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Abstract

This paper studies the information content of the S&P 500 and VIX markets on the volatility
of the S&P 500 returns. We estimate a flexible affine model based on a joint time series of
underlying indexes and option prices on both markets. An extensive model specification analysis
reveals that jumps and a stochastic level of reversion for the variance help reproduce risk-neutral
distributions as well as the term structure of volatility smiles and of variance risk premia. We find
that the S&P 500 and VIX derivatives prices are consistent in times of market calm but contain

conflicting information on the variance during market distress.
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1 Introduction

Introduced by the CBOE in 1993, the VIX index non-parametrically approximates the expected
future realized volatility of the S&P 500 returns over the next 30 days. Options on the VIX started
trading in 2006 and, as of today, represent a much larger market than VIX futures. By definition,
the VIX index, VIX options, and S&P 500 options are directly linked to the S&P 500 index and
all provide valuable information on the S&P 500 returns dynamics. However, to the best of our
knowledge, there has been very little effort dedicated to comparing the information these datasets
contain on the distribution of the S&P 500 returns and on the trajectory of their variance process.
In this paper we aim to fill this gap and study the information content of the S&P 500 and of the

VIX spot and options markets.

Jointly analyzing the dynamic properties and information content of the VIX and S&P 500 option
markets is a challenge. Not only do we need a set of candidate models that are flexible enough to
simultaneously accommodate the stylized facts in both markets over time, but the empirical analysis
of such highly nonlinear data poses a significant computational hurdle. We develop a time-consistent
estimation procedure that permits us to extract information from a large and unbalanced panel
of data and estimate the trajectories of the unobserved volatility of the S&P 500 returns. This
methodology goes well beyond a simple calibration exercise as it makes it possible to reconcile time
series data on the S&P 500 and VIX derivatives markets and consistently match the joint evolution

of prices over time.

We make the following contributions to the empirical option pricing literature. First, we analyze and
compare the information contained in the S&P 500 and VIX markets. We find that when markets
are calm, options do not provide more information on the dynamics of volatility than the underlying
S&P 500 returns and VIX levels. However, during market turmoil, our results indicate that S&P
500 options contain different information than the underlying index levels or VIX options on the
trajectory of the variance factors. These findings are further supported by thorough in- and out-
of-sample analyses of the ability of models estimated from one market to price options on another

market. We find that the VIX index does not provide an accurate representation of the information



contained in the S&P 500 options. Similarly, the information in S&P 500 derivatives does not span
the information contained in VIX derivatives, and the same holds the other way around. It is crucial
to be aware of this lack of market integration when pricing and managing risks, i.e., when hedging
positions on one market using a portfolio of options on the other one. We find that a joint estimation
to both S&P 500 and VIX markets is required for such purposes, however bearing in mind that such

estimation does not fully overcome the tensions between the two derivatives markets.

Second, we perform an extensive model specification analysis. We model the S&P 500 returns using
an affine jump-diffusion specification that belongs to the class of Duffie, Pan, and Singleton (2000).
This structure allows us to price S&P 500 and VIX derivatives in semi-closed form, which is essential
to analyze the returns and volatility dynamics using a large dataset of options. We examine different
nested models to investigate the role of each feature in explaining option prices, the risk-neutral
distributions of returns, and those of the variance process. We point out the shortcomings of one-
factor affine models and mitigate them thanks to a stochastic level of reversion in the volatility

L Of course, any parametric approach is

dynamics (also known as a stochastic central tendency).
bound to suffer, to a certain extent, from model misspecification. Based on likelihood criteria as
well as on various statistical tests of the in- and out-of sample pricing errors, we provide a careful
study of the strengths and limitations of the model specifications examined. We find that jumps in
the returns and variance processes are needed to jointly represent the index levels and derivatives
prices in both markets. In particular, they make it possible to better reproduce the right tail of the
variance distribution and short-maturity option prices. Furthermore, the stochastic level of reversion

for the variance helps to better represent the tails of the returns’ distribution and the term structure

of the S&P 500 and VIX option prices.

Third, estimating the dynamics of the S&P 500 returns from an extremely large dataset of options
on the two markets and for a long time series requires computationally efficient techniques that can

easily deal with the features of the model, in particular the state-dependent jumps. To achieve this

"While adding a factor to the Heston model increases its complexity, it has already been shown that two factors are
needed to provide an accurate description of the volatility dynamics (see, e.g., Bates (2000b), Andersen, Benzoni, and
Lund (2002), Alizadeh, Brandt, and Diebold (2002), Chernov, Gallant, Ghysels, and Tauchen (2003), Christoffersen,
Heston, and Jacobs (2009), Egloff, Leippold, and Wu (2010), Todorov (2010), Kaeck and Alexander (2012), Bates
(2012), Johnson (2012), Mencia and Sentana (2013) and Huang and Shaliastovich (2015)).



goal, we extend the Fourier Cosine method introduced by Fang and Oosterlee (2008) for S&P 500
options to price VIX options and adapt the Auxiliary Particle Filter of Pitt and Shephard (1999) to
estimate the trajectories of unobservable processes and jumps. Accordingly, we provide an extensive
toolkit for inference and diagnostics of affine option pricing models given index and option data from
both the S&P 500 and VIX markets. Sequential Monte Carlo techniques have recently increased in
popularity and have been used to estimate models, but most endeavors using this tool restrict their
options dataset to near at-the-money options and as far as we know, none have used S&P 500 and

VIX derivatives jointly.

Our fourth contribution is the thorough analysis of the variance risk premium. Especially for models
including jumps, the identification of the risk premium’s components requires a large amount of
returns and options data and therefore powerful computational tools to extract the relevant informa-
tion. Our estimation approach is well adapted to this task. We find that risk premia are very sensitive
to jumps, in particular at the short end of the variance term structure, because a large movement in
the variance process has an immediate negative impact on the payoff of a short-term variance swap.
The stochastic central tendency plays a significant role in both the continuous and discontinuous
parts, especially in calm markets. It is more persistent than the instantaneous variance and drives
the real world medium-term expectation of variance. In contrast, the instantaneous variance reacts
swiftly to changing market conditions and captures most of the sudden variance fluctuations during

market turmoil.

Several papers have been published in the last years aiming to reconcile the cross-sectional informa-
tion of the S&P 500 and the VIX derivatives markets by modeling them jointly. Gatheral (2008)
pointed out first that even though the Heston model performs fairly well at pricing S&P 500 options,
it fails to price VIX options. In fact, modeling the instantaneous volatility as a square root process
leads to a VIX smile decreasing with moneyness, which is the opposite of what is observed in practice.
Among the recent papers that have attempted to simultaneously reproduce the volatility smiles of
S&P 500 and VIX options are Chung, Tsai, Wang, and Weng (2011), Cont and Kokholm (2013),
Papanicolaou and Sircar (2013), and Bayer, Gatheral, and Karlsmark (2013). We build on this

literature by considering extensions of the Heston model that remain within the affine framework,



but add more flexibility to the specifications used in the above mentioned papers. We use a special
case of the general affine framework developed by Duffie, Pan, and Singleton (2000) that includes as
sub-cases the usual extensions of the Heston model encountered in the literature, for example Bates
(2000b), Eraker (2004) and Sepp (2008a).? In parallel work, Song and Xiu (2015) use a model that
is similar to ours but with a different focus, and estimate marginal densities and pricing kernels of

the market returns and VIX.

Time-consistent estimation methods have been previously used to calibrate models to index returns
and options. See, e.g., Bates (2000a), Pan (2002), Eraker (2004), Broadie, Chernov, and Johannes
(2007), Christoffersen, Jacobs, and Mimouni (2010), Johannes, Polson, and Stroud (2009) and Duan
and Yeh (2011). However, as underlined in Ferriani and Pastorello (2012), most papers filtering
information from option prices rely on one option per day or a limited set of options. Limiting
the amount of data results in a computationally less intensive empirical exercise, but it ignores a
large part of the information present in the markets. In contrast, in our particle filter estimation
we fully exploit the richness of our dataset. Furthermore, we note that most if not all papers that
consider S&P 500 and VIX options in their calibration exercise have restricted their analysis to a
static one-day estimation. The resulting parameters might exhibit large variations when calibrating
the model to different dates and therefore cannot be used to infer time series properties of returns

and risk premia.3

This paper is organized as follows. In Section 2, we introduce the two-factor affine jump—diffusion
framework used later in the estimation. We describe the risk premium specification and derive the
expression for the VIX squared as well as the pricing formula for VIX and S&P 500 options. In
Section 3, we describe our datasets and perform a preliminary model selection exercise based on a
daily joint calibration to the S&P 500 and VIX markets. In Section 4, we detail our time series

consistent estimation method. In Section 5, we discuss our estimation results. Section 6 concludes.

2Some studies are going in the direction of non-affine models (e.g., Jones (2003), Ait-Sahalia and Kimmel (2007),
Christoffersen, Jacobs, and Mimouni (2010), Ferriani and Pastorello (2012), Durham (2013), Kaeck and Alexander
(2012)). However, tractability remains an issue that is of crucial importance when it comes to calibrating a model to
a long time series containing hundreds of options each day.

3See, e.g., Lindstrém, Strojby, Brodén, Wiktorsson, and Holst (2008).



2 Theoretical framework

We first present our modeling framework, which belongs to the affine class. Then, we discuss the

risk premium specification and derive the pricing formula for VIX derivatives.

2.1 Model specification

Let (2, F,{Fi}+>0,P) be a filtered probability space satisfying the usual assumptions, where P de-
notes the historical measure. We consider a risk-neutral measure Q equivalent to P. Let (F})¢>0 be
the forward price of the S&P 500 index and Y = (Y;)t>0 = (log(F}))e>0 the returns. The dynamics

of Y under Q are specified by

1
dY; = [-AY"(v;-,my-)(02(1,0,0) — 1) — v ldt + VU dWY +dJY, (1)
dvy = Ky(my— — v )dt + oy /O dW + dJY, (2)
dmi = K (O, — my-)dt + op/my—dW[™ + dJ;", (3)

where WY, W7V, and W™ are three Brownian motions under Q with dependence structure

AWY WY, = pypdt, W™ W), =0, dW™ W), =0. (4)

The process v = (v¢)¢>0 is the diffusive component of the variance of S&P 500 returns. The second
variance factor m = (my);>0 represents the stochastic central tendency. The two processes are

instantaneously uncorrelated and only interact via the drift term of v.

The processes JY , JV, and J™ are finite activity jump processes driven by the point processes NYV

and N and are defined by

Yo Yv
Nt Nt

N
J=>"zr =Y zp =y 7, (5)
1=1 1=1 =1

where Ziy, Z7 and Z" are the random jump sizes. As suggested by the price paths of the S&P 500



and VIX index, large movements in equity returns and variance are likely to occur at the same time.
We therefore choose, in line with the literature, the same point process NY" to generate jumps in
the asset returns and variance process v. The leverage effect is driven by the correlation between
WY and W as well as the possibility of simultaneous jumps in the returns and variance. We assume

that the jump intensities depend linearly on the factor levels:*

AT (my-) = Ag" + ATy, (6)

N V(v my= ) = A+ A Yo+ Ay V- (7)

Moreover, we assume that the random jump sizes are independent and identically distributed. The
jump sizes in the returns are assumed to be normally distributed A (uy, oy') and the jump sizes in the
two volatility factors are exponentially distributed with respective means v, and v,,. Let us define

Z; = (ZZ»Y, zZ7, Z{”)T, 1 € N*. The jump sizes are characterized by their joint Laplace transform

02(¢) = 02, (dy, bv, dm) = E%lexp(¢ Z1)], ¢ € C*. (8)

This model specification implicitly defines the dynamics for the VIX. To derive its expression within

our framework, we use the definition of the VIX as a finite sum of call and put prices that converges

to the integral VIX? = %E? [ tH_T v q(In Fu)}, where 7 is 30 days in annual terms.

