

kf(k;N)

F (K;N)
=

E[k]

F (K;N)

K
∑

k=0

kf(k;N)

E[k]
=

E[k]

F (K;N)
F̃ (K) (25)

and the result follows if F̃ (K)
F (K;N)

is decreasing in p. Note that f̃(0) = 0 and that for k̃ > 0:

f̃(k̃) =
k̃

Np

(

N

k̃

)

pk̃(1− p)N−k̃ =

(

N − 1

k̃ − 1

)

pk̃−1(1− p)N−1−(k̃−1). (26)

Hence F̃ (K) = F (K − 1;N − 1) and

∂

∂p

[

F̃ (K)

F (K;N)

]

=
F (K − 1;N − 1)

F (K;N)

EN−1[k|k ≤ K − 1]− EN [k|k ≤ K] + p

p(1− p)
(27)

where EN−1 and EN denote expectations for binomial distributions f(k; p,N − 1) and

f(k; p,N) respectively. To see that this term is negative, write k =
∑N

n=1 xn with xn,

n = 1, . . . , N , denoting N independent Bernoulli trials with success probability p and
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note that

EN [k|k ≤ K] = E[
N
∑

n=1

xn|
N
∑

n=1

xn ≤ K] > E[
N
∑

n=1

xn|
N−1
∑

n=1

xn ≤ K − 1 ∧ xN ≤ 1] (28)

= E[
N−1
∑

n=1

xn|
N−1
∑

n=1

xn ≤ K − 1] + E[xN |xN ≤ 1]

= EN−1[k|k ≤ K − 1] + p.

Here the inequality holds since
∑N

n=1 xn ≤ K is the union of two disjoint events:
∑N−1

n=1 xn =

K and xN = 0 or
∑N−1

n=1 xn ≤ K − 1 and xN ≤ 1 with the former dominating the latter

in terms of the expected value of
∑N

n=1 xn.

Proof of Proposition 3

Consider the concavity of the coordinator’s objective function:

∂∆C

∂qH
= 2

∂∆

∂qH
+ 2y

[

bhph
∂2F (Mh − 1; ph)

∂p2
+ blpl

∂2F (Ml − 1; pl)

∂p2

]

. (29)

Taking the derivative of (17) we get

∂2F (K; p)

∂p2
= (N −K)[(N − 1)p−K]

(

N

K

)

pK−1(1− p)N−K−2. (30)

Substituting (17) and (30) into (29) and using (N −M + 1)
(

N

M−1

)

= M
(

N

M

)

we get

∂∆C

∂qH

2y
= bhMh[Nph −Mh − (1− ph)]

(

N

Mh

)

pMh−1
h (1− ph)

N−Mh−1 (31)

+blMl[Npl −Ml − (1− pl)]

(

N

Ml

)

pMl−1
l (1− pl)

N−Ml−1.

If in both types of contests, the expected number of high-talent opponents is smaller than

the number of prizes, i.e. if Nph < Mh and Npl < Ml then
∂∆C

∂qH
< 0. Since ph and

pl are both smaller than 2y and Mh < Ml, a sufficient condition for the above to holds

is that 2yN < Mh or y < Mh

2N
. This condition is sufficient for the manager’s objective

function to be concave and for a unique maximizer qCH to exist. In order to see how qCH

compares to q∗H , consider ∆C(q
∗
H). Given concavity of the manager’s objective, it holds

that qCH < q∗H ⇔ ∆C(q
∗
H) < 0. We have

∆C(q
∗
H) = 2yq∗Hbh

∂F (Mh − 1, 2yq∗H)

∂p
− 2y(1− q∗H)bl

∂F (Ml − 1, 2y(1− q∗H))

∂p

= y
∂∆

∂y
|qH=q∗

H
. (32)

In the proof of Proposition 2 it was shown that this term is negative for all q∗H ≥ 1
2
.

45



References

[1] Amegashie, A., J., Wu, X. (2009) “Self-Selection in Competing All-Pay Auctions.”

Unpublished Manuscript.
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