Proposition 2.1. Under the model specification given in Equations (1)-(8), the VIX squared at

time t can be written as an affine deterministic function of v; and my:

NYU

1 t+7 T v
VIX; = ;]E? / vadu+2 (eZi —1- Z}”) , (%)
t i:Nt}/U
= ayxev+ Bypeme + yyixe, (10)

4The specification of jumps is of importance. Todorov (2010), Todorov and Tauchen (2011) and Jacod and Todorov
(2010) find striking evidence for co-jumps in S&P 500 returns and in the VIX. See also Eraker (2004), Broadie, Chernov,
and Johannes (2007), Cont and Kokholm (2013). Bates (1996), Pan (2002) and Eraker (2004) argue in favor of using
state-dependent jumps in returns, which is intuitively appealing, as jumps tend to occur more frequently when volatility
increases. Using variance swaps, Ait-Sahalia, Karaman, and Mancini (2012) find that the state dependent intensity of
jumps is a desirable model feature.



where the coefficients ayy2, By and yyrx2 are known in closed form and provided in Appendix

A.

The proof of this proposition is in Appendix A.

2.2 Risk premium specification

We specify the change of measure from the pricing to the historical measure so that the model
dynamics keeps the same structure under P. We separate the total equity risk premium -~ into a
diffusive contribution, which is proportional to the variance level and represents the compensation

for the diffusive price risk, and a jump contribution reflecting the compensation for jump risk:
1=y + A (- ) (65(1,0,0) = 02(1,0,0) ) (1)

where 92 denotes the joint Laplace transform of jump sizes under the historical measure P. We
follow Pan (2002) and Eraker (2004) and assume that the intensity of jumps is the same under Q
and P.> However, we allow the mean and volatility of the jump sizes in returns to be different under

Q and P.5

Similarly, the volatility risk premium on the two volatility factors v and m decomposes into a diffusive
component and a jump component. The diffusive variance risk premium in v is proportional to the
current level of variance, with coefficient of proportionality given by 7, = K, — /@IE. The same applies
to the central tendency m, for which the coefficient is defined as 7, = k;, — xr,. For the jump part

of the volatility risk premium, we allow the mean jump sizes v, and v, to be different under P and

Q.

For the estimation procedure, it is helpful to summarize the model in terms of P and Q parameters,

®Pan (2002) argues that introducing different intensities of jumps under the historical and pricing measure introduces
a jump-timing risk premium that is very difficult to disentangle from the mean jump risk premium. Our assumption
artificially incorporates the jump-timing risk premium into the mean jump size risk premium.

SIn the literature, oy has sometimes been constrained to be the same under P and Q (Bates (1988), Naik and Lee
(1990)), but this is not required by the absence of arbitrage (in contrast to o,, om, and py,,). We follow Broadie,
Chernov, and Johannes (2007) by allowing them to be different. Indeed, they find strong evidence that their being
different has a strong impact on the magnitude of the premium attached to the mean price jump size.



which need to be estimated accordingly:
OF = {Ky Ky s Vs Vo s By 0311y Y, © = { R, Km, Oy Vim,s Vo, iy, 0y - (12)
The remaining parameters are, by assumption, equal under both measures:

QP = IAF Y AT AT AT AT, 0, 0 Py} (13)

2.3 Derivatives pricing

Within the class of affine models, option pricing is most efficiently performed using Fourier inversion
techniques. As a starting point, we need the characteristic function of the underlying processes. Due

to the affine property of the VIX square in Proposition 2.1, we have the following result:

Proposition 2.2. In the two-factor stochastic volatility model with jumps defined by equations (1)-
(8), the Laplace transforms of the VIX square and the S&P 500 returns are exponential affine in the

current values of the factor processes v and m:

) i=EQ [ewVIX% (T —t)+B(T~0)-04(T~t) 1

Wy (£, 50 vy = T, mg = m} —e

= ay (T—t)+By (T—t)-y+yy (T—t)-0+dy (T—t)‘ﬁl7

\IJYT(t>y77jam;w) = Eg |:€WYT Yt =Y,V = v, my = m} =e€

where the coefficients in the exponentials are functions defined on [0,T] by the ODEs given in

Appendix B. The parameter w belongs to a subset of C where the above expectations are finite.

Pricing options on the VIX poses technical difficulties that are not encountered when pricing equity
options. Given a call option with strike K and maturity 1" on the VIX at time ¢ = 0, we need to

calculate

C(VIXy, K, T) =7 /OOO(\/‘ K)* fyr (v)dv, (14)

where fVIsz is the Q-density of the VIX square at time ¢ = T. The square root appearing in the



integral as part of the payoff in (14) prevents us from using the Fast Fourier Transform of Carr and
Madan (1999). We would need the log of the VIX to be affine, which is incompatible with affine

models for log-returns.

However, this problem can be circumvented. Fang and Oosterlee (2008) introduce the Fourier cosine
expansion to price index options on the S&P 500. We extend their method to tackle the pricing
of VIX options. Our approach to pricing VIX options is comparable to the inversion performed by

Sepp (2008a), but it is more parsimonious in the number of computational parameters.

Proposition 2.3. Consider a European-style contingent claim on the VIX index with maturity T and
payoff uy(VIX?) = (VVIX? — K)*. Given an interval [ayy, byix] for the support of the VIX2T|1,07m0
density, the price Pyix(to, VIXo) at time t =ty > 0 of the contingent claim is

N-1

PVIX(t07 VIXO): eir(TitO) Z/ AXIXQ UY\L/IX27 (15)

n=0

li
where the prime superscript in the sum Z means that the first term A(‘)”X2 Uy’ X is divided by 2.

The terms in the sum are defined by

2 inmT nmw
A —Re{\l/ : (to,vo,mo;—> exp (_ —>} 16
" byvix — avix VIXT byvix — Gvix e byvix — avix ( )

bvix —
AC / wyix(v) cos (nwm> dv. (17)
a

VIX vix — Gvix
. 2 . . . 2 . . .
The coefficient AY™" is computed using Proposition 2.2 and UY™" is known in closed form and given
n n

in Appendix C.

3 Data and preliminary analysis

In this section, we describe our data and point out some important characteristics of VIX options.
We also perform a preliminary model selection exercise, in which we try to jointly calibrate some

candidate models to the S&P 500 and VIX option markets.



3.1 Data description

Options on the VIX were introduced in 2006. Our sample period is from March 1, 2006 to October
29, 2010. The option data consist of the daily closing prices of European options on the S&P 500
and VIX, obtained from OptionMetrics. This time series includes both periods of calm and periods

of crisis with extreme events. Therefore, it provides an ideal test bed for our candidate models.

Both the S&P 500 and VIX options datasets are treated following the literature, see e.g. Ait-Sahalia
and Lo (1998). We only consider options with maturities between one week and one year and delete
options quotes that are not traded on a given date. Then, we infer from highly liquid options
the futures price using the at-the-money (ATM) put-call parity. This avoids two issues: Making
predictions on future dividends, and using futures closing prices which are not synchronized with the
option closing prices. Hence, we consider that the underlying of the options is the index futures and
not the index itself. We only work with liquid out-of-the-money (OTM) options for the S&P 500
market and only with liquid call options for the VIX market. If the VIX in-the-money (ITM) call is
not liquid, we use the put—call parity to infer a liquid VIX ITM call from a more liquid VIX OTM

put. Finally, implied volatilities are computed considering futures prices as underlying.”

These adjustments leave a total of 383,286 OTM S&P 500 and 43,775 call options on the VIX, with
a daily average of 327 S&P 500 options and 37 VIX options. The number of S&P 500 (VIX) options
in our dataset on a given date increases with time, with around 170 (5) options at the beginning of
the dataset and around 450 (70) options at the end. At the beginning of the sample, there are one
or two short maturities (less than six months) available for VIX options and around six maturities
for S&P 500 options, with approximately 40 S&P 500 options per maturity slice. At the end of the
sample, the VIX options have around five short maturities with a bit more than 10 options trading
per maturity. For S&P 500 options, around ten maturities are available per day with around 60
options for one-month maturities and 40 options for the one-year slice. The low number of VIX

options compared to the number of S&P 500 options comes from the fact that VIX options only

"We remark that VIX option prices do not satisfy no-arbitrage relations with respect to the VIX index, but rather
with respect to the VIX futures value. A VIX call option at time ¢t with maturity 7" is an option on the volatility for
the time interval [T, T + 30d], where 30d stands for 30 days. The value VIX; at time ¢ is related to the volatility on
the time interval [t, ¢ + 30d], which might not overlap at all with [T, 7" + 30d].

10



started trading in 2006. At the end of our sample, the total VIX options volume per day is about

one-half the total volume of S&P 500 options traded.

3.2 Descriptive statistics

Table 1 presents the first four sample moments of the S&P 500 futures returns and VIX index levels,
over two different periods of time. The first period starts in March 2006 and ends in February 2009,
i.e., it spans the pre-crisis period as well as the beginning of the crisis. The second period begins
in March 2009 and lasts until October 2010. For our estimation, these two periods serve as the

in-sample and out-of-sample periods.

The S&P 500 log-returns exhibit a high kurtosis, especially during the in-sample period, suggesting
the presence of rare and large movements. In the in-sample period, their skewness is slightly positive,
but becomes negative in the out-of-sample period, due to the substantial losses made during the
financial crisis. The VIX index exhibits a large positive skewness and kurtosis in the in-sample
period. However, in the out-of-sample period, both skewness and kurtosis decrease significantly
whereas the mean increases by 45%, indicating that the values of the index are of larger overall

magnitude but with less extreme values.
[Table 1 about here.]

Panel A of Figure 1 displays the joint evolution of the S&P 500 and the VIX index from 2006 to
2010. The S&P 500 returns and the VIX daily increments are highly negatively correlated (with a
correlation coefficient of —0.832 over this period), which explains the popularity of VIX contracts for
hedging part of the equity risk of a portfolio. Panel B represents the expected one-month forward
log-returns of the S&P 500 from March 1st, 2006 to October 29th, 2010 as implied by prices of
S&P 500 options and calculated following the method of Bakshi, Kapadia, and Madan (2003). The
expected forward returns illustrate the variety of market situations covered by our time series. They
were almost constant until the end of 2007, equal to a positive value and thus indicating that market
participants were expecting a stable income from investing in the index. From the end of 2007, they

exhibit more variation and eventually turn negative. Following the bail-out of Lehman Brothers in

11



September 2008, the expected forward returns drop below -1.5%. Then, they gradually come back
and become stable mid-2009 around a slightly negative level close to -0.2%. In 2010, the sudden
increase in the VIX index coincides with a further sudden drop of the expected forward returns

falling to almost -0.5%.
[Figure 1 about here.]

Even though the S&P 500 and VIX markets are closely related, we emphasize that options on the
VIX and S&P 500 differ substantially in their characteristics. First, S&P 500 and VIX derivatives
with the same maturity contain information on the S&P 500 over different time periods. While
an S&P 500 option with maturity 7' contains information about the future S&P 500 index level at
time 1" and therefore about the S&P 500 volatility up to 1T', a VIX option with maturity 7" embeds
information about the VIX at time 7" and therefore about the S&P 500 volatility between 17" and
T + 30 days. Second, the implied volatility smiles backed out from S&P 500 and VIX option prices
have different shapes. Panels C and D of Figure 1 display the S&P 500 and VIX smiles on May
10, 2010. The implied volatilities (IVs) are computed using the standard Black—Scholes formula.
The VIX IVs are in general substantially higher than the S&P 500 IVs. They range in our sample
from 34% to 216% with an average of 80% whereas the S&P 500 IVs range from 6% to 162% with
an average of 26%. The implied volatilities of S&P 500 options are in general decreasing with
moneyness, which highlights the expensiveness of out-of-the money put options on the S&P 500. As
these options provide investors with protection against large downward movements in returns, the
negative skewness of the volatility smile reflects their risk aversion towards such movements. Due to
the leverage effect, negative changes in returns are strongly related to increases in volatility, which
out-of-the-money VIX call options can hedge. This explains why VIX implied volatilities tend to be

positively skewed.

The difference between these markets is also reflected by other indicators such as the put—call trading
ratio. Almost twice as many puts as calls are traded daily in the S&P 500 options market, but the
situation is reversed in the VIX market, where the amount of calls traded daily is almost double
that of the puts. In fact, we can observe in Panels C and D of Figure 1 that the log-moneynesses

traded for S&P 500 options are mostly negative (which corresponds to OTM put options) and often

12



positive for VIX options (OTM calls).

3.3 Joint calibration

Before we bring our models to the time series of data, we carry out a joint calibration exercise using
the cross-section of S&P 500 and VIX options on a particular date. This exercise gives us some
guidance for model design and allows us to reduce the set of models to be estimated on a time
series of options’ data. If a model is not flexible enough to jointly reproduce the implied volatility
patterns of both markets on a single date, the Q—dynamics of the model is not sufficiently rich to
accurately price both the S&P 500 and VIX derivatives jointly, and we can safely discard this model

from further consideration.

Let us fix a date ¢ and consider {I Vsjg)k(’fi}izl... Ngpx» the set of Ngpx market implied volatilities of
S&P 500 options for strikes {K;} and maturities {7;}. We denote by {IV\%I% }i=1..Nyx the set of
Nvyr1x market implied volatilities of VIX options. To estimate the parameters, we minimize the root

mean squared error (RMSE) between the market and model implied volatilities:®

2
RMSE (¢ \/— IVM’“ Ivﬁgd), M € {SPX, VIX}, (18)
1<i<I

RMSE(t RMSESPX( ) + RMSEvix (1)) . (19)

We use two global optimizers to cope with the non-convexity of the calibration problem and the
potential existence of multiple local minima, namely the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES), introduced by Hansen and Ostermeier (1996), and the Differential Evolution

(DE) algorithm introduced by Storn (1996).

For our calibration, we choose a date on which the markets were under stress, namely May 5, 2010 at
the beginning of the European sovereign debt crisis. After cleaning our data as described previously,

we have 91 VIX options at six different maturities (from 0.04 to 0.46 years) and 486 S&P 500 options

8 Alternatively, we checked that using distances taking into account the bid—ask spread of IVs as in Cont and Kokholm
(2013) does not significantly change the quality of fit. Instead of the RMSE, we also looked at average relative errors
(ARE). However, this does not affect our conclusions. The results using ARE are available upon request.
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at eleven different maturities (from 0.05 to 0.91 years) available. We emphasize that we perform a
joint calibration. Hence, all this data is entered as input to minimize the total RMSE in (19) from

the VIX and the S&P 500 market simultaneously across all available maturities and moneyness.

In Figure 2, we plot the market and model implied volatilities for the S&P 500 (Panels A, C, E) and
the VIX (Panels B, D, F) for two maturity slices each. For the S&P 500 options, we choose the two
maturities 7' = 0.05 and 7' = 0.3, and for the VIX options, T" = 0.04 and 1" = 0.36. As candidate
models, we choose different sub-specifications of the general model (SVJ2) presented in Equations
(1)—(8), namely the Heston model and the Heston model with jumps in returns and volatility (SVJ).
We find that the jump component in the stochastic central tendency does not improve the results

for the SVJ2 model, we therefore present the results with m being a diffusive process.
[Figure 2 about here.]

From Panel A, Figure 2, we observe that the Heston model provides reasonable results for the S&P
500 market. However, for the VIX market (Panel B), the Heston model clearly fails to reproduce
one of the stylized facts of VIX option markets: the positive skew of the implied volatility surface.
This failure is most pronounced for the short-term options, where the Heston model generates a
significant negative skew. The results for the SVJ model look much more promising. Just by adding
jump components to the returns and volatility process, we can now generate the positive skew in the
VIX market (Panel D), while providing an almost perfect fit for the S&P 500 options market. The
SVJ model only struggles at the short end of the VIX implied volatility surface. This shortcoming
disappears when we extend the SVJ specification to the SVJ2 model by adding the factor m. Doing
so gives us not only a remarkable fit for the S&P 500 but also for the VIX options market (Panel F).
Looking at the RMSEs of the SVJ and SVJ2 models, we find that the SVJ provides an RMSEgpx of
1.27% and an RMSEvy1x of 11.60%. The SVJ2 model yields 1.17% and 5.15%, respectively. Hence,
while the two models are comparable in terms of their performance on the S&P 500 options market,

there is an obvious difference in the VIX market on the chosen date.

In unreported results, we perform calibration exercises on other days, also including calm periods.
Irrespective of the day, we observe that the SVJ and SVJ2 models perform comparably on the S&P

500 options market, both fitting the data very well. In contrast, we find that there are dates when
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the SVJ model struggles to fit the VIX IVs in addition to the S&P 500 IVs whereas the SVJ2 model
satisfactorily fits both.? Therefore, we conclude from our calibration exercise that we can discard

the Heston model from further analysis and that jumps in the volatility are necessary.

4 Estimation methodology

Daily calibration is essentially a multiple curve fitting exercise to check whether the models can fit
the risk-neutral distributions implied by option prices at different maturities. Some of the parameters
we get from daily calibrations in the previous section are unstable and vary substantially from one
day to the next.!® To achieve a more robust estimation which is consistent with the whole time
series of in-sample data, we choose a methodology based on particle filtering. A particle filter uses a
time series of observable market data called measurements , to estimate the conditional densities of
unobserved latent processes such as the volatility and jump processes at every point in time during the
estimation period. It can be combined with maximum likelihood estimation for parameter estimation
and standard error calculations. Using a time series of S&P 500 and VIX indexes and options, we
estimate both the P- and Q-dynamics of the model to obtain a set of model parameters that jointly
prices spot and options in both markets consistently over time. The estimation is performed over
the in-sample period. The out-of-sample analysis is conducted by setting the parameters equal to
their in-sample estimates and running the filter on the subsequent period. Before introducing the

specific filter used, we specify the discretized model and the measurement errors.

4.1 Discretized model and specification of errors

We discretize the continuous-time model on a uniform time grid composed of M + 1 points t € {tg =

0,t1 = At, ..., tx = kAL, ..., tpr = MAt}, for some M € N*. Since we use daily data, At corresponds

90ur findings arc consistent with Gatheral (2008), who shows that the Ieston model is incapable of reproducing
the positive skew in VIX IVs, and with Sepp (2008a,b), who finds that incorporating positive jumps in the volatility
dynamics into the Heston model removes this shortcoming.

0Parameters obtained when calibrating to daily options prices are not stable over time, as explained in Broadie,
Chernov, and Johannes (2007) and Lindstrom, Strojby, Brodén, Wiktorsson, and Holst (2008).
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to one day. In discrete time, the model evolves under P as follows: !

1
AY, = [0 m) (65(1,0,0) = 1) = g+ u AL+ VEAW T + Z)TANTT,(20)
K
Av = #F <—m - ) At + oo /AW + Z)PAN, (21)
v
Amy = K5 (08 — m) At + oM AW 4+ ZF AN (22)

where the notation AX; for some process X represents the increment Xy, , — Xy, where t =t €

{to, ~~>tM71}-

As the log-returns are observable, equation (20) is the first measurement equation. The second

measurement equation comes from the observation of the VIX index level with error:

VIXF — (aypeve + Bypeme + wixe) = € (23)

Jiang and Tian (2007) point to systematic biases in the calculation of the VIX index, such as
model misspecification or data limitations. For example, in practice, the index is calculated using
a finite number of options thereby inducing an error in the computation of the integral present in
the definition. These biases are captured by the error term 6¥IX. It is assumed to follow a normal
distribution with mean zero and variance s > 0. The last measurements are the prices of S&P 500
and VIX options. We assume that the option prices are observed with an error, which comes from
different sources, such as bid—ask spreads, potential model misspecification, timing and processing

O{\A’Mkt

errors. We define these errors as the relative differences between the market and the model

prices OtM’MOd, M € {SPX, VIX}:

SPX,Mod P SPX,Mkt
Ot,i ()/tv,ut?mt?@?@ 7Q) - Ot,i

SPX,options -
SPX, Mkt =€ , 4=1,..., Nspx , (24)
Oy
VIX,Mod o OPQ\ _ ~VIX,Mkt
Ot,j (ve, My, ©,057%) Ot,j _ VIX,options 1 N 95
VIX, MEt =€ o J=1..., Nvixy, (25)
O, i

where Nq, is the number of contracts available in the corresponding market. We assume the error

"For the particle filter, we actually use a Milstein scheme to improve the precision of the discretized dynamics. See
Kloeden and Platen (1992) for details.
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terms to be normally distributed and heteroscedastic:

SPX,opti 2 VIX,opti 2
€ options _ N(O, JetSPX)7 € options N(MFyIX, Jeyl_x)., (26)
i ,J

yIX which has been made on the estimation of the VIX level.

where fhey1x is proportional to the error e
Indeed, if the underlying’s value is not accurately estimated, it introduces a bias in the valuation of

VIX options. The variance of the errors is

K.
o%px = exp [ ¢g - bid-ask spread; + ¢ [log SPTZ + 2T —t) + 93 ), (27)
€ti Ft (Tl)
2 ; K
oix = exp (9o - bid-ask spread; + 11 |log | =y~ ||+ 2Ty —1) + 3 ), (28)
b F(T5)
with ¢; and v; in R, i € {0, ...,3}.12
4.2 Particle filter
At every period t = t,, the measurement vector y; collects observed market prices. By 7' =

(Ytos ---» Yt,, ), we denote all the observations available up to time ¢. The filtering problem consists of

recursively approximating the distribution of the latent state Ly,
L= {vt, me, ANYY, AN, ZVF | 70F ZZ”’P} , (29)

conditional on y¢. Particle filters are perfectly adapted to our problem: They can handle observations

that are nonlinear functions of latent variables as well as equations with non-Gaussian innovations.

There are many types of particle filters. We use the Auxiliary Particle Filter (APF) proposed by
Pitt and Shephard (1999). Compared to more basic particle filters, such as the Sampling Importance
Resampling (SIR) filter, the APF is better suited to detect jumps, whereas the SIR filter faces sample
impoverishment leading to potential particle degeneracy. Both filters are described in Johannes,

Polson, and Stroud (2009) for filtering latent factors from returns in a Heston model with jumps in

12The fact that the option pricing errors are normally distributed does not constitute a restriction. The reason is
that the errors are heteroscedastic and the coefficients generating the heteroskedasticity are driven by the data, i.e.,
we optimize over the parameters {¢;,¥; fo<i<3.
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returns.

We develop an extension of their algorithm that is able to handle more data (the VIX market data
on top of the S&P 500 market data) as well as the second volatility factor m and the volatility jumps.
The likelihood estimation and particle filter are presented in detail in Appendix D. Furthermore,
we performed additional data treatments for S&P 500 and VIX options before running the particle

filter. They are described in Appendix E.

4.3 Candidate models and datasets

For the convenience of illustrating the effect of the incremental information contained in the different
markets, we proceed with our empirical investigation and develop insights in a pedagogical way by

defining four different datasets as follows:

S&P 500 index S&P 500 index and options
VIX index Dy Do
VIX index and options D3 Dy

D only contains data on the S&P 500 and VIX indexes. D (resp. Ds3) also contains S&P 500 options
(resp. VIX options). Finally, Dy contains all available data. Splitting up the data this way allows us
to draw inferences on the information contents of the different markets and to study whether these

contents are consistent with one another.

As the calibration exercise described in Section 3.3 has shown, the SVJ and SVJ2 model perform
well in jointly fitting the S&P 500 and VIX market on a particular day. Therefore, these two models
are natural candidates to analyze with the particle filter. In addition, to appreciate the impact of

jumps, we consider a two-factor volatility model that has no jumps. We label this model SV2.13

131n unreported results, we do not find evidence that the inclusion of additional jumps in the central tendency factor
helps to capture the time series of option prices. Therefore, as in the calibration exercise of the previous section, we
restrict our analysis of the SVJ2 model by setting J;" = 0 for all ¢.
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5 Results and discussion

After presenting the parameter estimates, we analyze the trajectories of the latent factors, depend-
ing on the model and dataset considered. We also investigate the benefits of including the jumps
and stochastic central tendency by analyzing the in and out-of-sample option pricing errors. We
then discuss whether the VIX market and S&P 500 market convey the same information about the

volatility dynamics. Finally, we study the dynamics of equity and variance risk premia.

5.1 Likelihood criteria and parameter estimates

Tables 2 and 3 present the point estimates and standard errors resulting from the estimation of the
SVJ2 model and its SVJ and SV2 sub-specifications to datasets D; to Dy. The last rows of Table
3 indicate the log-likelihood values and the values of the Akaike Information Criterion (AIC) and

Bayes Information Criterion (BIC) for each estimation.

Before we discuss in detail our parameter estimates, we make an important preliminary remark
regarding the identifiability of certain parameters. When we estimate the models with index data

(Dy) only, the likelihood criteria are slightly in favor of the SVJ2 model. However, we notice that

P

» as well as Q-parameters) are not very accurate in the sense

the estimates of most parameters (k
that their standard errors are typically four to five times larger than those obtained with the other

datasets.

Large standard errors can either be explained by the fact that our time series of indexes are too short
to disentangle the role played by the different parameters, or by the fact that the dataset D; does
not allow identification. To answer this question, we run the estimation on a longer time series of
data Dy, now starting in January 1998. We find that the estimation of the Q-parameters as well as
the parameters which are identical under both measures is not improved in the sense that standard
errors do not decrease. On the other hand, we find that P-parameters have much smaller standard

errors than before, and are now comparable to those obtained with larger datasets (Da, Ds, D4).14

4The estimates obtained with dataset D; starting in 1998 are: b = 9.000(1.164),x%, = 0.310(0.117),% =
0.130(0.035) and ny = 0.620(0.170).
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Moreover, we find that the mean jump size of returns ugp} and its variance O’I)P; are difficult to identify
with datasets Dy to Dy, because the likelihood is not very sensitive to a change in their value. In
contrast, with D; and data starting in 1998, we find reasonable values with relatively small standard
errors: pih = —0.004(0.020) and o35 = 0.030(0.010). As a consequence, we have decided to fix them

throughout all other estimations.

Our conclusion regarding dataset D; is that it is not rich enough to provide a reliable estimation of
the models considered. In particular, despite the fact that the VIX index is constructed from option
prices, it does not contain enough information to accurately infer the parameters which characterize
the Q-distribution of the S&P 500 returns. Consequently, D; is not informative enough to provide

reasonable pricing performance for S&P 500 options.
[Table 2 about here.]
[Table 3 about here.]

Given this result for Dy, we focus our discussion on the results for the larger datasets Dy to Dy.
We start by analyzing the parameters that we assume to be equal under both probability measures.
The estimates for the jump intensities suggest that the dominant factor driving the intensities is m.
Indeed, the estimates of )\%/” range between 3.64 and 4.25 for the SVJ2 model and are significantly
different from zero. In contrast, the estimates of \I'V range between 0.15 and 1.1 and are not
significant for any dataset. For the SVJ model with one volatility factor, the effect of m is transferred
to v and we can expect an increase in the estimates for A\Y'?. Indeed, they range between 2.38 and
2.85 and are significant. When we use the whole dataset Dy, the constant term )\%/“ is significantly

different from zero for both the SVJ2 and SVJ model.

For the second volatility factor m, we find that the volatility parameter o, is in the interval
[19%,35%] for both the SV2 and SVJ2 models regardless of the dataset chosen for the estima-
tion. This value is about one-half of the volatility factor o, found for the process v in these two
models. In addition, the speed of mean-reversion of the process m is about twenty times smaller
than that of v under both measures. Hence, we can interpret the process v as a factor representing

erratic short-term fluctuations of the variance, whereas the process m is more persistent and captures

20



smoother medium- to long-term trends.'®

In the SVJ model, the volatility-of-volatility parameter o, tends to range between the estimates o,
and o, of the two-factor models.'® Not surprisingly, we also find a prominent leverage coefficient

Py across all models and datasets.

In line with the literature, the equity risk premium coefficient ny is positive across all models and
datasets, which implies a positive diffusive equity risk premium. Jump size estimates under QQ are
statistically significant and strongly negative (around -10%), which is due to investors’ risk aversion
to jumps, and yields a non-zero jump risk premium. Similarly, the volatility of the returns’ jump sizes
is larger under Q than under P. This finding for jumps in returns seems to contrast with the result
for the jumps in volatility. There is almost no difference between the estimates of I/}j and v,. For the
SVJ2 model with the full dataset Dy, we find a mean jump of 0.03 under both measures. However,
the estimate for v, is highly significant, while the estimate for I/}j is not statistically different from

Z€ero.

The diffusive part of the volatility risk premium 7, = &k, — ﬁf is mostly negative. Its amplitude,
however, depends on the model used. In particular, we find much smaller magnitudes with the
SVJ2 and SV2 models than with the SVJ model. The estimates for dataset D; illustrate, again,
the problem inherent with an estimation using indexes only. The estimates for the variance risk
premium 7, vary considerably from strongly negative to strongly positive for different models. For

the diffusive part of the stochastic central tendency risk premium 7, = £, — &L, we find that its

ms

sign changes with the model used, and that it is never statistically significantly away from zero, due

5Indeed, under the assumption that jumps have a minor impact on this expectation compared to the drift term, i.e.
kD >> AP RE >> AYvuF and k6%, >> ANUUE (inequalities satisfied by our parameter estimates), the conditional

expectation of the variance E; [ur] can be written as:

P
K WP (- WP (T— K
IE[E’[’UT] %9&—;—5—0‘@ Ko (T t)(mt_ei)+e K (T t)(’Ut—C'mt-f—C‘—T;@H;),
Ky Ky
for a constant ¢ = *¢—. As kY>> kP the coefficients in front of v; decays much faster than the one in front of m.
P _nF v moy Y

—n[z(T—t)

For T' — t equal to three months, e is around 0.15, but goes down to 0.03 for six months, and is of order of

magnitude of 107 for a year. In contrast, e="m (T~ is around 0.85 for T — ¢ equal to six months, and as high as 0.77
for one year. Therefore the deviation of m; relative to its long-term mean drives the medium- to long-term expectation
of the variance.

16We impose the Feller condition 2k,mo > 03 on the SVJ model, where myg is the level of reversion of the variance
when the central tendency is a constant process. As a consequence, for all datasets containing options, the estimated

volatility-of-volatility parameter o, is considerably smaller for the SVJ than for the SV2 and SVJ2.
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to the rather large standard errors of the k,, and s, parameters.

Finally, the last rows of Table 3 present the log-likelihood values for the different models and datasets.
All likelihood criteria imply that the SVJ2 model significantly outperforms the SVJ and SV2 models
when options are included in the estimation dataset. Furthermore, the two-factor models (SVJ2 and

SV2) are substantially superior to the SV.J model in fitting the S&P 500 options.

5.2 Filtered trajectories

Figure 3 displays the filtered trajectories of the volatility process resulting from estimating all three
models SVJ, SV2, and SVJ2 using D4. Whether we focus on the in-sample or out-of-sample period,

we find that the filtered volatility values /vy are consistent across model specification.
[Figure 3 about here.]

We also compare the filtered trajectories of the volatility when using different estimation datasets.
By doing so, we can identify the information content of each dataset regarding the variance of S&P
500 returns. In Panels B to D of Figure 3, we plot the difference between the filtered variance using
D, and the one filtered using Dy, D2, and D3, under the SVJ2 specification. Up until the peak in the
VIX towards the end of the in-sample period, the difference between the filtered variances is small
(less than 3%). During this period, the filtered variance using Dj, which uses only the S&P 500 and
VIX index returns, is in general slightly smaller than the variance filtered using the other datasets
(Panel B). Hence, the inclusion of options tends to moderately increase the filtered variance. With
the start of the financial crisis in the fall of 2008, some new patterns emerge. While the variance
filtered using D4 remains close to the one filtered using Dy (Panel C), the variance filtered using Dy
and D3 (Panels B and D) is substantially larger (up to 25 percentage points). In the out-of-sample
period and after the variance crisis peak, the difference between the trajectories remains within an
interval of 43 percentage points except during the period surrounding the second variance increase
in May 2010. Hence, in times of market distress, S&P 500 options contain information on the
variance process that is different from the one contained in D;, and more interestingly in Ds (i.e.,

VIX options). This observation has statistical significance. Indeed, during those times, the lower
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bound of the 95% confidence interval of the variance estimated with Ds is more than 5% higher
the upper bound of the variance estimated with Ds. This phenomenon only occurs during the two
variance peaks in our sample period. Possible explanations include a difference in the constraints
or information sets of the traders involved, which may affect the prices of options on one market

differently from those in the other market.

In Figure 4, Panels A and B display the time series of the filtered probability of jumps in the variance
process {IP’(AN;?U =1)}x—o... ., inferred from Dy and D47 If this probability is above 10%, we plot
the corresponding jump size in Panels C and D. As for the contribution of jumps to the variation
of the variance, Figure 4 shows that a substantial number of jumps are filtered during the crisis
regardless of the dataset used for estimation. When options are part of the dataset, the largest

variance jumps are between 5% and 10%.
[Figure 4 about here.]

Although the volatility trajectories are similar across models (Panel A, Figure 3), the SVJ model
generates more volatility jumps during the crisis. Given that the SVJ model has a constant level of
reversion for the volatility, jumps are necessary to generate large volatility increases during the crisis.
This is not the case for the SV2 (and SVJ2) models that can (also) generate increases in volatility
by having a high level of reversion m “pulling” the volatility up. Furthermore, we impose the Feller

condition on the SVJ model, which restricts the amplitude of the diffusive volatility movements.

In Figure 5, we plot the trajectories of the central tendency process m using different datasets.
Interestingly, the estimation of m is more sensitive to the choice of datasets. Moreover, in contrast
to the estimation of v, we observe significant differences depending on which model we take. The
SV2 model indeed tends to generate higher values for the central tendency, in particular in 2009 just
after the peak in the process v. Intuitively, especially during volatile times, the SV2 model needs to

compensate its inability to generate jumps by increasing my.

Irrespective of the dataset, we observe that the process m is overall more persistent than the process

v, in line with the parameter estimates found. v increases dramatically during the crisis (from

1"We do not report the results for Dy and Ds, as the results are very similar to Da.
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September 2008 on) but gradually returns to pre-crisis levels at the beginning of 2010. In contrast,
the central tendency starts to increase at the beginning of 2009, a few months after the spike observed
in v. On the other hand, the process m does not return to its pre-crisis level of 1% to 2%, but remains

between 5% and 8% until the end of the time series.
[Figure 5 about here.]

Even though the central tendency process is more persistent than v, approximating m by a constant
as in the SVJ model is too rough of an approximation. In particular, Figure 5 shows that the levels
reached by the central tendency during and after the crisis are substantially underestimated by the
SVJ model. In fact, the constant central tendency estimated in the SVJ model seems to be close
to the average filtered central tendency for the SV2 and SVJ2 models over the in-sample period.

Therefore the SVJ model is insensitive and unadaptable to different long-term volatility regimes.

5.3 Pricing errors

We analyze pricing errors, both across model specifications and datasets. Our main focus, however,
is on the simultaneous pricing performance of different models for options on both the S&P 500 and

VIX.18

We first investigate how the different models reproduce S&P 500 option prices over time, looking at
different moneynesses and maturities. Focusing first on dataset Ds in Table 4, we find that the SVJ2
and SV2 are superior to the SVJ. Indeed, the SVJ model exhibits higher Root Mean Square Relative
Errors (RMSREs) than the SV2 and SVJ2 models for all option categories except ATM options.!?
The SVJ prices fairly well short-term options (still not as well as the SVJ2 and SV2) but struggles
to accurately price deep OTM calls and long-maturity options. Hence, introducing a stochastic

central tendency allows us to price long-term and deep OTM S&P 500 options more accurately. This

18We also analyzed model generated values of the VIX index. We find that all three models, SVJ, SV2, and SVJ2,
accurately reproduce the time series of the VIX index irrespective of which estimation dataset is used. Hence, jumps
and a stochastic central tendency appear superfluous for reproducing the trajectory of the VIX level, a result which is
confirmed by a Diebold—Mariano test. Detailed results are available upon request.

19 As the model has been estimated to relative errors, it is sensible to use the same measure of error to evaluate its
performance. We found that an assessment in terms of Root Mean Square Errors may be misleading as it focuses on
expensive options, i.e., options which are closer to the ATM level.
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finding supports the interpretation that the process m captures the long-term trends of volatility
and therefore helps to better reproduce the term structure of S&P 500 option prices. The SVJ2 and
SV2 have similar in-sample pricing errors overall. The SV2 is slightly better at pricing ATM and

deep OTM calls, but the SVJ2 prices OTM puts more accurately.

Out-of-sample, the SVJ2 model outperforms the SV2 model in most categories of moneyness and
maturity. Exceptions are deep OTM puts and long-term options. However, for those categories, the
differences in RMSRE do not exceed 2%. Therefore, the SVJ2 model does not overfit the data in
the in-sample-period, which would otherwise translate into a deterioration of its performance in the

out-of-sample performance compared to the other models.

Our results are comparable to those obtained by Andersen, Fusari, and Todorov (2015) who fit a
state-of-the-art three factor volatility model to S&P 500 options: We obtain IV RMSEs of 2.72%
in the in-sample period, which is 1% higher than what they obtain when specifically considering IV
RMSEs as distance to minimize. In addition, our time series is focused on the 2008 financial crisis
which is likely to contain the most difficult data to fit (our RMSEs are smaller before the crisis).

Finally, their model has an additional volatility factor hence adding flexibility to fit more data.
[Table 4 about here.]

Focusing on the pricing errors of VIX options using the dataset D3, we find that the SVJ2 model
again outperforms all models in terms of RMSRE for most option categories. In-sample, the SVJ2
always performs better than the SVJ model. The SV2 model is only slightly better for deep OTM call
options. Interestingly, the SVJ does better than the SV2 at pricing deep OTM VIX calls, indicating
that jumps are essential to represent accurately the tail of the volatility distribution. However,
the central tendency factor significantly improves the pricing of all other moneyness levels. These
observations are confirmed out-of-sample. The addition of a central tendency factor improves the
pricing of VIX options for all moneyness levels except for deep OTM calls. In fact, for this category,
the SVJ model even performs better than the SVJ2 out-of-sample. Moreover, and consistent with
the results obtained when using Dy as estimation dataset, the SV2 model substantially outperforms

the SVJ model in pricing VIX options with a maturity exceeding two months.
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When using all the available data Dy, the SVJ2 model yields significantly smaller in-sample RMSREs
than the SVJ and SV2 models, for most categories of S&P 500 and VIX options. We find that the
two-factor models perform much better than the SVJ to price deep OTM puts and calls on the S&P
500 as well as long maturity options. In turn, the SVJ model outperforms the SV2 model in fitting
deep OTM calls on the VIX. While the SVJ2 outperforms the SV2 model at pricing S&P 500 options
in- and out-of-sample, it appears that the SV2 model slightly outperforms the SVJ2 model in fitting

out-of-sample VIX options.

To test whether the pricing performance is, on average, significantly better for the SVJ2 than for its
nested models, we use the Diebold and Mariano (1995) test (DM).2° We consider two loss functions:
the Mean Square Error (MSE) of the option price errors, and their Mean Square Relative Error
(MSRE).

For S&P 500 options and using dataset Ds, the results in Panel A of Table 5 confirm that the SVJ2
model provides significantly better in-sample and out-of-sample MSEs than the other two models.
The DM tests for the MSRE loss function are not as significant, but still positive and larger out-of-
sample than in-sample. When we switch to the dataset Dy, the results confirm that the SVJ2 model
has smaller in-sample pricing errors than the other two models, especially for S&P 500 options.
However, the test indicates that the SVJ2 model does not outperform the SV2 model out-of-sample,

due to the slight lack of precision in pricing OTM and deep OTM calls.
[Table 5 about here.]

For VIX options (and using Dy), the results in Panel B of Table 5 do not favor one model over the
others when considering the MSE as distance criterium. In terms of MRSE, they are slightly in favor

of using the SVJ2 model, as it better fits the cheap OTM options.

We can draw two main conclusions from our analysis of the pricing errors. First, including a stochas-
tic central tendency in the model significantly improves the pricing of long-term options and the

representation of the tails of the distributions of the returns (OTM puts and calls on the S&P 500).

20The DM test works as follows. Consider a loss function, e.g., L(e:) = |es|, where e; is the difference at time ¢
between two model pricing errors. If these two models have comparable pricing errors, then the expectation of their
loss differential should be zero. The DM test provides a test statistic for this differential.
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Second, jumps improve the representation of the right tail of the variance distribution (OTM calls

on the VIX) as well as of the short-term options.

Given that we use more than four and a half years of option data on two different markets with a
wide range of moneynesses, the pricing errors resulting from our time series estimation are relatively
small. However, our analysis also uncovers some potential shortcomings of the affine framework.
Even the SVJ2 model has difficulty reproducing the observed volatility smiles during and after the
crisis. In particular, OTM puts on the S&P 500 tend to be underpriced and OTM calls are generally
overpriced, the model-implied volatility smile does not have enough skewness. This phenomenon
affects short-maturity options in particular, and indicates that the model struggles to reproduce

higher moments at the short end.

To further illustrate this point, Figure 6 compares the skewness and kurtosis of the S&P 500 returns
implied by the market and model option prices, the models being calibrated to the full dataset Dj.
While the skewness of the returns is well represented at the beginning of the in-sample period, it
is underestimated from late 2007 until the end of our sample. In the out-of-sample period, this
phenomenon becomes much more apparent, as all three models yield an implied skewness which is
about one-half of that implied by the market. The SVJ2 model provides a slight improvement over
the other two models, but is still far from capturing all market characteristics realistically. Adding a
volatility factor as suggested by Andersen, Fusari, and Todorov (2015) may help overcome this issue,
but would also bring additional complexity to the estimation procedure. Similarly, the kurtosis is
only slightly underestimated at the beginning of the time series, but in the out-of-sample period the
model kurtosis is about one-half of that implied by the market. Additionally, we find that having
VIX options in the estimation dataset does not improve the representation of the S&P 500 implied

moments.

[Figure 6 about here.]
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5.4 Market integration

Even for affine models, particle filter based estimation of option pricing models is computationally
intensive. Therefore, the recent literature has proposed estimating option pricing models by only
using the S&P 500 and VIX index data, thereby avoiding the computational burden associated with
option valuation. See, e.g., Duan and Yeh (2010, 2011). However, as we mentioned in Section 5.1, the
estimation results indicate that using index data alone may lead to erroneous estimated dynamics,
and, consequently, erroneous option prices. Indeed, Table 4 reports RMSRESs for S&P 500 options,
which are two to five times larger when estimating from D; than when estimating from Dy. For
VIX options, the RMSRESs are two to four times larger when using D; than when using Ds3. This
mispricing is particularly marked for the SVJ2 and SV2 models, which have more parameters and
require more information for their estimation. Hence, we conclude that one should refrain from

estimating an option pricing model using only the S&P 500 and VIX index data.

Although the VIX and S&P 500 options provide different information on the trajectory of volatility
in times of market turmoil (Figure 3, Panels C and D), jumps filtered from estimating the SVJ2 with
D5y and Ds present similar patterns, with slightly less jumps filtered from S&P 500 options. In the
fall of 2008, several jumps around 10% occur with a probability larger than 10%. Finally, slightly

smaller jumps are detected when the Eurozone sovereign debt crisis emerges in May 2010.

Despite these similarities, Table 4 shows that the RMSREs on S&P 500 options are four to five
times higher when estimating the two-factor models using D3 than when estimating them using
Dy4. This ratio is much smaller for the SVJ model, partly because its estimation with Dy already
yields rather bad results. Therefore, our results suggest that VIX options do not contain enough
information to price S&P 500 options accurately. Estimating the SVJ2 and SV2 models using D3
in fact leads to severely mispriced OTM S&P 500 calls, which indicates that VIX options contain
very little information on the right tail of the distribution of the S&P 500 returns. Concerning deep
OTM puts on the S&P 500, it is striking to see that the estimation using D3 outperforms the one
using D, out-of-sample. This indicates that VIX options provide valuable information on the left
tail of the returns’ distribution. Conversely, we note that the RMSREs on VIX options using Dy are

about 50% higher than those using D3, both in-sample and out-of-sample. Therefore, we conclude

28



that S&P 500 options do not include all the information contained in VIX options.?!

5.5 Variance risk premium

Following Bollerslev and Todorov (2011), we define the annualized integrated variance risk premium

(IVRP) as

1
IVRP(,T) = — [E%” (QVier) — EP (QV[t»T])} :

where QV}; 7 denotes the quadratic variation of the log price process, which is the sum of the

integrated variance of the returns and the squared jumps in the time interval considered:
T Np® )
Qiuny = [ vads+ Y (27)
¢ =Ny
The IVRP represents the expected payoff when buying a variance swap at time ¢ with maturity 7.
We can further decompose the IVRP into a continuous and a discontinuous part:

IVRP(t,T) = IVRP(t,T) + IVRPY(t, T

with

1 T T
IVRP(t,T) = —— {Ef} (/ vsds> —~E2 </ vsds>] ,
- t t

1 P N%,v v 2 N%,v Y\ 2
IVRPY(1,T) = —— |E[ | > (2))) -EZ| > (2))
i=N)v =N}

Each part can also be decomposed into a contribution from m; and another one from wv;:

IVRP(t,T) = ((AP — Aoy + (B — Bym, + GP — G) ,
IVRPUET) = (A" AFur + (BT + AL A% e + N7 4+ AV GF 4+ A VBT [(0F)% + (%]

= (A" Av+ Y7 B 4+ A" Ayme + N4+ NG+ A B) [(ov)? + (ur)?].

21This result does not seem to be model-driven. Indeed, the RMSRESs on VIX options are approximately all reduced
when estimating models from D; to D4 while the RMSREs on SPX options remain more or less the same. Therefore,
the models are better identified when using D4 than with Ds.
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The coefficients under Q are given in Appendix A.??

In Figure 7, Panel A, we plot the evolution of the IVRP generated by the SVJ2 model using our
largest dataset Dy4. In line with the literature, we find that the IVRP is strongly negative with a
sharp drop at the end of 2008.23 Afterwards, the IVRP steadily shrinks but remains larger - in
absolute terms - than before the drop. In Panel B of Figure 7, we decompose the instantaneous
variance risk premium into its continuous and discontinuous parts. The discontinuous component of
the IVRP dominates for shorter maturities, indicating that including jumps helps to represent the
shorter end of the variance premium’s term structure. At the long end, the effect of a positive jump
in the variance process is likely to be dampened by the reversion of the variance to its long-term

mean.
[Figure 7 about here.]

Finally, we find that the contribution of the stochastic central tendency to the continuous part of the
IVRP is negligible for short maturities but plays a substantial role for maturities larger than three
months (see Panel C of Figure 7). The central tendency m usually sets the level of the continuous
IVRP, but it becomes secondary when the market conditions change and the variance peaks . The
central tendency also plays a major role in the discontinuous part of the IVRP and determines
most of its level especially during quiet times, see Panel D of Figure 7. Hence, both the variance
jumps and the stochastic central tendency play a crucial role in the IVRP. While the jumps help to
represent the short end of the variance term structure, it is mostly the stochastic central tendency
m that determines the IVRP during calm market periods. In times of financial crises, the process v

contributes the most to setting the IVRP.

6 Conclusion

In this paper, we carried out an extensive empirical investigation of the information contained in

related derivatives markets on the dynamics of volatility. We estimated various specifications of a

22The time-to-maturity 7vix needs to be replaced by (7' —t). The expressions remain similar under P. Q-parameters
simply need to be replaced by their P-counterpart, except BF and GF in which %, remains under Q.
23This result holds across datasets and models. However, we only plot the results for the SVJ2 using Di.
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flexible affine model using a time series of S&P 500 and VIX indexes as well as option prices on
both indexes. To extract as much information about extreme events as possible, we used S&P 500
and VIX options with a unique wide range of moneynesses. Instead of a step-wise estimation, we
departed from most of the literature and estimated the historical and the risk-neutral parameters

jointly, in a single step. Our maximum likelihood estimation procedure is based on particle filtering.

We show that using a model with a stochastic central tendency and jumps in the returns and volatility
provides significant improvements for pricing S&P 500 and VIX options jointly, both in- and out-
of-sample. Adding a stochastic central tendency helps to better represent the tails of the returns’
distributions, as well as the term structure of the S&P 500 and VIX option prices, while jumps allow
more flexibility to match the right tail of the variance distribution as well as short-dated options.
Regarding the variance risk premia (VRP), jumps additionally play an important role and drive
the short term VRP. For longer term horizons, the continuous part of the VRP dominates and the

contribution of m is largest when markets are calm.

We investigate the ability of information from one market to explain prices observed in other related
markets. We find that the VIX index does not provide an accurate representation of the information
contained in the S&P 500 options. Indeed, an estimation using only the VIX levels in addition to S&P
500 returns (hence excluding options) does not allow to reproduce either the S&P 500 or VIX option
prices. Similarly, the information in S&P 500 derivatives does not span the information contained in
VIX derivatives, and the same holds the other way around. This lack of integration is particularly
prominent during market stress, where it is therefore crucial to include the underlyings as well as
the derivatives on both markets in order to estimate a model and account for the cross-section of

instruments.

Finally, we find that even the model with a stochastic central tendency and jumps is not able to fully
reconcile the dynamics of S&P 500 and VIX derivatives in times of market turmoil. In particular,
it fails at reproducing the skewness and kurtosis of the underlying S&P 500 index accurately. We
conjecture that this limitation is due to the affine nature of our modeling framework. However,
departing from this framework generates tremendous additional computational complexity for the

particle filter estimation. We leave this challenging avenue for future research.
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Appendix

A Affine dependence of the VIX? on v; and my

The expressions for the coefficients ay;x2, Byrx2 and yyx2 in Proposition 2.1 are given by

ayxe = (1+2A]7C) A, (A1)
Buixz = (1+2M°C) B+ (2A)VC) A, (A.2)
wixz =205 'O+ (1+20C) G + (2A°C) B, (A.3)

where A = —L— (¢®™Vix — 1) and A = 1, if a, = 0, and C := (6z(1,0,0) — %(0,0,0) —1). We

AuTVIX

can calculate the remaining coefficients:

1 hy efmTVIX—1\ [ e*TVIX—1 .
TVIX (am,av) |:< am ) ( ay ):| 3 lf Ay Ay # 07

hy (Lavtvix _ 1 (pauTvix _ ; —
& (e oo (€ 1)), if ay = am # 0,

am Am TVIX

B = hy (; (eam™VIX — 1) — 1) . if am # ay =0, (A.4)
by (; (e®VIX — 1) — 1) , if ay # ay =0,

ay Ay TVIX

1 .
§TVIth~, if apm = a, =0,

bo [(£2X=1) 1] — b, B, if ay #0,
by [(%) _ 1} — by B, if ay = am #0,
G = 3buTvIX — b B, if am # ay =0, (A.5)
@ (B - Shyrvix) + £ 92(0,0,00" [(£222) 1], if 0y # ap =0,
%TVIX {%(07 0, 0))‘?)/1] + thvTV?,IX} , if am =ay =0,
amTVIX —1 . A :
PR Bt LRGN bm(l_A>’lf“m7éO’ (A.6)
1, if ay =0, EmTVIX - if q,, = 0.
Furthermore,
am = (22(0,0,0X = k), cm = (Kmbn + 552(0,0,007" ), A
Ay = (%(070)0))‘{“ - Kv) y o hy = (Hv + %(07070))‘5“) )
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and if a,, # O:

_ Cm _ 89Z Yovu 80Z Yovu
b = —— by = by, (M + T (0,0,0)A} ) -y (0,0,0)AY". (A.8)

B Characteristic functions

Assuming that the characteristic functions of the processes Y, VIX? take the exponential affine form

Ty pxz (tv,miw) = E2 [ewwxﬂ = (T +B(T—t)vty(T—t)m

Ty, (t, 0, m;w) = ]Eg [ewYT] = ¢ (T=D 4By (T—t)ytry (T—t)v+dy (T—t)m.

with w € C, the coefficients in the definition of Wy, ; X2 satisfy the following ODEs:?*

— QT =) + (T = ) kimb + N (020, B(T — 1),0) — 1) + A (07(0,0,7(T — ) — 1) = 0

BT~ 1) = BT~ ) + 5028 — 1) + A (02(0, B(T ~ ),0) ~ 1) =0

/(T ) AT — 1) + 5057 — )4 5T — 1) + AL (00, 87— 1),0) 1) +
N (02(0,0.4(T ~ 1)) ~1) =0

vVt € (0,7], with boundary conditions «(0) = wvyyrx2, 5(0) = wayx2 and v(0) = wPhyx2, where

the coefficients oy 7x2 and By rx2 are defined in Appendix A.

24This relies on the fact that the Poisson processes driving the jumps in v, and in m; are independent.
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The coefficients of Uy, satisfy the following ODEs for t € (0,77:

— A4 (T —t) + By (T — t)(= Ay (02(1,0,0) = 1)) + 6y (T — t) Kb
+ A0 [02(By (T — 1), (T = 1),0) = 1] + A5 [02(0,0, 6y (T — 1)) = 1] = 0
~ BT 1) =0
(T 1) = By (T~ N (0(1,0,0) 1) — 2By (T — 1) — (T — 1)y + 3By (T — 1)
4 5 (T = 1207 + By (T = ) (T = Howpys + N 102(8 (T ), 3y (T~ 1),0) = 1] =0
B (T~ 1) = By (T = A (62(1,0,0) = 1) + 9y (T — )y — 0y (T )i+ v (T — )27,

+ A2 " [02(By (T = 1), (T = 1),0) = 1] + AP [0(0,0,6v (T = 1)) = 1] = 0,
with boundary conditions ay (0) = 0, 8y (0) = w, vy (0) = 0 and dy (0) = 0.
In practice, the ODEs are solved numerically.
C Coefficients for the Fourier cosine expansion

Here we give the expression for U IXQ, the Fourier cosine transform of the VIX options’ payoff. To

ease notation, we drop the subscript vix for avx, byix and define w,, := b”_—’;. For n > 0, we obtain

2 b +
AL / (Vz— K)7 cos (wn(z — a)) da (C.1)
. efiwnb T
= 7 E aRe {e—zwna [\/Eiwn + 2(_$)3/2 (erfz(\/ —iwpb) — erfz(K\/iwn))] } .

where erfz is the error function for complex numbers.
For n =0,

2 [2 1
Uy — 2| 5p32 _ gp 4 ZK3| . C.2
0 b—a [3 T3 (©2)
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D Particle filter

The log-likelihood of a time series of n 4+ 1 observations with joint density p, conditional on a set of

parameters O, is equal to
n
log p(y™[©) = log p(yty: -+ Y1, 1©) = Y _log p(ye, |y, ©) + log p(ye, |©) (D.1)
k=1

where, by the Law of Total Probability,

p@mwka@w=/p@muwem@%wka@wmh (D.2)

Given an initial density p(Ly,|©), the transition density of the state variables p(Ly,|Ls, ,,©) and the
likelihood function p(yz, | Ly, , ©), filtering methods allow us to estimate the distribution p(Ly, |y'*, ©)
of the current state at time t;, = kAt, given all observations up to that time. In the following, we
simplify notation and drop the subscript for the conditioning on the parameters ©. The filtering

density is given by Bayes’s formula,

p(Le |y™) o< p(ys, |Le, )p(L Jy™*=1). (D.3)

The likelihood function is known, but the predictive distribution of the state is not. It is given by

the following integral, which involves the previous filtering density.

p(Lals* ) = [ (Lo Lo (Lol )dLs, 0.4

The key idea is to approximate the posterior density function of the latent variables p(Ly, lytk) by a

sum of point masses positioned at strategic points, called particles, {ng)}lgignpi

P(LyJy*) =Y mV8(Ly, — L), (D.5)
=1

where mﬁz) denotes the normalized importance weight for particle i, §(.) is the Dirac delta function,

and n, is the number of support points (particles) for p(Ly, |y*). Then, we can recursively calculate
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the filtering density by

ﬁ(Ltk|ytk) X /p(ytk|Ltk)p<Ltk|Ltk1)ﬁ<Ltk1|ytkl)d‘Ltkl
p

=" plye | Lt )p(Le, |LY )i . (D.6)
=1

To implement the particle filter, ones needs to be able to simulate at every time ¢ a number n, of
particles ng),i =1,...,n, from p(Ly, |y"*-1) and to be able to evaluate p(ytk|L§z)). Based on these

simulated particles, we can approximate p(yy, |y**~1) by
1 & :
Plunly™ =) = == 3 plun |y (D.7)
P =1

The available observations are the S&P 500 daily returns, the VIX levels, and the option prices on
both indexes. In the following, the notation is as in Section 4.2. We used n, = 15,000 particles on
days when the observations contain option prices and n, = 8,000 when the observations are only
composed of the S&P500 returns and VIX index levels. Larger numbers of particles did not change

our estimates, but increased the computational burden.

The filtering algorithm can be decomposed into the following steps.

Step 1: Initialization. We simulate n,, initial particles for the latent variables {vg), TrLE?}i:17.,_7np
which are compatible with the initial value of the VIX squared, i.e., given the specification (23). The

following steps are repeated for each time step t; in the grid from £k =0 to k = M — 1.

Step 2: First-stage resampling. At this point, we assume that we have n), particles (i.e., pos-
sible values of m; and v;) at time t; given all observations y'* up to ty. At time tp 1, there are
new observations yx11. The goal of this step is to retain, from the previous sample of particles
{véi), 7”1(52)}1§i§np7 only those which are likely to generate the new observations yi4;. For this pur-
pose, we assign a weight (the so called “first-stage weights”) to each particle, which is proportional

to the likelihood of new market observations y;, ., given the value of the particle Ly, at time .

Intuitively, particles that are compatible with the new observations will be assigned larger weights
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than other particles. To increase the speed of the first-stage resampling, we do not consider options

as part of the observations y;, , (only in this step) and limit g, ., to the values of the indexes.

The first stage weight wt(zll assigned to the i*" particle Lgi) at time tx4; is given by

wt(:;ll = p(ng) |ytk+1) X p<ytk+1 |L1EZ))
where p(y,,,, |L£Z)) is the density of the observation vector y;, ,, given the values of the particle vector
Lg?. The importance weights {wgzll}lgign;ﬂ add up to 1, so that they define a proper probability

mass function. Conditioning on the number of jumps in AY; (or equivalently in Awv;) and Amy; gives

Wil 0T Pl |LY ANY Y ANIYP(ANY” = j. AN = 1).
7,leN

Given that we use daily observations, we limit the possible number of jumps of the Poisson random
variables AN};”, ANy to zero or one (this Bernoulli approximation is found to be very accurate in

Johannes, Polson, and Stroud (2009)). We recall that the new observation is composed of the S&P

500 returns and the VIX level v, ., = (AY;, =Yy, — Ytk,VIX?kH). Since the VIX? s a sum

tht1

of normal distributions and no more than two exponential distributions, there is no closed form for
this bivariate density in the general case. To preserve tractability, we approximate the exponentially
distributed jump sizes by a categorical distribution (a generalization of a Bernoulli distribution)
which is supported in a certain number of (the corresponding exponential distribution’s) quantiles.?

(4)

tyy 1S @ sum of weighted bivariate normal densities.

As a consequence, the weight w

To eliminate the particles {ng)}lﬁifnp that are not likely to generate the new observations yy, ., we

resample (with replacement) the particles according to a stratified resampling scheme:?¢

z(i) ~ StratRes(np,wgil, ,wgﬁ)

This makes it possible to create a new sample of n, latent factors {Lgi)}lgjgnp which are now

equally likely. Indeed, particles representing my, and v, are shuffled into a new set of particles:

25Robustness tests were performed on simulated data to check that the choice of quantiles was appropriate.
26We checked that using a multinomial or stratified resampling scheme gives similar results.
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{mtk ,vtk }J Loy = {171;(Z ,vtk }l 1.m,- We resample the same number of particles, although this is

in principle not necessary.

The next step of the particle filter consists in propagating the latent factors according to their

conditional density given the previous values Lgi) and the new observations y, ,:

Lgk)ﬂ <Ltk+1 |Lt,c 7ytk+1)

Because the distribution p(Ly, ., |L§?,ytk .,) is not known in closed form, we use a proposal density
q(Ly,., |Ltk s Yt +1) Propagating v, and m; requires preliminary knowledge on the jump components,

so we first focus on the jumps.

Step 3: Generating the jumps. We calculate the joint probability of jumps in AY; (or equiva-

lently in Avy) and Amy between ¢, and tgy1 using
(ANtk ) ANtletk+1) X p<ytk+1 |A ty 7AN$)P(AN75};U) ANm) (D'S)

Conditionally on the jump sizes in vy and my, the first part of the right-hand side has already been cal-
culated in the first-stage weights. Using Bayes’s rule, we get an approximation for P(ANt}; v, AN[Z|ytk )

We infer the jump size in the returns following Johannes, Polson, and Stroud (2009): Z, Y(ﬁ) |ANY b Ytrs

is normally distributed N (u; A0 J(')) where p J(i) and 0}/(“ are given by
~1
Y (i) 1 1
05 = Voli +
( ) AND (B2 o)

Y

Y (i) :< Y(z))QYtM i Lo oy )2
/’LJ J AIEZ) (0_[{@;)2 Hy
k+1

(4)

where ﬁtk+1 is an estimate of v, , given the information we have up to time t; and particle 7; we use

5 ()

oy, = Elvgy, |1)§Z)] and

i) = ()\Y”(&Z(l 0,0) — 1) + 2v() ANY”(”) At.
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Finally, we simulate the jump sizes for Av; and Amy according to their exponential law.

Step 4: Propagating the volatility and central tendency. The latent factors v and m are
propagated following a Milstein discretization scheme of the SDE. We use the full truncation method

to prevent them from taking negative values.

Step 5: Computing the filtering density. At this point, the newly generated particles {Lg)+1 H<i<n,
are a sample of p(Ly, ,, [y*+). We now calculate the second-stage weights {’Ngzll}lgignp which ap-
proximate the probabilities p(Lgi)+1|yt’v+1) and give an approximation for the filtering density at
time tx41. These weights are proportional to the likelihood of observations at time txy; given the

propagated particles Lg?ﬂ, with a correction related to the proposal density

o L LD P, L)

Tpry X
zi(j_)l (Lz(tz)+1|Lz(€;)7ytk+1)

The posterior distribution of the state variables is approximated by

ﬁ(Ltk+l |ytk+1 Z 7715,115 Ltk+1 - Lg;?ﬂ)

We choose the most likely value of a given factor by taking the expectation of the estimated filtering
(4) ].

density, e.g., =E; [Q/tk+1

Utk41

The algorithm described above extracts latent factors if one assumes that the model parameters are
known. Pitt (2002) builds on Gordon, Salmond, and Smith (1993) to show that the parameters can
be estimated using the Maximum Likelihood Importance Sampling Criterion, defined as the product
over time of the averages of the second-stage weights. The likelihood of observations given the values

of the particles is then estimated by the average of the second-stage weights over the particles
M
Py 10, M) = T Blus, [y €. M)p(ys, |0, M),
k=1
where p(yr, [y, ©, M) = L 307,
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E Specific data treatment for the particle filter

The S&P 500 options dataset contains a large amount of ATM options compared to OTM and deep
OTM options. If we use the filter (within the maximum likelihood procedure) on this entire dataset,
the fitting of ATM options will be its priority rather than (deep) OTM options. Given the formula of
Breeden and Litzenberger (1978), this results in fitting the body of the S&P 500 returns distribution
rather than the tails, which is not what we want. We need information about the extreme events
contained in the data to be incorporated into the models. For this reason, we interpolate the S&P
500 IV slices and re-sample the option prices from the resulting parametric fit uniformly with respect
to moneynesses.?” Other advantages of our use of interpolation is that the resulting data is arbitrage
free, we have fewer points for each slice (but still accurately representing the information of each

slice), thus reducing the computational complexity.?

For the interpolation, we use the efficient mixture of log-normals approach of Rebonato and Cardoso
(2004) to have a parametric fit for each S&P 500 implied volatility slice. The RMSE of the S&P
500 implied volatilities parametric fits are on average around 0.25% and we therefore do not lose
information, especially given the market bid—ask spread. Finally, using the parametric fit, we can
sample a fixed number (we have chosen 15) of “market option prices” for the desired strikes. We
have chosen to resample the option prices from each parametric slice uniformly in the strike (or,
equivalently, the moneyness). We however do not resample the options for which the strike is smaller
than 40% or larger than 140% of the current futures price. The reason is that there are usually only
one or two options outside this interval of moneyness and we do not wish to re-sample options where

the interpolation results could be driven by an outlier.

We do not perform any interpolation for the VIX options dataset, as most VIX options are OTM
and therefore contain information about the tails of the VIX distribution (i.e., variance and central

tendency processes). Therefore all available VIX option prices are used.

As the datasets comprise a large number of options (up to 600 a day), it is unfeasible to calculate

2™t is common to interpolate data, see, e.g., Broadie, Chernov, and Johannes (2007). This eliminates arbitrage
opportunities in the data and removes the accumulation of options around the ATM region.

28Gince we have considered mid-prices and because of synchronization issues between the underlying and the options,
implied volatility slices are not guaranteed to be arbitrage free.
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the option prices every day for every particle. As a consequence, we follow Pan (2002) and Johannes,
Polson, and Stroud (2009), among others, and use weekly (Wednesday) options data. Furthermore,
this eliminates beginning-of-week and end-of-week effects. Our particle filter uses daily time steps and
incorporates information on the underlying indexes on a daily basis (i.e., only options are considered

weekly).

We decompose the time series of observations into two periods. The first period is from March
1st, 2006 to Feb 28, 2009 (shortly after the VIX index increased to its highest point). This was a
rather calm period,?’ that we will use as the in-sample estimation period. Our out-of-sample period
starts on March 1st, 2009 and ends on October 29, 2010. This period includes very high levels
of volatility (for implied volatilities from the S&P 500 and VIX options as well as the VIX index
values). The last column of Table 4 presents the number of options within each moneyness and
maturity range in both periods. In particular, our dataset contains, in the in-sample period, 608
close-to-maturity OTM call options on the S&P 500 with a moneyness larger than 1.05, and 2,243
OTM put options with a moneyness smaller than 0.95. These options have maturities shorter than
two months. Analogously, in the out-of-sample period, the dataset contains 737 close-to-maturity
OTM calls and 2,032 OTM put options. As highlighted in Bollerslev and Todorov (2011), these
options provide valuable information on jumps as they have little value unless a large movement in
the S&P 500 is possible. Similarly, OTM calls on the VIX with short maturities contain information
on the extreme upwards moves in the VIX index, and help identify the heavy-tailedness of the right
tail of the VIX distribution. Our dataset contains 1,006 such options on the VIX with a moneyness

larger than 1.1 in the in-sample period and 1,269 in the out-of-sample period.

2%We have decided to include the beginning of the financial crisis so that the in-sample period actually includes
several dates with extreme events.
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Table 1. Descriptive statistics for daily S&P 500 futures log-returns and daily VIX levels for the
periods from March 2006 to February 2009, and March 2009 to October 2010. We report the mean

(Mean), standard deviation (Std), skewness (Skew), and kurtosis (Kurt).
March 2009-October 2010

March 2006—February 2009

Mean Std Skew Kurt Mean Std Skew Kurt
S&P 500 -0.0007 0.0159 0.0722 14.0772 0.0007 0.0158 -0.3283 6.8683
10.9620 0.2907 0.1025 1.1929 3.8631

VIX 0.2044 0.1208 2.6560
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Table 2. P-parameters and measure-independent parameters, estimated using the particle filter for the different models and datasets.
The standard errors are in italics below each parameter, except for 2, which is calculated as 05 = 09 k% /kP . Dy contains S&P 500
and VIX levels. Dy (resp. Ds3) contains in addition the S&P 500 options (resp. VIX options). D, contains all available data. The
estimation period is from March 2006 to February 2009.

D D, Ds Dy
SVJ2 SvVJ SvV2 SVJ2 SVJ SV2 SVJ2 SvVJ Sv2 SVJ2 SVJ SV2
P and Q parameters
ALY 0.400 0.050 - 0.010 0.050 - 0.160 0.060 - 0.170 0.088 -
0.204 0.082 0.056 0.026 0.054 0.042 0.099 0.022
AT 1.000 3.350 - 1.100 2.820 - 0.240 2.850 - 0.150 2.376 -
0.529 1.896 0.656 0.183 0.161 0.296 0.485 0.504
Ay 3.000 - - 4.250 - - 3.640 - - 4.000 - -
0.637 0.161 0.854 1.208
Om 0.080 - 0.110 0.240 - 0.190 0.350 - 0.300 0.190 - 0.280
0.173 0.135 0.088 0.054 0.117 0.080 1.034 0.104
Oy 0.840 0.550 0.840 0.720 0.510 0.910 0.770 0.390 0.770 0.790 0.375 0.830
0.129 0.195 0.142 0.064 0.072 0.058 0.069 0.061 0.041 0.192 0.034 0.119
Py v -0.620 -0.900 -0.620 -0.800 -0.890 -0.790 -0.780 -0.890 -0.760 -0.860 -0.934 -0.820
0.138 0.227 0.152 0.105 0.023 0.023 0.074 0.050 0.184 0.028 0.051 0.086
mo 0.030 0.026 0.024 0.023
0.008 0.002 - 0.003
P parameters
KL 7.150 11.400 9.300 6.850 7.920 7.240 8.200 7.500 7.620 6.800 7.558 7.400
2.540 3.476 1.576 0.881 0.384 0.697 0.696 0.220 0.341 0.628 0.531 0.465
kP, 0.050 - 0.080 0.280 - 0.200 0.300 - 0.340 0.300 - 0.300
0.489 0.464 0.258 0.224 0.178 0.092 0.289 0.596
0%, 0.011 - 0.109 0.045 - 0.063 0.109 - 0.109 0.033 - 0.016
v 0.030 0.090 - 0.020 0.160 - 0.220 0.150 - 0.030 0.204 -
0.155 0.114 0.152 0.034 0.054 0.043 0.113 0.105
Ny 0.850 0.100 0.900 0.700 0.500 0.500 0.340 0.450 0.430 0.500 0.782 0.800

0.190 0.458 0.234 0.158 0.112 0.129 0.282 0.221 0.235 0.255 0.181 0.163
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Table 3. Q-parameters estimated by the particle filter for the different models and datasets. Dy contains S&P 500 and VIX levels.
Dy (resp. D3) contains also the S&P 500 options (resp. VIX options). Dy contains all available data. The estimation period is from
March 2006 to February 2009. The resulting log-likelihood is shown, as well as the Akaike and Bayes Information Criteria.

Dy Dy D3 Dy
SVJ2 SVJ SV2 SVJ2 SVJ SV2 SVJ2 SVJ SV2 SVJ2 SVJ SV2
Q parameters
Ko 12.000 8.300 12.000 5.450 4.630 6.860 6.320 4.080 7.160 5.700 4.423 5.900
3.807 1.690 3.109 0.37 0.341 0.617 0.427 0.396 0.663 1.034 0.415 1.034
Km 0.490 - 0.500 0.210 - 0.400 0.230 - 0.300 0.200 - 0.480
0.271 0.251 0.076 0.104 0.121 0.110 0.192 0.111
O, 0.110 — 0.040 0.060 - 0.020 0.080 - 0.150 0.050 - 0.010
0.076 0.136 0.018 0.012 0.036 0.074 0.028 0.050
Vo 0.050 0.130 - 0.030 0.180 - 0.180 0.220 - 0.030 0.128 -
0.256 0.374 0.081 0.038 0.075 0.043 0.001 0.058
Hy -0.010 -0.050 - -0.110 -0.110 - -0.060 -0.090 - -0.060 -0.118 -
0.060 0.124 0.062 0.038 0.026 0.024 0.023 0.037
oy 0.120 0.033 - 0.110 0.160 - 0.140 0.100 - 0.100 0.114 -
0.108 0.291 0.032 0.026 0.022 0.023 0.021 0.023
e 4.850 -3.100 2.700 -1.400 -3.290 -0.380 -1.880 -3.420 -0.460 -1.100 -3.135 -1.500
Nm 0.440 - 0.420 -0.070 - 0.200 -0.070 - -0.040 -0.100 - 0.180
Log-likelihood 11376 11319 11274 6764 1439 6279 9404 7791 8060 6827 1484 4120
AIC -22714 -22610 -22528 -13486 -2844 -12532 -18762 -15544 -16090 -13600 -2924 -8204

BIC -22713 -22547 -22483 -13392 -2768 -12474 -18659 -15459 -16023 -13479 -2825 -8123
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Table 4. Root Mean Square Relative Errors (RMSRE) for the SVJ2, SVJ and SV2 models for different datasets. Option pricing
errors are reported conditional on moneyness (Mon.) and time to maturity (TTM) in months (M). The last column reports the
number of options (# ) in each category. Moneyness is defined as the ratio between the strike and the corresponding maturity future’s
price.

Dl DQ Dg D4

SVJ2 SvVJ SvV2 SVJ2 SVJ SV2 SVJ2 SVIJ SV2 SVJ2 SVJ SV2 #
In-sample S&P 500 options RMSRESs

Overall 1.571 0.850 1.076 0.270 0.555 0.271 0.817 0.691 0.866 0.259 0.374 0.291 14351

Mon. < 0.7 0.601 0.625 0.606 0.402 0.970 0.403 0.543 0.665 0.422 0.375 0.670 0.389 1365

0.7 < Mon. <0.95 0.345 0.398 0.370 0.235 0.475 0.257 0.311 0.304 0.313 0.199 0.304 0.260 6498
0.95 < Mon. < 1.05 0.521 0.367 0.359 0.213 0.195 0.193 0.260 0.331 0.266 0.239 0.228 0.226 3673
1.05 < Mon. < 1.2 3.123 1.779 1.942 0.288 0.528 0.285 1.208 1.331 1.277 0.286 0.390 0.331 2287
Mon. > 1.2 4.528 1.396 3.409 0.450 1.294 0.387 3.063 1.509 3.340 0.468 0.697 0.494 528

TTM <2M 1.342 0.979 0.905 0.326 0.508 0.344 0.730 0.987 0.760 0.313 0.371 0.369 4476
2M<TTM <6 M 1.424 0.797 1.061 0.243 0.475 0.222 0.666 0.493 0.683 0.227 0.298 0.232 5499
TTM>6M 1.923 0.767 1.245 0.235 0.679 0.241 1.042 0.516 1.132 0.234 0.455 0.266 4376

Out-of-sample S&P 500 options RMSREs

Overall 1.348 0.751 1.144 0.419 0.683 0.424 1.440 0.816 1.529 0.406 0.512 0.420 13323

Mon. < 0.7 0.828 0.898 0.833 0.692 0.585 0.663 0.521 0.694 0.588 0.646 0.713 0.649 3046

0.7 < Mon. <0.95 0.430 0.590 0.474 0.334 0.283 0.373 0.241 0.365 0.374 0.319 0.391 0.373 4755
0.95 < Mon. < 1.05 0.258 0.379 0.273 0.138 0.490 0.171 0.247 0.460 0.244 0.165 0.306 0.169 1962
1.05 < Mon. < 1.2 1.833 1.006 1.530 0.237 1.161 0.256 1.555 1.348 1.552 0.257 0.500 0.256 2349
Mon. > 1.2 3.305 0.772 2.668 0.385 0.976 0.394 4.136 1.313 4.421 0.434 0.609 0.395 1211
TTM<2M 1.122 0.992 0.954 0.440 1.089 0.504 0.991 1.255 0.992 0.461 0.553 0.514 3580
2M<TTM <6 M 1.330 0.609 1.182 0.403 0.441 0.384 1.478 0.630 1.557 0.373 0.452 0.378 5678
TTM >6M 1.542 0.674 1.240 0.421 0.460 0.401 1.697 0.492 1.847 0.398 0.552 0.381 4065

In-sample VIX options RMSREs

Overall 0.660 0.738 0.675 0.458 0.567 0.579 0.263 0.387 0.292 0.406 0.455 0.463 4148

Mon. > 1.3 0.836 0.764 0.800 0.591 0.610 0.696 0.408 0.429 0.464 0.548 0.514 0.585 1100

1.1 < Mon. < 1.3 0.660 0.811 0.743 0.474 0.624 0.654 0.205 0.414 0.222 0.397 0.482 0.505 963
0.9 < Mon.<1.1 0.564 0.751 0.663 0.367 0.596 0.505 0.158 0.362 0.188 0.309 0.423 0.382 1075
Mon. < 0.9 0.524 0.609 0.428 0.350 0.407 0.411 0.188 0.334 0.177 0.313 0.387 0.331 1010
TTM <2 M 0.613 0.761 0.751 0.477 0.592 0.619 0.293 0.363 0.328 0.400 0.459 0.493 1948
TTM >2M 0.699 0.717 0.601 0.440 0.544 0.541 0.233 0.407 0.256 0.411 0.450 0.435 2200

Out-of-sample VIX options RMSRESs

Overall 0.851 0.894 0.817 0.725 0.722 0.693 0.542 0.680 0.568 0.691 0.756 0.660 5118

Mon. > 1.3 0.977 0.916 0.958 0.893 0.792 0.870 0.768 0.724 0.820 0.884 0.813 0.858 2039

1.1 < Mon. < 1.3 0.853 0.915 0.803 0.696 0.756 0.665 0.389 0.717 0.377 0.647 0.771 0.607 916
0.9< Mon.<1.1 0.733 0.873 0.700 0.569 0.708 0.528 0.279 0.652 0.273 0.499 0.716 0.459 1109
Mon. < 0.9 0.687 0.855 0.623 0.494 0.543 0.432 0.268 0.583 0.258 0.428 0.661 0.382 1054
TTM <2 M 0.815 0.846 0.799 0.706 0.667 0.684 0.551 0.594 0.597 0.674 0.698 0.653 1054

TTM >2M 0.878 0.930 0.830 0.739 0.762 0.699 0.535 0.740 0.545 0.704 0.797 0.665 2237
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Table 5. Diebold—Mariano test values for in- and out-of-sample errors on S&P 500 and VIX option prices, for the different models
and estimation datasets. Two loss functions are considered: the average Mean Square Error (MSE) and the average Mean Square
Relative Error (MSRE) of the SVJ/SV2 model with respect to the SVJ2 model. Standard errors are calculated using the Newey and
West (1987) estimator with the optimal numbers of lags following Andrews (1991).

Dy D3 Dy

SVlJ SV2 SVJ SV2 SAYA] SV2
MSE MSRE MSE MSRE MSE MSRE MSE MSRE MSE MSRE MSE MSRE

Panel A: Errors on S&P 500 option prices

In-sample 65.437 0.134 3.728 0.172 -4.563 0.328 32.589 1.037 57.423 0.120 86.592 0.200
Out-of-sample 59.570 0.310 13.333 0.246 -32.023 -1.246 48.785 1.649 49.302 0.315 -5.166 0.134

Panel B: Errors on VIX option prices

In-sample 0.02 0.278 <le-3 0.410 <le-3 0.149 <le-3 0.360 <le-3 0.354 <le-3 0.382
Out-of-sample 0.02 0.484 <le-3 -0.503 <le-3 0.190 <le-3 0.535 0.002 0.451 <le-3 -0.409
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Figure 1. Panel A: Times series of S&P 500 (dashed curve) and VIX (solid curve) indexes from
March 1st, 2006 to October 29th, 2010. Panel B: One-month S&P 500 expected returns implied
by S&P 500 options with one month maturity. We use the method described in Bakshi, Kapadia,
and Madan (2003). Returns are expressed in percentages. Panels C and D: Implied volatilities of
S&P 500 options and VIX options on May 10 2010, as a function of log-moneyness log(K/F). The
maturities T" are quoted in years.
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Figure 2. Market and model IVs on May 5, 2010, obtained by a joint calibration on the S&P 500
and VIX option market on that day. Circles represent the market IV for T' = 0.05 (S&P 500) and
T = 0.04 (VIX). Crosses represent the market IV for 7' = 0.3 (S&P 500) and 7" = 0.36 (VIX). The
dashed line corresponds to the model fit for 7" = 0.05 (S&P 500) and 7" = 0.04 (VIX) while the
solid line corresponds to the model fit for 7" = 0.3 (S&P 500) and 7" = 0.36 (VIX). Panels A (S&P
500) and B (VIX) plot the model IVs based on the Heston model. Panels C and D display the

corresponding results for the SVJ model, while Pahels E and F do so for the SVJ2 model.
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Figure 3. Panel A: Filtered trajectories of the latent volatility process v for the SVJ2 (solid line),
the SVJ (dashed line), and the SV2 (dashed dotted line) using D4 from March 2006 to March 1st,
2009 (748 days). Panels B, C, and D: difference between the filtered variance of the SVJ2 model for
dataset D4 and other datasets. The shaded part of the graph represents the out-of-sample period,
from March 1, 2009 until the end of October 2010.
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Figure 4. Filtered probability of jumps in the variance process v for the SVJ2 (crosses) and the SV.J
(circles) for D; (Panel A) and D4 (Panel B). The data covers March 2006 to March 1st, 2009 (748
days). In Panels C and D, we plot the filtered jump sizes in the variance process v when estimating
the SVJ2 (crosses) and the SVJ (circles) models for D; and Dy, respectively. The shaded part of the

graph represents the out-of-sample period, from March 1, 2009 until the end of October 2010.
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Figure 5. Filtered trajectories of the latent factor m when estimating the SVJ2 (solid line), SVJ
(horizontal dashed line), and the SV2 (dashed dotted line) models over the different datasets D
to Dy from March 2006 to February 2009 (748 days). The shaded part of the graph represents the
out-of-sample period, from March 1, 2009 until the end of October 2010.
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Panel A: Implied skewness

Panel B: Implied kurtosis
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Figure 6. One-month risk-neutral skewness and kurtosis of the distribution of returns implied by
1-month S&P 500 options prices when estimating the SVJ2 (solid line), the SVJ (dashed line), and
the SV2 (dashed dotted line) models using dataset Dy from March 2006 to February 2009 (748 days).
We use the method described in Bakshi, Kapadia, and Madan (2003). The shaded part of the graph
represents the out-of-sample period, from March 1, 2009 until the end of October 2010.
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Panel A: Variance risk premium x 10 Panel B: Instantaneous VRP
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Figure 7. Integrated variance risk premia (IVRP) when estimating the SVJ2 model using the full
dataset Dy. Panel A plots the IVRP for different maturities. Panel B decomposes the instantaneous
IVRP into its continuous and discontinuous components. Panel C plots the contribution of the latent
factors v and m to the continuous component of the 1-year IVRP. Panel D shows the contribution of
the latent factors v and m to the discontinuous component of the instantaneous IVRP. The shaded
parts of the graphs represent the out-of-sample period from March 1, 2009 until the end of October

2010.
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